
TDB: Breaking All Hop-Constrained Cycles in
Billion-Scale Directed Graphs

You Peng†, Xuemin Lin‡∗, Michael Yu†, Wenjie Zhang†, Lu Qin§

†The University Of New South Wales,
‡Antai College of Economics & Management, Shanghai Jiao Tong University, Shanghai, China,

§QCIS, University of Technology, Sydney
{unswpy, xuemin.lin}@gmail.com, {mryu,zhangw}@cse.unsw.edu.au, lu.qin@uts.edu.au

Abstract—The Feedback vertex set with the minimum size is
one of Karp’s 21 NP-complete problems targeted at breaking
all the cycles in a graph. This problem is applicable to a broad
variety of domains, including E-commerce networks, database
systems, and program analysis. In reality, users are frequently
most concerned with the hop-constrained cycles (i.e., cycles with
a limited number of hops). For instance, in the E-commerce
networks, the fraud detection team would discard cycles with
a high number of hops since they are less relevant and grow
exponentially in size. Thus, it is quite reasonable to investigate the
feedback vertex set problem in the context of hop-constrained cy-
cles, namely hop-constrained cycle cover problem. It is concerned
with determining a set of vertices that covers all hop-constrained
cycles in a given directed graph. A common method to solve this
is to use a bottom-up algorithm, where it iteratively selects cover
vertices into the result set. Based on this paradigm, the existing
works mainly focus on the vertices orders and several heuristic
strategies. In this paper, a totally opposite cover process top-
down is proposed and bounds are presented on it. Surprisingly,
both theoretical time complexity and practical performance are
improved. On the theoretical side, this work is the first to
achieve O(k ·n ·m) time complexity, whereas the state-of-the-art
method achieves time complexity of O(nk).1 On the practical
level, the proposed algorithm, namely TDB++, outperforms the
state-of-the-art by 2 to 3 orders of magnitude on average while
preserving the minimal property. As a result, the method in this
paper outperforms the state-of-the-art approaches in terms of
both running time and theoretical time complexity. This is the
first time, to our best knowledge, that the hop-constrained cycle
cover problem on billion-scale networks has been solved with a
minimal2 cover set for k > 3.

I. INTRODUCTION

The Feedback vertex set with the minimum size was one
of the 21 NP-complete problems Karp [1] developed in an
effort to break every cycle in a graph. It was created way
back in the early 1960s (see the survey of Festa et al. [2]). A
wide variety of applications, such as operating systems [3],
database systems [4], and circuit testing [5], make use of
it. Numerous studies have been conducted over many years,
including those on approximation algorithms [6], [7], [8], [9],
linear programming [10], parameterized complexity [11], [12],
[13], etc.

Nevertheless, it is observed that individuals are primarily
concerned about hop-constrained cycles in a large number of

Xuemin Lin is the corresponding author.
1m and n denote the number of edges and vertices, respectively. The k

denotes the hop constraint.
2“Minimal” indicates local optimal in this paper.

real-world applications. For instance, a team from Alibaba
group recently investigated the hop-constrained cycles [14]
in the context of financial fraud detection on e-commerce
networks. As mentioned in [14], the fraud detection team
disregards the cycles with a high number of hops due to
their lack of relevance and exponential growth in search space.
This leads us to investigate the feedback vertex set problem
in terms of hop-constrained cycles, namely hop-constrained
cycle cover. Specifically, given a directed graph G, we need
a set of vertices containing all hop-constrained cycles whose
length is constrained by a parameter on the graph; for each
constrained cycle in the graph, at least one of its vertices must
be in the feedback vertex.

The hop-constrained cycles are more practical than cycles
in real applications, since the real applications are inherently
constrained. Users are interested in cycles in a variety of
graph analytic tasks. The cycle is a vital graph pattern that
is usually associated with certain behaviors in many real-life
applications, such as financial fraud detection, program anal-
ysis, and compiler optimization. Significant research efforts
have been devoted to the cycle-related studies such as cycle
enumeration (e.g., [15], [16], [17], [18]) and real-time cycle
detection (e.g., [14]).

The problem of hop-constrained cycle cover can be regarded
as an important extension of the well-known feedback vertex
set problem [6] with specific concerns about constrained
simple cycles (i.e., cycles with only the first and last vertices
repeated).
Applications. The following are some compelling applications
of the hop-constrained cycle cover problem.
(1) Combinatorial Circuit Design. As shown in [6], one typi-
cal use of the feedback vertex set is the combinatorial circuit
design. The circuits are depicted by graphs in which each
cycle denotes a possible “racing condition”. Certain circuit
components may receive new inputs prior to stabilization. One
method to avoid such a condition is to include a clocked
register at each cycle in the circuit. Due to the fact that the
“racing condition” is negligible for a long cycle [19], [6], the
hop-constraint is imposed automatically in this application.
As a consequence, this application enforces hop-constraint by
default.
(2) E-commerce Networks. Each node represents an account in
an E-commerce Network, and each directed edge represents
a money transfer between two accounts. Figure 1 depicts an

ar
X

iv
:2

20
9.

05
90

9v
1

 [
cs

.D
B

]
 1

3
Se

p
20

22

h

g

a

f

e

db

c

Fig. 1: An example of the e-commerce network, where vertices
represent accounts, and edges represent transactions.

example of this kind. According to Alibaba Group specialists
in [14], a hop-constrained cycle is a strong indicator of fraudu-
lent activity or financial crime such as money laundering [20].
Figure 1 depicts three simple cycles, i.e., potential money laun-
dering behaviors. By using a minimal hop-constrained cycle
vertex cover, we can identify a group of critical individuals
who are more likely to participate in fraudulent activities. For
instance, hop-constrained cycle cover {a} with the constraint
hop ≤ 5 is the most suspicious individual since it covers (i.e.,
becomes involved in) all three simple cycles with a length
limitation of 5.
(3) Program Analysis. The hop-constrained cycle cover could
also be applied to identify and resolve deadlock potentials in
program analysis, especially for concurrent applications [21].
Deadlock is a frequent concurrency error occurs when a set of
threads are blocked, and a constrained cycle in a lock graph
signals the possibility of a deadlock [22]. As a consequence,
building a minimal hop-constrained cycle cover is crucial in
this field.
Constraints. Various constraints might be placed on the cycle
computation in real-world applications. We concentrate on two
typical constraints in this paper, which follows the settings
in [14]: the simple and the hop constraint. Notably, these two
constraints are beneficial in reality since they might result in
considerably smaller results and fewer relevant cycles (e.g., a
cycle with a high number of hops implies a weak connection
between the vertices).

Self-loops and bidirectional edges are not considered as
cycles in this paper since they are uninteresting and substan-
tially increase the result size. Nota bene, the self-loop and
bidirectional edge may be promptly verified if required.
Contributions. The main contributions are listed as follows:
• Scalability. To the best of our knowledge, this is the first

work to answer the problems of hop-constrained cycle
cover on billion-scale directed graphs, both of which have
a wide range of real-life applications. To achieve this, we
use an opposite cover process from existing works. In
addition, delicate upper and lower bounds are proposed
to achieve better theoretical time complexity and practical
performance.

• Theoretical Analysis. For a given directed, unweighted
graph G, we demonstrate that approximating the hop-
constrained cycle cover problem with lengths ranging
from 3 to k within (k − 1 − ε) is UGC-hard (Unique
Games Conjecture).

• Comprehensive Experiments. Compared to the baselines,
our comprehensive experiments demonstrate the effi-
ciency and effectiveness of our proposed method.

Organization of the paper. The remainder of this paper is
structured as follows. Section II is devoted to related work. In
Section III, we introduce the preliminary. Section IV provides
an examination of these problems from a theoretical stand-
point. Bottom-up and Top-Down algorithms are conducted in
Sections V and VI, respectively. Extensive experiments are
conducted in Section VII. Finally, Section VIII concludes this
paper.

II. RELATED WORK

We review closely related works in this section.

A. K-Cycle Traversal and K-Cycle-Free Subgraph

The k-cycle transversal problem (K-cycle problem for short)
is to find a minimum-size set of edges that intersects all simple
cycles of length k in a network. K-cycle problems are crucial
in the disciplines of extremal combinatorics, combinatorial
optimization, and approximation algorithms, as shown in [23],
[24], [25], [26]. [26] investigates the 3-Cycle Traversal. [25]
addresses 3-Cycle Traversal, 3-Cycle-Free Subgraphs, and
their connections to related issues. In [27], the problem of
locating a maximum subgraph devoid of cycles of length
≤ k is examined in the context of computational biology,
and different heuristics are presented without analyzing their
approximation ratio.

The most closely related problem is [28], which tackles
both the problem of discovering a minimal edge subset of E
that intersects every hop-constrained cycle, and the problem
of discovering a maximum edge subset of E that does not
intersect any hop-constrained cycles. They provide a (k− 1)-
approximation for this problem, when k is odd. [29] investi-
gates the kernelization for the cycle traversal problems. The
most efficient method is described in [30]. We use their method
as our baseline.

B. Feedback Vertex Set

Another related work is the feedback vertex set (FVS)
problem, which seeks to intersect a minimum-size of vertices
with all cycles of any length in the network. [6] proposes
a 2-approximation method for FVS in undirected graphs. The
analogous edge version issue may be reduced to the minimum
spanning tree problem [31]. As a result, it can be solved in
polynomial time.

C. Cycle and Path Enumeration

With the rapid development of information technology, a
growing number of applications represent data as graphs [32],
[33], [34], [35], [36], [37], [38], [39], [40]. Numerous research
has been conducted on the subject of enumerating s-t simple
paths (e.g., [41], [42], [43], [44], [45], [46], [47], [48]), with
the simpath algorithm proposed in [42] being one among them.
Due to the huge amount of results, [14] applies the hop-
constrained path enumeration problem on the dynamic graphs
and analyzes them. An indexing technique named HP-index is
proposed to continuously maintain the pairwise hc-s-t paths
among a set of hot points (i.e., vertices with a high degree).

There is a long history of study on enumerating all simple
paths or cycles on a graph [16], [17], [18], [37]. Another area

TABLE I: The summary of notations.

Notation Definition
G a given directed unweighted graph

m, n the number of edges(vertices) for G
C a hop-constrained cycle cover for given graph G
c a simple hop-constrained cycle, where 3 ≤ |c| ≤ k

|C|,|c| the size(length) for a vertice set C(c)
H[v] the hit times for vertex v
CN the cover node

opt(G, k) the optimal hop-constrained cycle cover in G
len(p) length (i.e., number of hops) of path p
sd(u, v) shortest path distance from u to v

i.e., the minimal number of hops from u to v
sd(u, v|T) shortest path distance from u to v

not containing any vertex in T
p[x] number of hops the vertex x can reach

the end vertex of p along the path p
S, |S| the stack in DFS and its size
p(S) the path associated with stack S

adjin[v] the in-neighbors of vertex v
adjout[v] the out-neighbors of vertex v
len(S) the length of the path associated with S

where len(S) = len(p(S)) = |S| − 1

of study (e.g., [49]) is counting or estimating the number of
paths connecting two given vertices, which is a well-known
#P hard problem.
Hop-constrained Path Enumeration [50], [51], [52]. Peng
et al. [52], [47] designed a barrier-based method, which
dynamically maintains the distance from each vertex to t.
Initially, they set the barrier for each v ∈ V (G) as S(v, t|G).
During the enumeration, if they find that a sub-tree rooted at
a node in the search tree contains no result, then they will
increase the barrier to avoid falling into the same sub-tree
again. T-DFS [53] and T-DFS2 [54] are two theoretical works.
They achieve polynomial delay by ensuring that each search
branch in the search tree leads to a result. For example, before
extending M by adding v′’ in Algorithm 1, T-DFS checks
whether there is a shortest path from v’ to t without vertices
in M whose length is bounded by k − L(M) − 1. Although
all three algorithms achieve O(k×|E(G)|) polynomial delay.
Peng et al. showed that their method runs much faster than
T-DFS and T-DFS2 in practice because their pruning strategy
incurs lower overhead [52].

III. PRELIMINARIES

This section introduces the hop-constrained cycle cover
problem explicitly. Then, the state-of-the-art methods are
presented. Table I provides the mathematical notations that
are most frequently used throughout this paper.

A. Problem Definition

This subsection begins by formally introducing the hop-
constrained cycle cover problem.
G = (V,E) is a directed graph containing the vertex set

V and the edge set E. The symbol e(u, v) ∈ E denotes a
directed edge connecting the vertex u to the vertex v. When the
context is clear, “neighbor” refers to the “out-going neighbor”.
adjin[v] (adjout[v]) designate the in-neighbors (out-neighbors)
of vertex v, respectively. A path p from the vertex v to the
vertex v′ is a sequence of vertices v = v0, v1, . . ., vh = v′,

where e(vi−1, vi) ∈ E for all i ∈ [1, h]. A circuit is a
non-empty path with repeated start and end vertices, e.g.,
(v1, v2, ..., vu, v1). The length of a circuit is equal to its
number of vertices. A cycle or simple circuit is a circuit
where only the initial and final vertices are repeated.

The hop-constrained cycle cover problem is defined as
follows:

Definition 1 (A Constrained Cycle). Given a hop constraint
k, A Constrained Cycle C is a cycle with 3 ≤ |C| ≤ k, and
there are no repeat vertices except the starting and ending
vertices.

Definition 2 (Hop-Constrained Cycle Cover). Assume that k
is a positive integer. A hop-constrained cycle cover of graph
G(V,E) is a subset of vertices C ⊂ V such that, for any
constrained cycle C, C ∩ π 6= ∅.

The following definitions apply to the optimal and minimal
hop-constrained cycle cover.

Definition 3 (Optimal Hop-Constrained Cycle Cover). The
term “an optimal hop-constrained cycle cover” refers to a
collection of vertices C0 that has the smallest size of all the
hop-constrained cycle covers given a directed graph G.

Definition 4 (Minimal Hop-Constrained Cycle Cover). Given
a directed graph G, a collection of vertices C0 is said to be a
minimal hop-constrained cycle cover if no vertex in the cover
could not be deleted.

This paper covers all the simple cycles (hop-constrained
cycles), which is described as Theorem 1.

Theorem 1. If C = { c | c is a cycle ∈ G}, Cs = { c | c is
a simple cycle ∈ G}, and a vertex set V0 is cover set for Cs

s.t. ∀c ∈ Cs, ∃v ∈ V0, and v ∈ c, then ∀c ∈ C, ∃v ∈ V0, and
v ∈ c.

Proof. It is proven by contradiction. Assume there is a cycle
c0 ∈ C and there does not ∃v ∈ V0, s.t. v ∈ c0. Notably, any
non-simple cycles could be decomposed into several simple
cycles. Thus, there ∃c1 ⊂ c0 where c1 is a simple cycle since
V0 is a cover set for the simple cycles. Then, there must ∃v2 ∈
V0 and v2 ∈ c1. If it chooses v2 the vertex to cover c0, there
is a contradiction.

Remark. This is also true for hop-constrained cycles. The
proof is similar. The main idea is that a k-hop constrained
cycle could be divided into several small k-hop constrained
simple cycles. In fact, Theorem 1 is true for any constraint if
a cycle of such constraints could be decomposed into several
small simple cycles that still satisfy these constraints.

Theorem 1 indicates that once all the simple circuits are
covered, all the cycles are covered. Hence, only simple cycles
are considered in this paper.

B. The State-of-the-art

Theoretical Perspective. The most related theoretical works are
the path covers. There are two types of them, i.e., k-hop All
Path Cover (k-APC) and k-hop Shortest Path Cover (k-SPC).
The properties of k-APC were theoretically analyzed in [55].

Unfortunately, by reduction from the vertex cover problem,
the problem of minimizing the size of k-APC has proven
to be NP-hard for k ≥ 2. Furthermore, the k-APC problem
cannot be approximated for k ≥ 2 in polynomial time within
a factor of 1.3606 (unless P = NP), which is also inherited
from the vertex cover problem [56]. The NP-hardness and
inapproximability also apply to k-SPC, as pointed out in [55].
The upper bound on the size of a k-SPC has been discussed
using the theory of VC dimensions. Please refer to [55] for
details.
Practical Perspective. Following that, the state-of-the-art k-
cycle algorithm DARC from [30] is introduced as the baseline.
Firstly, the definition of k-cycle problem is given:

Definition 5 (K-cycle problem). Given a graph G = (V,E),
determine minimum-size set S ⊆ E such that for each
constrained cycle C ∈ Ck, C ∩ S 6= ∅, or, equivalently,
Ck(G\S) = ∅.

Algorithm 1 illustrates the details of this algorithm. The
process is to iteratively go through all edges in E in Line 2.
If the current edge is not included in the result set S, then
AUGMENT (e) is called. After all edges are evaluated, it is
called PRUNED function.

Algorithm 1: DARC
Input : Graph G = (V,E), sets S,W,P ⊆ E, U ⊆ Ck

function h : (S ∪W)→ U
k: the hop constraint

1 S ← ∅, h← ∅, P ← ∅, W ← ∅, U ← ∅;
2 for e ∈ E do
3 if e /∈ S then
4 AUGMENT(e);

5 PRUNE();

Thus, the DARC consists of two phases.
AUGMENT. In this stage, it augments uncovered vertices

and discovers uncovered hop-constrained cycles. The final
cover is constructed entirely from its vertices. The details
are shown in Algorithm 2. If e ∈ S, then this terminates in
Line 1. It is noted that W = ∅ in the initial stage, thus it can
ignore it. Then, in Line 7 it checks every constrained cycle
going through e and adds all edges to the result set R and P .
In addition, the relationship between constrained cycles and
edges is recorded in Line 11.

PRUNE. At this step, it removes any extraneous vertices
to ensure that the result set remains feasible. The details are
in Algorithm 3. For every candidate edge e ∈ P , it tries to
remove it from the result set S in Line 4. If yes, it will delete
e from S and add it to W .

The specifics of these two phases may be seen in [30], the
source code for which is publicly accessible.

Modification to the vertex version. Since DARC is a
method developed for discovering a minimum edge subset
that does not intersect with any hop-constrained cycles, it is
modified as the baseline. The modification is as follows: for
the original graph G(V,E), it is converted to a new graph
G′(V ′, E′). For every eu,v ∈ E, it generates a corresponding
vu,v ∈ V ′, an edge e′ is added from vertices vu,v to vv,w since

Algorithm 2: AUGMENT(e)
Input : Graph G = (V,E), sets S,W,P ⊆ E, U ⊆ Ck

function h : (S ∪W)→ U
k: the hop constraint

1 if e ∈ S then
2 Return;

3 else if e ∈W then
4 Move e from W to S;
5 Add e to P ;
6 Return;

7 for C ∈ ∆k(e) do
8 if C ∩ S = ∅ then
9 if C ∩W = ∅ then

10 Add all edges of C to S and P ;
11 Add C to U and set h(e) = C for all e ∈ C;

12 else
13 Move any edge in C ∩W to S and P ;

Algorithm 3: PRUNE()
Input : Graph G = (V,E), sets S,W,P ⊆ E, U ⊆ Ck

function h : (S ∪W)→ U
k: the hop constraint

1 for e ∈ P do
2 P ← P\{e};
3 if e ∈ S then
4 if S\e remains feasible to a cover then
5 S ← S\{e};
6 W ←W ∪ {e};

there is a common v between them. Then, the edge set could
be converted to the vertex result set. The modified algorithm is
called DARC-DV . As demonstrated in [30], the worse case
time complexity of DARC-DV is O(nk). This paper intends
to enhance the findings in terms of cover size and efficiency.

IV. THEORETICAL ANALYSIS

This section begins with a theoretical study of the hop-
constrained cycle cover issue.

Theorem 2 proves that it is NP-hard to decide whether
there is a hop-constrained cycle cover for a given directed,
unweighted graph G with size s.

Theorem 2. Deciding whether there is a hop-constrained
cycle cover for a given directed, unweighted graph G with
size s is NP -hard for all constrained cycles.

Proof. It reduces an NP-complete problem, the decision ver-
sion of vertex cover problem to our hop-constrained cycle
cover problem. Take note that the hop-constrained cycle cover
issue does not include self-loops or bidirectional edges. As a
result, it sets k = 3 for a hop-constrained cycle cover issue on
undirected graphs. Then, it can reduce the traditional vertex
cover issue to ours.

It adds a virtual vertex u′ and two bidirectional edges (u, u′)
and (v, u′) to each bidirectional edge u, v. Figure 2 illustrates
the proof. The original graph is shown in Figure 2(a), whereas
our constructed graph is shown in Figure 2(b). Take note that
the virtual vertex b′ is dominated by the matching edge (b, c),

since b′ only participates in only single cycle. On the built
graph, the hop-constrained cycle cover problem is equivalent
to the classical vertex cover on the original graph.

a b c
(a) Original graph

a

a' b'

b c
(b) Constructed graph

Fig. 2: The proof of NP-hardness.

After that, this work demonstrates the inapproximation.

Theorem 3. For a given directed, unweighted graph G, ap-
proximating the hop-constrained cycle cover problem (length
from 3 to k) within (k − 1− ε) is UGC-hard (Unique Games
Conjecture).

Proof. Guruswami and Lee [57] established the UGC-hard for
the inapproximability of the feedback set for bounded cycles.
Our issue is with the version that excludes self-loops and
cycles with a length of 2. Due to the fact that self-loops
have a single vertex, they could be included in the result
set. As a consequence, it places a premium on excluding
the 2-cycle. The formal proof of inapproximability when self-
loops are included is similar to the proof of 2-cycle exclusion.
It is proved by contradiction. Assume that a (k − 1 − ε)
approximation method exists for covering all cycle lengths
between 3 and k.
S(G, 3, k) denotes the approximation method, with G de-

noting the graph, and 3 and k denoting the length is between
3 and k. |S(G, 3, k)| ≤ (k − 1 − ε)|Opt(G, 3, k)|, where
S is the approximation algorithm and Opt is the optimal
algorithm for cycles in graph G lengths ranging from 3 to
k. Furthermore, |Opt(G, 2, k)| ≥ |Opt(G, 2, 2) + Opt(G −
(Opt(G, 2, 2)), 3, k)|. There is a simple 2-approximation
method for 2-cycle by selecting all the vertices on them, i.e.,
S(G, 2, 2) ≤ 2|Opt(G, 2, 2)|.

All the cycles could be divided into three types.

• C2 : 2-cycle (length equals to 2) and no intersection with
k-cycles (k ≥ 3).

• C3 : k-cycles and no intersection with 2-cycle.
• C23 : 2-cycles intersect with k-cycles (k ≥ 3) and k-

cycles intersect with 2-cycles.

It divides all the vertices on cycles into three categories.

• V2 : only appears on the C2.
• V3 : only appears on the C3. Note that it only includes

the k-cycles, where all the vertices on it are in V3. If a
k-cycle intersection with a 2-cycle (C23), it only selects
the intersection part into V23. The remaining part would
be covered because our approximation algorithm would
select all the intersection vertices.

• V23 : appears on the intersection part of 2-cycles and k-
cycles (k ≥ 3). For example, if vertex v is in both a
2-cycle and a k-cycle, then it is in the V23.

Similarly, Opt(G, 2, k) could be divided into V Opt
2 , V Opt

3 , and
V Opt
23 . V Opt

2 is the intersection of Opt(G, 2, k) and C2. For
V Opt
3 ,

S(V3, 3, k) ≤ (k − ε)Opt(V3, 3, k)
≤ (k − ε)V Opt

3

(1)

For V Opt
2 , there is a trivial 2-approximation algorithm. Thus,

S(V2, 2, 2) ≤ 2Opt(V2, 2, 2) ≤ V Opt
2 (2)

For V Opt
23 , it selects all of them, and it is not hard to prove that

S(V Opt
23 , 2, k) = V23 ≤ 2Opt(V Opt

23 , 2, k). The proof is similar
to the approximation of V2. It could also divide these cycles
into 2-cycle and k-cycle, while V23 is the 2-approximation
solution of 2-cycle part. The Optimal solution of all cycles is
no less than the 2-cycle part.

Since the limit of ε is close to 0,

S(V2, 2, 2) + S(V3, 3, k) + S(V23, 2, k)

≤ 2Opt(V2, 2, 2) + (k − ε)Opt(V3, 3, k) + V23

≤ 2V Opt
2 + (k − ε)V Opt

3 + 2V Opt
23

≤ (k − ε)Opt(G, 2, k)
(3)

This violates the inapproximability for Opt(G, 2, k) within
(k − 1− ε).

V. BOTTOM-UP APPROACH

This section introduces our bottom-up hop-constrained cycle
cover algorithm, which is designed to minimize the size of the
cover.

A. Motivation

This subsection discusses the rationale for the bottom-up
hop-constrained cycle cover algorithm.

Given the NP-hardness of this problem, it is typical to em-
ploy the greedy heuristic. That is to determine the best cover
vertex iteratively, i.e., the vertex that covers the largest number
of uncovered cycles in the current iteration. Nonetheless,
determining the optimal cover vertex requires enumerating all
the hop-constrained cycles, which are prohibitively difficult in
terms of time and space complexities. The enumerating time
complexity O(2n × costc) is prohibitively expensive, while
costc is the cost for the check.

The more hop-constrained cycles a vertex covered in the
previous iterations, the more probable it will cover additional
cycles in the remaining graph. Based on this motivation, a
heuristic greedy algorithm is proposed based on the number
of cycles the vertices covered.

Example 1. A motivational scenario is depicted in Figure 3. C
is the graph’s center vertex. Assume that in the first iteration,
a cycle A→ B → C is found and it adds A to the cover set
by random. C will be chosen in the second iteration since it
occurred in the preceding cycle and is therefore more likely
to cover more cycles.

Based on this example, a bottom-up hop-constrained cycle
cover method is proposed. The key idea is that when discover-
ing a cycle during the search, it records hit-times (H) of all the
vertices on it and chooses the one with the highest hit-times
(H).

Fig. 3: A motivation example of the bottom-up approach.

B. The Bottom-Up Approach

The greedy method is an efficient solution for solving the
hop-constrained cycle cover problem. The key principle is that
for each iteration, we select the vertex that covers the most
hop-constrained cycles. Due to the difficulty of enumerating all
the hop-constrained cycles, a heuristic algorithm is proposed
to solve it.

Algorithm 4: BOTTOM-UP(G, k)
1 R ← ∅;
2 H[v]← 0, for each v ∈ G;
3 for each vi ∈ V do
4 c ← FINDCYCLE(G, k, ∅, vi);
5 while c 6= ∅ do
6 for each v ∈ c do
7 H[c] ← H[c]+1;

8 u ← FINDCOVERNODE(vi,H, c);
9 Insert u into R;

10 Remove in-edges and out-edges of u ∈ G;
11 c ← FINDCYCLE(G, k, ∅, vi);

12 Return R;

Algorithm 4’s main idea is to find a cover vertex with the H
array. Line 2 initializes H[v] to 0 for each vertex v on graph
G. Then, Line 3 is a for-loop that iterates over all vertices in
G. Lines 4 and 11 attempt to identify a hop-constrained cycle
c beginning at v. The H array is updated for each vertex on
c. Line 8 specifies that it selects one vertex u from c, and
eliminates all of u’s associated edges in Line 10. Whenever
c 6= ∅ in Line 5, the algorithm continues the procedure.

Algorithm 5 employs a recursive approach to find a hop-
constrained cycle starting from the vertex v. The graph G is a
reduced graph, since it has no vertex in the current result set
R. The key point is to identify a hop-constrained cycle using a
DFS method. Line 3 demonstrates that this method identifies
a valid hop-constrained cycle, with the condition CD > 0
indicating that self-loops should be avoided. Line 5 illustrates
the situation where the algorithm fails to locate a valid hop-
constrained cycle. Line 8 investigates all of v’s out-neighbors.
Then, Lines 7 and 12 are to recursively push and pop all v’s
out-neighbors.

Algorithm 6 employs H to determine the cover vertex.
Line 2 attempts to locate the vertex with the maximum H.

Algorithm 5: FINDCYCLE(G, k, CP, v)
1 C ← ∅;
2 CD ← len(CP); /* the current distance */;
3 if CD > 0 ∧ v = CP[0] then
4 Return CP;

5 if CD > k then
6 Return ∅;
7 CP .pushBack(v);
8 for each vertex u of adjout[v] on G do
9 C ← FINDCYCLE(G,k,CP ,u);

10 if C 6= ∅ then
11 Return C;

12 CP .pop();
13 Return C;

Algorithm 6: FINDCOVERNODE(v,H, c)
1 Hmax = H[v0], CN = v0 ;
2 for each v ∈ c do
3 if H[v] > Hmax then
4 Hmax = H[v];
5 CN = v;

6 Return CN ;

Correctness. Since Algorithm 4 traverses all the vertices in
V and increments the result set by one vertex until no new
constrained cycle is detected, it is self-evident that the induced
graph (which is constructed by eliminating all the vertices
from the cover set) contains no hop-constrained cycles. As-
sume that there is a hop-constrained cycle c0, which is initially
explored by Algorithm 4 with vertex vc. When we explore
vertex vc for the first time, the FindCycle produces a hop-
constrained cycle ci. The ci could be c0 or not. There are two
cases.
• If ci = c0, our algorithm covers c0 in the subsequent

steps.
• If ci 6= c0, we choose a cover vertex CN .

Additionally, there are two scenarios depending on whether
CN = vc or not if ci 6= c0.
• If CN = vc, the c0 is covered by vertex vc.
• If CN 6= vc, we will continue to check vertex vc, in

accordance with Line 9 Algorithm 4.
Thus, the c0 will be covered by the result set of Algorithm 4.
Time and Space Complexities. Algorithm 4 employs an array
of H and a k-step DFS procedure. As a result, the space
complexity is O(m). Algorithm 4 Line 3 needs n iterations.
Each iteration contains three steps: FindCycle, UpdateH ,
and FindCoverNode. Both UpdateH and FindCoverNode
takes a time complexity of O(k) time complexity, due to the
fact that they include a for-loop on hop-constrained cycle c.
FindCycle takes O(nk), since it is a DFS algorithm that
determines whether there is a hop-constrained cycle within
k steps. Thus, the overall time complexity is O(nk+1).

Nonetheless, the practical performance is acceptable, due
to the following reasons. To begin, FindCycle could early
terminate when it finds a hop-constrained cycle. It is not
necessary to locate all the hop-constrained cycles. Second,

each time we choose a cover vertex, the in-edges and out-
edges of it would be eliminated from the graph G. Thus, the
graph is becoming smaller and smaller.

C. The Minimal Pruning Algorithm

This subsection proposes a minimal pruning method s.t.
it can further reduce the hop-constrained cycle cover to a
minimal result set. The main idea is to remove every possible
vertex that can be eliminated until the minimal one.

Algorithm 7: FINDMINIMALCOVER(G, k,R)
1 for each v ∈ R do
2 c ← FINDCYCLE(G−R + (v), k, ∅, v);
3 if c = ∅ then
4 Remove v from R;

5 Return R;

Algorithm 7 Line 1 verifies each vertex in the R, which
is the hop-constrained cycle cover generated by Algorithm 4.
Line 2 attempts to find a hop-constrained cycle inside G−R+
(v). Nota bene, in Algorithm 7, the input graph G−R+ (v)
is the reduced graph, which has no vertex in R except for the
vertex v. Line 3 determines if there exists a hop-constrained
cycle for v. Otherwise, v will be deleted from the R.

Theorem 4 establishes that Algorithm 7 provides a minimal
solution of hop-constrained cycle cover.

Theorem 4. Algorithm 7 returns a feasible and minimal hop-
constrained cycle cover R.

Proof. Take note that Algorithm 4 generates the input vertex
set R. R is a viable hop-constrained cycle cover, as its
correctness has been proven. Algorithm 7 removes a vertex
v from R only if the reduced G contains no hop-constrained
cycle. As a consequence, the result set R includes all the hop-
constrained cycles after the termination.

As for the minimality property, if Algorithm 7 does not
prune each vertex v, there will exist a witness hop-constrained
cycle cw, where cw ∩ (R−{v}) = ∅. Given that the result set
is Rf ⊂ R, then cw ∩ (Rf − {v}) = ∅. Thus, if any vertex
v in the final result set Rf is deleted, no vertex in Rf − {v}
will cover the witness hop-constrained cycle cw. Thus, Rf is
a hop-constrained cycle cover of G that is both feasible and
minimal.

Time and Space Complexities. Since there is no index and
FindCycle is a DFS algorithm, its space complexity is O(m).
Following that, the time complexity is investigated. Line 1 of
Algorithm 7 contains only one for-loop. Given that the size
of R is no larger than n, Line 2 requires at most n iterations.
In the worst-case scenario, the procedure FindCycle requires
O(nk). As a result, the overall time complexity is O(nk+1).

VI. TOP-DOWN ALGORITHM

This section presents the Top-Down method in this section,
which aims to improve the efficiency.

A. Motivation
Why Costly? The most expensive aspect of the hop-

constrained cycle cover problem is the repeated usage of the
constrained cycle search. This paper accelerates it from two
aspects.
• Decrease the Search Space. The purpose of researching

top-down algorithms is to reduce search space. We must
verify all of the vertices. The search spaces in the bottom-
up method range from the whole graph G to the graph
G − R, where R is the cover set. In the top − down
algorithm, the search areas would range from ∅ to G−R.
As a result, the top-down approach has the potential to
substantially shrink the search space.

• Increase the Speed of the Cycle Search Function. Since
the cycle search function is frequently utilized in the
whole process, it is one of the bottlenecks. Thus, this
work proposes a delicate block-based and BFS-filter-
based method to accelerate this process.

B. Top-Down Algorithm Description
The key idea of Top-Down algorithm is different from that

of the bottom-up algorithm. The method begins with an empty
graph G0 and a full cover set with all vertices in it. Then, it
evaluates each vertex v in it. It determines whether or not
to remove v from the result set. If true, all in-edges and
out-edges of v are inserted into G0. The cycle validation
algorithm is adapted from [52]. The general idea is as follows:
It conducts a DFS search to validate whether there is a cycle
including the query vertex. In the DFS search, for each vertex
u, if it has been searched before and we can guarantee that it is
not included in a cycle with a certain length threshold, we can
avoid searching u. The length threshold is at most t, and it is
maintained during the search. In this way, the threshold value
is updated at most k times and every time it explores at most
m edges. Therefore, the Top-Down algorithm runs in O(kmn)
time, where n is the number of vertices to be validated.

Algorithm 8 Line 1 initializes the graph for verifying the
node necessary. Line 2 is a for-loop that verifies all of the cover
set’s vertices. Lines 3 and 4 attempt to insert all of the vertex
v’s edges and determine whether there exists a constrained
cycle. If not, the vertex v is deleted from the cover set in
Line 6. Otherwise, vertex v is maintained, but all of its edges
are removed in Line 8.

Algorithm 8: TOP-DOWN(G, k,R)
1 G0 ← ∅, R← G ;
2 for each v ∈ R do
3 Insert all in-edges and out-edges of v into G0;
4 c ← FINDCYCLE(G0, k, v);
5 if c = ∅ then
6 Remove v from R;

7 else
8 Delete all in-edges and out-edges of v;

9 Return R;

C. Node Necessary Validation
A frequent operation is to validate whether a vertex v is in

a constrained cycle in the current graph G0. A straightforward

method is modified DFS BFS. As for modified BFS, Figure 4
demonstrates counter-examples.

Example 2. Specifically, by executing BFS from vertex v and
assigning a new color to each neighbor. When it explores
a vertex further and locates a vertex with a neighbor of a
different color for the first time, it discovered a shortest cycle
through v. Nevertheless, when beginning from vertex a, the
modified BFS was unable to distinguish between Figure 4(a)
and 4(b). When the modified BFS is employed, b and c are
marked as visited during the first iteration. Then, in the third
iteration, it returned to the edge (d, c) of c. In such an instance,
it is unable to determine if a constrained cycle begins at a and
produces the cycle a→ c in Figure 4(a).

a d

b

c
(a) Counter-example 1.

a d

b

c
(b) Counter-example 2.

Fig. 4: Counter-examples for the modified BFS.

To accelerate Node Necessary Validation, an O(km) time
complexity method is proposed, which is inspired by the
barrier technique in [52]. Firstly, the block for a given vertex
u during the search procedure is formally defined. It could
be regarded as the lower bound of dis(u, s) in the current
stack S. s is the starting vertex. The block is utilized to prune
unnecessary candidates.

Definition 6. (u.block) For a given vertex u, u.block is correct
if and only if given the current stack S, if there is a path p(u→
s), not containing any vertex in S, we have len(p) ≥ u.block,
i.e., sd(u, s|S) ≥ u.block.

a c d

b1

b2

bi

X

Fig. 5: An example of the block idea.

An example of the block is illustrated in Figure 5.

Example 3. Assume vertex a is the starting vertex with
k = 5. With a DFS search, it validates whether there exists
a constrained cycle containing vertex a. In the first iteration,
path a → b1 → c → d is checked. In this path, vertex c
cannot reach vertex a in 5 − 2 = 3 hops. Then, c.block is
set to 3 + 1 = 4. This block information may be utilized in
the subsequent DFS exploration, e.g., a → b2 → c → d. It
may end prematurely when exploring a → bi → c. In this

path, there are 5− 2 = 3 remaining depths for DFS, which is
smaller than c.block.

The idea of block is to utilize the failure information
to prune invalid search space. The algorithm is formally
described as follows: S is used to denote the stack of the
currently explored path. Sold indicates the past exploration
path, whereas Snew denotes the current exploration path.
Algorithm 9 illustrates the whole process.

Algorithm 9: NODENECESSARY(s, u, S, R,G′)
1 if R 6= ∅ then
2 Return R; /* Vertex s is necessary */;

3 u.block ← k − len(S) + 1 ;
4 S.push(u);
5 if u = s ∧ len(S) ≥ 2 then
6 u is unstacked from S;
7 UNBLOCK(S.top(), S, 1);
8 if len(S) > 2 then
9 insert p(S) into R;

10 return R

11 else if len(S) < k then
12 for vertex v of adjout[u] where v 6∈ (S − {s}) do
13 if len(S) + 1 + v.block ≤ k then
14 R ← NODENECESSARY(s,v, S,R, G′);
15 if R 6= ∅ then
16 Return R;

17 u is unstacked from S ;
18 return R

Algorithm 10: UNBLOCK(u,S, l)
1 u.block = l ;
2 for each vertex v of adjin[u] with v 6∈ S do
3 if v.block > l + 1 then
4 UNBLOCK(v, S, l + 1);

Details. Algorithm 9 Line 1 terminates the recursive algorithm
if a valid constrained cycle is found. Line 3 initializes the block
value associated with the current vertex u to k − len(S +
1). Line 5 is the condition for a valid hop-constrained cycle.
Line 8 determines whether it is a valid constrained cycle.

If true, the cycle will be inserted into the result set R.
Line 13 is the condition for blocking. When len(S) + 1 +
v.block > k, vertex v is blocked. The worst-case time
complexity is O(km) due to the block level of each vertex
ranging from 0 to k. Algorithm 10 iteratively updates the block
values for the vertices whose block is larger than l.
Modification to Cycle Cover without Constraints. To cope
with the variant without hop constraint, we only need to
modify the node necessary function. The modification can be
summarized as the following steps:

• i) Replace u.block ← k − len(S) + 1 to u.block ← ∞
in Line 3 Algorithm 9.

• ii) Remove condition len(S) < k in Line 11 Algorithm
9.

• iii) Replace len(S)+1+ v.block ≤ k with v.block 6=∞
in Line 13 Algorithm 9.

D. Analysis

This part proves the correctness of Algorithm 9. To begin,
the condition of the correct u.block value is given.

Lemma 1. u.block is correct iff given the stack S, there is
a path p(u → s) without any vertex in S, len(p) ≥ u.block,
i.e., sd(u, s|S) ≥ u.block.

The budget of a vertex u is defined as follows:

Definition 7 (budget). budget[u] is the number of hops
remaining for u to continue the search.

budget[u] = k − len(S), when u = S[0] (4)

The following lemma gives the condition under which a
vertex u may reach the target vertex s in Algorithm 9.

Lemma 2. Assume that the top vertex of the current stack S
is u. There is a path p(u→ s). The vertex u could reach the
vertex s in Algorithm 9 only if k− len(S) ≥ len(p) and every
vertex in the path (except u) is not included by S.

Proof. The inequation k− len(S) ≥ len(p) indicates that the
vertex u has a sufficient budget to reach t. Since S does not
include all vertices {x} along the path, the search can only be
early terminated due to their block values. Because x is not in
the S and x.block is correct w.r.t S, x.block ≤ p[x], as x can
reach t within p[x] hops. Thus, x cannot use the block value to
terminate the search. Thus, u can reach t in Algorithm 9.

The correctness of Algorithm 9 is proved by demonstrating
that block values are correct throughout it.

Theorem 5. All the block values are correctly computed, and
they remain correct in Algorithm 9.

Proof. Firstly, u.block is correct if u ∈ S. When u.block is
set at Line 3, the value is correct w.r.t S.

It is demonstrated that u.block is properly specified in the
following search. If a new vertex v is pushed into S, then
u.block is immediately correct since S = S ∪ {v} leads to a
strictly smaller search space.

Consequently, the sole remaining scenario is vertexs’ un-
stacking. The vertex v denotes the first vertex that leads
u.block to be incorrect. If unstack of v does not affect u.block,
u.block is still correct for the new stack S \{v}. Alternatively,
u.block may be updated in two cases:

• (1) If v = u, u.block is still true. When a valid
hop-constrained cycle containing u exists, the algorithm
terminates. Then, u will not be unstacked due to the early
termination. Thus, the unstack of vertex u indicates that
the current S does not include any valid hop-constrained
cycle.

• (2) Given v 6= u and that the unstack of v impacts the
u.block. Thus, there exists a path p(u→ v → s), which
does not include any vertex in S, s.t. len(p) < u.block.
That is, u can reach t with fewer hops due to v’s unstack
from S. Assume that vertices’ block values are properly
maintained before vertex v’s unstack.

Assume v cannot reach t in Algorithm 9, and u.block >
len(p) = p(u) with respect to the current stack S. It indicates
that although v.block was correctly maintained in the previous
step, it is incorrect due to unstack of v and u.block > p(u).

Three vital timestamps occurred throughout the proof. They
are TinU , ToutU , and ToutV . TinU indicates the time when u is
added into the stack. ToutU and ToutV indicate the time when
the first3 unstack of u and v, respectively, after TinU . S0(y)
indicates the stack size when the vertex y is pushed to the stack
S0. Note that TinU < ToutV < ToutU , and S0(v) < S0(u).

If v is the sole vertex that blocks u→ s at TinU , the algo-
rithm will terminate before ToutV . Note that S0(v) < S0(u).
According to Lemma 2, the vertex v can reach the vertex s,
and according to Algorithm 9 Line 1 and 15, the unstack of v
is early terminated. It violates the assumption that there exists
unstack of v. The proof is similar if there exist more than one
vertices.

Correctness. According to Theorem 5, the vertices’ block
values are correct. Algorithm 9 is a hop-constrained DFS that
utilizes a block-based technique. If the hop-constrained DFS
and the block-based method are valid, the algorithm is correct.
Notably, Algorithm 9 guarantees the simple cycle property by
default.
Time Complexity. The following theorem indicates that Al-
gorithm 9 is O(km). The time complexity of TDB++ is
O(k ·m · n).

Theorem 6. Algorithm 9 is capable of returning a valid
answer in O(km).

Proof. Assume that Algorithm 9 unstacked a vertex u twice.
This implies that none of these two unstacks is early termi-
nated. Let S1 and S2 denote the stacks after the first and
second times that u is pushed into the stack, respectively. After
unstack u for the first time, u.block = k − S1 + 1. When u
is pushed to the stack at the second time, u.block remains
unchanged. As u passes block conditions in the second visit
with S2 + u.block ≤ k, and thus S2 < S1. Consequently,
u.block will be increased by at least one every time u is
unstacked.

This indicates that a vertex may be pushed to stack no more
than k times. When u is added into the stack, an edge (u, v)
is visited. An edge is visited at most k + 1 times. Hence,
the time complexity of it is O(km. It is worth noting that
omitting the bidirectional edges as cycles has no effect on the
time complexity. Assume the start vertex is v, and u,w are its
bidirectional out-neighbors. Assume that the unblock of u and
w would have an effect on the vertex sets Au and Aw. Then
either Au ∩Aw = ∅, or there exists a constrained cycle when
u and w are explored. Both of them show that Algorithm 9
has an O(km) time complexity.

Space Complexity. Since the stack size is always bounded by
k, the space complexity of Algorithm 9 is O(m+ k).

Theorem 7. Algorithm 8 produces a hop-constrained cycle
cover R that is both valid and minimal.

3A vertex may be pushed and unstack for many times.

The proof is similar to the proof of Theorem 4.
Comparison with Barrier Technique. Firstly, the hop-
constrained path enumeration problem focuses on how to
efficiently enumerate all the paths, but in the constrained
cycle cover problem, the point is how to efficiently detect the
existence of any constrained cycle. There are many algorithms
in the problem of hop-constrained path enumeration, IDX-
DFS [58], IDX-JOIN [58], PathEnum [58], BC-DFS [52], T-
DFS [53], T-DFS2 [54], and JOIN [52]. IDX-DFS, IDX-JOIN,
PathEnum, and JOIN are more efficient than BC-DFS in terms
of hop constrained path enumeration, but their technique is not
suitable to adapt to the constrained cycle cover problem due
to the different focuses of these two different problems. They
either need preprocessing costs to construct a light-weighted
index [58] or find the middle cut (JOIN [52]) to accelerate the
whole enumerate process. In the context of hop-constrained
path enumeration, such cost is affordable since the bottleneck
is the heavy enumeration stage due to a large number of
results. Nevertheless, for the constrained cycle cover problem,
only one cycle is needed, then the bottleneck is altered.

E. Upper Bounds Filtering
This subsection introduces an upper bound to filter some

unnecessary vertices.
BFS-filter technique. According to Example 2, a modified BFS
could not examine whether a vertex is necessary in the Top-
Down algorithm. Nevertheless, for a vertex v, if its distance
to itself is larger than k in the modified BFS, then it could be
safely excluded in the current iteration.

Details. The details are presented as Algorithm 11. Line 1

Algorithm 11: BFS-FILTER(G0, k, v)
1 U ← the upper bound distance from v to v using the

modified BFS;
2 if U > k then
3 Prune vertex v;

4 else
5 Vertex v needs further verify.;

computes the upper bound of the distance of v to itself using
the modified BFS (see Example 2 for details) and represents
it with U . Two cases for the BFS-filter technique method are
shown in Lines 2 to 4. When U > k, the vertex is pruned
safely. Line 4 represents the situation where U ≤ k. Then, the
vertex has to be verified further using Algorithm 9.

VII. EXPERIMENTAL RESULTS

This section evaluates the effectiveness and efficiency of the
proposed techniques on comprehensive experiments.

A. Experimental Settings

Compared Algorithms. The following baselines are com-
pared in the experimental part.
• DARC-DV. The state-of-the-art algorithm [30] introduced

in Section III-B.
• BUR. The bottom-up approach introduced in Section V-B.
• BUR+. The bottom-up approach with the minimal tech-

nique introduced in Section V-C.

TABLE II: Statistics of datasets. K indicates 103. M indicates
106. B indicates 109.

Name Dataset |V | |E| davg
WKV Wiki-Vote 7K 104K 29.1
ASC as-caida 26K 107K 8.1
GNU Gnutella31 63K 148K 4.7
EU Email-Euall 265K 420K 3.2
SAD Slashdot0902 82K 948K 23.1
WND web-NotreDame 325K 1.5M 9.2
CT citeseer 384K 1.7M 9.1
WST webStanford 281K 2.3M 16.4
LOAN prosper-loans 89K 3.4M 76.1
WIT Wiki-Talk 2.4M 5.0M 4.2
WGO webGoogle 875K 5.1M 11.7
WBS webBerkStan 685K 7.6M 22.2
FLK Flickr 2.3M 33.1M 28.8
LJ LiverJournal 10.6M 112M 21.0
WKP Wikipedia 18.2M 172M 18.85
TW Twitter(WWW) 41.6M 1.47B 70.5

• TDB. The Top-Down Blocks algorithm introduced in
Section VI.

• TDB+. The Top-Down Blocks algorithm with the block
technique introduced in Section VI.

• TDB++. The Top-Down Blocks algorithm with the block
and BFS-filter techniques introduced in Section VI.

Datasets. Table II summarizes the key statistics about the
real graphs used in the experiments. Most of these graphs are
from either SNAP [59] or KONECT [60].

Settings. All programs were implemented in standard C++11
and compiled using G++4.8.5.
All experiments were performed on a machine with 36X Intel
Xeon 2.3GHz and 385GB main memory running Linux (Red
Hat Linux 7.3 64 bit).

TABLE III: The cover size (the number of vertices) and
runtime (seconds) for algorithms when k = 5.

Name DARC-DV BUR+ TDB++
Size Time Size Time Size Time

WKV 490 53.8 469 402.8 491 0.41
ASC 620 2.42 607 44.01 612 0.11
GNU 184 1.3 180 1.49 193 0.69
EU 622 114.7 609 702.1 627 1.25
SAD 6,377 440.1 6,005 4,717 6,380 3.13
WND 27,067 29,916.8 23,853 28,953.3 24,290 2.67
CT 1,621 37.03 1,610 43 1,611 16.2
WST 31,253 140.7 30,811 275.6 31,148 2.99
LOAN 332 184.5 320 450.7 347 127.9
WIT 7,040 2,296.8 6,923 4,708.3 6,894 56.3
WGO 130,382 42.2 129,009 110.8 129,421 5.99
WBS 98,570 3,571.4 94,817 12,739 100,668 6.96
FLK - - - - 206,912 92.3
LJ - - - - 39,183 20,466.8
WKP - - - - 685,759 4,132
TW - - - - 3,731,522 89,634

B. The Speedup Effects

In this subsection, all the techniques in Top-Down are
evaluated. Figure 10 illustrates the speed-up benefits of all the
techniques in WKV and WGO, varying k from 3 to 7. What
is remarkable about the figures is that when k is large, the
BFS-filter technique contributes more speedup effect than the
block technique. The insight is that the BFS-filter technique
is a linear filter technique and is effective in a wide variety
of situations. Nonetheless, both the block technique and BFS-
filter technique contribute comparable speed-up effects in both

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(a) WKV

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(b) ASC

10
0

10
1

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(c) GNU

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(d) EU

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(e) SAD

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(f) WND

10
0

10
1

10
2

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(g) CT

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(h) WST

10
0

10
1

10
2

10
3

10
4

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(i) LOAN

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(j) WIT

10
0

10
1

10
2

10
3

10
4

3 4 5 6 7
Q

u
e

ry
 t

im
e

(s
)

K

BUR+
DARC-DV
TDB++

(k) WGO

10
0

10
1

10
2

10
3

10
4

INF

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR+
DARC-DV
TDB++

(l) WBS

Fig. 6: Runtime (s).

380

400

420

440

460

480

500

520

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(a) WKV

400

450

500

550

600

650

700

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(b) ASC

50

100

150

200

250

300

350

400

450

500

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(c) GNU

550

560

570

580

590

600

610

620

630

640

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(d) EU

4.0k

4.5k

5.0k

5.5k

6.0k

6.5k

7.0k

7.5k

8.0k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(e) SAD

19k

20k

21k

22k

23k

24k

25k

26k

27k

28k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(f) WND

1.53k

1.54k

1.55k

1.56k

1.57k

1.58k

1.59k

1.60k

1.61k

1.62k

1.63k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(g) CT

25k

26k

27k

28k

29k

30k

31k

32k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(h) WST

100

150

200

250

300

350

400

450

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(i) LOAN

5.8k

6.0k

6.2k

6.4k

6.6k

6.8k

7.0k

7.2k

7.4k

7.6k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(j) WIT

126.0k

126.5k

127.0k

127.5k

128.0k

128.5k

129.0k

129.5k

130.0k

130.5k

131.0k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(k) WGO

82k

84k

86k

88k

90k

92k

94k

96k

98k

100k

102k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR+

DARC-DV

TDB++

(l) WBS

Fig. 7: Cover size (# of vertices).

10
0

10
1

10
2

10
3

10
4

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR
BUR+

(a) WKV

10
0

10
1

10
2

10
3

10
4

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

BUR
BUR+

(b) WGO

Fig. 8: Runtime (s).

350

400

450

500

550

600

650

700

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR

BUR+

(a) WKV

125k

130k

135k

140k

145k

150k

155k

3 4 5 6 7

C
o

v
e

r
S

iz
e

K

BUR

BUR+

(b) WGO

Fig. 9: Cover size (# of vertices).

datasets when k is small. Since the result sets generated by all
three methods are identical, their cover sizes are not reported.

10
-2

10
-1

10
0

10
1

10
2

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

TDB
TDB+
TDB++

(a) WKV

10
0

10
1

10
2

3 4 5 6 7

Q
u

e
ry

 t
im

e
(s

)

K

TDB
TDB+
TDB++

(b) WGO

Fig. 10: Runtime (s) for Top-Down techniques.

C. Effectiveness and Efficiency on hop-constrained cycle
cover

In this part, the effectiveness and efficiency of all the ex-
periments are discussed as follows. On real datasets, Table III
presents the cover size and runtime for BUR+, DARC-DV, and
TDB++. The k is set to 5 in this experiment. As demonstrated
in Table III, BUR+ consistently returns the smallest cover size
in 11 datasets except for WIT, despite using more time among
all the algorithms. It is apparent from this table that TDB++
method produces the smallest cover size in WIT among 12
datasets. In the remaining 11 datasets, it provides a cover size
that is comparable to BUR+, with an average difference of
less than 4%. TDB++, on the other hand, runs 3 orders faster
than BUR+ and up to 4 orders in WND. When compared
to DARC-DV, what stands out in the table is that TDB++
runs about 2-3 orders of magnitude faster while returning a
comparable cover size. Notably, only TDB++ was capable of
producing results on large graphs, i.e., FLK, LJ, WKP, and
TW.

D. Tuning the Parameter k

Additionally, experiments are conducted by varying the
parameter k. This experiment is conducted with tuning the
value of the parameter k from 3 to 7 on 12 distinct datasets

to determine the cover size and runtime. As shown in Fig-
ure 6, TDB++ is the fastest algorithm across all the datasets,
followed by DARC-DV. The figure demonstrates that BUR+
runs slowest. Nevertheless, what stands out in Figure 7 is
BUR+ generates the smallest cover size. TDB++ produces a
comparable cover size as BUR+ but has the fastest runtime.
As for DARC-DV, it returns the worst cover size among these
three methods.

E. The Pruning Effects
This subsection conduct experiments to demonstrate the

pruning effects. As shown in Figure 8, BUR and BUR+ have
a similar runtime in both WKV and WGO. Nevertheless, it is
shown in Figure 9 that BUR+ has a smaller cover size owing
to the minimal pruning approach in both datasets. WKV and
WGO vary in that WKV has a higher average degree than
WGO. In WKV, it could prune more percentage results. As
for WGO, the cover size difference between BUR+ and BUR
stays steady when k grows.

F. Cover Size including 2-cycles
Table IV illustrates the cover size for our algorithm when

including 2-cycles or not. What stands out in this table is
that the cover size would be 3 times larger on average when
including 2-cycles. For some graphs, e.g., GNU, the cover
size does not grow too much. Nevertheless, for graphs ASC,
SAD, WND, CT, WST, WIT, WGO and WBS, the cover
size significantly grows. Since 2-cycles could be efficiently
verified separately, our problem concentrates on constrained
cycles without 2-cycles.

TABLE IV: The cover size (the number of vertices) k = 5.

Name No 2-cycle With 2-cycle Ratio
WKV 491 714 1.45
ASC 612 5,285 8.64
GNU 193 222 1.15
EU 627 1,270 2.03
SAD 6,380 27,461 4.30
WND 24,290 51,466 2.12
CT 1,611 7,615 4.73
WST 31,148 116,065 3.73
LOAN 347 568 1.64
WIT 6,894 21,781 3.16
WGO 129,421 217,799 1.68
WBS 100,668 256,281 2.55

VIII. CONCLUSION

This paper introduced the hop-constrained cycle cover prob-
lem, whose objective is to discover a collection of vertices that
covers all hop-constrained cycles in a given directed graph. On
the theoretical side, this work demonstrates that approximating
the hop-constrained cycle cover issue with length between 3
and k is UGC-hard (Unique Games Conjecture) for a given di-
rected, unweighted graph G. Our comprehensive experiments
show the effectiveness and efficiency of our proposed methods
in terms of cover size and runtime when compared to the state-
of-the-art k-cycle traversal algorithm DARC-DV.

ACKNOWLEDGMENT

Wenjie Zhang is supported by ARC Future Fellowship
FT210100303. Lu Qin is supported by ARC FT200100787
and DP210101347.

REFERENCES

[1] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations, pp. 85–103, Springer, 1972.

[2] P. Festa, P. Pardalos, and M. Resende, “Feedback set problems, hand-
book of combinatorial optimization,” Supplement Vol. A, Kluwer Aca-
demic Publishers, 1999.

[3] P. B. Galvin, G. Gagne, A. Silberschatz, et al., Operating system
concepts. John Wiley & Sons, 2003.

[4] G. Gardarin and S. Spaccapietra, “Integrity of data bases: A general
lockout algorithm with deadlock avoidance.,” in IFIP Working Confer-
ence on Modelling in Data Base Management Systems, pp. 395–412,
1976.

[5] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5–35, 1991.

[6] V. Bafna, P. Berman, and T. Fujito, “A 2-approximation algorithm for
the undirected feedback vertex set problem,” SIAM Journal on Discrete
Mathematics, vol. 12, no. 3, pp. 289–297, 1999.

[7] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, “Approximation
algorithms for the feedback vertex set problem with applications to con-
straint satisfaction and bayesian inference,” SIAM journal on computing,
vol. 27, no. 4, pp. 942–959, 1998.

[8] G. Even, J. Naor, B. Schieber, and L. Zosin, “Approximating minimum
subset feedback sets in undirected graphs with applications,” SIAM
Journal on Discrete Mathematics, vol. 13, no. 2, pp. 255–267, 2000.

[9] J. Kleinberg and A. Kumar, “Wavelength conversion in optical net-
works,” Journal of algorithms, vol. 38, no. 1, pp. 25–50, 2001.

[10] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson,
“A primal–dual interpretation of two 2-approximation algorithms for the
feedback vertex set problem in undirected graphs,” Operations Research
Letters, vol. 22, no. 4-5, pp. 111–118, 1998.

[11] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens, “An
o (2 o (k) n 3) fpt algorithm for the undirected feedback vertex set
problem,” Theory of Computing Systems, vol. 41, no. 3, pp. 479–492,
2007.

[12] R. G. Downey and M. R. Fellows, Parameterized complexity. Springer
Science & Business Media, 2012.

[13] J. Guo, R. Niedermeier, and S. Wernicke, “Parameterized complexity
of generalized vertex cover problems,” in Workshop on Algorithms and
Data Structures, pp. 36–48, Springer, 2005.

[14] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-
time constrained cycle detection in large dynamic graphs,” Proceedings
of the VLDB Endowment, vol. 11, no. 12, pp. 1876–1888, 2018.

[15] E. Birmelé, R. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi,
and G. Sacomoto, “Optimal listing of cycles and st-paths in undirected
graphs,” in Proceedings of the twenty-fourth annual ACM-SIAM sympo-
sium on Discrete algorithms, pp. 1884–1896, Society for Industrial and
Applied Mathematics, 2013.

[16] F. Rubin, “Enumerating all simple paths in a graph,” IEEE Transactions
on Circuits and Systems, vol. 25, no. 8, pp. 641–642, 1978.

[17] A. A. Khan and H. Singh, “Petri net approach to enumerate all simple
paths in a graph,” Electronics Letters, vol. 16, no. 8, pp. 291–292, 1980.

[18] S. RAI and A. KUMAR, “On path enumeration,” International Journal
of Electronics, vol. 60, no. 3, pp. 421–425, 1986.

[19] C. Liu, X. He, B. Liang, and Y. Guo, “Detailed placement for pulse
quenching enhancement in anti-radiation combinational circuit design,”
Integration, vol. 62, pp. 182–189, 2018.

[20] D. Yue, X. Wu, Y. Wang, Y. Li, and C.-H. Chu, “A review of data
mining-based financial fraud detection research,” in 2007 International
Conference on Wireless Communications, Networking and Mobile Com-
puting, pp. 5519–5522, Ieee, 2007.

[21] Y. Cai and W.-K. Chan, “Magiclock: Scalable detection of potential
deadlocks in large-scale multithreaded programs,” IEEE Transactions
on Software Engineering, vol. 40, no. 3, pp. 266–281, 2014.

[22] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder,
S. D. Stoller, S. Ur, and L. Wang, “Detection of deadlock potentials in
multithreaded programs,” IBM Journal of Research and Development,
vol. 54, no. 5, pp. 3–1, 2010.

[23] N. Alon, “Bipartite subgraphs,” Combinatorica, vol. 16, no. 3, pp. 301–
311, 1996.

[24] N. Alon, B. Bollobás, M. Krivelevich, and B. Sudakov, “Maximum
cuts and judicious partitions in graphs without short cycles,” Journal
of Combinatorial Theory, Series B, vol. 88, no. 2, pp. 329–346, 2003.

[25] P. Erdös, T. Gallai, and Z. Tuza, “Covering and independence in triangle
structures,” Discrete Mathematics, vol. 150, no. 1-3, pp. 89–101, 1996.

[26] M. Krivelevich, “On a conjecture of tuza about packing and covering of
triangles,” Discrete Mathematics, vol. 142, no. 1-3, pp. 281–286, 1995.

[27] P. A. Pevzner, H. Tang, and G. Tesler, “De novo repeat classification and
fragment assembly,” Genome research, vol. 14, no. 9, pp. 1786–1796,
2004.

[28] G. Kortsarz, M. Langberg, and Z. Nutov, “Approximating maximum
subgraphs without short cycles,” in Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, pp. 118–131,
Springer, 2008.

[29] G. Xia and Y. Zhang, “Kernelization for cycle transversal problems,”
Discrete Applied Mathematics, vol. 160, no. 7-8, pp. 1224–1231, 2012.

[30] A. Kuhnle, V. G. Crawford, and M. T. Thai, “Scalable approximations
to k-cycle transversal problems on dynamic networks,” Knowledge and
Information Systems, vol. 61, no. 1, pp. 65–84, 2019.

[31] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[32] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient probabilistic
k-core computation on uncertain graphs,” in 2018 IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), pp. 1192–1203, IEEE,
2018.

[33] X. Jin, Z. Yang, X. Lin, S. Yang, L. Qin, and Y. Peng, “Fast:
Fpga-based subgraph matching on massive graphs,” arXiv preprint
arXiv:2102.10768, 2021.

[34] Y. Peng, X. Lin, Y. Zhang, W. Zhang, and L. Qin, “Answering reach-
ability and k-reach queries on large graphs with label-constraints,” The
VLDB Journal, pp. 1–25, 2021.

[35] Z. Yuan, Y. Peng, P. Cheng, L. Han, X. Lin, L. Chen, and W. Zhang,
“Efficient k-clique listing with set intersection speedup,” in ICDE, IEEE,
2022.

[36] Y. Peng, S. Bian, R. Li, S. Wang, and J. X. Yu, “Finding top-r influential
communities under aggregation function,” in ICDE, IEEE, 2022.

[37] X. Chen, Y. Peng, S. Wang, and J. X. Yu, “Dlcr : Efficient indexing
for label-constrained reachability queries on large dynamic graphs,”
Proceedings of the VLDB Endowment, 2022.

[38] Z. Yang, L. Lai, X. Lin, K. Hao, and W. Zhang, “Huge: An efficient
and scalable subgraph enumeration system,” in Proceedings of the 2021
International Conference on Management of Data, pp. 2049–2062, 2021.

[39] L. Qin, W. Zhang, Y. Zhang, Y. Peng, H. Kato, W. Wang, and
C. Xiao, Software Foundations for Data Interoperability and Large Scale
Graph Data Analytics: 4th International Workshop, SFDI 2020, and
2nd International Workshop, LSGDA 2020, Held in Conjunction with
VLDB 2020, Tokyo, Japan, September 4, 2020, Proceedings, vol. 1281.
Springer Nature, 2020.

[40] Z. Lai, Y. Peng, S. Yang, X. Lin, and W. Zhang, “Pefp: Efficient k-hop
constrained s-t simple path enumeration on fpga,” in ICDE, IEEE, 2021.

[41] K. Böhmová, L. Häfliger, M. Mihalák, T. Pröger, G. Sacomoto, and
M.-F. Sagot, “Computing and listing st-paths in public transportation
networks,” Theory of Computing Systems, vol. 62, no. 3, pp. 600–621,
2018.

[42] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1. Pearson Education India, 2011.

[43] M. Nishino, N. Yasuda, S.-i. Minato, and M. Nagata, “Compiling graph
substructures into sentential decision diagrams,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[44] N. Yasuda, T. Sugaya, and S.-I. Minato, “Fast compilation of st paths
on a graph for counting and enumeration,” in Advanced Methodologies
for Bayesian Networks, pp. 129–140, 2017.

[45] Y. Peng, W. Zhao, W. Zhang, X. Lin, and Y. Zhang, “Dlq: A system
for label-constrained reachability queries on dynamic graphs,” in Pro-
ceedings of the 230th ACM International Conference on Information &
Knowledge Management, 2021.

[46] Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang, “Answering billion-
scale label-constrained reachability queries within microsecond,” Pro-
ceedings of the VLDB Endowment, vol. 13, no. 6, pp. 812–825, 2020.

[47] Y. Peng, X. Lin, Y. Zhang, W. Zhang, L. Qin, and J. Zhou, “Efficient
hop-constrained s-t simple path enumeration,” The VLDB Journal, pp. 1–
24, 2021.

[48] Q. Feng, Y. Peng, W. Zhang, Y. Zhang, and X. Lin, “Towards real-time
counting shortest cycles on dynamic graphs: A hub labeling approach,”
in ICDE, IEEE, 2022.

[49] B. Roberts and D. P. Kroese, “Estimating the number of s-t paths in a
graph,” J. Graph Algorithms Appl., vol. 11, no. 1, pp. 195–214, 2007.

[50] K. Hao, L. Yuan, and W. Zhang, “Distributed hop-constrained s-t simple
path enumeration at billion scale,” Proc. VLDB Endow., vol. 15, no. 2,
pp. 169–182, 2021.

[51] X. Li, K. Hao, Z. Yang, X. Cao, and W. Zhang, “Hop-constrained s-t
simple path enumeration in large uncertain graphs,” in Databases Theory
and Applications - 33rd Australasian Database Conference, ADC 2022,
Sydney, NSW, Australia, September 2-4, 2022, Proceedings (W. Hua,
H. Wang, and L. Li, eds.), vol. 13459 of Lecture Notes in Computer
Science, pp. 115–127, Springer, 2022.

[52] Y. Peng, Y. Zhang, X. Lin, W. Zhang, L. Qin, and J. Zhou, “Towards
bridging theory and practice: hop-constrained st simple path enumera-
tion,” Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 463–476,
2019.

[53] R. Rizzi, G. Sacomoto, and M.-F. Sagot, “Efficiently listing bounded
length st-paths,” in International Workshop on Combinatorial Algo-
rithms, pp. 318–329, Springer, 2014.

[54] R. Grossi, A. Marino, and L. Versari, “Efficient algorithms for listing k
disjoint st-paths in graphs,” in Latin American Symposium on Theoretical
Informatics, pp. 544–557, Springer, 2018.

[55] S. Funke, A. Nusser, and S. Storandt, “On k-path covers and their

applications,” Proceedings of the VLDB Endowment, vol. 7, no. 10,
pp. 893–902, 2014.

[56] B. Brešar, F. Kardoš, J. Katrenič, and G. Semanišin, “Minimum k-path
vertex cover,” Discrete Applied Mathematics, vol. 159, no. 12, pp. 1189–
1195, 2011.

[57] V. Guruswami and E. Lee, “Inapproximability of feedback vertex set
for bounded length cycles.,” in Electronic Colloquium on Computational
Complexity (ECCC), vol. 21, p. 2, 2014.

[58] S. Sun, Y. Chen, B. He, and B. Hooi, “Pathenum: Towards real-
time hop-constrained st path enumeration,” in Proceedings of the 2021
International Conference on Management of Data, pp. 1758–1770, 2021.

[59] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[60] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd International Conference on World Wide Web, pp. 1343–1350,
ACM, 2013.

	I Introduction
	II Related Work
	II-A K-Cycle Traversal and K-Cycle-Free Subgraph
	II-B Feedback Vertex Set
	II-C Cycle and Path Enumeration

	III Preliminaries
	III-A Problem Definition
	III-B The State-of-the-art

	IV Theoretical Analysis
	V Bottom-Up Approach
	V-A Motivation
	V-B The Bottom-Up Approach
	V-C The Minimal Pruning Algorithm

	VI Top-Down Algorithm
	VI-A Motivation
	VI-B Top-Down Algorithm Description
	VI-C Node Necessary Validation
	VI-D Analysis
	VI-E Upper Bounds Filtering

	VII Experimental Results
	VII-A Experimental Settings
	VII-B The Speedup Effects
	VII-C Effectiveness and Efficiency on hop-constrained cycle cover
	VII-D Tuning the Parameter k
	VII-E The Pruning Effects
	VII-F Cover Size including 2-cycles

	VIII Conclusion
	References

