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Abstract—We investigate the novel problem of voting-based
opinion maximization in a social network: Find a given number
of seed nodes for a target campaigner, in the presence of other
competing campaigns, so as to maximize a voting-based score for
the target campaigner at a given time horizon.

The bulk of the influence maximization literature assumes that
social network users can switch between only two discrete states,
inactive and active, and the choice to switch is frozen upon one-
time activation. In reality, even when having a preferred opinion,
a user may not completely despise the other opinions, and the
preference level may vary over time due to social influence. To this
end, we employ models rooted in opinion formation and diffusion,
and use several voting-based scores to determine a user’s vote for
each of the multiple campaigners at a given time horizon.

Our problem is NP-hard and non-submodular for various
scores. We design greedy seed selection algorithms with quality
guarantees for our scoring functions via sandwich approximation.
To improve the efficiency, we develop random walk and sketch-
based opinion computation, with quality guarantees. Empirical
results validate our effectiveness, efficiency, and scalability.

Index Terms—social network, opinion maximization, voting

I. INTRODUCTION

Social influence studies have attracted extensive attention
in the data management research community [1], [2], [3], [4],
[5], [6], [7], [8]. The classic influence maximization (IM)
problem [9], [10] identifies the top-k seed users in a social
network to maximize the expected number of influenced users
in the network, starting from those seed nodes and following
an influence diffusion model (e.g., independent cascade (IC)
and linear threshold (LT) [9]). Several works also focus on
competitive influence maximization [11], [12], [13], [14], [15],
[16], [17], [18] which aims to find the seed set that maximizes
the influence spread for a particular campaigner relative to the
others or maximally blocks the diffusion of a competitor.

However, prior works on IM have two major limitations in
modelling real-world opinion formation and spreading. First,
they consider maximizing the expected number of users adopt-
ing a specific campaign, assuming that the reaction of each
user to the campaign is binary (adopt or not). In reality, a user
may not be completely opposed to the competing opinions,
although she could have a preference for one opinion, where
the degree of preference could vary among users. This scenario
can be accurately modelled by allowing the opinion of a user
for each campaign to be a real number in [0, 1]. Second, in
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the IC and LT models, a user’s choice is frozen upon one-
time activation – not permitting to switch opinions later. While
this is realistic when purchasing one of the many competing
products due to the user’s limited budget, it is insufficient for
modelling opinion formation and manipulation over time, e.g.,
in scenarios like paid movie services, elections, social issues,
where a user’s opinion is highly likely to change over time.

Due to the above shortcomings, we deviate from the classic
influence diffusion (e.g., IC and LT models) and investigate the
problem of opinion maximization by employing models rooted
in opinion formation and diffusion, e.g., DeGroot [19] and
Friedkin-Johnsen (FJ) [20], [21]. In these settings, each user
in a network has a real-valued opinion about each campaign at
every timestamp. Moreover, for each campaign, the opinions
of the users evolve over discrete timestamps according to an
opinion diffusion model such as DeGroot or FJ (defined in
§ II-A). Given a target campaign and a time horizon (a future
timestamp t), our problem is to select a seed set of size k for
the target campaigner, so that the target campaigner’s odds of
being the winner at the time horizon t are as high as possible.

Since opinion values are non-binary, we require more so-
phisticated winning criteria than the expected influence spread
employed in classic IM [9]. Voting offers a well-understood
mechanism for determining winners in an election among
campaigners by considering the preferences of users (“voters”)
in a principled manner. We investigate voting-based scores
[22], [23], [24] such as aggregated opinion values of all
users about a campaigner (cumulative), rank of the target
campaigner relative to others for all users (plurality), or the
number of campaigners against whom the target campaigner
wins in one-on-one competitions (Copeland). These are nat-
ural choices based on voting theory when users have non-
binary opinion values towards multiple competitors. Existing
works on finding the top-k seeds for opinion maximization
[25], [26] are restricted to a single campaigner and consider
neither a given finite time horizon1, nor voting-based scores
with multiple competing campaigners2. To the best of our
knowledge, voting-based opinion maximization in the presence
of multiple competing campaigns is a novel problem.
Applications. Our problem and solutions can be effective
where users vote and the winner among multiple candidates
is decided based on the election outcome. Examples include
the presidential election, voting in the parliament, a plebiscite

1In practice, the voting is held at a specific time horizon, instead of waiting for the
diffusion to reach the Nash equilibrium as is done in [25].

2Only our cumulative score is similar to theirs due to its aggregate nature.
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or a referendum (e.g., the referendum on the independence
of Scotland) [27], [28], etc. We conduct a real-world case
study about the ACM general election 2022 (§VIII-B). Our
case study shows that the election result might have reversed
after introducing only 100 optimal seed users. Our solution
selects influential seeds based on (1) their common research
interests with respect to the target candidate and (2) the
initial preferences of the users in various research domains.
Moreover, our approach smartly focuses on switching the
preferences of more neutral users. These demonstrate the
usefulness of our problem and the effectiveness of our solution.

Challenges and Our Contributions. With multiple competing
campaigns in a network, we formulate and study a novel
problem in opinion maximization: Find the top-k seed nodes
for a target campaign that maximize a voting-based winning
criterion for the target at a given time horizon (§ II-C). Our
contributions are as follows.
• Opinion Maximization and Voting Scores: To the best
of our knowledge, opinion manipulation by introducing seed
nodes has not been investigated before, except, e.g., [2], [25],
[26], [29], [30]. However, apart from [25], [26], prior works do
not consider sophisticated DeGroot/FJ opinion models. Also,
opinion maximization at a finite time horizon with multiple
campaigners has not been explored even in [25], [26]. One of
our novel contributions is bridging two different paradigms: (1)
seed selection for opinion formation and diffusion till a given
finite time horizon, and (2) voting-based winning criteria (e.g.,
plurality, Copeland) with multiple campaigners.
• Sandwich Approximation: Our problem is NP-hard
(§ III-A) and non-submodular (§ III-B) under various winning
criteria3. Despite these, we design bound functions for all our
non-submodular scores to derive accuracy guarantees for the
greedy algorithm via sandwich approximation [31] (§ IV).
• Random Walks: Computing opinion values at the time
horizon via DeGroot/ FJ requires iterative matrix-vector mul-
tiplications, which is expensive. To improve the efficiency, we
next propose random walk and sketching-based computations
with approximation guarantees. Random walks have been used
earlier to improve the efficiency of matrix multiplication and
PageRank computation [32], [33]. Our novelty is using random
walks to find the k seed nodes maximizing a voting-based
score by approximating the opinion values via the walks in k
iterations. Also, we provide novel bounds on the number of
walks required for each voting-based scoring function (§ V).
• Sketches: While sketches have been used in classic IM [3],
[7], [34], ours is the first work that uses sketches for opinion
computation. We adapt sketches for opinion diffusion models
and voting-based scores, and derive non-trivial accuracy guar-
antees (§ VI). Moreover, our sketches are simpler and less
memory-consuming than RR-sets-based sketches [3], [7].

Our thorough experimental evaluation and case study over
five real-world social network datasets demonstrates the ef-
fectiveness, efficiency, and scalability of our solutions, over

3The proofs of these results in [25] cannot be extended trivially even to our basic
model of the cumulative score for any finite time horizon, warranting new techniques.

several baselines (§ VIII). Related work is discussed in § VII,
while in § IX we conclude and discuss future work.

II. PRELIMINARIES

A social network is modeled as a (directed) graph G =
(V,E), where V is the set of n nodes and E ⊆ V × V is the
set of m edges. Each node is a user, and an edge represents
social relation between two users. We denote matrices with
upper-case letters and use lower-case ones for their entries.
We denote an n × n diagonal matrix by diag(d1, d2, ..., dn),
and the n × n identity matrix by In. A matrix A = (aij) is
column-stochastic if aij ≥ 0, ∀i, j, and

∑n
i=1 aij = 1, ∀j.

Different news, campaigns, or opinions can propagate con-
currently in the network, leading to competitions [11], [12],
[16]. They can be information about similar products of
different brands, multiple politicians campaigning for the same
position, or different attitudes towards a topic, e.g., for or
against gun control. We call them candidates and assume that
there are r > 1 candidates: C = {c1, c2, ..., cr}. All users’
opinions (in the interval [0, 1]) on all candidates are repre-
sented by an opinion matrix B ∈ [0, 1]r×n. Bq ∈ [0, 1]1×n is
the qth row of B (denoting all users’ opinions on candidate
cq), and bqi is its ith entry (opinion of user i on candidate cq).
The opinions evolve over discrete timestamps {0, 1, ..., t}. We
denote the opinion(s) at timestamp t by, e.g., B(t)

q and b(t)qi .
A. Opinion Diffusion Models

Unlike the classic influence diffusion, opinion diffusion
involves aggregating the peers’ opinions at each timestamp
[35]. We introduce a column-stochastic influence matrix [19],
[36] W ∈ [0, 1]n×n, where wij ∈ [0, 1] denotes the influence
weight from user i to user j. Different candidates cq can
have different matrices Wq . Notice that barring these weights,
the graph structure and the nodes remain the same for all
candidates. The set E is the union of the edges with non-zero
weights across all candidates. This setting is used in topic-
aware IM [37]. We next present two widely used opinion
diffusion models: DeGroot [19] and its extension FJ [20], [21].
The DeGroot Model for a single candidate cq is given by:

B(t)
q = B(t−1)

q Wq = B(t−2)
q W 2

q = ... = B(0)
q W t

q (1)

At every timestamp, each user adopts the weighted average
of her in-neighbors’ opinions from the previous timestamp.
Users without in-neighbors retain their initial opinions. Since
Wq is column-stochastic, the opinion values remain in [0, 1].
We assume that the opinions about different candidates diffuse
independently. In multi-campaigner and multi-feature settings,
independent propagation of opinions and influences has been
considered in [38], [39], [40], [41]. Note that in our case,
while the opinion propagation for multiple campaigns happens
concurrently and independently, voting-based scores naturally
incorporate competition among the campaigns (§ II-B).
The Friedkin-Johnsen (FJ) Model extends the DeGroot
model by introducing the notion of stubbornness:

B(t+1)
q = B(t)

q Wq (I −Dq) +B(0)
q Dq (2)

Dq = diag(dq1, dq2, ..., dqn) is a diagonal matrix: dqi
represents the stubbornness of user i on retaining her initial



Fig. 1. Running example. All users share the same influence weight
and stubbornness matrices for both candidates.

opinion about candidate cq . If dqi = 1, the user i is fully
stubborn and sticks to her initial opinion about cq . A partially
stubborn user (0 < dqi < 1) aggregates the opinions from
neighbors as well as her original opinion, while non-stubborn
users (dqi = 0) follow the DeGroot model. Since the DeGroot
model is a special case where all users are non-stubborn, all
our results with the FJ model also hold for the DeGroot model.

If the opinions of all users do not change after a specific
timestamp, the diffusion reaches a state of convergence. The
FJ model can reach convergence if and only if the edge weight
matrix of the subgraph induced by all oblivious nodes is
regular or there is no oblivious node [42], [43]. Oblivious
nodes are (1) non-stubborn and (2) not reachable from any
fully or partially stubborn node. One of our novel contributions
is the seed selection for opinion maximization at any given
time horizon, which introduces non-trivial additional hardness,
as discussed in § III-A and § III-B.
Example 1. The input graph in Figure 1 consists of 4 users
and 3 edges. Suppose c1 is our target candidate and c2
is a competing candidate. Based on the FJ model, for any
x ∈ {1, 2}, a user’s opinion about candidate cx at any time
horizon can be computed by taking the weighted average of
her in-neighbors’ opinions at the previous time horizon and
then averaging with that of herself. Thus, users 1 and 2 will
always keep their initial opinions, as they do not have any
incoming edge. The opinion of user 3 at any time horizon t

can be computed as b(t)x3 = 1
2

[
b
(t−1)
x3 + 1

2

(
b
(t−1)
x1 + b

(t−1)
x2

)]
,

which is the average opinion of users 1 and 2 at the previous
time horizon, then averaged with that of user 3. For user
4, b(t)x4 = 1

2

[
b
(t−1)
x3 + b

(t−1)
x4

]
, which is the average of the

opinions of users 3 and 4 at the previous time horizon.

B. Voting-based Scores
All campaigns start at timestamp 0 and proceed concurrently

(FJ model), independently of each other. Given a time horizon
t, we employ several voting-based scores [22], [23], [24]
to decide the winning candidate. In particular, we compute
a score F (B(t), c) for each candidate c. The one with the
maximum score is the winner at time t. We next define five
major voting-based score functions that we study.
Cumulative Score. For a candidate cq , the cumulative score
is the sum of all users’ opinion values about her at time t:

F
(
B(t), cq

)
=
∑
v∈V

b(t)qv (3)

Plurality Score. The plurality score counts the number of
users who prefer cq to all other candidates at time t:

F
(
B(t), cq

)
=
∑
v∈V

1

[
b
(t)
qv > max

cx∈C\{cq}
b
(t)
xv

]
=
∑
v∈V

1

[
β
(
b
(t)
qv

)
≤ 1
]

(4)

1 [·] is an indicator that returns 1 if the condition inside is
true, 0 otherwise; and β

(
b
(t)
qv

)
=
∑
cx∈C 1

[
b
(t)
xv ≥ b(t)qv

]
is

the rank of cq in the preference order for user v at time t.
In practice, a user generally votes for only one politician, or
has a limited budget to purchase one specific type of product.
Intuitively, she selects the one with the highest opinion value
in her mind – the plurality score captures this.
p-Approval Score. Given an integer p ∈ [1, r], the p-approval
score of cq is defined as the number of users v such that cq
is among the top-p preferred candidates for v at time t, i.e.

F
(
B(t), cq

)
=
∑
v∈V

1

[
β
(
b(t)qv

)
≤ p
]

(5)

Positional-p-Approval Score. Given an integer p ∈ [1, r] and
a sequence of position weights (ω[1], ω[2], ..., ω[r]) such that
ω[i] ∈ [0, 1]∀i ∈ [1, r] and ω[i] ≤ ω[i − 1]∀i ∈ [2, r], the
positional-p-approval score of cq is the sum of the weights of
the positions (up to p) of cq in the preference order of all users
at time t. Formally,

F
(
B(t), cq

)
=
∑
v∈V

ω
[
β
(
b(t)qv

)]
× 1

[
β
(
b(t)qv

)
≤ p
]

(6)

Clearly, the p-approval and positional-p-approval scores are
generalizations of the plurality score. In real-world applica-
tions like paid movie services, users can hold memberships
of multiple platforms; the p-approval score accounts for this.
Moreover, the service platforms usually provide multiple levels
of membership having different prices and benefits. Thus, the
platform still prefers a higher rank for itself by each user,
since the user may only purchase higher level memberships
for her favorite ones. The positional-p-approval score captures
this notion. Both variants allow for ties and are more robust
to small noises in the users’ individual preference orders.
Copeland Score. We define an ordering �M on candidates:
cq �M cp (i.e., cq wins over cp), if more users have a higher
opinion value for cq than for cp, compared to the other way
around, at time t. The score counts how many such one-on-one
competitions a candidate cq wins:

F
(
B(t), cq

)
= |{cp : cq �M cp}|

=
∑

cx∈C\{cq}

1

[∑
v∈V

1

[
b(t)qv > b(t)xv

]
>
∑
v∈V

1

[
b(t)qv < b(t)xv

]]
(7)

The Condorcet winner [44] is the candidate that wins all
such one-on-one competitions, i.e., has the maximum possible
F (B(t), cq) score, which is r − 1. In general, a Condorcet
winner is not always guaranteed to exist [44]. However,
maximizing the Copeland score boosts the target candidate
to beat as many other candidates as possible, and to be as
close to become a Condorcet winner as possible.

C. Problem Formulation
We study the novel problem of selecting k seed nodes for a

target candidate that maximize one of the voting-based scores
discussed in § II-B for the target candidate at a given time
horizon. All our scoring functions are non-decreasing w.r.t.
seed sets (§ III-B). Maximizing the score boosts the target
candidate’s odds of being as close as possible to winning.



TABLE I
SCORES OF CANDIDATE c1 FOR VARIOUS SEED SETS AT t = 1 IN

FIGURE 1. ASSUMING NO SEEDS FOR c2 , THE OPINIONS OF USERS
1, 2, 3, 4 ABOUT c2 AT t = 1 ARE RESP. 0.35, 0.75, 0.78, 0.90.

Seed Set User Score
1 2 3 4 Cumu. Plu. Cope.

{} 0.40 0.80 0.60 0.75 2.55 2 0
{1} 1.00 0.80 0.75 0.75 3.30 2 0
{2} 0.40 1.00 0.65 0.75 2.80 2 0
{3} 0.40 0.80 1.00 0.95 3.15 4 1
{4} 0.40 0.80 0.60 1.00 2.80 3 1
{1, 2} 1.00 1.00 0.80 0.75 3.55 3 1

For each node s in the seed set S for candidate cq , we
increase b(0)

qs and dqs to 1 (i.e., node s becomes fully stubborn
towards retaining the maximum opinion value about cq). We
denote the modified initial opinion row vector Bq and the
stubbornness matrix Dq as Bq[S] and Dq[S], respectively. The
problem is formulated as follows.
Problem 1 (FJ-Vote). Given the initial opinion matrix B(0), a
target candidate cq , influence matrix Wq , stubbornness matrix
Dq , and a time horizon t, find a set of k seed nodes S ⊂ V
that maximizes the score for cq at timestamp t. Formally,

S∗ = arg max
S⊂V,|S|=k

F
(
B(t)[S], cq

)
(8)

Here B(t)[S] is computed from B(0)[S] via the FJ model
(Equation 2). Note that B(0)[S] is obtained from the initial
opinion matrix B(0) by updating its row vector Bq to Bq[S]
according to the seed set S for cq . The function F is based
on one of the five voting scores (§ II-B).
Example 2. Suppose we aim to choose one seed user to
maximize the score for c1 (i.e., improve c1’s odds of winning
against competitor c2) at time horizon t = 1. The optimal
seed sets are quite different for various voting-based scores.
As shown in Table I, selecting user 1 as the seed leads to
the maximum cumulative score; however, we still have only
2 users preferring our target candidate c1 to c2. Thus, the
Copeland score of c1 remains 0. Choosing user 3 as the seed
will encourage all four users to favor c1 over c2, which results
in the highest plurality score. Meanwhile, c1 will become the
Condorcet winner (Copeland score equals 1) when user 3 or
4 is selected as the seed, since more than half the users will
have higher opinion values for c1 than for c2.

Remarks. We assume that the opinion diffusion for multiple
candidates proceeds concurrently and independently, following
[38], [39], [40], [41]. (1) For the cumulative score, due to
its aggregate nature, the top-k seeds for the target candi-
date can be computed independent of the others, similar
to the single-campaigner setting [25], [26]. In contrast, our
other voting-based scores (plurality, p-approval, positional-p-
approval, and Copeland) incorporate competition among the
candidates via ranking-based formulations using each user’s
preference order. (2) As long as we know the seed sets for
the non-target candidates at the beginning of the diffusion
(i.e., at time 0), our algorithm can compute their opinions
at any time horizon, and we select the k seed nodes for
the target campaign (also at time 0) so as to maximize the
target’s voting-based score at the time horizon, relative to the
placement of seeds for non-target candidates at time 0. Thus,

TABLE II
PROPERTIES OF OUR VOTING-BASED SCORES

Score NP-hard Non-negative Non-decreasing Submodular
Cumulative Yes Yes Yes Yes

Plurality Yes Yes Yes No
p-Approval Yes Yes Yes No
Pos.-p-Appr. Yes Yes Yes No

Copeland Open Yes Yes No

while our analyses and techniques apply for this general case
where the competing candidates have seeds, for simplicity of
notation and exposition, we assume w.l.o.g. that the non-target
candidates have no seeds. (3) Since we find the seed set of
size at most k that maximizes the score of the target candidate,
winning is not always guaranteed, because even after selecting
the k optimal seed nodes for the target candidate, another
candidate may still have a higher score than the target. In
that case, the target candidate needs more seeds to win. The
following variant of our problem can mitigate this issue.

Problem 2 (FJ-Vote-Win). Given the initial opinion matrix
B(0), a target candidate cq , influence matrix Wq , stubbornness
matrix Dq , and a time horizon t, find a set of seed nodes
S∗ ⊂ V of minimum size k∗ such that the score for cq at
timestamp t is the largest among all candidates. Formally,
S
∗
k = arg max

S⊂V,|S|=k
F
(
B

(t)
[S], cq

)
k
∗

= min

{
k :

[
F
(
B

(t) [
S
∗
k

]
, cq
)
> max
cx∈C\{cq}

F
(
B

(t) [
S
∗
k

]
, cx
)]}

S
∗

= S
∗
k∗ (9)

In § III-C, we show that a solution to Problem 1 can be
extended to solve this new problem.

III. BASIC RESULTS & SOLUTION FRAMEWORK

In this section, we discuss the hardness of our problem
(§ III-A) and the submodularity of our scores (§ III-B),
followed by a greedy solution to our problem (§ III-C). All
of these are a part of our novel contributions. A summary of
these properties for all our scores is given in Table II.
A. Hardness

We show that the decision version of Problem 1 is NP-hard
for the cumulative and plurality scores.
Theorem 1. The decision version of Problem 1 is NP-hard
with the cumulative score.
Proof. We prove by a reduction from the NP-hard VERTEX
COVER problem [45]. A vertex cover in an undirected graph
G = (V,E) is a subset of nodes such that every edge in E is
incident to at least one of them. Given G and an integer k, the
decision version of the problem asks if G contains a vertex
cover of size at most k.

Let |V | = n and |E| = m. G is transformed into a directed
graph G = (V,E′), where E′ contains directed edges (u, v)
and (v, u) for each undirected edge (u, v) ∈ E. We create
two candidates cq (our target) and cx. For each y ∈ {q, x},
we set the following: for each i ∈ V , b(0)

yi = 0, dyi = 0; and
for each (i, j) ∈ E′, wy;ij = 1/deg(j), where deg(v) denotes
the degree of node v in G. This ensures that Wy is column-
stochastic. The time horizon t is set to 1. This reduction takes
O(m+ n) time. We prove that a set S of at most k nodes is
a vertex cover of G if and only if F (B(1)[S], cq) ≥ n.



(1) If S is a vertex cover in G, then each node v in G
either belongs to S or has all of its incoming neighbors in
S. In the former case, b(1)

qv [S] = 1 by definition. In the latter
case, since Wq is column-stochastic, it follows from Eq. 2
that b(1)

qv [S] = 1. This implies that F (B(1)[S], cq) = n. (2)
If S is not a vertex cover in G, then there exists at least
one edge (u, v) ∈ E such that neither u nor v is in S. This
implies that b(1)

qv [S] ≤ 1 − 1/deg(v) < 1, which means that
F (B(1)[S], cq) < n. The theorem follows.
Remark: While Problem 1 with the cumulative score is similar
to [25], a key difference is as follows. Unlike Problem 1, [25]
selects seeds to maximize the sum of the expressed opinions
at the Nash equilibrium, instead of at a given finite time
horizon. The proofs of NP-hardness and submodularity in
[25] rely on showing that an absorbing random walk is an
unbiased estimate of the true equilibrium opinion. However,
we cannot use absorbing random walks to estimate opinions
at a finite time horizon, rendering their proofs inapplicable in
our case. Our NP-hardness and submodularity proofs for the
cumulative score are novel contributions.
Theorem 2. The decision version of Problem 1 is NP-hard
with the plurality score.
Proof. The reduction remains the same as in the proof of
Theorem 1, except that cx satisfies b(0)

xv = 1−δ ∀v ∈ V , where
0 < δ < minv∈V 1/deg(v); this ensures that b(1)

xv = 1−δ.

The computational complexity of Problem 1 with the
Copeland score is open as of now. We, however, show in
§ III-B that the Copeland score is not submodular.
B. Submodularity

We show that the cumulative score used in Problem 1 is
submodular, while the plurality and Copeland scores are not.
A set function f : 2V → R≥0 over a ground set V is
submodular if f(X∪{i})−f(X) ≥ f(Y ∪{i})−f(Y ), ∀X ⊂
Y ⊂ V, i ∈ V \ Y . The classic greedy algorithm returns a
(1−1/e)-approximate solution for maximizing a non-negative,
non-decreasing, submodular function [46]. Including a user s
into the seed set S will increase her opinion value on cq , which
will in turn influence those of some other users. Thus, after the
inclusion of s into S, each user’s opinion value and ranking
of cq cannot decrease. Hence, all our scoring functions are
non-decreasing in seed sets for cq .
Submodularity of the Cumulative Score.
Theorem 3. The opinion value of any user i about any can-
didate cq is submodular w.r.t. the seed set for that candidate.
Formally, ∀X ⊆ Y ⊆ V, s ∈ V \ Y ,

b
(t)
qi [X ∪ {s}]− b(t)qi [X] ≥ b(t)qi [Y ∪ {s}]− b(t)qi [Y ] (10)

Proof. We prove by induction on t. First, we prove for the
base case (t = 0). There are two sub-cases:
(1) When i = s, the initial opinion of s will increase to 1.

b(0)
qs [S ∪ {s}]− b(0)

qs [S] = 1− b(0)
qs ≥ 0, S ∈ {X,Y } (11)

(2) When i 6= s, the initial opinion of node i will not be
affected by the inclusion of s into the seed set S. We have:

b
(0)
qi [S ∪ {s}]− b(0)

qi [S] = 0, S ∈ {X,Y } (12)

In each sub-case, the marginal gain is non-negative and the
same irrespective of whether the current seed set is X or Y .
Thus, the submodularity holds for the base case.

Next, we prove for the induction step. Assuming that the
submodularity holds at any time-stamp t, we prove that it also
holds at the next time-stamp t + 1, by considering two sub-
cases as below.
(1) When i = s, we increase the stubbornness value dqs of
node s to 1, which ensures that its opinion value remains the
same as the initial opinion value 1, in any future time-stamp.
Thus, for S ∈ {X,Y }, we have:

b(t+1)
qs [S ∪ {s}]− b(t+1)

qs [S] = 1− b(t+1)
qs [S] ≥ 0 (13)

Since the opinion values are non-decreasing with respect to
the inclusion of seed nodes, and X ⊆ Y , we have:

b(t+1)
qs [X] ≤ b(t+1)

qs [Y ] (14)

Based on Equations 13 and 14, we derive:

b(t+1)
qs [X ∪ {s}]− b(t+1)

qs [X] ≥ b(t+1)
qs [Y ∪ {s}]− b(t+1)

qs [Y ] (15)

(2) When i 6= s, following the FJ model (Equation 2), we
compute the marginal gain as follows, where S ∈ {X,Y }.

b
(t+1)
qi [S ∪ {s}]− b(t+1)

qi [S]

= (1− dqi[S])

n∑
j=1

[(
b
(t)
qj [S ∪ {s}]− b(t)qj [S]

)
· wji

]
︸ ︷︷ ︸

1st term

+ b
(0)
qi [S ∪ {s}] · dqi[S ∪ {s}]− b(0)

qi [S] · dqi[S]︸ ︷︷ ︸
2nd term

= (1− dqi[S])

n∑
j=1

[(
b
(t)
qj [S ∪ {s}]− b(t)qj [S]

)
· wji

]
(16)

In the above, the second term vanishes because dqi[S] =

dqi[S ∪ {s}] and b
(0)
qi [S] = b

(0)
qi [S ∪ {s}]. Notice that in the

first term, we also use the fact that dqi[S] = dqi[S ∪ {s}].
Now, let us consider the seed set S as X and Y , respectively.

By the induction hypothesis, we have:

b
(t)
qj [X ∪ {s}]− b(t)qj [X] ≥ b(t)qj [Y ∪ {s}]− b(t)qj [Y ] (17)

Furthermore, by the definition of seed set, we get:

1− dqi[X] = 1− dqi[Y ] = 0 ∀i ∈ X
1− dqi[X] = 1− dqi ≥ 1− dqi[Y ] = 0 ∀i ∈ Y \X
1− dqi[X] = 1− dqi[Y ] = 1− dqi ∀i ∈ V \ Y, i 6= s

To summarize,

1− dqi[X] ≥ 1− dqi[Y ] ∀i 6= s (18)

Therefore, we derive the following ∀i 6= s.

b
(t+1)
qi [Y ∪ {s}]− b(t+1)

qi [Y ]

= (1− dqi[Y ])

n∑
j=1

[(
b
(t)
qj [Y ∪ {s}]− b(t)qj [Y ]

)
· wji

]
by Eq. 16

≤ (1− dqi[Y ])

n∑
j=1

[(
b
(t)
qj [X ∪ {s}]− b(t)qj [X]

)
· wji

]
by Eq. 17

≤ (1− dqi[X])

n∑
j=1

[(
b
(t)
qj [X ∪ {s}]− b(t)qj [X]

)
· wji

]
by Eq. 18

= b
(t+1)
qi [X ∪ {s}]− b(t+1)

qi [X] by Eq. 16 (19)



Algorithm 1 Greedy Seed Selection to Maximize the Score
Require: Graph G = (V,E), initial opinion matrix B(0), influence matrix Wi and

stubbornness matrix Di for each candidate ci, target candidate cq , seed set size
budget k, time horizon t, and a scoring function F

Ensure: Seed set S∗ of size k
1: S∗ ← ∅
2: for j = 1 to k do
3: u← arg maxv∈V \S∗

[
F
(
B(t)[S∗ ∪ {v}], cq

)
− F

(
B(t)[S∗], cq

)]
4: S∗ ← S∗ ∪ {u}
5: return S∗

This completes the proof.

The cumulative score is the sum of all users’ opinion values
(Equation 3). As the sum of submodular functions is also
submodular, the cumulative score is submodular.

Non-Submodularity of the Other Scoring Functions. We
show the non-submodularity of the plurality and Copeland
scores using the same running example (Figure 1 and Table I).
Example 3. As shown in Table I, inserting node 2 into the
empty seed set results in zero marginal gain for both the
plurality and Copeland scores. However, inserting node 2 into
seed set {1} will make user 3 preferring the target candidate
c1 (resulting in marginal gain 1 for the plurality score) and
also the number of users preferring c1 more than the same
for c2 (resulting in marginal gain 1 for the Copeland score).
Hence, submodularity is violated for both scores.

C. Solution Overview
Since the cumulative score is non-negative, non-decreasing,

and submodular, the greedy framework (Algorithm 1), which
identifies the node that maximizes the marginal gain in score at
each round, can provide a (1−1/e)-approximate solution. We
show in § IV-D that there is a problem instance for which
the well-known submodularity ratio ψ [47], [48] becomes
0 for our other non-submodular voting-based scores; thus
their approximation factor (1− e−ψ) degrades and goes to 0.
However, in § IV, with the help of Sandwich Approximation
[31], we prove that the greedy framework can still generate
good approximate solutions for these scores.
Time Complexity with the Cumulative Score. To find the
node that maximizes the marginal gain at each round of
Algorithm 1, one can apply Eq. 2 t times (due to the input time
horizon t). Since every such matrix-vector multiplication has
time complexity O(m) using a sparse matrix package, we have
k rounds (to find the top-k seed nodes), and O(n) candidate
nodes from which a seed node is selected in each round,
the final time complexity is O(ktmn). As the cumulative
score is monotone and submodular, we also apply the CELF
optimization [49]. In § V and § VI, we propose random
walk- and sketching-based estimation, respectively, to further
improve the efficiency, with theoretical quality guarantees.
Remark. (1) This greedy solution can be extended to solve
Problem 2 about finding the smallest seed set size k∗ such
that the target candidate wins. Since 0 ≤ k∗ ≤ n and our
scoring functions are non-decreasing, we resort to a binary
search for k∗, with the initial lower (resp. upper) bound as 0
(resp. n). In each iteration, we compute the optimal seed set S

Algorithm 2 Greedy Seed Selection for Winning
Require: Graph G = (V,E), initial opinion matrix B(0), influence matrix Wi and

stubbornness matrix Di for each candidate ci, target candidate cq , time horizon t
and a scoring function F

Ensure: Seed set S∗ of minimum size for cq to win
1: S∗ ← ∅, l← 0, u← n
2: while u− l > 1 do
3: k ← 1

2 (l + u)
4: S ← Algorithm 1 with seed set size k
5: if F

(
B(t) [S] , cq

)
> maxcx∈C\{cq} F

(
B(t) [S] , cx

)
then

6: u← k, S∗ ← S
7: else
8: l← k
9: return S∗

Algorithm 3 Sandwich Approximation-Based Seed Selection
Require: Graph G = (V,E), initial opinion matrix B(0), influence matrix Wi and

stubbornness matrix Di for each candidate ci, target candidate cq , seed set size
budget k, time horizon t, and a (non-submodular) scoring function F with a lower
bound LB and an upper bound UB

Ensure: Seed set S∗ of size k
1: SU ← η-approximate solution to maximize UB(·)
2: SL ← τ -approximate solution to maximize LB(·)
3: SF ← Feasible solution (e.g. standard greedy) for F (·)
4: return arg maxS∈{SU ,SL,SF }

F (S)

of size at most the value midway between the bounds. If the
target wins (resp. loses) with the seed set S, the upper (resp.
lower) bound is updated to the middle value and the process is
repeated till the bounds converge. The overall pseudocode is
shown in Algorithm 2. (2) Due to the hardness of our problem
(§ III-A), we find an “approximately optimal” seed set (e.g.,
using Algorithm 1). Since such a seed set will lead to a lower
voting-based score than that for the optimal solution, the final
seed set size obtained could be larger than the true minimal
one to achieve the winning criterion.

IV. PLURALITY VARIANTS AND COPELAND SCORES:
SANDWICH APPROXIMATION

Sandwich Approximation [31] (§IV-A) is a powerful frame-
work for providing approximation guarantees (possibly lower
than (1 − 1/e)) for non-submodular function maximization.
Our novel contribution is to construct non-trivial upper and
lower bound functions to enable sandwich approximation for
our plurality (§ IV-B) and Copeland (§ IV-C) scores, as they
must satisfy certain properties to admit good approximations.
Furthermore, we empirically validate that the additional ratio
introduced by sandwich approximation (which degrades the
overall approximation) is reasonably high for our proposed
bounding functions in all cases (§ IV-D). For simplicity, we
re-write F (B(t)[S], cq) as F (S), since the target candidate cq
is arbitrary but fixed.

A. Sandwich Approximation
For any non-submodular set function F (S), S ⊆ V , suppose

UB(S) and LB(S) are any set functions defined on the
same ground set V , such that LB(S) ≤ F (S) ≤ UB(S),
∀S ⊆ V . If we are able to compute approximate solutions for
both UB(S) and LB(S), then we can obtain the sandwich
approximation for the targeted set function F (S) as follows
(pseudocode in Algorithm 3). (1) Run the approximation algo-
rithms to obtain an η-approximate solution SU to UB(S) and



a τ -approximate solution SL to LB(S), where η (resp. τ ) is
the approximation factor afforded by the algorithm for UB(S)
(resp. LB(S)). (2) Find a feasible solution SF to function
F (S), e.g., by applying the standard greedy algorithm. (3) Re-
port the final solution S#: S# = arg maxS∈{SU ,SL,SF } F (S).

Theorem 4 ([31]). Sandwich approximation guarantees:

F
(
S#
)
≥ max

{
η · F (SU )

UB (SU )
· F (S∗F ) , τ · LB (S∗F )

}
(20)

where S∗F maximizes F (S) subject to a constraint, e.g., a
cardinality constraint |S| ≤ k, or a matroid constraint.

B. Bounds on the Plurality Score Variants
Motivated by this result, we design non-negative, non-

decreasing, submodular lower and upper bounding functions
LB(S) and UB(S) such that 0 ≤ LB(S) ≤ F (S) ≤ UB(S)
∀S ⊆ V , thereby enabling sandwich approximation with
η = τ = 1 − 1/e (Eq. 20) via running the greedy algorithm
(Algorithm 1) on LB(S), F (S), and UB(S), respectively.
Note that ensuring the submodularity of LB(·) and UB(·)
is one (not the only) way to enable sandwich approximation.
This analysis is for F (·) denoting the positional-p-approval
score; thus, it also holds for special cases, e.g., plurality and
p-approval scores. We first define two useful terms.

Definition 1 (Favorable Users Set). The favorable users set,
denoted by V (t)

q , is the set of nodes (users) who would have
the target candidate cq among their top-p ranked candidates
(according to their opinion values) at the time horizon t, even
without introducing any seed for cq . Formally,

V (t)
q =

{
v ∈ V : β

(
b(t)qv

)
≤ p
}

(21)

Since the opinion of a user about cq increases with the
seed set for cq , and the users in V

(t)
q have cq among their

top-p ranked candidates at the time horizon t even without
any seed for cq , they will continue doing so on the addition
of seed nodes for cq . Recall that the set of such users at the
time horizon t decides cq’s positional-p-approval score. Hence,
we use V (t)

q to construct a lower bound for the positional-p-
approval score (Definition 3).

Definition 2 (Reachable Users Set). The reachable users set,
denoted by N (t)

S , is the set of nodes (users) at most t outgoing
hops away from any node in a seed set S. Formally, denoting
by u h

 v the existence of a path with h edges from u to v,

N
(t)
S =

⋃
s∈S

t⋃
h=0

{
v ∈ V : s

h
 v

}
(22)

On adding seeds for cq , along with the users in V (t)
q , some

additional users could also have higher opinions about cq at
time t, who according to FJ model, can only be at most t
outgoing hops away from any seed node. Hence, V (t)

q and
N

(t)
S are used to construct an upper bound for the positional-

p-approval score (Definition 4).

Definition 3. The lower bounding function LB(S) for the
positional-p-approval score F (S) is defined as the aggregated
opinion value about cq at time t for all users in the favorable

users set, on the introduction of a seed set S for cq , times the
weight ω[p] for position p. Formally,

LB(S) = ω[p]
∑

v∈V (t)
q

b(t)qv [S] (23)

Definition 4. The upper bounding function UB(S) for the
positional-p-approval score F (S) is defined as the total num-
ber of users either in the favorable users set or in the reachable
users set, times the weight ω[1] for position 1. Formally,

UB(S) = ω[1]
∣∣∣N (t)

S ∪ V
(t)
q

∣∣∣ (24)

Correctness Guarantee. We now have:

Theorem 5. LB(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) a lower bound for F (S).

Proof. (1) Since b(t)qv [S] ≥ 0 ∀v ∈ V and ω[p] ≥ 0, LB(S) ≥
0. (2) LB(S) is the sum of b(t)qv [S] ∀v ∈ V

(t)
q (multiplied

by a non-negative constant ω[p]), and each of them is non-
decreasing w.r.t. the inclusion of seeds in S. (3) From Theorem
3, each b(t)qv [S] is submodular, and hence so is LB(S), which
is the sum of such functions ∀v ∈ V

(t)
q multiplied by a

non-negative constant ω[p]. (4) Notice that b(t)qv [S] ≥ b
(t)
qv .

Thus, v ∈ V
(t)
q implies β

(
b
(t)
qv [S]

)
≤ β

(
b
(t)
qv

)
≤ p or

1

[
β
(
b
(t)
qv [S]

)
≤ p
]

= 1; so ω
[
β
(
b
(t)
qv [S]

)]
≥ ω[p]. Hence,

LB(S) = ω[p]
∑

v∈V (t)
q

b(t)qv [S] ≤
∑

v∈V (t)
q

ω[p]

≤
∑

v∈V (t)
q

ω
[
β
(
b(t)qv [S]

)]
× 1

[
β
(
b(t)qv [S]

)
≤ p
]

≤
∑
v∈V

ω
[
β
(
b(t)qv [S]

)]
× 1

[
β
(
b(t)qv [S]

)
≤ p
]

= F (S)

Lemma 1. If a user v is not in the reachable users set, then
the opinion of v about cq does not change by virtue of the
seed set. Formally, if v /∈ N (t)

S , then b(t)qv [S] = b
(t)
qv .

Intuitively, this follows from the FJ model; the influence of
the seed set diffuses by one hop in each timestamp, and hence
cannot spread beyond t hops at timestamp t.

Theorem 6. UB(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) an upper bound for F (S).

Proof. (1) Since the size of any set is non-negative, UB(S) ≥
0. (2) UB(S) is non-decreasing because, for any X ⊆ Y ,

UB(Y ) = UB(Y ∪X) = ω[1]
∣∣∣N (t)

Y ∪X ∪ V
(t)
q

∣∣∣
= ω[1]

∣∣∣N (t)
Y ∪N

(t)
X ∪ V

(t)
q

∣∣∣ ≥ ω[1]
∣∣∣N (t)

X ∪ V
(t)
q

∣∣∣ = UB(X)

(3) UB(S) is submodular because, for any X ⊂ Y ⊂ V and
s ∈ V \ Y , we have

UB(X ∪ {s})− UB(X) = ω[1]
(∣∣∣N(t)

X∪{s} ∪ V
(t)
q

∣∣∣− ∣∣∣N(t)
X ∪ V (t)

q

∣∣∣)
= ω[1]

∣∣∣N(t)
{s} \

(
N

(t)
X ∪ V (t)

q

)∣∣∣ ≥ ω[1] ∣∣∣N(t)
{s} \

(
N

(t)
Y ∪ V (t)

q

)∣∣∣
= ω[1]

(∣∣∣N(t)
Y ∪{s} ∪ V

(t)
q

∣∣∣− ∣∣∣N(t)
Y ∪ V (t)

q

∣∣∣) = UB(Y ∪ {s})− UB(Y )



(4) Suppose v /∈ N (t)
S and v /∈ V (t)

q . From Eq. 21 and Lemma
1, β

(
b
(t)
qv [S]

)
= β

(
b
(t)
qv

)
> p. Thus, β

(
b
(t)
qv [S]

)
≤ p implies

that v ∈ N (t)
S ∪ V

(t)
q . Also, ω

[
β
(
b
(t)
qv [S]

)]
≤ ω[1]. Hence,

F (S) =
∑
v∈V

ω
[
β
(
b
(t)
qv [S]

)]
× 1

[
β
(
b
(t)
qv [S]

)
≤ p
]

≤
∑
v∈V

ω[1]× 1
[
v ∈ N(t)

S ∪ V (t)
q

]
= ω[1]

∣∣∣N(t)
S ∪ V (t)

q

∣∣∣ = UB(S)

C. Upper Bound for the Copeland Score

We construct a non-negative, non-decreasing, submodular
upper bounding function for the Copeland score in a similar
way as in § IV-B, under the constraint that no user has equal
opinion values about any two candidates at the time horizon.
Notice that this constraint does not change the definition of the
Copeland score (Equation 7) in any way; rather, whether this
constraint holds or not depends on the input dataset, the seed
set, and the time horizon. We enable sandwich approximation
via running the greedy algorithm (Algorithm 1) on F (S) and
UB(S) only, and we get η = 1 − 1/e in Equation 20. As in
§ IV-B, ensuring the submodularity of UB(·) is one (not the
only) way to enable sandwich approximation. The construction
of a useful lower bound and the case when a user has equal
preference to two candidates at the time horizon are interesting
open questions for future work.

Definition 5 (Weakly Favorable Users Set). The weakly favor-
able users set, denoted by U (t)

q , is the set of nodes (users) who
prefer cq to at least one other candidate at the time horizon
t, even without having any seed for cq . Formally,

U (t)
q =

{
v ∈ V : b(t)qv > min

cx∈C\{cq}
b(t)xv

}
(25)

Since the Copeland score computes the number of one-on-
one competitions won by cq , only those users who prefer cq to
at least one other candidate, i.e., those in U (t)

q , can contribute
to this score, along with those users who could be influenced
by the seed set, i.e., those in N

(t)
S . Thus, U (t)

q and N
(t)
S are

used to construct an upper bound as below.

Definition 6. The upper bounding function UB(S) for the
Copeland score F (S) is defined as the total number of users
either in the weakly favorable users set or in the reachable
users set, times the ratio of the number of non-target candi-
dates to one more than half the total number of users.

UB(S) =
r − 1⌊
n
2

⌋
+ 1

∣∣∣N (t)
S ∪ U

(t)
q

∣∣∣ (26)

Correctness Guarantee. We show that UB(S) is a non-
negative, non-decreasing, submodular upper bound for F (S).

Theorem 7. UB(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) an upper bound for F (S).

Proof. (1), (2) and (3) can be proved by similar arguments as
their counterparts in Theorem 6.

(4) Suppose v /∈ N
(t)
S and v /∈ U

(t)
q . From Equation 25

and Lemma 1, ∀cx ∈ C \ {cq} : b
(t)
xv ≥ b

(t)
qv = b

(t)
qv [S]. Thus,

Fig. 2. Empirical study on the Sandwich approximation factor, with
the plurality score on the Twitter Social Distancing dataset (left)
and the Copeland score on the Yelp dataset (right). 100 trials (runs)
of the method were performed for each dataset-score pair.

b
(t)
qv [S] > mincx∈C\{cq} b

(t)
xv implies that v ∈ N

(t)
S ∪ U (t)

q .
Hence, we have

F (S) =
∑

cx∈C\{cq}
1

∑
v∈V

1

[
b
(t)
qv [S] > b

(t)
xv

]
>
∑
v∈V

1

[
b
(t)
qv [S] < b

(t)
xv

]
=

∑
cx∈C\{cq}

1

∑
v∈V

1

[
b
(t)
qv [S] > b

(t)
xv

]
≥
⌊n
2

⌋
+ 1


≤

∑
cx∈C\{cq}

1⌊
n
2

⌋
+ 1

∑
v∈V

1

[
b
(t)
qv [S] > b

(t)
xv

]

≤
1⌊

n
2

⌋
+ 1

∑
cx∈C\{cq}

∑
v∈V

1

[
b
(t)
qv [S] > min

cy∈C\{cq}
b
(t)
yv

]

≤
r − 1⌊
n
2

⌋
+ 1

∑
v∈V

1

[
v ∈ N(t)

S ∪ U(t)
q

]
=

r − 1⌊
n
2

⌋
+ 1

∣∣∣N(t)
S ∪ U(t)

q

∣∣∣ = UB(S)

The second step above holds since no user has equal opinion
values about any two candidates at time t by our assumption.

D. Practical Effectiveness of our Bounds

We empirically compute the ratio F (SU )
UB(SU ) in Equation 20,

since sandwich approximation ensures an approximation factor
of at least F (SU )

UB(SU )

(
1− 1

e

)
. We vary the major parameter, the

number of seeds (k), from 100 to 1000 (with gap 100); each
value corresponds to a trial. The ratio reaches 0.7 in 90%
of the trials; and in about 50% of the trials it exceeds 0.8
for both the plurality and Copeland scores. This results in an
empirical approximation factor of at least 0.8(1−1/e) ≈ 0.51
in more than half of our trials. It is only once that the ratio
turns out to be below 0.5 (0.46 for the plurality score on the
Twitter Social Distancing dataset), which is the worst case
we observe empirically. In practice, our algorithm performs
much better than several baselines (§VIII).

The greedy algorithm for finding SU is much faster than that
for computing SF (Algorithm 1), since it does not involve any
expensive opinion computation. Meanwhile, SL is obtained via
greedily maximizing the cumulative score on V (t)

q (Definition
3), which is also much faster, since (1)

∣∣∣V (t)
q

∣∣∣ � |V | in
practice, and (2) the greedy algorithm for the cumulative score
is much faster than that for the plurality score (§ VIII-C).
Empirically, the running times for finding SU and SL are about
2% and 5%, respectively, of that for finding SF .
Remarks. The notions of curvature, submodularity ratio, and
submodularity index have been exploited for establishing
approximation guarantees of the greedy algorithm applied to
the cardinality constrained maximization of non-submodular,
non-decreasing set functions [47], [48], [50]. For instance,



when F has submodularity ratio ψ, the greedy algorithm for
maximizing F provides a (1 − e−ψ)-approximation, where
the submodularity ratio measures how “close” F is to being
submodular [47], [48]. Formally, the submodularity ratio of F
is the largest scalar ψ such that, for all Ω, S ⊆ V ,∑

ω∈Ω\S

[F (S ∪ {ω})− F (S)] ≥ ψ[F (S ∪ Ω)− F (S)] (27)

When the submodularity ratio of a function F is 0, the
approximation guarantee degrades and goes to 0 in limit.
Unfortunately, as we show, there is a problem instance for
which the submodularity ratio becomes 0 when F denotes
the plurality score. Consider the same running example as in
Figure 1. From Table I, we have the following.

B
(1)
2 = [0.35, 0.75, 0.78, 0.9]

B
(1)
1 [∅] = [0.4, 0.8, 0.6, 0.75] =⇒ F (∅) = 2

B
(1)
1 [{1}] = [1, 0.8, 0.75, 0.75] =⇒ F ({1}) = 2

B
(1)
1 [{2}] = [0.4, 1, 0.65, 0.75] =⇒ F ({2}) = 2

B
(1)
1 [{1, 2}] = [1, 1, 0.8, 0.75] =⇒ F ({1, 2}) = 3

Clearly, in Equation 27, ψ = 0 for S = ∅ and Ω = {1, 2};
hence, the submodularity ratio of F is 0.The sandwich ap-
proximation method that we employ provides an alternative
direction to derive an approximation guarantee for the greedy
algorithm applied to the cardinality constrained maximization
of non-submodular, non-decreasing set functions.

V. EFFICIENT RANDOM WALK-BASED ESTIMATION

The greedy framework (Algorithm 1) has time complexity
O(ktmn) via inefficient direct matrix-vector multiplication
(§ III-C and § IV). In this section, we first introduce a random
walk interpretation for the opinion value of any node at any
timestamp (§ V-A). Next, as our novel contribution, an efficient
random walk-based method with a smart truncation strategy
is designed to estimate the marginal gain (§ V-B). Finally, we
establish novel quality guarantees of the proposed method for
all our voting-based scores (§ V-C).
A. Random Walk Interpretation

As the influence matrix Wq is column-stochastic for any
candidate cq , the probabilities on the outgoing edges of each
node add up to 1 in the reverse graph.4 This enables the
following Direct Generation of t-step random walks with seed
set S. (1) Each node v in the reverse graph has a termination
probability dqv[S] ∈ [0, 1] that is equivalent to its stubbornness
(recall that dqv[S] = 1 if v ∈ S and dqv[S] = dqv otherwise),
and the probabilities on its outgoing edges add up to 1. (2) If
a random walk is at node v in the current step, it terminates
at v with probability dqv[S]. Otherwise, it proceeds to an out-
neighbor of v chosen according to the edge probabilities. (3)
From a start node u, we repeat step (2) to generate a random
walk. It terminates when step (2) has been conducted t times,
or the walk stops early (i.e., before reaching length t) at a
node due to the termination probability. (4) If the random
walk terminates at node v, then the node u at time t adopts

4The reverse graph has the same set of nodes and edges, but with edge directions
reversed. The weights on the edges, now interpreted as probabilities, remain the same.

Algorithm 4 Random Walk-Based Greedy Seed Selection
Require: Graph G = (V,E), initial opinion matrix B(0), influence matrix Wi and

stubbornness matrix Di for each candidate ci, target candidate cq , seed set size
budget k, time horizon t, and a scoring function F

Ensure: Seed set S∗ of size k
1: for all v ∈ V do
2: for j = 1 to λv do
3: Generate a t-step reverse random walk starting from v
4: S∗ ← ∅
5: for i = 1 to k do
6: u← arg maxv∈V \S∗

[
F̂
(
B̂(t)[S∗ ∪ {v}], cq

)
− F̂

(
B̂(t)[S∗], cq

)]
7: S∗ ← S∗ ∪ {u}
8: Truncate all walks containing u at u
9: return S∗

the initial opinion of node v: X(t)
qu [S] = b

(0)
qv [S]. We show that

the expected opinion value of any node u at any time t when
serving as the start node of the above reverse random walk is
the same as the exact opinion value of u at time t computed
by matrix-vector multiplication.5

Theorem 8. For any t ≥ 0 and seed set S, the expected
value of the estimated opinion X

(t)
qu [S] of any user u about

any candidate cq at timestamp t using a t-step reverse random
walk by Direct Generation is equal to the exact opinion of u
about cq at timestamp t according to the FJ model. Formally,

E

[
X(t)
qu [S]

]
= b(t)qu [S] (28)

Proof. We prove by induction on t. The base case (t = 0) is
trivial, since each node takes its initial opinion. Next, assuming
that the statement is true at timestamp t, we prove that it is
true at timestamp t+1. Let Pr

(
u

t
 v

)
denote the probability

that a t-step reverse random walk starting from u ends at v.
Considering any (t + 1)-step reverse random walk from any
node u, we have:

E

[
X

(t+1)
qu [S]

]
=
∑
v∈V

b
(0)
qv [S]× Pr

(
u
t+1
 v

)

=

∑
v∈V

b
(0)
qv [S] (1− dqu[S])

∑
y∈V

wqyu × Pr
(
y
t
 v

)+ b
(0)
qu [S]dqu[S]

=

(1− dqu[S]) ∑
y∈V

wqyu
∑
v∈V

b
(0)
qv [S]× Pr

(
y
t
 v

)+ b
(0)
qu [S]dqu[S]

= (1− dqu[S])
∑
y∈V

wqyuE
[
X

(t)
qy [S]

]
+ b

(0)
qu [S]dqu[S]

= (1− dqu[S])
∑
y∈V

b
(t)
qy [S]wqyu + b

(0)
qu [S]dqu[S] = b

(t+1)
qu [S]

B. The Algorithmic Workflow

We estimate the opinion of every user v about any candidate
cq at time t by generating λv independent t-step reverse
random walks starting from v. The estimated opinion of node
v about candidate cq is computed as the average of the initial
opinions of the end nodes across all λv random walks. The
seed set is generated greedily as in Algorithm 1. In Line 3,

5Random walks for approximating matrix-vector multiplication are employed in [33]
and in PageRank [32], albeit with subtle differences from how they are applied in our
work. While [32], [33] require a one-time estimation of the vector entries, we need the
same for k iterations of the greedy algorithm, and we do so in an efficient way. Also, the
quality guarantees required are different from [32], [33] and specific to each voting-based
score. For more details, we refer to Appendix C.



we select the best new seed based on the maximum estimated
marginal gain instead of the maximum actual marginal gain. In
each iteration, given the previously selected seed set S∗ for cq ,
we need to compute the marginal gain of including a candidate
seed node w into S∗, and hence the estimated opinions with
the new seed set. The Direct Generation approach would
require the generation of new walks with the new seed set,
which would be expensive. Thus, we use an alternative Post-
Generation Truncation technique as follows: Before running
Algorithm 1, we generate (only once) λv random walks from
each node v using the same approach as in § V-A but with
the empty seed set. Thereafter, for any given seed set S, the
estimated opinion Y (t)

qv [S] for a given walk is the initial opinion
of the end node of the walk truncated at the first occurrence of
a node from S. The overall estimated opinion b̂(t)qv [S] of v is
the average of Y (t)

qv [S] across all λv walks from v. The overall
pseudocode is given in Algorithm 4. The above approach is
clearly more efficient since it does not involve regenerating
random walks for each seed set. It also does not introduce
any further error, since the estimates Y (t)

qv [S] satisfy the same
property as X(t)

qv [S] in Theorem 8, as shown below.
Theorem 9. For any t ≥ 0, any node u and any seed set S,
let Y (t)

qu [S] denote the estimated opinion of u about cq at time
t by the Post-Generation Truncation approach, i.e., the initial
opinion of the end node of the resultant random walk after
initially sampling a t-step reverse random walk starting from
u without any seed and then truncating the walk at the first
occurrence of a node in S. Then

E

[
Y (t)
qu [S]

]
= b(t)qu [S] (29)

Proof. We prove by induction on the time horizon t. When t =

0, the walk consists only of u, and hence Y (t)
qu [S] = b

(0)
qu [S] =

b
(t)
qu [S]. Now assume that the statement is true for time horizon
t. Consider an execution (random walk generation followed by
truncation) with time horizon t+1. If u ∈ S, the resultant walk
(after truncation) will consist only of u with initial opinion 1,
and hence E

[
Y

(t+1)
qu [S]

]
= 1 = b

(t+1)
qu [S]. Otherwise, we

have the following. With probability dqu, u is stubborn, i.e.,
the walk terminates at u during generation; thus, the end node
of the resultant walk will be u. With probability 1 − dqu, u
is not stubborn, i.e., during generation, the walk transitions
to a random node y (with probability wqyu) from which a
t-step walk is generated; thus, the end node of the resultant
walk will be the end node of the truncated t-step walk from
y. Since u /∈ S, dqu = dqu[S] and b(0)

qu = b
(0)
qu [S]. Then

E

[
Y (t+1)
qu [S]

]
= (1− dqu)E

[
Y (t+1)
qu [S]

∣∣∣u was not stubborn
]

+ dquE
[
Y (t+1)
qu [S]

∣∣∣u was stubborn
]

= (1− dqu)
∑
y∈V

wqyuE
[
Y (t+1)
qu [S]

∣∣∣u transitioned to y
]

+ dqub
(0)
qu

= (1− dqu)
∑
y∈V

wqyuE
[
Y (t)
qy [S]

]
+ dqub

(0)
qu

= (1− dqu[S])
∑
y∈V

wqyub
(t)
qy [S] + dqu[S]b(0)

qu [S] = b(t+1)
qu [S]

Time Complexity. For the target candidate, the generation
of t-step reverse random walks starting from all nodes takes
O
(
t
∑
v∈V λv

)
time. First, we analyze the time complexity

of finding the top-k seed nodes for the cumulative score via
random walk-based estimation. In each iteration of the greedy
algorithm, we estimate, for every node in all generated random
walks, the new score that would result if that node is added
as a seed. Then, we add the node w resulting in the largest
estimated marginal gain as the new seed node. Since the
candidate seeds are only those nodes which are present in the
walks, we can compute the marginal gains for all of them with
one scan over all walks as follows. We initialize the marginal
gain for each node to 0. During the scan, when we encounter
a node in a walk, we increase the marginal gain for that node
by computing the increase in the estimated opinion of the start
node v of the walk, which is 1 minus the initial opinion of
the end node of the walk, divided by λv . This part scans all
the random walks once and takes O

(
t
∑
v∈V λv

)
time. Next,

all walks containing w are truncated at w for the subsequent
iterations. This step also takes O

(
t
∑
v∈V λv

)
time. As the

entire process is repeated k times (to find the top-k seeds), the
running time of the seed selection phase is O

(
kt
∑
v∈V λv

)
.

For the plurality score variants and the Copeland score, we
additionally need to compute the exact opinion values of each
user about all other candidates at time t via direct matrix-
vector multiplication, taking an additional O ((r − 1)tm)
time. Thus, the overall time complexity for these scores
is O

(
kt
∑
v∈V λv + (r − 1)tm

)
. Practically, thanks to the

sparseness of the matrices, the dominant term is the first one
due to the seed selection phase.

C. Accuracy Guarantees

The quality of the estimated opinions depends on λv , i.e.,
the number of reverse random walks from v.
Cumulative Score. The cumulative score aggregates the opin-
ion values of all users about a target candidate cq . We provide
a probabilistic accuracy guarantee about the estimated opinion.

Theorem 10. Given δ, ρ > 0, if, for any node v, λv satisfies

λv ≥
1

2δ2
ln

(
2

1− ρ

)
(30)

then the following holds with probability at least ρ:∣∣∣̂b(t)qv [S]− b(t)qv [S]
∣∣∣ < δ (31)

Proof. As mentioned in § V-B, b̂(t)qv [S] is the average of
Y

(t)
qv [S] across all λv walks from v. From Theorem 9 and

the linearity of expectation, E
[
b̂
(t)
qv [S]

]
= b

(t)
qv [S]. From

Hoeffding’s inequality,

Pr
(∣∣∣̂b(t)qv [S]− b(t)qv [S]

∣∣∣ < δ
)
≥ 1− 2 exp

(
−2λvδ

2) ≥ ρ
Plurality Score Variants. As in § IV-B, the following analysis
is shown for the positional-p-approval score, and hence also
works for special cases, e.g., the plurality and p-approval



scores. Each user contributes a value which is equal to the
weight of the rank of cq in her preference ordering if the rank
is at most p, and 0 otherwise (Equation 6). Theorem 11 ensures
that, with a high probability, our approach correctly estimates
this contributed value.
Theorem 11. Given a user v and a seed set S for can-
didate cq , let γv[S] = mincp∈C\{cq}

∣∣∣b(t)pv − b(t)qv [S]
∣∣∣, λv ≥

1
2(γv[S])2

ln
(

2
1−ρ

)
. Assume γv[S] 6= 0. Then, with probability

at least ρ, the following holds:

ω
[
β
(
b̂
(t)
qv [S]

)]
·1
[
β
(
b̂
(t)
qv [S]

)
≤ p
]

= ω
[
β
(
b
(t)
qv [S]

)]
·1
[
β
(
b
(t)
qv [S]

)
≤ p
]

(32)

Proof. To satisfy Eq. 32, it suffices to ensure that the estimated
position of candidate cq in the preference ranking of user v is
correct. Clearly, this is true if the following hold.
• ∀cx s.t. b(t)qv [S]− b(t)xv > 0 (i.e., γv[S] ≤ b(t)qv [S]− b(t)xv ):

− γv [S] < b̂
(t)
qv [S]− b

(t)
qv [S] =

(
b̂
(t)
qv [S]− b

(t)
xv

)
−
(
b
(t)
qv [S]− b

(t)
xv

)
=⇒ − γv [S] <

(
b̂
(t)
qv [S]− b

(t)
xv

)
− γv [S] =⇒ b̂

(t)
qv [S]− b

(t)
xv > 0

=⇒ The estimated ordering between cq and cx is correct

• ∀cx s.t. b(t)xv − b(t)qv [S] > 0 (i.e., γv[S] ≤ b(t)xv − b(t)qv [S]):

− γv [S] < b
(t)
qv [S]− b̂

(t)
qv [S] =

(
b
(t)
xv − b̂

(t)
qv [S]

)
−
(
b
(t)
xv − b

(t)
qv [S]

)
=⇒ − γv [S] <

(
b
(t)
xv − b̂

(t)
qv [S]

)
− γv [S] =⇒ b

(t)
xv − b̂

(t)
qv [S] > 0

=⇒ The estimated ordering between cq and cx is correct

From Hoeffding’s inequality, both the above points hold with
probability at least 1− 2 exp

(
−2λv[γv[S]]2

)
≥ ρ.

In each iteration of Algorithm 1, the estimation of the
opinion of user v about cq involves an average over λv random
walks. However, the quantity γv[S] in Theorem 11 depends on
the seed set S for candidate cq . For a given S, γv[S] can be
computed exactly via matrix-vector multiplication. But since
S differs from iteration to iteration (specifically, one node is
added in each iteration), a value of γv[S] (and hence λv) that
works well in one iteration may not work well in another
iteration. As we generate random walks right in the beginning
and reuse them for the subsequent iterations, a value of γv[S]
that works well in all iterations is

γ∗v = min
S⊆V : |S|≤k

γv[S] (33)

However, efficiently computing the minimum over all seed
sets S of size at most k is challenging. Thus, we estimate it
heuristically using a greedy approach. Starting with S = ∅, we
first estimate the opinion of user v about cq by averaging over
α random walks; α could, for example, be set to 1

2δ2 ln
(

2
1−ρ

)
in order to guarantee that, with probability at least ρ, each
estimate differs from the true value by at most δ. Once these
estimates are found, we can estimate γv[S] as γ̂v[S]. After this,
we repeatedly add to S that node which minimizes the new
γ̂v[S] computed using the newly estimated opinion values. The
repetition stops once |S| = k or there is no decrease in γ̂v[S],
at which point we return γ̂v[S] as our estimate of γ∗v .

Copeland Score. This score denotes the number of candidates
whom the target candidate defeats in one-on-one competitions.

Thus, we need the one-on-one winner to be estimated correctly
(with a high probability) using the estimated opinion values.

Theorem 12. Given a user v and a seed set S for candidate
cq , let γv[S] = mincp∈C\{cq}

∣∣∣b(t)pv − b(t)qv [S]
∣∣∣. Suppose γv[S] 6=

0 and λv ≥ 1
2(γv [S])2

ln
(

1
1−ρ

)
. Then the following holds with

probability at least ρ for any cx 6= cq .

1

[
b̂(t)qv [S] > b(t)xv

]
= 1

[
b(t)qv [S] > b(t)xv

]
(34)

Proof. Assume, without loss of generality, that b(t)qv [S] > b
(t)
xv .

Then, γv[S] ≤ b(t)qv [S]− b(t)xv by definition. We want to ensure
that cq is correctly predicted to be ranked higher than cx for
user v, i.e., Equation 34 is satisfied. Clearly, this is true if the
following holds.

− γv [S] < b̂
(t)
qv [S]− b

(t)
qv [S] =

(
b̂
(t)
qv [S]− b

(t)
xv

)
−
(
b
(t)
qv [S]− b

(t)
xv

)
=⇒ − γv [S] <

(
b̂
(t)
qv [S]− b

(t)
xv

)
− γv [S] =⇒ b̂

(t)
qv [S]− b

(t)
xv > 0

=⇒ The estimated ordering between cq and cx is correct

From Hoeffding’s inequality, this holds with probability at
least 1− exp

(
−2λv[γv[S]]2

)
≥ ρ.

We estimate γv[S] the same way as with the plurality score.

VI. SKETCH-BASED ESTIMATION

Random walk-based approximation (§ V) requires the gen-
eration of reverse random walks starting from all nodes,
which could still be expensive. In this section, we further
propose a more efficient reverse sketching-based approxima-
tion technique. Notice that reverse sketching was used earlier
in influence maximization (IM) [34], [7], [3]. We are the
first to prove that the real-valued opinions in the FJ model
can be estimated via reverse sketching and use it for opinion
maximization. Moreover, our sketches (i.e., walks) are simpler
and less memory consuming than the ones based on RR-sets
(i.e., BFS trees), used in the classic IM.

A. The Algorithmic Workflow

We repeat the following θ times independently: Generate
λv t-step reverse random walks starting from a node v chosen
uniformly at random. We refer to the set of generated walks as
the sketch set. These sketches are similar to the tree-structured
sketches used in the classic IM [34], [7], [3] (see below
for an intuition). However, our sketches are walks, which
are simpler and less memory consuming. The opinions and
the corresponding voting-based scores are estimated with the
sketch set, as detailed in § VI-B. The greedy seed selection
workflow remains the same as in Algorithm 1. The overall
pseudocode is shown in Algorithm 5.

The reverse reachable (RR) sets in [34], [7], [3] are con-
structed by randomized BFS or DFS (sampling the incoming
edges with their probabilities when we reach new nodes) from
a start node, whose final status is decided by the initial statuses
of the nodes in the set. If an RR set contains a seed, the start
node is said to be influenced and hence set to “activated”.
This suggests that an RR set can alternatively be viewed as a
directed tree rooted at the start node (resulting from the BFS



Algorithm 5 Sketch-Based Greedy Seed Selection
Require: Graph G = (V,E), initial opinion matrix B(0), influence matrix Wi and

stubbornness matrix Di for each candidate ci, target candidate cq , seed set size
budget k, time horizon t, number of sketches θ, and a scoring function F

Ensure: Seed set S∗ of size k
1: for j = 1 to θ do
2: Choose a start node vj ∈ V uniformly at random
3: Generate a t-step reverse random walk starting from vj
4: S∗ ← ∅
5: for i = 1 to k do
6: u← arg maxv∈V \S∗

[
F̂
(
B̂(t)[S∗ ∪ {v}], cq

)
− F̂

(
B̂(t)[S∗], cq

)]
7: S∗ ← S∗ ∪ {u}
8: return S∗

or DFS). When a node is made a seed, the tree is truncated by
removing all descendants of the seed, and then the “activated”
status of the seed is “pushed” up to the start node. In our
method, we adopt a similar technique: sampling one incoming
edge when we reach new nodes in a walk, leading to a path.
The final opinion of the start node of a walk is decided by
the initial opinion of the end node. If a walk contains a seed,
it is truncated at the seed, whose initial opinion (set to 1) is
“pushed” up to the start node.
Time Complexity. The main difference between the
sketching-based estimation method (§ VI) and the random
walk-based estimation method (§ V) is the total number
of nodes from which we need to generate random walks.
Therefore, the running time of random walk generation is
reduced to O

(
t θn
∑
v∈V λv

)
, and the running time of the seed

selection phase is reduced to O
(
kt θn

∑
v∈V λv

)
.

For the plurality and Copeland scores, the computation of
the opinion values of each user about all other candidates takes
an additional O ((r − 1)tm) time. Thus, for these scores, the
overall time complexity is O

(
kt θn

∑
v∈V λv + (r − 1)tm

)
.

B. Accuracy Guarantee for the Cumulative Score

We discuss the number of sketches (θ) required to ensure
that F̂ (B̂(t)[S], cq) is a good estimate of F (B(t)[S], cq). Let
vj denote the jth sampled node, i.e., the start node of sketch
j, where j ∈ [1, θ].

Denoting by b̂(t)qvj [S] the average of Y (t)
qvj [S] (§ V-B) across

all λvj random walks from vj , the estimated cumulative score
is defined as:

F̂
(
B̂(t)[S], cq

)
=
n

θ

θ∑
j=1

b̂(t)qvj [S] (35)

Inspired by [3], we aim to find a value of θ such that the
true cumulative score for the seed set returned by Algorithm
5 is very close to the optimal score with a high probability.
This is shown in Theorem 13. Before proving this, we first
show some useful lemma in this regard.

Lemma 2. Let p[S] = 1
nF
(
B(t)[S], cq

)
. The following

inequalities hold for all values of θ and for all β > 0:

Pr

(
θ∑
i=1

b̂
(t)
qvi [S]− θ · p[S] ≥ β · θ · p[S]

)
≤ exp

(
−

β2

2 + 2
3
β
· θ · p[S]

)
(36)

Pr

(
θ∑
i=1

b̂
(t)
qvi [S]− θ · p[S] ≤ −β · θ · p[S]

)
≤ exp

(
−
β2

2
· θ · p[S]

)
(37)

Proof. For the independent random variables b̂
(t)
qvj [S], j ∈

[1, θ], using Theorem 9,

E

[
b̂(t)qvj [S]

]
=

n∑
v=1

1

n
E

[
b̂(t)qv [S]

]
=

1

n

n∑
v=1

b(t)qv [S]

=
1

n
F
(
B(t)[S], cq

)
= p[S]

Since b̂(t)qvj [S] ∈ [0, 1] and F
(
B(t)[S], cq

)
∈ [0, n],

b̂(t)qvj [S]−E
[
b̂(t)qvj [S]

]
≤ 1

E

[
b̂(t)qvj [S]2

]
≤ E

[
b̂(t)qvj [S]

]
= p[S]

V ar
[
b̂(t)qvj [S]

]
= E

[
b̂(t)qvj [S]2

]
−
(
E

[
b̂(t)qvj [S]

])2

≤ p[S] (1− p[S])

Following the concentration inequalities in Theorem 16 in
Appendix E, we obtain Inequalities 36 and 37 as follows:

Pr

(
θ∑
i=1

b̂(t)qvi [S]− θ · p[S] ≥ β · θ · p[S]

)

≤ exp

(
− (β · θ · p[S])2

2
(
θ · p[S] (1− p[S]) + β

3
· θ · p[S]

))

≤ exp

(
− β2

2 + 2
3
β
· θ · p[S]

)
Pr

(
θ∑
i=1

b̂(t)qvi [S]− θ · p[S] ≤ −β · θ · p[S]

)

≤ exp

(
− (β · θ · p[S])2

2
∑θ
i=1 p[S]

)
= exp

(
−β

2

2
· θ · p[S]

)

Lemma 3. Given any node u and any t-step reverse random
walk from u without any seed, let Y (t)

qu [S] denote the initial
opinion of the end node of the resultant random walk after
truncating the walk at the first occurrence of a seed node in
S. Then Y (t)

qu [S] is submodular with respect to S.

Proof. Consider P ⊂ Q ⊂ V and s ∈ V \Q. It is easy to see
that Y (t)

qu [S] is non-decreasing in S. We have the cases below.
• s does not belong to the truncated walk w.r.t. P . Then

the same holds for Q also, since P ⊂ Q. In that case,
Y

(t)
qu [P ∪ {s}] = Y

(t)
qu [P ] and Y

(t)
qu [Q ∪ {s}] = Y

(t)
qu [Q].

Thus, Y (t)
qu [P ∪ {s}] − Y (t)

qu [P ] = 0 = Y
(t)
qu [Q ∪ {s}] −

Y
(t)
qu [Q].

• s belongs to the truncated walk w.r.t. P but not Q. Then
Y

(t)
qu [Q∪ {s}]− Y (t)

qu [Q] = 0 ≤ Y (t)
qu [P ∪ {s}]− Y (t)

qu [P ].
• s belongs to the truncated walks w.r.t. both P and Q.

In that case, Y (t)
qu [P ∪ {s}] − Y (t)

qu [P ] = 1 − Y (t)
qu [P ] ≥

1− Y (t)
qu [Q] = Y

(t)
qu [Q ∪ {s}]− Y (t)

qu [Q].

For simplicity of notation, in what follows, we denote
F (B(t)[S], cq) and F̂ (B̂(t)[S], cq) by F (S) and F̂ (S), re-
spectively. We also use the following notations throughout the
remainder of the section:
• OPT : The maximum cumulative score for any size-k

seed set



• So: The size-k seed set maximizing F (S); this means
F (So) = OPT .

Lemma 4. Let δ1 ∈ (0, 1), ε1 > 0, and

θ1 =
2n

OPT · ε21
· ln
(

1

δ1

)
(38)

If θ ≥ θ1, then F̂ (So) ≥ (1− ε1)·OPT holds with probability
at least 1− δ1. Formally,

Pr
(
F̂ (So) ≥ (1− ε1) ·OPT

)
≥ 1− δ1

Proof. Let p[So] = F (So)
n . Using Inequality 37, we have

Pr
(
F̂ (So) ≤ (1− ε1) ·OPT

)
= Pr

(
1

θ

θ∑
i=1

b̂(t)qvi [S
o] ≤ (1− ε1) · F (So)

n

)

= Pr

(
θ∑
i=1

b̂(t)qvi [S
o]− θ · p[So] ≤ −ε1 · θ · p[So]

)

≤ exp

(
− ε

2
1

2
· θ · p[So]

)
≤ exp

(
− ε

2
1

2
· θ1 ·

F (So)

n

)
= δ1

Lemma 5. Given ε > 0, let δ2 ∈ (0, 1), ε1 ∈
(

0, ε
1− 1

e

)
, and

θ2 =
2n
(
1− 1

e

)
OPT

(
ε−

(
1− 1

e

)
ε1
)2 · ln

((
n
k

)
δ2

)
(39)

Let S∗ denote the size-k seed set returned by Algorithm 5.
If θ ≥ θ2 and F̂ (So) ≥ (1− ε1) · OPT , then F (S∗) ≥(
1− 1

e − ε
)
· OPT holds with probability at least 1 − δ2.

Formally,

Pr

(
F (S∗) ≥

(
1−

1

e
− ε
)
·OPT

∣∣∣∣F̂ (So) ≥ (1− ε1) ·OPT
)
≥ 1−δ2

Proof. It suffices to show that any size-k seed set S satisfying
F (S) <

(
1− 1

e − ε
)
· OPT is returned by Algorithm 5 with

probability at most δ2
(nk)

. In that case, by the union bound, there
is at least 1− δ2 probability that no such set is returned.
Consider a given seed set S satisfying F (S) <

(
1− 1

e − ε
)
·

OPT . Let p[S] = F (S)
n . Notice that b̂(t)qvj [S] is the aver-

age of Y (t)
qvj [S] across all λvj random walks from vj , and

F̂ (S) = n
θ

∑θ
j=1 b̂

(t)
qvj [S]. Thus, Lemma 3 implies that F̂ (S) is

submodular w.r.t. S. Let S+ be the size-k seed set maximizing
F̂ (S). If S is returned by Algorithm 5, from the submodularity
of F̂ (·) and the assumption that F̂ (So) ≥ (1− ε1) ·OPT , we
have

F̂ (S) ≥
(
1−

1

e

)
·F̂ (S+) ≥

(
1−

1

e

)
·F̂ (So) ≥

(
1−

1

e

)
·(1−ε1)·OPT

Combining with F (S) <
(
1− 1

e − ε
)
·OPT ,

F̂ (S)− F (S) ≥
(

1− 1

e

)
· (1− ε1) ·OPT −

(
1− 1

e
− ε
)
·OPT

=

(
ε−

(
1− 1

e

)
ε1

)
·OPT = ε2 ·OPT

where ε2 = ε −
(
1− 1

e

)
ε1 > 0. This means the probability

of S being returned is at most the probability that F̂ (S) −

F (S) ≥ ε2 ·OPT . Using this, Inequality 36 and the fact that
n · p[S] = F (S) <

(
1− 1

e − ε
)
·OPT , we have

Pr(S is returned) ≤ Pr
(
F̂ (S)− F (S) ≥ ε2 ·OPT

)
= Pr

(
θ∑
i=1

b̂
(t)
qvi − θ · p[S] ≥

ε2 ·OPT
n · p[S]

· θ · p[S]
)

≤ exp

(
−

ε22 ·OPT 2

2n2 · p[S] + 2
3
ε2n ·OPT

· θ
)

< exp

(
−

ε22 ·OPT 2

2n
(
1− 1

e
− ε
)
·OPT + 2

3
ε2n ·OPT

· θ
)

< exp

(
−
(
ε−

(
1− 1

e

)
ε1
)2 ·OPT

2n
(
1− 1

e

) · θ
)

≤ exp

(
−
(
ε−

(
1− 1

e

)
ε1
)2 ·OPT

2n
(
1− 1

e

) · θ2

)
=

δ2(n
k

)

Theorem 13. Given any ε, l > 0, setting

θ ≥
2n

OPT · ε2

[(
1−

1

e

)√
ln
(
2nl
)
+

√(
1−

1

e

)[
ln
(
2nl
)
+ ln

(n
k

)]]2

(40)
ensures that Algorithm 5 returns a (1−1/e− ε)-approximate

solution S∗ with probability at least 1− n−l. More formally,

Pr

(
F (S∗) ≥

(
1− 1

e
− ε
)
OPT

)
≥ 1− 1

nl
(41)

Proof. Define δ1 = δ2 = 0.5× n−l and

ε1 = ε ·
√
l lnn+ ln 2(

1− 1
e

)√
l lnn+ ln 2 +

√(
1− 1

e

) (
l lnn+ ln

(n
k

)
+ ln 2

)
It is easy to see that δ1, δ2, ε1 satisfy the conditions in Lemma

4 and 5, and that θ1 (Equation 38) and θ2 (Equation 39) are
both the same and given by the RHS of Equation 40. Thus,
if θ satisfies Equation 40, i.e., θ ≥ θ1 and θ ≥ θ2, combining
Lemmas 4 and 5,

Pr

(
F (S∗) ≥

(
1− 1

e
− ε
)
·OPT

)
≥ Pr

(
F (S∗) ≥

(
1− 1

e
− ε
)
·OPT

∣∣∣∣F̂ (So) ≥ (1− ε1) ·OPT
)

Pr
(
F̂ (So) ≥ (1− ε1) ·OPT

)
≥ (1− δ1)(1− δ2) > 1− (δ1 + δ2) = 1− n−l

Since the above results hold for any value of λv , we set
λv = 1 ∀v ∈ V .6 In order to estimate a lower bound on
OPT in Equation 40, we design a statistical hypothesis test
which, on an input x, returns false with a high probability if
OPT < x. Since OPT ∈ [k, n], we can easily identify a lower
bound on OPT by running the test for x ∈

{
n
2 ,

n
4 ,

n
8 , . . . , k

}
.

Such a test is provided in Algorithm 2 in [3].

6Although λv = 1 could result in a very inaccurate estimate b̂(t)qvj , we sample θ
start nodes uniformly at random, all of which need not be distinct; thus, it is still likely
that the number of walks from a particular start node is more than 1. By ensuring that
θ is large enough, our overall cumulative score estimate is very accurate with a high
probability.



C. Accuracy Guarantees for the Plurality Score Variants

As in § IV-B, the following analysis is shown for the
positional-p-approval score, and hence also works for special
cases, e.g., the plurality and p-approval scores.

The estimated positional-p-approval score is defined as:

F̂
(
B̂(t)[S], cq

)
=
n

θ

θ∑
j=1

ω
[
β
(
b̂
(t)
qvj [S]

)]
× 1

[
β
(
b̂
(t)
qvj [S]

)
≤ p
]

(42)

Let OPT denote the maximum positional-p-approval score
for any size-k seed set of cq . We have:

Lemma 6. Suppose, for any sampled start node vj , j ∈ [1, θ],
the following holds with probability at least ρ (Theorem 11):

ω
[
β
(
b̂
(t)
qvj [S]

)]
× 1

[
β
(
b̂
(t)
qvj [S]

)
≤ p
]

= ω
[
β
(
b
(t)
qvj [S]

)]
× 1

[
β
(
b
(t)
qvj [S]

)
≤ p
]

(43)

If θ satisfies

ρθ
[
1− 2 exp

(
− ε

2 ·OPT
(8 + 2ε)n

· θ
)]
≥ 1−

(
n

k

)−1

n−l (44)

Then, for any size-k seed set S for candidate cq , the following
holds with probability at least 1−

(
n
k

)−1
n−l.∣∣∣F̂ (B̂(t)[S], cq

)
− F

(
B(t)[S], cq

)∣∣∣ < ε

2
·OPT (45)

Proof. From Equations 42 and 43, the following holds with
probability at least ρθ:

F̂
(
B̂(t)[S], cq

)
=
n

θ

θ∑
j=1

ω
[
β
(
b(t)qvj [S]

)]
× 1

[
β
(
b(t)qvj [S]

)
≤ p
]

Also, for all j ∈ [1, θ], we have:

E

[
ω
[
β
(
b
(t)
qvj [S]

)]
× 1

[
β
(
b
(t)
qvj [S]

)
≤ p
]]

=
∑
v∈V

1

n
× ω

[
β
(
b
(t)
qv [S]

)]
× 1

[
β
(
b
(t)
qv [S]

)
≤ p
]

=
1

n
· F
(
B(t)[S], cq

)
Since ω[i] ∈ [0, 1]∀i ∈ [1, r], using the concentration

inequality in Theorem 17 in Appendix E and Inequality 44,
we obtain:

Pr
(∣∣∣F̂ (B̂(t)[S], cq

)
− F

(
B(t)[S], cq

)∣∣∣ < ε

2
·OPT

)
≥ ρθ Pr

∣∣∣∣∣∣
θ∑
j=1

ω
[
β
(
b
(t)
qvj [S]

)]
× 1

[
β
(
b
(t)
qvj [S]

)
≤ p
]

−
θ

n
· F
(
B(t)[S], cq

)∣∣∣∣ < ε

2
·

OPT

F
(
B(t)[S], cq

) · θ
n
· F
(
B(t)[S], cq

))

≥ ρθ
[
1− 2 exp

(
−

ε2 ·OPT 2

8 · F
(
B(t)[S], cq

)
+ 2ε ·OPT

·
θ

n

)]

≥ ρθ
[
1− 2 exp

(
−
ε2 ·OPT
(8 + 2ε)n

· θ
)]
≥ 1−

(n
k

)−1
n−l

Notice that, given a value of ρ, the LHS of Equation 44
is not a monotonic function of θ. Instead, it increases up to
a certain value of θ and then decreases. Thus, if the RHS of

Fig. 3. Plot of the LHS of Equation 44 as a function of θ. We choose
θ = θ1, which is the smallest of all admissible values of θ.

Equation 44 is greater than the maximum value of the LHS,
there is no satisfying θ. Otherwise, there are two satisfying
values of θ, and we can choose the smaller one. To find those
values, we plot the LHS of Equation 44 as a function of θ.
This process is illustrated in Figure 3.

Suppose sandwich approximation ensures that the greedy
algorithm returns a ζ-approximate solution to maximizing the
estimated positional-p-approval score. In that case, we have
the following theorem.

Theorem 14. If θ satisfies Inequality 44, our algorithm returns
a (ζ − ε)-approximate solution S∗ with probability at least
1− n−l.

Pr
(
F
(
B(t)[S∗], cq

)
> (ζ − ε)OPT

)
≥ 1− n−l (46)

Proof. Let S∗ be the seed set returned by our algorithm, and
S+ = arg maxS⊆V,|S|=k F̂ (B̂(t)[S], cq). Let So denote the
optimal solution to our Problem 1. Assume that θ satisfies In-
equality 44. By Lemma 6, Equation 45 holds with probability
at least 1−

(
n
k

)−1
n−l for any size-k seed set S. Then, by the

union bound, Equation 45 should hold simultaneously for all
size-k seed sets with probability at least 1−n−l. In that case,
we have

F
(
B(t)[S∗], cq

)
> F̂

(
B̂(t)[S∗], cq

)
− ε

2
·OPT (Equation 45)

≥ ζ · F̂
(
B̂(t)[S+], cq

)
− ε

2
·OPT (Sandwich Approximation)

≥ ζ · F̂
(
B̂(t)[So], cq

)
− ε

2
·OPT (Definition of S+)

> ζ ·
(
F
(
B(t)[So], cq

)
− ε

2
·OPT

)
− ε

2
·OPT (Equation 45)

= ζ ·OPT − 1 + ζ

2
· ε ·OPT

(
F
(
B(t)[So], cq

)
= OPT

)
> (ζ − ε)OPT (ζ < 1)

OPT is estimated in a similar way as in § VI-B.



D. Accuracy Guarantee for the Copeland Score
The relation �

M̂
is defined as: cq �M̂ cx if, among the θ

samples, more users vj satisfy b̂
(t)
qvj [S] > b

(t)
xvj than the other

way round. The estimated Copeland score is then defined as

F̂
(
B̂(t)[S], cq

)
=

∑
cx∈C\{cq}

1
[
cq �M̂ cx

]
=

∑
cx∈C\{cq}

1

[∑
v∈V

1

[
b̂(t)qv > b(t)xv

]
>
∑
v∈V

1

[
b̂(t)qv < b(t)xv

]]
(47)

Following Theorem 12, the preference between cq and any
other candidate cx can be estimated correctly for any user
with probability at least ρ. We define µ[S] as the minimum
(across all candidates cx) of the difference between the fraction
of users who rank cq above cx and those who do not. More
formally,

µ[S] = min
cx∈C\{cq}

1

n

∣∣∣∣∣
n∑
v=1

1

[
b(t)qv [S] > b(t)xv

]
−

n∑
v=1

1

[
b(t)qv [S] < b(t)xv

]∣∣∣∣∣
Lemma 7. Assume γv[S] = mincp∈C\{cq}

∣∣∣b(t)pv − b(t)qv [S]
∣∣∣ 6=

0 ∀v ∈ V . Suppose, for any cx 6= cq and any sampled start
node vj , j ∈ [1, θ], the following holds with probability at
least ρ (Theorem 12), i.e.,

Pr
(
1

[
b̂(t)qv [S] > b(t)xv

]
= 1

[
b(t)qv [S] > b(t)xv

])
≥ ρ

If θ satisfies

ρθ
[
1−

(
1− [µ[S]]2

) θ
2

]
≥ 1−

(
n

k

)−1

n−l(r − 1)−1 (48)

Then, for any size-k seed set S of candidate cq , the following
holds with probability at least 1−

(
n
k

)−1
n−l.

F̂
(
B̂(t)[S], cq

)
= F

(
B(t)[S], cq

)
(49)

Proof. We derive:

Pr
(
F̂
(
B̂(t)[S], cq

)
= F

(
B(t)[S], cq

))
≥ Pr

(
∀cx ∈ C \ {cq} : 1

[
cq �M̂ cx

]
= 1 [cq �M cx]

)
≥ 1−

∑
cx∈C\{cq}

Pr
(
1
[
cq �M̂ cx

]
6= 1 [cq �M cx]

)
(50)

For any candidate cx 6= cq , assume (without loss of generality)
that cq �M cx, i.e. 1 [cq �M cx] = 1. Define the following:

V1 =
{
v ∈ V : b(t)qv [S] > b(t)xv

}
V2 =

{
v ∈ V : b(t)qv [S] < b(t)xv

}
Let us define:

µx[S] =
|V1| − |V2|

n
=

1

n

[
n∑
v=1

[
1

[
b
(t)
qv [S] > b

(t)
xv

]
− 1

[
b
(t)
qv [S] < b

(t)
xv

]]]

Since γv[S] 6= 0 ∀v ∈ V , we have |V1| + |V2| = n.
Also, by definition, |V1| − |V2| = n · µx[S]. Thus, we obtain
|V1| = n

2 [1 + µx[S]] and |V2| = n
2 [1− µx[S]].

Now, for j ∈ [1, θ], define Zj = 1 [vj ∈ V2] =

1

[
b
(t)
qvj [S] < b

(t)
xvj

]
. This means

Pr
(
1
[
cq �M̂ cx

]
= 1 [cq �M cx]

)
= Pr

(
1
[
cq �M̂ cx

]
= 1
)

= Pr

 θ∑
j=1

1

[
b̂
(t)
qvj [S] < b

(t)
xvj

]
<
θ

2

 ≥ ρθ
1− Pr

 θ∑
j=1

Zj ≥
θ

2


(51)

Clearly E [Zj ] = Pr (Zj = 1) = |V2|
|V | = 1−µx[S]

2 ∀j. Using
the concentration inequality in Theorem 18 in Appendix E,
and noticing that µx[S] ≥ µ[S], we have

Pr

(
θ∑
j=1

Zj ≥
θ

2

)
≤
(

(1− µx[S])
1
2 (1 + µx[S])

1
2

)θ
=
(
1− [µx[S]]2

) θ
2 ≤

(
1− [µ[S]]2

) θ
2

Substituting the above into Inequality 51, we have:

Pr
(
1
[
cq �M̂ cx

]
= 1 [cq �M cx]

)
≥ ρθ

[
1−

(
1− [µ[S]]2

) θ
2

]
Substituting into Inequality 50 and using Inequality 48,

Pr
(
F̂
(
B̂(t)[S], cq

)
= F

(
B(t)[S], cq

))
≥ 1−

∑
cx∈C\{cq}

Pr
(
1
[
cq �M̂ cx

]
6= 1 [cq �M cx]

)
≥ 1− (r − 1)

[
1− ρθ

[
1−

(
1− [µ[S]]2

) θ
2

]]
≥ 1−

(
n

k

)−1

n−l

Note that even though we proved for the case when cq �M cx,
we can prove for the case when cx �M cq by simply reversing
the definitions of V1 and V2 above and following similar steps.
Since these two are mutually exclusive and exhaustive cases,
the result is proved in general.

To compute θ using Equation 48, we use a similar plotting
method as with the plurality score variants (Figure 3).

Suppose sandwich approximation ensures that the greedy
algorithm returns a ζ-approximate solution to maximizing the
estimated Copeland score. In that case, denoting by OPT the
maximum Copeland score for any size-k seed set of cq , we
have the following.

Theorem 15. If θ follows Lemma 7, our algorithm returns a
ζ-approximate solution S∗ with probability at least 1−n−l.

F
(
B(t)[S∗], cq

)
≥ ζ ·OPT (52)

Proof. Let S∗ be the seed set returned by our algorithm, and
S+ = arg maxS⊆V,|S|=k F̂ (B̂(t)[S], cq). Let So denote the
optimal solution to our Problem 1. Assume that θ satisfies In-
equality 48. By Lemma 7, Equation 49 holds with probability
at least 1−

(
n
k

)−1
n−l for any size-k seed set S. Then, by the

union bound, Equation 49 should hold simultaneously for all



size-k seed sets with probability at least 1−n−l. In that case,
we have

F
(
B(t)[S∗], cq

)
> F̂

(
B̂(t)[S∗], cq

)
− ε

2
·OPT (Equation 49)

≥ ζ · F̂
(
B̂(t)[S+], cq

)
− ε

2
·OPT (Sandwich Approximation)

≥ ζ · F̂
(
B̂(t)[So], cq

)
− ε

2
·OPT (Definition of S+)

> ζ ·
(
F
(
B(t)[So], cq

)
− ε

2
·OPT

)
− ε

2
·OPT (Equation 49)

= ζ ·OPT − 1 + ζ

2
· ε ·OPT

(
F
(
B(t)[So], cq

)
= OPT

)
> (ζ − ε)OPT (ζ < 1)

Note that the LHS of Equation 48 requires the value of
µ[S], which is not monotonic with S. A value which works
for all seed sets is given by

µ∗ = min
S⊆V :|S|≤k

µ[S] (53)

This value can be estimated akin to γ∗ in Equation 33.

E. Heuristic Estimation of θ for the Plurality Score Variants
and the Copeland Score

While theoretical bounds on θ for the plurality score variants
and the Copeland score can be derived as above, we find
them to be not so effective: (1) From the inequalities obtained
in the theoretical guarantees, it is difficult to compute a
closed-form expression for θ; (2) The sandwich approximation
factor is smaller than (1 − 1/e) (§ IV-D); coupled with the
approximation via sketches, the overall approximation factor
is even smaller. Instead, we use a heuristic method to compute
the optimal value of θ. Note that our sketch-based method
is more efficient than our random walk-based approach only
when θ < n. For a given dataset and score, we empirically
find the smallest θ when that score converges (for some k and
t). This one-time estimate of θ can be re-used on the same
dataset and score, even with different number of seeds (k)
and time horizon (t) as inputs, since we find such an estimate
to be less sensitive to k and t. In § VIII-D, we demonstrate
that the above mentioned heuristic estimation of θ produces
good-quality results.

VII. RELATED WORKS

Opinion Manipulation. [51], [52], [53] consider network
modification to enable (or prevent) opinion consensus (or
convergence). [54] proposes strategies for manipulating users’
opinions with the voter model. Opinion maximization with
the voter model is considered in [55], [56], [29]. Conformity,
an opposite notion of stubbornness (used in the FJ model),
measures the likelihood of a user adopting the opinions of her
neighbors. Conformity-based opinion maximization has been
studied in [57], [30], albeit in a single-campaign setting. [25],
[26] study seed selection for opinion maximization in a single-
campaign and without a given finite time horizon (details in
Appendices A and B). To the best of our knowledge, (a)
we are the first to bridge two different disciplines: (1) seed

TABLE III
CHARACTERISTICS OF OUR DATASETS

Name #Nodes #Edges #Candidates
DBLP 63 910 2 847 120 2
Yelp 966 240 8 815 788 10

Twitter US Election 2 246 604 4 270 918 4
Twitter Social Distancing 3 244 762 4 202 083 2

Twitter Mask 2 341 769 3 241 153 2

selection for opinion maximization at a finite time horizon and
(2) voting-based winning criteria with multiple campaigners.
Moreover, (b) we are the first to design random walk and
sketch-based efficient algorithms, with theoretical guarantees,
for DeGroot and FJ model-based opinion maximization.

Recall that the cumulative score, due to its aggregate nature,
is independent of the other campaigns; thus it is similar to
opinion maximization in a single-campaigner setting [25].
Hence, the greedy algorithm in [25], with proper modifications
(e.g., adapted for a finite time horizon), would become similar
to our Algorithm 1 via direct matrix-vector multiplication
for the cumulative score. Regarding this score, however, we
make the following novel contributions: (a) our NP-hardness
and submodularity proofs for the cumulative score (those in
[25] cannot be trivially extended to our case with any finite
time horizon); (b) our random walk and sketch-based efficient
algorithms, with theoretical guarantees, for the cumulative
score (more efficient than the greedy algorithm in [25]).
Other Opinion Diffusion Models. Opinion diffusion has been
investigated both from network science and statistical physics
[58], [59] perspectives, and via discrete and continuous mod-
els. In discrete models, an individual opinion is confined to be
one of several integers; examples include the voter model [60],
Axelrod model [61], Sznajd model [62], majority rule models
[63], [64], and social impact theory [65]. For instance, in the
voter model, at each time stamp, a node chooses a random
neighbor and adopts the state (i.e., preference for a certain
campaigner) of this neighbor. In contrast, continuous models,
including DeGroot [19] (the classic model) and its extensions
— FJ [20], [21], Deffuant [66], bounded confidence (BC)
[67] and HK [68] models, permit opinions to be represented
by real numbers. As such, these models are well-suited to
be integrated with voting-based winning criteria in a multi-
campaign setting.

VIII. EXPERIMENTAL RESULTS

We perform experiments to demonstrate the accuracy, ef-
ficiency, scalability, and memory usage of our methods. Our
code (available at [69]) is executed on a single core, 512GB,
2.4GHz Xeon server.
A. Experimental Setup

Datasets. We obtain five directed graphs from three real
sources (Table III). (1) DBLP [70] is a well-known collabo-
ration network. Nodes are users and edges are co-author rela-
tions. We only consider senior researchers who have published
at least 50 papers. (2) Yelp [71] is a network of users who
review businesses. Nodes are users and edges are friendships.
We generate a graph based on restaurant-related records. (3)
Twitter is a social network. Nodes are users and edges are
re-tweet relationships. We generate graphs from 24M tweets



(Jul. 1 to Nov. 11, 2020) related to US elections [72], and 75M
tweets (Mar. 19 to Oct. 5, 2020) related to two topics (“Social
distancing” and “Wear a mask”) about COVID-19 [73].
Candidates. (1) DBLP. We consider the candidates for the
post of President in the ACM general election 2022, i.e.,
Yannis E. Ioannidis and Joseph A. Konstan. (1) Yelp. We
use the restaurant categories as candidates, e.g., American,
Chinese, Italian, etc. (2) Twitter. The political parties (Demo-
cratic, Republican, Green, Libertarian) are the candidates in
Twitter US Election. For each of the topics related to COVID-
19, people may tweet for or against it. These two stand-
points are the candidates in the respective Twitter COVID-19
datasets. Without loss of generality, we consider the following
default target candidates for the respective datasets: “Joseph
A. Konstan”, “Chinese Restaurant”, “Democratic Party”, “For
Wearing a Mask”, and “For Social Distancing”.
Edge Weights. Intuitively, for each category in Yelp, if user v
visits a restaurant within one month of her friend u (called a
common visit), we say that u influences v. Also, more common
visits implies higher influence, and hence a larger edge weight.
Thus, the edge (u, v) is assigned a weight of 1− e−a/µ [74],
where a is the number of common visits. We set µ = 10 by
default (details given in Appendix D). Similarly, we obtain
edge weights (1) using the co-authorship counts for DBLP;
and (2) using the number of retweets of a user pair for the
Twitter datasets. Finally, we normalize the edge weights such
that the incoming weights of each node add up to 1.
Initial Opinion Values. (1) DBLP. A user’s initial opinion is
computed as the cosine similarity between the embeddings
(obtained using SpaCy [75]) of her papers to those of a
candidate. (2) Yelp. We use the average rating of a user
towards a category as the initial opinion value. (3) Twitter.
We set the average sentiment score (computed using VADER
[76]) of each user about each candidate as her initial opinion.
All the initial opinion values are normalized to [0, 1].
Stubbornness Values. (1) DBLP (resp. (2) Yelp). We set the
stubbornness value of a user to 1 minus the variance of her
yearly (resp. monthly) average opinions (as above), since a
stubborn user is less likely to change her opinion about a
candidate. (3) Twitter. Since most users have only 1 tweet, we
assign stubborness values uniformly at random in [0, 1].
Methods Compared. We find the best seed set by (1) Direct
Matrix Multiplication (DM) via the greedy framework, cou-
pled with CELF optimization [49]. (2) Random Walk Sim-
ulation (RW) and (3) Reverse Sketching (RS) methods are
implemented for better efficiency, with accuracy guarantees.
We compare them with (4) Independent Cascade (IC) and
(5) Linear Threshold (LT) models-based seed selection, both
coupled with IMM [3], considering only the edge weights,
and assuming that a user has only one chance to accept or
reject a candidate. Multi-campaign versions MCIC and MCLT
[16], [77] also exist. However, in our problem setting, the
opinions diffuse independently for different candidates, and
our algorithm selects seeds for the target candidate. With this
setting, MCIC and MCLT reduce to IC and LT, respectively.
Thus, we do not include them in our experiments. In addition,

(a) Without Seeds (b) With Seeds
Fig. 4. Case study: ACM general election (#Users=63910, #Seeds
=100, Time Horizon t = 20). The size of each circle denotes the
population of users in each domain, while the color captures the
percentage of users who vote for the target candidate (Joseph A.
Konstan). Darker color corresponds to higher percentage.

we also compare against the (6) Greedy algorithm in [25] for
opinion maximization, adapted for a finite time horizon, which
is denoted by GED-T. Other baselines include seed selection
via (7) PageRank score (PR) (based on the intuition that
more frequently reached nodes in a random graph traversal
are more likely to influence other users), (8) Random Walk
with Restart (RWR) [25] and (9) Degree Centrality (DC).
All baselines differ only in the seed selection methods. Once
the seeds are selected, all of them are evaluated in the same
multi-campaign setting with the same diffusion model and
scores as in § II. We could not compare against [26] since
their algorithms only work for small graphs and require more
than 512GB memory on our datasets.
Parameters. (1) Seed set size (k). We vary k from 100
to 2000. In § VIII-D, k is set to 100 by default. (2) Time
horizon (t). We vary t from 0 to 30 steps (default: 20 steps).
(3) Random Walk Simulation. We vary ρ from 0.75 to 0.95
(default: 0.9). δ is set to 0.1. (4) Sketches. We vary ε from
0.05 to 0.3 (default: 0.1). l is set to 1 following [3].
Performance Metrics. (1) Accuracy. We report the cumula-
tive, plurality, and Copeland scores (§ II-B) of the seed sets
returned by the above methods. (2) Efficiency. We report the
running time of each method for finding the best seed set.
B. Case Study: ACM General Election 2022; DBLP Dataset

We observe that after including only the top-100 seeds,
the number of users favoring our target candidate Joseph
A. Konstan will significantly increase from 13 990 (21.8%)
to 46 433 (72.7%), which might have reversed the election
result. We select 7 frequent domains7 for the users who change
their preferred candidates, and show the top-10 seeds and the
domains in which these seeds influence the most (Table IV).
Figure 4 visualizes the domain overlaps and the percentage of
users voting for our target candidate Joseph A. Konstan. Notice
that a seed user may influence users from several domains.
As DM is a common domain of both candidates, 7 out of
the top-10 seeds are also active in the DM domain. Only 1-
2 seeds are from the SW and HW domains, since (1) the
users in the SW domain already favor our target candidate
more based on their initial opinions (thus introducing seeds

7We assume that a user may belong to at most 3 domains based on the
frequencies of several keywords in the titles of their publications. The selected
keywords for each domain can be found in Table V.



TABLE IV
CASE STUDY: ACM GENERAL ELECTION (#USERS=63910, #SEEDS=100, TIME HORIZON t = 20)

Domain Top-10 seeds and their distribution across domains Total #users # Users voting for target candidate
in which they influence the most Without seeds With seeds

Data Management (DM)
{Jiawei Han, Victor C. M. Leung, Philip S. Yu,

5056 1138 (22.5%) 4060 (80.3%)Lei Zhang, Athanasios V. Vasilakos, Dusit Niyato
Witold Pedrycz}

Human Computer {Yoshua Bengio, H. Vincent Poor, Lei Zhang, 4688 360 (7.7%) 3345 (71.4%)Interaction (HCI) Dusit Niyato}

Machine Learning (ML) {Yoshua Bengio, Philip S. Yu, Witold Pedrycz, 4263 161 (3.8%) 3125 (73.3%)Jiawei Han}

Computer Networks (CN) { H. Vincent Poor, Dusit Niyato, Luca Benini, 4969 1241 (25.0%) 4620 (93.0%)Victor C. M. Leung, Lei Zhang}
Algorithms (AL) {Athanasios V. Vasilakos, Witold Pedrycz} 2641 136 (5.1%) 1382 (52.3%)
Software (SW) {Luca Benini} 1729 936 (54.1%) 1528 (88.4%)
Hardware (HW) {Luca Benini, H. Vincent Poor} 4113 780 (19.0%) 3486 (84.8%)

TABLE V
TOPICS CONSTITUTING THE DOMAINS

Domain Topics
DM data management, database systems, data mining, query processing, indexing, graphs, knowledge bases, clustering, social networks, recommender systems, data

analysis, data streams, anomaly detection, information flow, semantic web, information retrieval, association rules, ranking, schema, relational, XML, joins
HCI recognition systems, detection systems, multimedia applications, image processing, signal processing, adaptive filtering, digital filtering, FIR filtering, language

models, pose estimation, motion estimation, face recognition, speech recognition, natural languages, image sensors, image annotation, computer graphics, human
actions, 3D reconstruction, moving objects, user interfaces

ML neural networks, Bayesian networks, Gaussian processes, reinforcement learning, machine learning, active learning, probabilistic models, Markov model, particle
filtering, collaborative filtering, recommender systems, decision trees, time series, recurrent neural, feature selection, random fields, regression, classification, pattern
matching

CN distributed networks, cellular networks, ad-hoc networks, overlay networks, area networks, mobile networks, peer-to-peer networks, wireless networks, signal
processing, adaptive filtering, digital filtering, FIR filtering, congestion control, routing protocols, wireless communications, fading channels, wireless sensors

AL linear systems, non-linear systems, graphs, approximation algorithms, data structures, programming languages, linear programming, dynamic programming, shortest
paths, proofs, theorems, algebra, polynomial, quantum

SW software systems, mobile applications, web applications, source code, programming languages, web services, web sites, software engineering, software development,
user interfaces, software architecture

HW real-time systems, embedded systems, control systems, distributed systems, scheduling, virtual machines, state machines, access control, power control, VLSI,
FPGA, integrated circuits, digital circuits, analog circuits, power amplifiers, shared memory, synthesis tools, on-chip, caches, clocks, CMOS, mobile devices

who can influence users in this domain is not that useful); (2)
the HW domain does not overlap with the DM domain. The
number of seeds who influence the HCI, ML, and CN domains
are higher, because (1) these domains have larger populations;
(2) these domains have large overlaps with DM; and (3) the
users in these domains initially prefer the competitor (Yannis
E. Ioannidis) more, thus introducing seed nodes who can
influence users in these domains is more helpful. Furthermore,
we investigate the average distance between the candidates and
those users who change minds after introducing the seeds.
14.5% of them are closer to the target candidate, and 10.2%
of them are closer to the competitors (about 2 hops away). The
majority of these users (75.3%) are almost equidistant from
both candidates (more than 3 hops away). This demonstrates
that our solution focuses more on affecting the neutral users
whose preferences are usually easier to switch.

C. Performance Analysis

Accuracy. Our proposed methods outperform the baselines
in all voting-based scores (Figures 6-8 (a-c)), with the ex-
ception of our DM vs. baseline GED-T for the cumula-
tive score. The scores increase with the number of seeds
k, and the growth rates are higher when k is small. For
the plurality and Copeland scores, the proposed methods
outperform the baselines more significantly. For example, in
Twitter Social Distancing, the best baseline DC reaches up
to 70% of RW with the cumulative score, while it attains
only 50% of RW with the plurality score (the actual score
difference is nearly 100K users, which can lead to a significant

impact in, e.g., an election’s outcome). The classic IMM
algorithm coupled with the IC and LT models performs poorly
with voting-based scores, as does GED-T, since their seeds
maximize different objective functions. Recall that GED-T is
the greedy algorithm for opinion maximization [25], adapted
for a finite time horizon. The cumulative score, due to its
aggregate nature, is similar to opinion maximization in the
single campaign setting, and therefore our DM and baseline
GED-T perform the same for the cumulative score (only).
Efficiency. The running time of RW remains nearly the
same for different k (Figures 6-8 (d)), while that of RS
increases slightly with k. For RW, we generate a fixed number
(independent of k) of random walks starting from each node
(Theorem 10); while for RS, we generate one random walk
starting from θ randomly sampled nodes (Theorem 14). A
larger k does not necessarily increase θ as (1) OPT in
the denominator increases with k; (2)

(
n
k

)
in the numerator

also increases with k. Moreover, the random walk generation
dominates the running time of both RW and RS. The running
time of DM increases linearly with k, since it applies matrix-
vector multiplication in each of k iterations. The running times
for the plurality and Copeland scores are higher than those
of the cumulative score, but follow the same trend. We also
find that, among our proposed algorithms, RS is the most
efficient, and has accuracy comparable to the others. Therefore,
we recommend RS as our ultimately proposed method. Notice
that RS is about two orders of magnitude faster than GED-T,
even for the cumulative score.
Comparison among the plurality score variants. Figure 9



Fig. 5. Legends for the methods compared in Figures 6-8

(a) Yelp (b) Twitter US Election (c) Twitter Mask (d) Twitter Mask
Fig. 6. Plurality score vs. seed set size k: (a-c) effectiveness, (d) efficiency

(a) Yelp (b) Twitter US Election (c) Twitter Mask (d) Twitter Mask
Fig. 7. Copeland score vs. seed set size k: (a-c) effectiveness, (d) efficiency

(a) Yelp (b) Twitter US Election (c) Twitter Mask (d) Twitter Mask
Fig. 8. Cumulative score vs. seed set size k: (a-c) effectiveness, (d) efficiency

(a) Positional-2-approval (b) Positional-3-approval
Fig. 9. Overlap of the seed set for the positional-p-approval score
with respect to those for the plurality and p-approval scores; Yelp

Fig. 10. Number of users who rank the target candidate at the specified
positions at the time horizon t; Yelp

shows the overlap of the seed sets (k = 100) returned for
the plurality score variants. For positional-p-approval, we vary
ω[p] ∈ [0, 1], while we keep ω[i] = 1 ∀i < p. Thus, it
becomes p-approval when ω[p] = 1 and (p − 1)-approval
when ω[p] = 0. The seed sets returned for plurality and 2-
approval have 80% overlap. The seeds for plurality help to
improve the target candidate’s first-position ranking for as
many users as possible. However, once the ranking constraint
is relaxed to also include the second-position ranking (e.g.,

TABLE VI
MINIMUM SEED SET SIZES ACHIEVED BY OUR PROPOSED METHODS FOR

THE TARGET CANDIDATE TO WIN W.R.T. THE PLURALITY SCORE

Dataset DM RW RS
Twitter Mask 17 21 24

Twitter Social Distancing 69 71 74

(a) IC Model (b) LT Model
Fig. 11. Expected influence spread over Twitter Mask. The seeds for
the voting-based scores are selected by RW.

2-approval, positional-2-approval), some seeds are changed to
incorporate more users. Similar results hold for the 3-approval
variants. Figure 10 presents the ranking position distributions
for various p. We also notice that all plurality variants share
similar running times.
Minimum number of seeds for the target to win. As
discussed in § III-C, we can adapt our methods to find the
minimum number of seeds for the target to win. Table VI
shows these values for our three proposed methods. For a
“more approximate” method, the seed sets are “less optimal”,
and hence the minimum number of seeds required is larger.
Expected Influence Spread (EIS) Measurement. EIS is the



(a) Score (b) Seed set finding time
Fig. 12. Cumulative score, seeds finding time vs. time horizon t; Yelp

(a) Varying seed set size, k (b) Varying time horizon, t
Fig. 13. Plurality score vs. θ; Twitter Mask

(a) Varying seed set size, k (b) Varying time horizon, t
Fig. 14. Copeland score vs. θ; Yelp

expected number of activated nodes from a given seed set
when diffusion takes place following the IC or LT models [9].
For fairness, we compare the EIS of the seeds selected by
RW according to our three scores, with those of the seeds
selected by IMM [3] following the IC and LT models. This
is done to demonstrate that the chosen seed set based on our
proposed models and scores is not a bad solution with respect
to the EIS. As shown in Figure 11, the performances of RW
and IMM are comparable. The seeds given by RW with the
cumulative score can achieve over 80% of the EIS of IMM
following both IC and LT. Thus, our seeds for the cumulative
score work well even in the context of EIS following the IC
and LT models.
D. Parameter Sensitivity Analysis

Impact of t. Figure 12 shows that the cumulative score re-
mains nearly the same after timestamp 20 for all the proposed
methods. This happens slightly quicker for RW and RS than
for DM. Thus, we set time horizon t = 20 as default in the rest
of the experiments. The running time of DM is more sensitive
to t than those of RW and RS because we need to conduct
exactly t rounds of matrix-vector multiplication in DM, while
random walks are often of length less than t for RW and RS.
Impact of θ for the plurality and Copeland scores. We
heuristically analyze the variation of these scores with θ
(§ VI-E). Recall that RS is more efficient than RW only when
θ < n. For a specific dataset and score, we empirically find
the smallest θ when that score converges (for some k and t),
which is 219 for Twitter Mask with the plurality score (Figure
13), and 215 for Yelp with the Copeland score (Figure 14).
Both values are smaller than the respective n. Moreover, this
estimate can be re-used on the same dataset and score, even

(a) Score (b) Seed set finding Time
Fig. 15. Cumulative score vs. ε; RS Method; Twitter US Election

(a) Score (b) Seed set finding Time
Fig. 16. Plurality score vs. ρ; Twitter Social Distancing

(a) Seed set finding Time (b) Memory Usage
Fig. 17. Seed set finding time and memory usage for the cumulative
score vs. graph size; Twitter Social Distancing

with different k and t as inputs, since it is less sensitive to k
and t, as shown in Figures 13 and 14.
Impact of ε. The parameter ε (for the cumulative score)
controls how close the estimated score is to the true score in
RS, and affects the number of random walks to be generated.
Figure 15 shows that the cumulative score suffers a drastic
decrease from ε = 0.1 to ε = 0.2. The running time decreases
more sharply when ε is smaller. Thus, we select ε = 0.1 as
the default value.
Impact of ρ. The parameter ρ controls the probability that
the estimated score is the same as or close to the true score,
and affects the number of random walks to be generated. As
shown in Figure 16, the plurality score increases sharply when
ρ is small, while there is almost no difference from ρ = 0.9
onward. The running time increases significantly with larger ρ.
Thus, we set ρ = 0.9 as default in the rest of the experiments.
E. Scalability and Memory Usage

We test the scalability and memory usage of our algorithms
with different graph sizes. The Twitter Social Distancing
graph has about 3.2M nodes; we generate six graphs by
selecting 0.5M, 1M, 1.5M, 1M, 2.5M, 3M nodes uniformly at
random, and apply our algorithms on the subgraphs induced by
them. Figure 17(a) demonstrates that the running times of RW
and RS increase almost linearly with the number of nodes (the
y-axis is logarithmic), which confirms good scalability of our
algorithms. The running time of DM increases polynomially
– it has cubic growth with n (§ III-C).

As shown in Figure 17(b), DM consumes the least mem-
ory since it only needs to store the edge weights, initial
opinions, and stubbornness values. RW and RS further store
random walks. (RW far more than RS). Our ultimately



proposed method, RS, consumes only a few GB for the
Twitter Social Distancing dataset.

IX. CONCLUSIONS

We formulated and investigated the novel problem of opin-
ion maximization in a social network, coupled with voting-
based scores. We proved that our problem is NP-hard and
non-submodular under various scores. To solve the problem,
we employed the well-known Sandwich Approximation, under
which we proved that the greedy algorithm can still pro-
vide approximation guarantees to our objectives. Since exact
opinion computation via iterative matrix-vector multiplica-
tions is inefficient, we proposed random walk and sketching-
based opinion computations, with theoretical approximation
guarantees. Experimental results validated the effectiveness
and efficiency of our proposed algorithms. Considering both
accuracy and efficiency results, we recommend the sketching-
based approach RS as our ultimately proposed method. In
future works, it would be interesting to consider more opinion
diffusion models and voting scores.

APPENDIX A
COMPARISON WITH EXISTING WORKS ON OPINION

MAXIMIZATION

Our problem setting is similar in some ways to [25], [26];
however, there are important differences too, as shown below.

— [25] is the first work on seed selection for opinion
maximization in social networks. For a given user i, the
diffusion model in [25] (Equation 3.2) is given by

zi =
si +

∑
j∈N(i) wijzj

1 +
∑
l∈N(i) wil

=
1

1 +
∑
l∈N(i) wil

· si +

(
1−

1

1 +
∑
l∈N(i) wil

) ∑
j∈N(i)

wij∑
l∈N(i) wil

· zj

while, from Equation 2, our diffusion model is given by

b
(t+1)
qi = dqib

(0)
qi + (1− dqi)

∑
j∈V

wqjib
(t)
qj (54)

Thus, the diffusion models are similar in following aspects:
The intrinsic opinions si (resp. expressed opinions zi) in [25]
are analogous to our initial opinions b(0)

qi (resp. opinions b(t)qi
at any time t), and the weights wij∑

l∈N(i) wil
in [25] are the

same as the weights wqji in our work. In [25], each node
has a preference towards its intrinsic opinion, which is equal
to 1

1+
∑
l∈N(i) wil

. Similarly, in our work, each node has a
weight or preference to its initial opinion that is equal to its
stubbornness dqi (which can be any real number in [0, 1], e.g.,
learnt from real data). In [25], when a node i is made a seed,
its expressed opinion zi is fixed to 1. In our work, the same is
achieved for the opinion b(t)qi by setting both the initial opinion
b
(0)
qi and the stubbornness dqi to 1, according to Equation

54. However, there is one key difference: The problem in
[25] involves choosing seeds that maximize the sum of the
expressed opinions at the Nash equilibrium, whereas our
problem with the cumulative score involves the sum of the
opinions at any given time horizon.

For the above reason, the proofs of NP-hardness and
submodularity in [25] cannot be extended trivially to our

cumulative score for any finite time horizon. More specifically,
[25] uses results from the theory of absorbing random walks
(those that continue till an absorbing node is reached) to prove
that the opinion computed by an absorbing random walk is an
unbiased estimate of the true opinion at the Nash equilibrium,
a property which is central to the proofs of NP-hardness
and submodularity in [25]. But in our work, we cannot use
absorbing random walks to estimate the opinions at any finite
time horizon, which renders the aforementioned proofs invalid
(in our case), and hence the extension of the results in [25] to
ours is non-trivial.

— In our work, we provide accuracy guarantees for all
our three methods (direct matrix-vector multiplication, random
walks and sketches). However, [25] only provides a (1−1/e)-
approximation guarantee for the Greedy method (via direct
matrix-vector multiplication) which is inefficient, and thus
it proposes other heuristic methods without any accuracy
guarantee.

— For a given user i, the diffusion model in Equation 1 of
[26] is given by

xi(t+ 1) = αisi + (1− αi)
∑

j∈N(i)

1

deg(i)
· xj(t)

Thus, it is similar to ours (Equation 54) in the following
aspects: The innate opinions si (resp. expressed opinions
xi(t)) in [26] are analogous to our initial opinions b(0)

qi (resp.
opinions b(t)qi ), and the weights 1

deg(i) in [26] are similar to
our weights wqji. In both works, each node has a weight or
preference to its initial opinion equal to its stubbornness dqi
or resistance αi (which can be any real number in [0, 1]).
However, the problem in [26] requires maximizing the sum of
the expressed opinions at equilibrium, whereas our problem
with the cumulative score involves the sum of the opinions
but at any given finite time horizon. In addition, the changes
made when a user is chosen to be a seed are different in
our work from [26]. We set both the initial opinion and
stubbornness values to 1, whereas [26] sets only the resistance
value within a given interval [l, u]. Thus, the objective function
in [26] (under the budgeted setting) is neither submodular
nor supermodular, which is why [26] does not provide any
accuracy guarantee on even the greedy method for budgeted
opinion maximization. On the other hand, since our cumulative
score is submodular, the greedy method provides a (1− 1/e)-
approximation guarantee.

— In addition to the cumulative score, our work also
involves the plurality and Condorcet winner scores which
are not used in prior works on opinion maximization [25],
[26], and hence constitute one of our novel contributions (as
rightly pointed out by the reviewer). Moreover, we design
non-negative, non-decreasing, submodular upper and lower
bound functions for the plurality and Condorcet winner scores,
and apply the Sandwich Approximation technique to achieve
empirically good approximation guarantees (refer to § IV-D
for more details).



— The random walk interpretations in [25], [26] are similar
to that of ours, in as much as the fact that the expressed opinion
of a node v is the expected innate opinion of the end node
of a random walk starting from v. However, [25], [26] only
deal with opinions at their respective equilibria, which require
that their random walks continue till absorption. In contrast,
our method involves opinions at any finite time horizon, which
means that our random walks go on till absorption (by a fully
stubborn node), or the number of steps in the walk being equal
to the time horizon, whichever happens earlier. Also, [25], [26]
enable random walks by augmenting the graph with a set of
n new nodes and edges, in order to prove the unbiasedness
of their random walk estimates by leveraging results from
the theory of absorbing random walks. However, there is no
such augmentation in our random walks, which requires us to
prove the unbiasedness of our estimated opinions in a different
way. Furthermore, [25], [26] do not use random walks in their
algorithms and do not mention the number of walks needed
to ensure some accuracy guarantee on the estimated opinions,
which is one of the core contributions in our work.

Additionally, all three works (ours, [25], [26]) make the
assumption that setting the opinion and/or stubbornness values
of the seed users is “easy” and under our control. Recall
that the Greedy algorithm in [25] for opinion maximization
can be adapted for a finite time horizon and to consider
input stubbornness values as ours, which we denoted as
GED-T. Our cumulative score, due to its aggregate nature, is
similar to opinion maximization in the single campaign setting;
therefore, GED-T and our DM approach (direct matrix-vector
multiplication) perform the same for the cumulative score
(only). However, our RS method (reverse sketching) is about
two orders of magnitude faster than GED-T, even for the
cumulative score (§VIII).

APPENDIX B
USEFULNESS OF A FINITE TIME HORIZON

In many real-world applications, taking into account a finite
time horizon is important. Consider a paid movie service with
a limited period discount (mentioned in the second paragraph
of § 1), or an upcoming election. In such cases, the optimal
seed set considering opinions at convergence can be drastically
different from the corresponding set with a finite time horizon.

There are examples in the past literature where certain
properties that are true when the time horizon is infinite
cease to hold (or cannot be proved by a direct extension)
for any given finite time horizon. As a concrete example, in
[78], the expected spread is adaptive submodular under full
feedback (analogous to an infinite time horizon) but not under
partial feedback (analogous to any given finite time horizon).
Similarly, despite [25] establishing that the sum of all opinions
at the Nash equilibrium is submodular w.r.t. the seed set, the
submodularity of our cumulative score under similar problem
settings but at any given finite time horizon is non-trivial and
cannot be proved by a direct adaptation of the proof in [25].

In addition, we empirically study the variation of opinions
with respect to the time horizon. Specifically, at every time

Fig. 18. Variation of the percentage of nodes changing opinion from
timestamp t − 1 to t as a function of t for the Yelp dataset. ∆
denotes the tolerance, i.e., the maximum percentage opinion change
(from t − 1 to t) allowed for being considered as “no change in
opinion”.

horizon t, we compute the fraction of nodes v for which∣∣∣b(t)qv − b(t−1)
qv

∣∣∣ > ∆
100×b

(t−1)
qv , where ∆ is a tolerance parame-

ter that decides how much change in opinion is considered neg-
ligible. Figure 18 shows the variation of the above percentage
with the time horizon for different values of the tolerance ∆.
We observe that there is a significant fraction of users changing
their opinions before time horizon 30, especially when the
tolerance ∆ is small. We further compare the optimal seed sets
(k = 100, cumulative score) returned by our greedy algorithm
for different time horizons, and find that they can differ from
each other significantly. For example, the optimal seed sets
at t = 5, 10, and 20 have only 42%, 48%, and 61% overlap
with that at t = 30, respectively. Finally, our experimental
results in Figure 12 show that the cumulative score varies with
respect to the time horizon. These demonstrate the importance
of considering the time horizon in practice.

APPENDIX C
DIFFERENCES BETWEEN RANDOM WALKS IN PAGERANK

AND IN THE FJ MODEL

Let us start with a brief overview of PageRank. The PageR-
ank vector [32] π ∈ Rn is the solution (at convergence) to:

π(t+1) = cπ(t)P + (1− c)π(0)

where P is the edge weight matrix (which is row-stochastic),
π(0) is a column vector with each element equal to n−1, and
c ∈ (0, 1) is a damping factor. As mentioned in [32], the
elements of the PageRank vector can be estimated by a random
walk method, which is repeated m times starting from each
node: At each step, if the node has no outgoing edges, the walk
stops; otherwise, the random walk terminates with probability
1− c, and makes a transition according to the matrix P with
probability c. Once all walks are generated, the estimate π̂v of
πv for a node v ∈ V is the total number of visits to v divided
by the total number of visited nodes.

Based on this, there exist similarities between the equations
of the FJ model (Equation 2) and PageRank, as also in
their corresponding random walk methods. However, there are
important differences between the two random walk methods.

— In PageRank, a random walk goes on until the decision
is taken to stop at a node (with probability c), or if a node
with no outgoing edge is reached. But in the FJ model, in
addition to stopping at a node with probability equal to its



Fig. 19. Opinion scores vs. µ for candidates “Chinese” on Yelp (left)
and “Democratic” on Twitter US Election (right)

stubbornness, the random walk continues only till a specified
time horizon.

— In PageRank, the estimated value for a node v is the
fraction of the total number of visits to v (in all random walks,
not necessarily those starting from v). But in the FJ model,
the estimated opinion value for a node v is the average of the
initial opinion values of the end nodes of those walks which
start from v.

— In PageRank, combining Theorem 1 and Equations 16-
17 in [32], if the number of walks m starting from each node
v satisfies

m ≥ 1 + qvv
1− qvv

(x1−α2
ε

)2

where qvv is the probability of the walk returning to v if it
starts from v and x1−α2 is a

(
1− α

2

)
-quantile of the standard

normal distribution, then

Pr (|π̂v − πv| ≤ ε′πv) ≥ (1− α)(1− β)

for any β > 0 and ε′ satisfying

|ε− ε′| <
x1− β2

(1 + ε)
√
nm

· c

1− c

√(
1− n0

n

)
(1 + c3)

where n0 is the number of nodes without any outgoing edge.
In contrast, in the FJ model, the number of walks λv from each
node v should satisfy different conditions to ensure different
accuracy guarantees for various scores, as shown in Theorems
10 - 12.

In addition, there also exist differences in how the random
walks for PageRank and the FJ model are used for finding the
corresponding top-k nodes. In PageRank, we need to generate
m random walks from each node only once, and then return the
k nodes with the largest PageRank estimates. In contrast, for
maximizing a voting-based score with the FJ model, we need
to run a greedy algorithm, where in each of the k iterations, we
find the node that maximizes the marginal gain in the score,
and include it as a seed. For that, originally in every iteration
of the greedy algorithm, we have to generate the random walks
for each of O(n) candidate seed nodes, in order to compute
its marginal gain estimate. Next, we optimize the process by
generating all walks right in the beginning and then reuse them
in each of the k iterations (§ V). As a further optimization,
we propose the sketch-based method (§ VI) which computes
random walks starting from only θ � n nodes, thereby making
the process even more efficient, with quality guarantees on the
k seed nodes returned (Theorem 13), which is our ultimate
objective. To the best of our knowledge, the proofs of the
above guarantees (Theorems 10 - 13) are novel and do not
follow from any prior results on PageRank.

APPENDIX D
EMPIRICAL JUSTIFICATION OF THE DEFAULT VALUE OF µ

First, we note that the edge weight distribution is based on
1−e−a/µ (i.e., before normalization). In Fig. 19, we show the
Cumulative score (on Twitter US Election) and the plurality
score (on Yelp) when varying the number of seeds, for different
values of µ. In general, the difference is small: we observed
that the normalization step (which ensures the row-stochastic
property) reduces the impact of µ on the edge probabilities.
The curves corresponding to µ = 10 and µ = 15 lie in the
middle and nearly overlap. Thus, we choose µ = 10 as our
default setting.

APPENDIX E
CONCENTRATION INEQUALITIES USED

Theorem 16 ([79]). Let X1, . . . , Xθ be non-negative indepen-
dent random variables satisfying Xi−E[Xi] ≤M ∀i ∈ [1, θ].
Let X =

∑θ
i=1Xi. For any β > 0,

Pr (X −E[X] ≥ β) ≤ exp

(
− β2

2
(
V ar[X] + Mβ

3

))

Pr (X −E[X] ≤ −β) ≤ exp

(
− β2

2
∑θ
i=1E [X2

i ]

)
Theorem 17 ([7]). Let X1, . . . , Xθ be i.i.d. random variables
such that Xi ∈ [0, 1] and E[Xi] = µ ∀i ∈ [1, θ]. For any
ε > 0,

Pr (|X − θµ ≥ ε · θµ|) ≤ exp

(
ε2

2 + ε
· θµ

)
Theorem 18 ([80]). Let X1, . . . , Xθ be independent random
variables such that Xi ∈ [0, 1] ∀i ∈ [1, θ]. Let X =
1
θ

∑θ
i=1Xi and µ = E

[
X
]
. Then, for 0 ≤ ε < 1− µ,

Pr
(
X − µ ≥ ε

)
≤

[(
µ

µ+ ε

)µ+ε(
1− µ

1− µ− ε

)1−µ−ε
]n
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