
JanusAQP: Efficient Partition Tree Maintenance for Dynamic
ApproximateQuery Processing

Xi Liang

University of Chicago

xiliang@uchicago.edu

Stavros Sintos

University of Chicago

sintos@uchicago.edu

Sanjay Krishnan

University of Chicago

skr@cs.uchicago.edu

ABSTRACT
Approximate query processing over dynamic databases, i.e., under

insertions/deletions, has applications ranging from high-frequency

trading to internet-of-things analytics. We present JanusAQP, a
new dynamic AQP system, which supports SUM, COUNT, AVG,

MIN, andMAX queries under insertions and deletions to the dataset.

JanusAQP extends static partition tree synopses, which are hierar-

chical aggregations of datasets, into the dynamic setting. This paper

contributes new methods for: (1) efficient initialization of the data

synopsis in the presence of incoming data, (2) maintenance of the

data synopsis under insertions/deletions, and (3) re-optimization

of the partitioning to reduce the approximation error. JanusAQP
reduces the error of a state-of-the-art baseline by more than 60%

using only 10% storage cost. JanusAQP can process more than 100K

updates per second in a single node setting and keep the query

latency at a millisecond level.

1 INTRODUCTION
Approximate query processing (AQP) studies principled ways to

sacrifice query result accuracy for faster or more resource-efficient

execution [7, 15]. AQP systems generally employ reduced-size sum-

maries, or “synopses”, of large datasets that are faster to process.

The simplest of such synopsis structures are histograms and sam-

ples [4, 9, 28, 30], but many others have been proposed in the litera-

ture. More complex synopses are more accurate for specific types of

queries [44], specific data settings [39], or even are learned with ma-

chine learning models [20, 31, 46]. AQP is particularly interesting

and challenging in a dynamic data setting, where a dataset is con-
tinuously modified with insertions and deletions [2, 15, 32]. In this

setting, hereafter denoted as DAQP, any synopsis data structures

have to be continuously maintained online.

As an example use-case, consider a database aggregating per-

stock order data for the NASDAQ exchange [1]. Suppose, that we

would like to build a low-latency SQL interface for approximate

aggregate queries over the past seven days of order data. On a

typical day, there are 25M new orders that correspond to trades

that are placed by brokers (up to 70,000 orders in any given sec-

ond). A decent fraction of these orders are eventually canceled or

prematurely terminated, for a variety of financial reasons. Thus,

this database is highly dynamic with a large volume of new inser-

tions (new orders) and a small but significant number of deletions

(canceled orders). This paper explores such scenarios with simi-

lar motivating applications in internet-of-things monitoring and

enterprise stream processing.

Simple synopses like 1D histograms and uniform samples are

easy to maintain dynamically. However, such structures are often

inaccurate in high-dimensional data and selective query workloads.

More complex synopses structures, e.g, [30, 46] can be optimized

for a particular instance (dataset and query workload), but are

generally harder to maintain online. For example, recently pro-

posed learned synopses require expensive retraining procedures

which limit insertion/deletion throughput [20, 31, 46]. Even classi-

cal stratified samples may have to be periodically re-optimized and

re-balanced based on query and workload shifts [4]. These, expen-

sive (re-)initialization procedures can significantly hurt insertion

throughput, and accordingly, almost all existing AQP systems focus

on the static data warehousing setting
1
. Unfortunately, the existing

techniques that are designed for dynamic data, such as sketches

and mergeable summaries [3, 3, 9, 14, 14, 39], often cannot handle

arbitrary deletions or aggregation queries with arbitrary predicates

easily.

In particular, traditional sketch techniques [8, 9] focus on fre-

quency, distinct values, and quantile problems. They do not handle

arbitrary range queries with low error guarantees and they only

consider updates in the streaming setting, i.e. they do not handle

arbitrary insertions and deletions. Our system has a few similar-

ities with high dimensional histograms which is another type of

sketching that has been used for aggregation queries. We construct

a space partitioning and we store some statistics to answer queries,

which is also the case for high dimensional histograms. However,

we propose a dynamic method that combines partitioning (his-

tograms) with stratified sampling and extend it to handle dynamic

updates efficiently. Multi-dimensional histograms usually cannot be

updated easily under arbitrary insertions and deletions, for example

[17, 42] do not handle general updates, and [12] does not guaran-

tee optimality. Furthermore, most histograms focus on equi-depth,

equi-width or V-optimal partitioning. We maintain a partitioning

that guarantees that the confidence intervals we get are close to

the optimum (shortest) confidence intervals we could have from

the best partitioning.

In addition, mergeable summaries [3, 14] focus mostly on fre-

quency and quantiles problems. Traditional mergeable summaries

for aggregation queries mainly include (uniform, stratified, reser-

voir) sampling.While sampling techniques support efficient updates

in the database, the error is far from optimum. Our method is essen-

tially a technique that uses mergeable summaries for aggregation

queries. However, in contrast to traditional mergeable summaries,

our new system uses a more involved technique: Maintain a par-

titioning over the space and a stratified sampling under arbitrary

insertions and deletions. When we get a query we combine low-

error (updated) summaries with only a few (updated) higher-error

summaries to return a better estimation than traditional mergeable

summaries techniques.

1
A notable exception being the AQUA project [2] from 20 years ago.

ar
X

iv
:2

20
4.

09
23

5v
2

 [
cs

.D
B

]
 2

6
Ju

l 2
02

2

Figure 1: JanusAQPmanages a collection of DPT synopses by
maintaining them online while periodically re-optimizing
partitioning and sample allocation.

Thus, it is understood that most synopsis data structures have

at least one of the following pitfalls in our desired dynamic setting:

throughput, drift, or generality [7].

This paper explores the DAQP problem and studies ways that

we can mitigate the pitfalls of prior approaches with a flexible

synopsis data structure that can continuously re-optimize itself.

We present JanusAQP, a new DAQP system, which supports SUM,

COUNT, AVG, MIN, and MAX queries with predicates under arbi-

trary insertions and deletions to the dataset. The main data struc-

ture in JanusAQP is a dynamic extension of our recently published

work [29, 30], which we call a Dynamic Partition Tree (DPT). DPT
is a two-layer synopsis structure that consists of a: (1) hierarchical

partitioning of a dataset into a tree, and (2) a uniform sample of

data for each of the leaf partitions (effectively a stratified sample

over the leaves). An optimizer determines the best partitioning

conditions and sample allocations to meet a user’s performance

goals. For each partition (nodes in the tree), we calculate the SUM,

COUNT, MIN, and MAX values of the partition. Any desired SUM,

COUNT, AVG, MIN, and MAX query can be efficiently decomposed

into two parts with the structure: a combination of the partial ag-

gregates where the predicate fully covers a partition in the tree,

and an approximate part where the predicate partially covers a

leaf node (and can be estimated with a sample). More importantly,

this structure is essentially a collection of materialized views and

samples, which can be maintained incrementally.

A core contribution of JanusAQP is online synopsis optimization.

JanusAQP continuously monitors the accuracy of all of its DPT
synopses to account for data and workload drift. When a synopsis

is no longer accurate, it triggers a re-optimization procedure that

resamples and repartitions the data. This re-optimization problem is

both a significant algorithmic and systems challenge. From an algo-

rithmic perspective, JanusAQP needs an efficient way to determine

the optimal partitioning conditions in dynamic data. We propose

an efficient algorithm based on a dynamic range tree index that

finds a partitioning that controls the minimax query error (up to an

approximation factor). From a systems perspective, re-optimization

poses a bit of a logistical challenge. New data will arrive as the new

synopsis data structure is being constructed. We design an efficient

multi-threaded catch-up processing algorithm that synchronizes

new data and historical data without sacrificing the statistical rigor

of the estimates.

Overall, the new system JanusAQP we proposed has the fol-

lowing benefits over previously known indexes for approximate

query processing. It handles arbitrary dynamic updates efficiently

(comparing to the static indexes PASS [30], VecrdictDB [35], or

some dynamic histograms [17] that do not handle arbitrary up-

dates), it provides theoretical guarantees on the confidence inter-

vals (comparing to the machine learning based indexes such that

DeepDB [20]), the query procedure accesses only a small synopsis

of data and does not touch the original data set so the communi-

cation throughput is low (comparing to other tree-based indexes

such as [25, 26]), and the estimation error is always low (comparing

to traditional sketches [9], or histograms for aggregation queries)

without making any assumption about the spatial/value-domain

distribution of the data (comparing to [28]). Furthermore, our new

system maintains the strongest theoretical guarantees on the error

comparing to all the other known methods we discussed. In par-

ticular, the confidence intervals we get are close to the optimum

confidence intervals we could have from the best partitioning.

2 BACKGROUND
We first introduce the core concepts behind the synopses used in

this work.

2.1 Dynamic Approximate Query Processing
We assume an initial database table D (0)

. This table D (0)
is con-

tinuously modified through a stream of insertions and deletions

of tuples. As a design principle, we assume that insertions are

common but deletions are rare. With each insertion or deletion

operation, the table evolves over time with a new state at each

time step 𝑖: D (0) ,D (1) , . . . ,D (𝑖) ,D (𝑖+1) , . . . A synopsis is a data
structure that summarizes the evolving table. For each D (𝑖)

, there

is a corresponding synopsis Σ(𝑖)
: Σ(0) , Σ(1) , . . . , Σ(𝑖) , Σ(𝑖+1) , . . .

In DAQP, the problem is to answer queries as best as possible

from only the Σ(𝑖)
. For a query 𝑞, the estimation error is defined

as the difference between the estimated result (using the synopsis)

and the true result (using the current database state):

Error(𝑞, Σ(𝑖)) = |𝑞(D (𝑖)) − 𝑞(Σ(𝑖)) |

We further assume that there is sufficient cold/archival storage to

store the current state of the table D (𝑖)
. This data can be accessed

in an offline way for initialization, re-optimization, and logging

purposes but not for query processing.

There are a few notable differences from the “streaming” setting.

First, most data streaming models do not support arbitrary record

deletion, i.e., as studied in [39]. We find that in many use-cases

limited support for deletion is needed due to records that are in-

validated through an out-of-band, asynchronous data process like

fraud detection or financial auditing. Next, most streaming settings

enforce a single pass over the data with limited overall memory.

We do not make this assumption and allow for archival storage and

slow access to old data. This is a more realistic AQP setting where

all data are stored, however, there is limited working memory for a

fast, approximate query answering service.

2

Figure 2: The core data structure in JanusAQP is based on
the PASS data structure [30] that summarizes a dataset with
a tree of aggregates at different levels of resolution (gran-
ularity of partitioning). Associated with the leaf nodes are
stratified samples. The two stage synopsis structure can be
optimally partitioned to minimize error.

2.2 Related work
There is significant research in histograms and their variants that

is highly relevant to this project [21, 22, 27]. V-Optimal histograms

construct buckets to minimize the cumulative variance [22]. There

are works onmulti-dimensional histograms [28], and histograms on

the streaming/dynamic setting [17, 19]. Like histograms, JanusAQP
constructs partitions over attribute domains and aggregates within

the partition. However, we contribute different partition optimiza-

tion criteria than typically used in histograms and novel techniques

based on geometric data structures to scale partitioning into higher

dimensions. Furthermore, our system works in the general dynamic

setting, unlike [17] where the number of total itemsmust remain the

same. Another related area of research is into mergeable summaries

that compute a partition of the data and optimize sampling at a

data partition level [3, 14, 29, 39, 40]. The DPT used in JanusAQP
very much behaves like a mergeable summary but it combines

low-error statistics over pre-computed partitioning of the space,

along with stratified sampling to improve the error over comparing

to traditional mergeable summaries for aggregation queries. Fur-

thermore, some prior work mostly focuses on a streaming setting

without support for deletion [39]. Similarly, sketches [8, 9] have

been used to find a summary of data to answer approximately a

variety of queries efficiently. However, they also do not handle

arbitrary range queries using space independent of the size of the

full database. Mergeable summaries and sketches usually focus on

optimizing different types of problems such that frequency queries,

percentile queries, etc. This paper shows how to operationalize a

general DAQP system for aggregation queries with both systems

and algorithmic contributions relating to the design of dynamic

synopses and their continuous optimization. Our system can handle

arbitrary updates and can estimate any arbitrary predicate query

with provable confidence intervals.

In databases, a number of tree-based indexes, such as the im-

proved 𝑅∗ tree [26], have been used to support range aggregation

queries efficiently. The space of such indexes is (super-)linear with

respect to the input items. The query procedures need to have ac-

cess to the entire tree-index that contains the entire dataset. That

leads to high communication throughput or high I/O operations

comparing to JanusAQP where the queries are executed in a small

synopsis of data stored in a local machine or RAM with zero com-

munication throughput. In another line of work, tree-based data

structured are used to return a set of 𝑘 uniform samples in a query

range. More specifically, in [25, 45] the authors construct indexes

such that given a query range 𝑄 and a parameter 𝑘 , they return

𝑘 uniform samples from the input items that lie inside 𝑄 . These

samples can be used to estimate any aggregation query in the range

query 𝑄 . There are several issues with these indexes in our set-

ting. First, the design of the index in [25] makes their structure

inherently static and it cannot be maintained efficiently. Further-

more, the estimation error in both indexes is the same as the error

in the simple uniform random sampling schema. In Section 6, we

show that the error of our new index in real data sets is always

less than half of the error in uniform random sampling, so our new

index always outperforms these range sampling indexes. In addi-

tion, the communication throughput or the I/O operations during

a query procedure of these indexes is a function of 𝑁 , i.e. the size

of the input set, so they cannot be used on big data. Finally, the

dynamic tree structure in [28] can store a synopsis of data in a

tree-based index and use only this synopsis/index to return estima-

tions of a range aggregation queries, which is also the case in our

system JanusAQP. However, there are two main differences. The

index in [28] returns a good estimation only if an assumption about

the spatial/value-domain distribution of the data is made, while

JanusAQP uses stratified sampling and it always returns unbiased

estimators with small error without assuming any distribution over

the data. Furthermore, while their partition tree in [28] can handle

dynamic updates, its structure/partitioning remains unchanged. In

our index we maintain a near-optimal partitioning over the up-

dates. As we show in Section 6.8, running experiments on real data,

re-partitioning is essential in order to maintain a small error.

Dynamic AQP problems have been discussed in prior work [15],

however, most existing systems have focused on a static data ware-

housing setting [4]. The Aqua system [2] did consider the mainte-

nance of its synopsis data structures under updates. However, these

synopses were relatively simple and only samples and histograms.

Furthermore, we discuss systems issues such as catch-up processing

that was not discussed in [2] or any subsequent work [16].

Many new AQP techniques use machine learning. The basic

ideas exist for a while, e.g., [23, 24]. Recently, there are more com-

prehensive solutions that train from a past query workload [36] or

directly build a probabilistic model of the entire database [20, 46].

We show that these systems are not optimized for a dynamic set-

ting. Even when they can be updated efficiently with warm-start

training, their throughput is much lower than JanusAQP.
3

2.3 Partition Trees for AQP
We propose a new dynamic data synopsis and optimization strategy

that is an extension of our previous work [30]. In particular, we

proposed a system called PASS (which we call SPT for “static parti-

tion tree”). SPT synopses are related to works such as [28] in the

data cube literature and hybrid AQP techniques [37]. We showed

that with appropriate optimization of the partitioning conditions,

an SPT could achieve state-of-the-art accuracy in AQP problems.

2.3.1 Construction. An SPT is a synopsis data structure used for

answering aggregate queries over relational data. To use SPT, the
user defines an aggregation column (numerical attribute to aggre-

gate) and a set of predicate columns (columns over which filters

will be applied). An SPT consists of two pieces: (1) a hierarchical

aggregation of a dataset, and (2) a uniform sample of data for each

of the leaf partitions (effectively a stratified sample over the leaves).

The system returns a synopsis that can answer SUM, COUNT, AVG,

MIN, and MAX aggregates over the aggregation column filtered by

the predicate columns. Figure 2 illustrates a partition tree synopsis

over toy stock-order data.

To understand how this structure is useful, let us overview some

of its formal properties. A partition of a datasetD is a decomposition

of D into disjoint parts D1, ...,D𝐵 . Each D𝑖 has an associated

partitioning condition, a predicate that when applied to the full

dataset as a filter retrieves the full partition. Partitions naturally

form a hierarchy and can be further subdivided into even more

partitions, which can then be subdivided further. A static partition
tree T is a tree with 𝐵 nodes (where each node corresponds to a

partition) with the following invariants: (1) every child is a subset

of its parent, (2) all siblings are disjoint, and (3) the union of all

siblings equals the parent.

In an SPT, each node of the tree is associated with SUM, COUNT,

MIN, andMAX statistics over the items inD that lie inside the node.

SPT synopses have a flexible height to tradeoff accuracy v.s. storage.

In shorter trees, the leaf nodes of an SPT can cover large subsets

of data and vice versa in deeper trees. Note how each layer of the

tree in Figure 2 aggregates the lower layer over coarser-and-coarser

aggregation conditions (first by “sector” and then by “order type”).

This structure works well when the queries align with partition

boundaries. For example, a user aggregating total orders by “order

type” in Figure 2 would get an exact answer with no approximation.

The challenge is to answer queries with predicates that partially

intersect partitions. Due to the tree invariants, the set of partial

intersections can be fully determined at the leaf nodes. To estimate

the contributions of these partial intersections, an SPT associates a

uniform sample of tuples within that partition for each leaf node.

2.3.2 Query Processing. Using an SPT, a user can estimate the

result of a query as follows. Essentially, the query processing al-

gorithm identifies “fully covered” nodes that are contained in the

query predicate and “partially covered” ones that overlap in some

way. Exact statistics from the “fully covered” nodes can be used,

while estimates can be used to determine the contribution of “par-

tially covered” ones. We present SUM, COUNT, AVG for brevity,

but it is also possible to get estimations for MIN and MAX.

Step 1: Frontier Lookup. Given a query predicate 𝑞, traverse the

tree top-down to retrieve two sets of nodes partitions: 𝑅𝑐𝑜𝑣𝑒𝑟 (nodes

that fully cover the predicate) and 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (nodes that partially

intersect the predicate). Nodes that do not intersect the predicate

can be ignored.

Step 2: Partial Aggregation For each partition in 𝑅𝑐𝑜𝑣𝑒𝑟 , we

can compute an exact “partial aggregate” for the tuples in those

partitions. For a SUM/COUNT query 𝑞: 𝑎𝑔𝑔 =
∑
𝑅𝑖 ∈𝑅𝑐𝑜𝑣𝑒𝑟 𝑆𝑈𝑀 (𝑅𝑖),

for an AVG query, we weight the average by the relative size of

the partition: 𝑎𝑔𝑔 =
∑
𝑅𝑖 ∈𝑅𝑐𝑜𝑣𝑒𝑟 𝑆𝑈𝑀 (𝑅𝑖) 𝑁𝑖

𝑁𝑞
, where 𝑁𝑖 is the size

of the partition 𝑅𝑖 , 𝑁𝑞 is the total size in all relevant partitions of

query 𝑞, and 𝑆𝑈𝑀 (𝑅𝑖) =
∑
𝑡 ∈𝑅𝑖∩D 𝑡 .𝑎 is the sum of the aggregation

values of all tuples in the partition 𝑅𝑖 .

Step 3: Sample Estimation. Each partition in 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is a leaf

node with an associated stratified sample. Within each stratified

sample, we use standard AQP techniques to estimate that partition’s

contribution to the final query result [4]. For completeness, we

include those calculations here. Suppose a partition 𝑅𝑖 has a set 𝑆𝑖
of𝑚𝑖 samples and there are 𝑁𝑖 total tuples in 𝑅𝑖 . We can formulate

COUNT, SUM, AVG as calculating an average over transformed

attributes: 𝑓 (𝑆𝑖) = 1

𝑚𝑖

∑
𝑡 ∈𝑆𝑖 𝜙𝑞 (𝑡), where 𝜙𝑞 (·) expresses all the

necessary scaling to translate the samples in query𝑞 into an average

query population. Let 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑡, 𝑞) = 1 if tuple 𝑡 satisfies the

predicate of query 𝑞, and 0 otherwise, we have

• COUNT: 𝜙𝑞 (𝑡) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑡, 𝑞) · 𝑁𝑖

• SUM: 𝜙𝑞 (𝑡) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑡, 𝑞) · 𝑁𝑖 · 𝑡 .𝑎
• AVG: 𝜙𝑞 (𝑡) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑡, 𝑞) · 𝑚𝑖∑

𝑡∈𝑆𝑖 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑡,𝑞)
· 𝑡 .𝑎

We run such a calculation for each partition that is partially covered.

These results are combinedwith a weighted combination like before.

For SUM/COUNT queries it is: 𝑠𝑎𝑚𝑝 =
∑
𝑅𝑖 ∈𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑓 (𝑆𝑖). And for

AVG queries, it is: 𝑠𝑎𝑚𝑝 =
∑
𝑅𝑖 ∈𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑓 (𝑆𝑖) · 𝑁𝑖

𝑁𝑞
. 𝑁𝑖 and 𝑁𝑞 can

be exactly retrieved from the statistics computed for each partition.

Step 4: Final Estimate. The results can be found by taking a sum

of the two parts: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑎𝑚𝑝 + 𝑎𝑔𝑔. For this result estimate,

confidence intervals can be calculated using standard stratified

sampling formulas.

PASS and JanusAQP comparison. As we noted, JanusAQP is

an extension of PASS in the dynamic setting. The main differences

and novelties of our new system JanusAQP comparing to PASS

are the following: i) PASS finds a static partitioning that is not

changing after insertions and deletions of items. In JanusAQP we

propose algorithms (Subsection 5.4) that automatically check if a

re-partitioning is needed after the dynamic updates. ii) Even if re-

partitioning is allowed in PASS, the algorithms we proposed in [30]

do not run efficiently in the dynamic setting. Here we propose

dynamic indexes and algorithms with theoretical guarantees that

perform much faster than the algorithms in PASS. iii) Even if we

use our new dynamic algorithms in PASS, there is no mechanism

to compute the exact statistics of the nodes after a re-partitioning

happening and there is no mechanism handling the updates as the

re-partitioning is executed. JanusAQP can improve the estimators

in the nodes of DPT after a re-partitioning, while handling new

dynamic updates and new queries. iv) Last but not least, we imple-

ment JanusAQP on Apache Kafka, so it can be used by real database

systems.

4

3 SYSTEM ARCHITECTURE
In this section, we describe the JanusAQP architecture.

3.1 Construction and Optimization API
First, we overview how users construct synopsis data structures in

JanusAQP. In order to simplify the description of our system, for

now, we consider that unlike systems like BlinkDB [4], JanusAQP
does not use a single synopsis to answer all queries. Instead, JanusAQP
constructs a different synopsis for each different query template

that the user is interested in. In Subsection 5.5 we describe how

we can construct a single synopsis that can answer different query

templates. Much like index construction in a database, users choose

which attributes to include in the synopsis structure. Each synopsis

can answer query templates of the following form:

SELECT SUM/COUNT/AVG/MIN/MAX(A) FROM D
WHERE Rectangle(D.c1,...,D.cd)

where 𝐴 is an aggregation attribute and 𝑐1, ..., 𝑐𝑑 are predicate at-

tributes used in some rectangular predicate region (a conjunction of

>, <,= clauses). The dimensionality of a synopsis is the number

of predicate attributes 𝑑 . To construct a synopsis, the user must

define the following basic inputs:

• Aggregation Attribute and Aggregation Function. An
attribute 𝐴 that is the primary metric for aggregation.

• Predicate Attributes. A collection of 𝑑 columns 𝑐1, ..., 𝑐𝑑
that are used to filter the data prior to aggregation.

• Memory Constraint. The maximum amount of space that

the synopsis can take.

The user can also optionally define a query processing constraint,

i.e, the maximum bytes of data that the system should process in

answering a query. Finally, the user has the option to set a historical

data limit which is how much historical data to include in the

synopsis, i.e., the earliest time-step of data included in the system. In

Subsection 5.5 we also show how JanusAQP uses these constraints

to generate a synopsis with low error.

Beyond these basic knobs that are relevant to most AQP systems,

there are two other considerations discussed in this paper:

Catch-Up Processing. Constructing a synopsis will require some

amount of computational time. While incremental maintenance

might be efficient, constructing the initial synopsis 𝑆 (0) from the

initial database state D (0)
might be very expensive if there is a

significant amount of initial data. As the initial 𝑆 (0) is being con-
structed new data will arrive, and the system will require additional

processing to catch up. JanusAQP optimizes the catch-up process

using a multi-threaded system and approximate internal statistics

for the partition tree. This process minimizes the amount of time

where the system is unable to process new data or queries. The

user decides how much processing to expend during catch up, the

quicker the system is ready, the higher the error will be.

Throughput. Themaximum data throughput is the maximum rate

of insertions and deletions that the system can support. Throughput

depends on the complexity of the synopsis used.

3.2 Data and Query API
For processing queries and data, we adopt the PSoup architecture

where both queries and data are streams [6]. JanusAQP supports

Table 1: Table of basic notation

D Full database 𝐻𝑖 𝐻 ∩ 𝑅𝑖
𝑁 |D | 𝑚𝑖 |𝑆𝑖 |
𝑆 Set of reservoir samples ℎ𝑖 |𝐻𝑖 |
𝐻 Set of catch-up samples 𝑚 |𝑆 |
𝑅𝑖 Partition/bucket/rectangle 𝑡 Tuple in D
|𝑅𝑖 | |𝑅𝑖 ∩ 𝑆 | 𝑡 .𝑎 Aggregation value of tuple 𝑡

𝑁𝑖 D ∩ 𝑅𝑖 T Partition tree in DPT
𝑆𝑖 𝑆 ∩ 𝑅𝑖

Figure 3: The DPT update process for an insertion or dele-
tion. (1) A set of samples is maintained using a reservoir
sampling algorithm. (2) The leaf node statistics are incre-
mentally updated. (3) The updated statistics from the leaf
node propagate to the parents. (4) Updated statistics from
the parents propagate all the way to the root.

three types of requests: insertion of a new tuple, deletion of an

existing tuple and querying of the existing tuples. Thus, there are

three Kafka topics insert(tuple), delete(tuple), and execute(query).
The use of Kafka, with its timing and delivery guarantees, sim-

plifies the query processing semantics. The system will process

the incoming stream of queries in order. Each query will have an

arrival time 𝑖 , which is the current database state at the time at

which the query is issued. Therefore, we define 𝑞
(𝑖)
𝑗

as the 𝑗 th query

in the sequence that arrives at database state 𝑖 . Query results should

reflect all of the data that has arrived until the time point 𝑖 .

4 DYNAMIC PARTITION TREES
We discuss how Dynamic Partition Trees (DPT) are constructed,
how they answer queries, and how they are maintained under

updates. Structurally, a DPT is essentially the same data structure

as an SPT; however, the way that the partition statistics and samples

are represented differ to allow for incremental maintenance. Figure

3 summarizes the basic update process.

4.1 Incrementally Maintaining Nodes
Each node defines a partition and contains statistics (the SUM,

COUNT, MIN, and MAX aggregates) of the data contained in that

5

partition. The key challenge is to keep these statistics up-to-date

in the presence of insertions and deletions. When an insertion or

deletion arrives, an entire path of nodes from the leaf to the root

will have to be updated.

DPT Nodes: First, we discuss how we represent the statistics in a

DPT node. Since the SUM and COUNT are easy to incrementally

maintain under both insertions and deletions, we simply store a

single SUM and COUNT value for each aggregation attribute. The

MIN and MAX values are harder to incrementally maintain. To

store the MIN and MAX values, we store the top-k and the bottom-

k values in a MIN/MAX heap respectively. The top value of these

heaps is equal to the MIN and MAX of all the data in the node.

Insert New Record: When a new record is inserted, we start from

the root and we find the leaf node that the record is contained in.

Then, we increment the SUM and COUNT statistics accordingly.

Finally for MAX/MIN, we push the new aggregation values onto

the heap. If the heap exceeds the size limit 𝑘 , then the bottom value

on the heap is removed.

Delete Existing Record: When an existing record is deleted, we

find the leaf node that the record is contained in. Thenwe decrement

the SUM and COUNT statistics accordingly. Finally for MAX/MIN,

if that aggregation value is contained in the heap it is removed from

the heap. This might make the heap smaller than𝑘 . Repeated deletes

from the same node might fully empty the heap. We stop removing

values from the heap when there is only one value left. When the

heap reaches a single element the MIN/MAX estimates received

from the nodes are outer approximations where the estimated value

is larger than the MAX and smaller than the MIN.

4.2 Maintaining Stratified Samples
Next, we describe how to maintain the samples associated with

leaf nodes. We maintain samples using the proportional allocation
of stratified sampling. The number of samples in each stratum

should be proportional to the size of the stratum over the size of the

population. We use a modified version of the well-known technique

of reservoir-sampling [43] under updates [16]. The details of how

we implement this are interesting. Conceptually, each leaf node is

associatedwith a physically disjoint sample of just that partition, i.e.,

a stratified sample. Instead of implementing physical strata for the

stratified sampling, we implement large enough virtual partitions

of a single global sample. This global sample can be maintained

using a reservoir sampling algorithm and makes it easier to control

the overall size of the synopsis under insertions/deletions as well

as simplifies concurrency control.

Sample Representation: The DPT maintains a “pooled” sample

(all the relevant samples in a single data structure). This set of

samples has a target size of 2𝑚 tuples. At the construction time, we

choose a set 𝑆 of 2𝑚 uniform random samples from D. The update

procedure ensures that there are always between𝑚 ≤ |𝑆 | ≤ 2𝑚

samples. The leaf nodes index into this “pooled” sample selecting

only the relevant data to their corresponding partitions. Since we

get a set of uniform samples, if wemake sure that our strata are large

enough, the number of samples we get in each stratum satisfies the

proportional allocation requirements, up to a factor of 2, with high

probability. We formally show it in Appendix B. This is also the

case in the next update operations.

Figure 4: JanusAQP synopses can be re-initialized online us-
ing a multi-threaded implementation to minimize unavail-
ability

Insert New Record: Suppose we insert a new tuple 𝑡 . If |𝑆 | < 2𝑚

we add 𝑡 in 𝑆 . If |𝑆 | = 2𝑚, we choose 𝑡 with probability
|𝑆 |
|D | . If it

is selected then we replace a point from 𝑆 , chosen uniformly at

random, with 𝑡 .

Delete Existing Record: Next, suppose that we delete a tuple 𝑡

from D. If 𝑡 ∉ 𝑆 we do not do anything. If 𝑡 ∈ 𝑆 then we check

the cardinality of 𝑆 . If |𝑆 | > 𝑚 then we only remove 𝑡 from 𝑆 . If

|𝑆 | =𝑚 then we skip the set 𝑆 and we re-sample 2𝑚 items from D.

As shown in [16] this procedure always maintain a set of uniform

random samples. As shown in Section 5.4 we always check if a

stratum is under-represented after a number of deletions. If this

is the case then we need to re-sample and re-partition. Using a

simple dynamic search binary tree of space 𝑂 (𝑚) we can update

the samples 𝑆 stored in T in 𝑂 (height(T)) time.

4.3 Re-initialization and Catch-Up
As we noted before, repeated deletes on the same leaf partition can

degrade the accuracy of the synopsis. As we will see in the next

section, it is also possible for repeated insertions to degrade the

accuracy as well. In such cases, re-initialization of the DPT may be

needed where the data structure is re-built and re-optimized over

existing data.

Enabling periodic re-initialization is crucial for reliable long-

term deployment but is challenging because new data will not

simply stop arriving during the re-initialization period. We employ

amulti-threaded approach tominimize any period unavailability for

processing new data arrival as well as new queries (Figure 4). When

re-initialization is triggered, the main processing thread initiates

the construction of a new DPT synopsis and the following steps

are performed:

(1) Optimization Phase (In Parallel)

• The partition optimization algorithm analyzes the data in

the pooled reservoir sample to determine the optimal new

partitioning criteria. It returns a new empty DPT with no

node statistics.

• In parallel with (Step 1), the old synopsis is maintained

under all insertions and deletions that happen during the

6

optimization algorithm. Queries can still be answered with

the old synopsis.

(2) (Blocking) Approximate node statistics are populated into

the new synopsis using the pooled reservoir sample 𝑆 (note,

that this will reflect any data that arrived during the opti-

mization phase). This is the only blocking step in the re-

initialization routine and new data and queries will have to

wait until completion.

(3) The old synopsis is discarded.

(4) The system resamples a uniform sample of data from archival

storage to be the new pooled reservoir sample. Queries and

results can still be processed on the new synopsis even with-

out a sample.

(5) Random samples of historical data are used to improve the

node statistics in the background until a user-specified “catch-

up” time.

This process is the key difference between an SPT and an DPT,
where after catch-up the node statistics may be inexact. However,

this old data is propagated in a random order, which means that the

SUM,COUNT,AVG values in each node will be unbiased estimates of

their full data statistics. The duration of the catch-up phase can be

chosen by the user. For example, in our experiments, the catch-up

phase does not stop until we get 0.1 · |D| samples. It is worth noting

that queries close to the beginning of the catch-up phase will have a

higher error, however queries towards the middle or the end of the

catch-up phase will have a smaller error. In Section 5.4, we describe

how to trigger re-initialization. Furthermore, there is only one step

(2) where the synopsis is unavailable to process queries and data

(has the duration of 100s of milliseconds in our experiments).

4.4 Answering Queries With a DPT
The query procedure does not access the entire data so the com-

munication throughput (or the I/O operations) is zero. The basic

structure of the result estimator is the same as before, especially for

the 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙 partitions. However, there are a few key changes due

to the nature of the catch-up phase. In SPT, for each partition in

𝑅𝑐𝑜𝑣𝑒𝑟 , we can compute an exact “partial aggregate” for the tuples

in those partitions and combine the partial aggregates. In a DPT,
this process changes considering the estimations we get from the

catch-up samples. Overall, the estimation of a partition 𝑅𝑖 ∈ 𝑅𝑐𝑜𝑣𝑒𝑟
consists of i) estimation using the catch-up samples 𝐻 and the

formulas of Section 2.3, ii) the exact statistics of the new inserted

tuples in 𝑅𝑖 , and iii) the exact statistics of the deleted tuples in 𝑅𝑖
(recall that the quantities in ii), iii) are stored and maintained as

described in the Incrementally Maintaining Statistics in Section 4.1).

By taking the sum of i), ii) and subtracting iii) we get the unbiased

estimation in partition 𝑅𝑖 .

Let 𝐻 be the set of catch-up samples, 𝐻𝑖 ⊆ 𝐻 be the subset of

𝐻 in partition 𝑅𝑖 , and ℎ𝑖 = |𝐻𝑖 |. All basic notations are defined in

Table 1. The formulas for estimating COUNT and SUM queries in

both 𝑅𝑐𝑜𝑣𝑒𝑟 , 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙 from Section 2.3 contain the factor
𝑁𝑖

𝑚𝑖
or

𝑁𝑖

ℎ𝑖
,

while the formulas for estimating the AVG contain the factor
𝑁𝑖

𝑁𝑞
.

In DPT we do not have the exact values for 𝑁𝑖 . Instead, we use an

estimate of the size of the partition 𝑅𝑖 denoted by 𝑁𝑖 . In particular

we use the catch-up samples 𝐻 to estimate 𝑁𝑖 =
ℎ𝑖
ℎ
𝑁 .

4.4.1 Confidence Intervals. While the estimators do not signif-

icantly change from an SPT to a DPT, the confidence intervals

are calculated very differently. This is because there are now two

sources of errors: estimation errors due to the stratified samples

and estimation errors in the node statistics. Both these sources of

errors have to be integrated into a single measure of uncertainty.

Assuming that all partitions are large enough, the central limit the-

orem can be used to asymptotically bound the estimation error for

SUM/COUNT/AVG queries. Informally, the central limit theorem

states that this asymptomatic error is proportional to the square-

root of the ratio of estimate variance and the amount of samples

used ∝
√︃

𝑣𝑎𝑟 (𝑒𝑠𝑡𝑖)
𝑚𝑖

. We simply have to match terms to this formula

for all sample estimates and all node estimates because both are

derived from samples.

Error in Node Estimates. First, let’s account for all the uncer-

tainty due to catch-up. Recall that 𝐻 is the set of catch-up samples

we have considered so far and 𝐻𝑖 ⊆ 𝐻 is the samples in partition 𝑅𝑖
with ℎ𝑖 = |𝐻𝑖 |. We note that we do not store the set𝐻 or the subsets

𝐻𝑖 , instead we only use the new catch-up samples to continuously

improve the statistics we store in the nodes. Using the notation in

the previous section, we can calculate the catch-up variance a𝑐 :

a𝑐 (𝑞) =
∑︁

𝑅𝑖 ∈𝑅𝑐𝑜𝑣𝑒𝑟
𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝐻𝑖))
ℎ𝑖

where 𝑤𝑖 =
𝑁𝑖

𝑁𝑞

for AVG queries and 𝑤𝑖 = 1 for SUM/COUNT

queries. Calculating 𝜙𝑞 (𝐻𝑖) is straight-forward. We simply store

additional information that allows us to efficiently calculate the

variance. For any node 𝑖 of T we store ℎ𝑖 ,
∑
𝑡 ∈𝐻𝑖

𝑡 .𝑎2,
∑
𝑡 ∈𝐻𝑖

𝑡 .𝑎.

Error in Sample Estimates. For a partition 𝑅𝑖 ∈ 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , let

𝑆𝑖 ⊆ D be the set of samples in 𝑆 that lie in partition 𝑅𝑖 and let

𝑚𝑖 = |𝑆𝑖 |. Like the catch-up variance, we can calculate the sample

estimate variance a𝑠 :

a𝑠 (𝑞) =
∑︁

𝑅𝑖 ∈𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝑆𝑖))
𝑚𝑖

We can calculate an overall confidence interval as:

±𝑧 ·
√︁
a𝑐 (𝑞) + a𝑠 (𝑞)

where 𝑧 is a normal scaling factor corresponding to the desired

confidence level, e.g., 𝑧 = 1.96 for 95%. As before,𝑤𝑖 =
𝑁𝑖

𝑁𝑞

for AVG

queries and 𝑤𝑖 = 1 for SUM/COUNT queries. In Appendix C, we

show analytically all formulas for computing the variance under

different types of queries.

5 OPTIMAL DPT PARTITIONING
We next describe a new dynamic partitioning algorithm designed

for the dynamic setting.

5.1 Preliminaries and Problem Setup
The partitioning algorithm analyzes the pooled reservoir sample

of data to determine how best to partition the dataset. The goal

of the partitioning algorithm is to find a partitioning such that

the subsequent queries issued to the DPT have low-error. Surpris-

ingly enough, the partitioning algorithm does not need an exact

7

query workload to perform this optimization. It simply needs a

focus aggregation function (e.g., SUM, COUNT, AVG) and finds a

partitioning that minimizes the worst-case query error for suffi-

ciently large predicates. Given a set of 𝑂 (𝑚) samples 𝑆 , the goal

is to construct a data structure that supports the following opera-

tions. (i) Insert or delete a sample from 𝑆 efficiently, and (ii) when

a partitioning request comes, it creates a near-optimum partition

tree T in 𝑜 (𝑚) time.

Let 𝑄 be a set of possible aggregate queries with a predicate.

And, let Θ be the set of all DPT synopses with 𝑘 leaf nodes. Each

DPT consists of a hierarchical rectangular partitioning having 𝑘

partitions/buckets in the last level. The main optimization we need

to solve to find a good enough partitioning is to minimize the

maximum error over the query workload:

min

T∈Θ
max

𝑞∈𝑄
Error(𝑞,T) (1)

The error is defined as the length of the confidence interval, as de-

fined in the previous section. Since the catch-up variance is usually

extremely smaller than the sample estimate variance, we focus on

minimizing the maximum length of the confidence interval with

respect to the sample estimate variance a𝑠 (·). Indeed, the catch-up
phase is running in the background retrieving a large number of

samples as the time passes. Hence, the estimations in every node of

the DPT are constantly improving reducing 𝑣𝑎𝑟 (𝜙𝑞 (𝐻𝑖)) for each
partition 𝑅𝑖 . On the other hand, the number of samples 𝑆 that we

are storing explicitly are limited making the sample estimate vari-

ance larger than the catch-up variance. For simplicity, when we say

variance we always mean the sample estimate variance.

Instead of looking over all possible queries to minimize the max-

imum error, one only needs to focus on single partitions to ensure

they do not have “high-variance” sub-partitions (see Appendix D).

Indeed by considering only these sub-partitions we can still get a√
𝑘-approximation for COUNT and SUM queries over the optimum

partition considering all queries (for 𝑘 leaves). The approximation

factor improves to

√
2 for 𝑑 = 1. For AVG queries the error of the

optimum partition of this simplification is the same with the maxi-

mum error considering every possible query. The error of a query 𝑞

inside a leaf node (partition) 𝑅𝑖 is defined (expanding the equations

from the definition of a𝑠 (·)) as

𝑁 2

𝑖

𝑚3

𝑖

𝑚𝑖

∑︁
𝑡 ∈𝑞

𝑡 .𝑎2−©«
∑︁
𝑡 ∈𝑞

𝑡 .𝑎
ª®¬
2 ,

𝑚𝑖
∑
𝑡 ∈𝑞𝑡 .𝑎

2−
(∑

𝑡 ∈𝑞𝑡 .𝑎
)
2

𝑚𝑖 |𝑞 ∩ 𝑆 |2
.

for SUM/COUNT and AVG queries, respectively. Thus, the opti-

mization problem reduces to finding partitions that do not contain

a high-variance “rectangle” of data.

Given a rectangle 𝑅, the goal is to find a rectangular query

within 𝑅 with maximum variance among all possible queries in

𝑅 ∩ 𝑆 . For now, we assume that we have a dynamic index M with

near-linear space such that given a query rectangle 𝑅, it returns a

query 𝑞 within 𝑅 with a𝑠 (𝑞) ≥ 1

𝛾V(𝑅), for an approximation factor

𝛾 > 1, in 𝑂 (𝑀) time, where V(𝑅) is the variance of the maximum

variance rectangular query in 𝑅. LetM(𝑅) be the variance of the
query returned by the index M. We describe this index with more

details in Subsection 5.3.

5.2 Partitioning for 𝑑 = 1

Now, we discuss how to solve the partitioning optimization prob-

lem in one dimension. We present results for SUM and AVG queries.

COUNT can be thought of as a special case of SUM with binary

data. The basic trick is to search over a discretized set of possible

variance values. For each value 𝑒 , we try to construct a partitioning

of 𝑘 partitions such that in each bucket the length of the longest con-

fidence interval of a query is at most 𝑒 . By systematically reducing

𝑒 in each iteration, we control for the worst-case error.

Bounding the Error. The first step is to calculate the bounds

for the maximum length of the largest possible confidence interval

among queries that intersect one partition. We assume that the

aggregation value of any item in D is bounded by a maximum

valueU and a minimum non-zero value L. We allow items to take

zero values since this is often the case in real datasets but no item

with positive value less than L or larger thanU exists. We assume

that U = 𝑂 (poly(𝑁)) and L = Ω(1/poly(𝑁)). In Appendix D.2

we show that the length of the longest confidence interval is also

bounded by 𝑂 (poly(𝑁)) and Ω(1/poly(𝑁)).
Description of Algorithm. We describe the partitioning algo-

rithm for SUM queries. The procedure is identical for AVG queries.

For a parameter 𝜌 ∈ R with 𝜌 > 1, let 𝐸 = {𝜌𝑡 | 𝑡 ∈ Z, L√
2

≤ 𝜌𝑡 ≤
𝑁U} ∪ {0}, be the discretization of the range defined by the lower

and upper bound of the longest confidence interval (as defined in

the previous paragraph). We run a binary search on the values of 𝐸.

For each value 𝑒 ∈ 𝐸 we consider, we try to construct a partitioning

of 𝑘 partitions such that in each partition the length of the longest

confidence interval of a query is at most 𝑒 . If there exists such a

partitioning we continue the binary search with values 𝑒 ′ < 𝑒 . If

there is no such a partitioning we continue the binary search with

values 𝑒 ′ > 𝑒 . In the end, we return the last partitioning that we

were able to compute.

It remains to describe how to check if a partitioning with 𝑘

buckets (intervals) with maximum length confidence interval at

most 𝑒 exists. A high level description of the algorithm is:

(1) For 𝑖 = 1 to 𝑘

(a) Let 𝑏𝑖 be the 𝑖-th bucket with left endpoint 𝑡𝑎
(b) Binary search on samples 𝑡 𝑗 to find the maximum bucket

𝑏𝑖 with error at most 𝑒

(c) If

√︁
M([𝑡𝑎, 𝑡 𝑗]) ≤ 𝑒

(i) Continue search for values > 𝑗

(ii) Else Continue search for values < 𝑗

(2) If the partitioning contains all samples construct T using 𝑏𝑖
as its leaf nodes. Otherwise T = ∅.

We start with the leftmost sample, say 𝑡1, which is the left boundary

of the first bucket. In order to find its right boundarywe run a binary

search on the samples 𝑆 . Let 𝑡 𝑗 be one of the right boundaries we

check in the binary search, and let 𝑏1 = [𝑡1, 𝑡 𝑗]. If
√︁
M(𝑏1) ≤ 𝑒

then we continue the binary search with a sample at the right side

of 𝑡 𝑗 (larger bucket). Otherwise, we continue the binary search

with a sample at the left side of 𝑡 𝑗 (smaller bucket). When we find

the maximal bucket with longest confidence interval at most 𝑒 we

continue with the second bucket repeating the same process for

at most 𝑘 buckets. In the end, if all samples in 𝑆 are contained in

𝑘 buckets then we return that there exists a partitioning (with 𝑘

8

buckets) with maximum variance at most 𝑒 . If we cannot cover all

samples in 𝑘 buckets then we return that there is no partitioning

with 𝑘 buckets and maximum variance at most 𝑒 .

Correctness. In Appendix D.2 we use the monotonic prop-

erty of the longest confidence interval (the bigger the bucket the

larger the error) and we show

√︁
V(𝑏 ′) ≤

√︁
𝛾M(𝑏 ′) ≤ √

𝛾𝑒 ′ ≤
𝜌
√
𝛾
√︁
V(𝑏∗), where 𝑏 ′ is the bucket with the longest confidence

interval in the returned partitioning, 𝑒 ′ is the smallest value in 𝐸

such that

√︁
V(𝑏∗) ≤ 𝑒 ′, and 𝑏∗ is the bucket of optimum partition-

ing with the largest confidence interval. For 𝑑 = 1 we have that

𝛾 = 4 for SUM and AVG queries queries, so we get a partitioning

where the maximum error is within 2𝜌
√
2 of the optimum error for

SUM queries and within 2𝜌 of the optimum error for AVG queries.

Running time. Since, L,U are polynomially bounded on

𝑁 we have that |𝐸 | = 𝑂 (log𝜌 𝑁) and it can be constructed in

𝑂 (log𝜌 𝑁) time. The binary search over𝐸 takes atmost𝑂 (log log𝜌 𝑁)
steps. We can decide if there exists a partitioning with error 𝑒 in

𝑂 (𝑘𝑀 log𝑚) time. Overall, the running time of our algorithm is

𝑂 (𝑘𝑀 log𝑚 log log𝜌 𝑁). If 𝜌 is a constant, for example 𝜌 = 2, then

the running time is𝑂 (𝑘𝑀 log𝑚 log log𝑁). In Appendix D we have

that in 1-dimension𝑀 = 𝑂 (log𝑚) for SUM and AVG queries. No-

tice that if we skip the log factors the running time depends only

linearly on the number of buckets 𝑘 and the approximation factor

is constant.

5.3 Partitioning in Higher Dimensions
5.3.1 Indexing To Find Maximum Variance. We describe the core

index M that we use in all our partitioning algorithms for any

dimension 𝑑 ≥ 1. All the details and technical proofs will be shown

in Appendix D.1. The exact description of the index depends on the

type of aggregation queries we focus on.

For SUM/COUNT queries, we propose a simple index to find the

query with the largest variance in a query rectangle. In particular,

we build a dynamic range tree on 𝑆 . Given a query rectangle 𝑅,

we split it into two smaller rectangles 𝑅1, 𝑅2 such that |𝑅1 ∩ 𝑆 | =
|𝑅2 ∩ 𝑆 | = |𝑅 ∩ 𝑆 |/2. Using a dynamic range tree [10] we return

the rectangle 𝑅𝑖 (either 𝑅1 or 𝑅2) with the largest variance. We can

show that a𝑠 (𝑅𝑖) ≥ 1

4
V(𝑅). The running time and the update time

is 𝑂 (log𝑑𝑚).
For AVG queries, the algorithm proposed in [30] cannot be ex-

tended to the dynamic case. Hence we propose a new dynamic index

with a better approximation factor. Similarly to [30], we assume

that every valid query that is contained in a bucket of the parti-

tioning must contain at least 2𝛿𝑚 samples (for a small parameter

𝛿 < 1), otherwise the estimation is not accurate. For simplicity, we

use the notation �̃� (·) to hide log(𝑚) factors. In Appendix D.1 we

show the following crucial observation: for any rectangle 𝑞 inside

a query rectangle 𝑅 with |𝑞 ∩ 𝑆 | = 𝛿𝑚 that maximizes

∑
𝑡 ∈𝑞∩𝑆 𝑡 .𝑎

2
,

it holds that a𝑠 (𝑞) ≥ 1

4
V(𝑅). Hence, we build a dynamic index so

that given a query rectangle 𝑅 it returns a rectangle that contains

𝛿𝑚 samples and the sum of squares of their aggregate values is

close to the maximum sum.

We build a dynamic range tree 𝑇 ′
over the samples 𝑆 , storing

the number of samples in each node of the tree. Furthermore, we

build another empty dynamic range tree 𝑇 . We will use 𝑇 to store

weighted rectangles (as points in 2𝑑) that contain at most 𝛿𝑚 sam-

ples. More specifically, we store in 𝑇 the canonical rectangles of 𝑇 ′

that contain at most 𝛿𝑚 samples. Notice that there are �̃� (𝑚) nodes
in𝑇 ′

hence𝑇 uses �̃� (𝑚) space. When we have an insertion or dele-

tion in 𝑇 ′
there are only �̃� (1) nodes/rectangles that are updated,

hence we can update both 𝑇 ′
and 𝑇 in �̃� (1) time. Given a query

rectangle 𝑅 we use𝑇 to find a rectangular query 𝑞∗ with the largest

sum inside 𝑅 in �̃� (1) time. From the definition of a range tree, for

any rectangle there is a partitioning of log
𝑑+1𝑚 canonical rectan-

gles from 𝑇 ′
. Hence we can show that a𝑠 (𝑞∗) ≥ 1

4 log
𝑑+1𝑚

V(𝑅).
The exact complexities depend on the dynamic range tree struc-

ture we use; our data structure has roughly 𝑂 (𝑚 log
3𝑑𝑚) space,

𝑂 (log3𝑑𝑚) update time, and 𝑂 (log2𝑑𝑚) query time.

5.3.2 Partitioning. We construct a partitioning by building a k-d

tree using the dynamic procedure M as we described above. Here,

we use our improved index M to construct a k-d tree. The high

level description of the algorithm is:

(1) Max Heap 𝐶 containing partition 𝑅1 covering all items in D
(2) For 𝑗 = 2 to 𝑘

(a) Extract partition 𝑅𝑖 with maximum M(𝑅𝑖) from 𝐶

(b) Create a partitioning of 𝑅𝑖 of two partitions 𝑅𝑖1 , 𝑅𝑖2 by

splitting on the median of 𝑅𝑖
(c) Insert M(𝑅𝑖1),M(𝑅𝑖2) in 𝐶
(d) Set 𝑅𝑖1 , 𝑅𝑖2 as children of 𝑅𝑖 in T

We can show that such a tree construction returns a parti-

tioning which is near optimal with respect to the optimum parti-

tion tree construction following the same splitting criterion: split

on the median of the leaf node with the largest maximum vari-

ance query. Overall we construct a data structure that can be up-

dated in 𝑂 (polylog𝑚) time. For a (re-)partition activation over a

set 𝑆 of𝑚 samples, we can construct a new T with the following

guarantees: For COUNT/SUM queries, T can be constructed in

𝑂 (𝑘 log𝑑𝑚) time with approximation factor 2

√
𝑘 . For AVG queries,

T can be constructed in 𝑂 (𝑘 log2𝑑𝑚) time with approximation

factor 2 log
(𝑑+1)/2𝑚.

5.4 Re-Partitioning Triggers
Assume that the current partitioning is R and let M(R) be the

(approximate) maximum variance query with respect to the current

set of samples 𝑆 . JanusAQP first checks the number of samples in

each bucket (leaf node) of the current T . If there is a leaf node 𝑖

associated with partition 𝑅𝑖 such that |𝑆𝑖 | << 1

𝛼 log𝑚 (where 𝛼 is

the sampling rate) then there are not enough samples in 𝑢 to make

robust estimators. Hence, we need to find a new re-partitioning.

Even if the number of samples in each bucket is large our system

might enable a re-partitioning: For a partition 𝑅𝑖 in the leaf node

layer of T let M𝑖 = M(𝑅𝑖) be the (approximate) maximum vari-

ance at the moment we constructed T . Let 𝛽 > 1 be a parameter

that controls the maximum allowable change on the variance. It can

either be decided by the user or we can set it to 𝛽 = 10. Assume that

an update occurred in the leaf node associated with the partition 𝑅𝑖 .

After the update we get M ′
𝑖
= M(𝑅𝑖). If 1

𝛽
M𝑖 ≤ M ′

𝑖
≤ 𝛽M𝑖 then

the new maximum variance in partition 𝑏𝑖 is not very different than

before so we do not trigger a re-partition. Otherwise, the maximum

9

variance in bucket 𝑏𝑖 changed by a factor larger than 𝛽 from the

initial variance M𝑖 . In this case a re-partitioning might find a new

tree with smaller maximum error. We compute a new partitioning

R ′
and hence a new tree T . IfM(R ′) < 1

𝛽
M(R) then we activate

a re-partition restarting the catch-up phase over the new tree T . On

the other hand, ifM(R ′) ≥ 1

𝛽
M(R) then our current partitioning

R is good enough so we can still use it. Of course, the user can

also manually trigger re-partitioning. For example, the user can

choose to re-partition once every hour, day, or after 𝜏 insertions

and deletions have occurred. In Appendix E, we also describe how

JanusAQP can execute either partial or full re-partitioning.

5.5 Discussion: Selection of Parameters and
Single Synopsis

Given a memory constraint, our system defines the parameters

𝑚,𝑘 , i.e. the number of samples and the number of leaf nodes in

DPT. The asymptotic space of our index, as we saw in the previous

subsections, is roughly 𝑂 (𝑚 + 𝑘), skipping log𝑚 factors. However,

𝑘 ≪𝑚 so the asymptotic space of our system is𝑂 (𝑚). In particular,

in our experiments we observed that choosing 𝑘 ≈ 0.5
100

𝑚 always

gives a low space and efficient data structure with low error guar-

antees. Hence, using the memory constraint, the space of our index

with respect to𝑚,𝑘 , and the relation between𝑚,𝑘 our system can

automatically set these parameters. If the user also gives a query

processing constraint, we might change the values of𝑚,𝑘 to sat-

isfy this requirement. In particular, the query time of our index

is 𝑂 (𝑘 +min{log𝑑𝑚,𝑚∗}), where𝑚∗
is the maximum number of

samples in a leaf node, which is typically no more than 2 ·𝑚/𝑘 .
So far, we consider that the user defines different synopses

for different query templates. We recall that for a query template

the user should give three inputs: i) the type of the query SUM/-

COUNT/AVG/MAX/MIN, ii)the aggregation attribute𝐴, and iii) the

predicate attributes 𝑐1, . . . , 𝑐𝑑 . Any combination of these inputs cre-

ates a different template. We propose two ways to handle multiple

templates. The first one has the same theoretical guarantees with

respect to the maximum confidence interval as we had for a single

synopsis. In the second one, we present a simpler heuristic way

to handle multiple query templates. We can still have confidence

intervals but we do not have any guarantee over them.

First method: Recall that a synopsis consists of the partition tree

DPT and a set of at most 2𝑚 samples 𝑆 . As we described previously

the overall space for a synopsis is roughly 𝑂 (𝑚 + 𝑘) = 𝑂 (𝑚). We

describe a simple method having one global set 𝑆 of at most 2𝑚

samples and for each query template we only need to construct a

different partition tree DPT. Hence, if the user is interested in 𝐿

different query templates the total space of our index is𝑂 (𝑚+𝐿 ·𝑘).
The main idea is that we store 𝑆 only once in a dynamic range-tree

or a k-d tree and construct one partition tree DPTℎ with 𝑘 leaf

nodes for each query template ℎ ≤ 𝐿. Each node of every DPTℎ
stores the (updated) statistics and the associated (hyper-)rectangle

of the corresponding ℎ-th partitioning. The only difference now

is that we do not store the samples in the leaf nodes of each tree.

Instead, whenever we need access to the samples in a leaf node 𝑢,

we run a reporting query with the corresponding hyper-rectangle

𝑅𝑢 in the range tree (or k-d tree). In this way, using only𝑂 (𝑚+𝐿 ·𝑘)
space, we have theoretical error guarantees for every different query

that belongs in one of the supported query template. The update

time increases by a factor of 𝐿, however, all update operations in

a tree are extremely fast and they can be executed in parallel for

different trees. Furthermore, we note that ideally in our system

we would like to know all query templates upfront so that the

corresponding tree is “ready” whenwe get a query from a supported

template. However, even if the templates are not known upfront,

when we see a query from a new template we can construct a

new partition tree using our efficient partitioning algorithms in

roughly𝑂 (𝑘 ·polylog𝑚) time. Thenwe start the catch-up phase only

for this tree and start answering queries from this new template

with error guarantees. Finally, we notice that the user can give

an overall memory constraint, and not one memory constraint for

each different synopsis. Using the overall upper bound, our system

can automatically decide and update the number of samples we

store or the size of the partition trees that we maintain in order to

satisfy the memory constraint.

Second method: There is also a simpler, heuristic way to han-

dle queries from different templates using only one partition tree

DPT. Imagine that we construct a partition tree using the SUM ag-

gregation function over the aggregation attribute 𝐴 and predicate

attributes 𝑐1, . . . , 𝑐𝑑 . If the user asks a query with a different type

of aggregation function, say AVG or COUNT, we can still use the

same tree to answer the query as long as we store and maintain the

sum and the count in each node of the tree. If the user asks a query

with a different aggregation attribute 𝐵 instead of 𝐴 there are two

ways to handle it: i) We store and maintain statistics in DPT for

all attributes including 𝐵 (we always assume constant number of

attributes). Hence, we can still answer a query using the partition

tree straightforwardly. ii) If we do not store and maintain statistics

for all attributes, then we can perform stratified sampling using

the strata and the samples in the leaf nodes of the DPT. Finally,
assume that the system encounters a new query having different

predicate attributes. There are a few ways to handle it: i) Assume

that the dynamic partition tree DPT we constructed at the begin-

ning was constructed over all possible predicate attributes of the

tuples. Recall that throughout our submission we always assume a

constant number of attributes. We can always query such tree with

any query range over any subset of predicate attributes and return

an estimation with confidence intervals. The tree is not optimized

strictly with respect to the predicate attributes of the query (as in

the first method) however we expect the error to be low. ii) Simply

apply uniform sampling using the samples 𝑆 , or iii) re-partition the

tree for the new predicate attributes.

6 EXPERIMENTS
We run our experiments on a Linux machine with an Intel Core

i7-8700 3.2GHz CPU and 16GB RAM.

6.1 Setup
We generate query workloads of 2000 queries by uniformly sam-

pling from rectangular range queries over the predicates. We then

initialize a JanusAQP instance with a user-specified sample rate,

a catch-up ratio and a number of leaf nodes of the partition tree

to compare with other baselines (these parameters directly control

the Throughput, Query Latency, and Storage Size).

10

6.1.1 Datasets. Intel Wireless dataset. The Intel Wireless dataset

[38] contains 3 million rows of sensor data collected in the Berkeley

Research lab in 2004. Each row contains measurements like humid-

ity, temperature, light, voltage as well as the date and time each

record was collected.

New York Taxi Records dataset. The New York City Taxi Trip

Records dataset [41] contains 7.7 million rows of yellow and green

taxi trip records collected in January 2019. Each record contains

information about the trip including pickUpDateTime, dropOff-

DateTime, tripDistance, dropOffLocation, passengerCount, etc.

NASDAQ ETF Prices dataset. The NASDAQ Exchange Traded Fund

(ETF) Prices dataset[33] contains 2166 ETFs traded in the NASDAQ

exchange from April 1986 to April 2020. There are 4 million entries

in the dataset and each entry contains the date, the volume of

transactions of an ETF on the date, and 4 prices: the price of an ETF

when the market opens and closes; the highest and the lowest of

its daily price range.

6.1.2 Metrics and ground truth. We report the wall-clock latency

and the throughput, i.e. number of requests (query/data) processed

per second. To measure the accuracy of the system, we report the

95 percentile of the relative error which is the difference between

ground truth and estimated query result divided by the ground

truth. We define the ground truth to be w.r.t all the tuples available

when the query arrives, i.e. the true results reflect all insertions and

deletions up to its arrival point. To make sure our experiments are

deterministic, we fix this sequence up-front and ensure they are

the same for each baseline.

6.1.3 Baselines. All of these baselines are tuned to roughly control
for query latency.

Reservoir Sampling (RS) and Stratified Reservoir Sampling
(SRS). We construct a uniform sample of the entire data set which

is maintained using the reservoir sampling algorithm [43]. We use

a variant of RS first designed for the AQUA system that handles

both insertions and deletions [16]
2
. Unless otherwise noted, we use

a 1% sample of data. For stratified seservoir sampling, the strata is

constructed using a equal-depth partitioning algorithm.

DeepDB. We also compare with a machine learning-based baseline

called DeepDB[20]. DeepDB achieves state-of-the-art AQP results

in the static setting, and we chose it as a baseline since it has limited

support for dynamic data. In our baseline, DeepDB trains on 10%

of the data. We set this to be equivalent to the “catch-up” sampling

in DPT.
Dynamic Partition Tree-Only (DPT). We compare with a base-

line of only using a singleDPT synopsis without online optimization.

This synopsis is constructed once and then used for the duration of

the experiment. Unless otherwise noted there are 128 leaf nodes

in a balanced binary tree, the leaf nodes are associated with 1%

samples of their respective strata, and the catch-up sampling rate

10% of the data.

JanusAQP. Finally, we evaluate the full-featured JanusAQP system.

This includes a DPT and also performs re-partitioning if needed.

Unless otherwise noted there are 128 leaf nodes in a balanced bi-

nary tree, the leaf nodes are associated with 1% samples of their

respective strata, and the catch-up sampling rate 10% of the data.

2
Due to its age, a direct comparison with AQUA was not feasible

The storage costs of the baselines on the NYC Taxi dataset given

the typical setting (128 leaf-nodes, 10% catch-up rate, and 1% sample

rate) are: reservoir sampling baseline takes about 5MB, JanusAQP
and DPT takes about 6MB, a DeepDB baseline trained with 10% of

the data is about 60MB.

6.2 Accuracy
We first evaluate the end-to-end performance of JanusAQP and the

baselines on a 1d problem (1 predicate attribute). For the NYC Taxi

dataset, we use the pickUpTime attribute as the predicate attribute

and the tripDistance attribute as the aggregate attribute; for the

ETF dataset, we use the volume attribute as the predicate attribute

and the close attribute as the aggregate attribute; for the Intel

Wireless dataset, we use the time and light attributes as predicate
and aggregate attribute respectively.

We start with 10% of the data in Kafka which is used by the base-

lines for initialization (simulating historical data). We incrementally

add 10% more data in increments (simulating new data arrival). Af-

ter every 10% increment, we re-train the model for DeepDB and

re-initialize the DPT used by JanusAQP. We report results when

20%, 50%, and 90% of the rows from each dataset are inserted into the

system. The median relative error and the corresponding average

query latency can be found in Table 2.

We can see that JanusAQP has the overall best accuracy while

controlling for query latency. We note that the accuracy of DeepDB

is stable as a function of progress. This is because as a learned

model DeepDB has a roughly fixed resolution of the data (it does

not increase the number of parameters as more data is inserted).
3

These findings are consistent with results from [30]. The accuracy

of RS and SRS improves at a cost of a higher query latency.

6.3 Online Performance
We populate Kafka with the first 𝑝 percent of the NYC Taxi dataset

(𝑝 varies from 10 to 90). Like before, we initialize JanusAQP on

the first 10% of data and then incrementally add increments of 10%

more. In this experiment, we construct a mixed update workload of

both insertions and deletions. On the left plot of Figure 5, we show

the throughput of handling insertions and deletions using a pool of

12 threads. We can see the performance of JanusAQP is quite stable

and does not change with the size of existing data or the amount

of data that have been processed. For each insertion and deletion,

we simply find the target node in 𝑂 (log(𝑘)) and modify the sum-

mary. Even though a larger reservoir size increases the overhead

of manipulating the samples for reservoir sampling, the increased

overhead is unnoticeable. This is because the stratum stored in each

node is
1

𝑘
of the reservoir, and each stratum is independent with

others and race condition only happens if two workers are working

on the same node.

On the right plot of Figure 5, we show the re-optimization time

cost in seconds by JanusAQP and DeepDB. The cost to initialize

JanusAQP increases with the number of tuples stored in Kafka but

it is still much cheaper than DeepDB. It is worth noting that the

re-optimization cost of DeepDB is the cost of re-training instead

of incremental training. This is mostly due to the constraint of the

3
We omit the results of DeepDB on the ETF dataset in Table 2 due to very large error

(> 1000%) for SUM queries while the error of COUNT queries is reasonable.

11

Table 2: Median relative error (%) of 2000 SUM random queries and average query latency (ms/query) over three datasets.

—

Approach

JanusAQP
DeepDB

RS

SRS

Intel (%)

0.2 0.5 0.9

0.67 0.62 0.33

1.5 1.7 0.8

2.1 1.6 1.3

1.3 1.3 1.2

NYC (%)

0.2 0.5 0.9

0.48 0.22 0.2

4.7 4.7 4.7

3.4 2.1 0.94

2.4 1.2 0.95

ETF (%)

0.2 0.5 0.9

5 4.3 2.3

- - -

16 9.8 8.6

10 8.2 8

Intel (ms/query)

0.2 0.5 0.9

0.19 0.31 0.63

0.6 0.6 0.6

2.5 6.3 13.2

3.1 6 10.7

NYC (ms/query)

0.2 0.5 0.9

0.27 0.57 0.97

0.6 0.6 0.6

4.7 14.2 30.6

4.6 14.7 25.3

ETF (ms/query)

0.2 0.5 0.9

0.14 0.28 0.46

0.6 0.6 0.6

2.58 6.8 13

2.66 5.2 12.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Existing Data Ratio

0

50000

100000

150000

200000

250000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

Insertion
Deletion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0

20

40

60

80

100

R
e-

op
ti

m
iz

at
io

n
C

os
t (

s)

JanusAQP
DeepDB

Figure 5: We evaluate the throughput of JanusAQP when
handling insertions and deletions in multi-threaded mode.
We also compare the re-optimization cost with DeepDB.

API exposed by DeepDB, and we observe that re-train a model

with 2𝑛 samples is faster than train a model with 𝑛 samples then

incrementally train another 𝑛 samples. The results suggest that

complex, learned synopses are not ideal in the dynamic setting.

6.4 Handling Deletion
We construct a JanusAQP instance with the 50% percent of each

dataset, then we delete the last 𝑝% of data of the first 50% (𝑝 varies

from 1% to 9%). After JanusAQP process all the deletions, a query

workload of 2000 random queries is evaluated and we record the

median relative error of the 2000 queries. We use the data that

remains in the system to compute the ground truth, e.g., for 𝑝 = 1%,

the ground truth is computed with the first 49% of each dataset.

Results can be found in Figure 6, we notice that the relative

error is relatively stable when we vary the deletion percentage.

This is because the tuples that are being deleted are uniformly dis-

tributed over the predicate attributes of the query workloads, i.e.

the deletion would occur in each leaf node of the DPT with roughly

the same probability, therefore, the DPT without re-optimization

works reasonably well. In another experiment we artificially gen-

erate deletions that are skewed to demonstrate scenario where

re-optimization is needed, details can be found in Sec. 6.8.

6.5 The Catch-up Phase
In this experiment, we study how the catch-up phase can impact

the accuracy and performance of the entire system.

6.5.1 Accuracy. We use the entire Intel wireless dataset as the

existing data. We compare a set of JanusAQP (128, 𝑐 , 1%) instances

where the catch-up goal 𝑐 varies from 1% to 10% with a step of 1%.

When each JanusAQP instance reaches the catch-up goal, we use

it to evaluate the same set of 2000 random queries generated using

1% 2% 3% 4% 5% 6% 7% 8% 9%
Deletion Percentage

0.01

0.02

0.03

0.04

M
ed

ia
n

R
el

at
iv

e
Er

ro
r

IntelWireless
ETF
NYCTaxi

Figure 6: Median relative error of JanusAQP varying the
amount of deletions from 1% to 9% over three datasets.

1 2 3 4 5 6 7 8 9 10
Catch-up Percentage

0.04

0.05

0.06

0.07

P9
5

R
el

at
iv

e
Er

ro
r

JanusAQP
RS

1 2 3 4 5 6 7 8 9 10
Catch-up Percentage

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e(
s)

Loading
Processing

Figure 7: Varying the catch-up goal from 1% to 10% of the
data, we evaluate the accuracy of JanusAQP (left plot) and
the time cost of the catch-up phase (right plot).

the light attribute as the aggregate attribute and the time attribute

as the predicate attribute.

The results can be found in the left plot of Figure 7. As a refer-

ence, we also show the accuracy of an RS baseline with 1% sample

rate.We notice that JanusAQP (128,1%,1%) has no advantage against
the RS baseline because neither the samples nor the summaries

built during catch-up could provide better accuracy. As we increase

the catch-up ratio, we can see an improvement in accuracy because

the quality of the summaries built by the catch-up phase improved.

Comparing with the expensive offline pre-processing used in [30],

we believe the catch-up phase is a better alternative that provides

another knob to tune the tradeoff between accuracy and cost.

6.5.2 Overhead. The overhead of the catch-up phase comes from

two sources: the loading and processing of the samples. We dis-

tinguish and measure the two types of overhead in terms of their

time cost. Data loading time measures the time spent on calling the

Kafka poll() API, transferring the data, and ETL operations that

are necessary to prepare the data for JanusAQP to process. It is

worth noting that the data loading cost is part of the essential cost

that occurs in all systems and is usually less relevant to the core

design of the system but more relevant to the design of interfaces.

12

For example, with a different interface, instead of dealing with the

strings from Kafka that can be expensive to parse, the system could

use Protocol Buffers[18] for more efficient data exchanging or even

offload some of the ETL duties to the client-side as described in [11].

On the other hand, the data processing time stands for the time

taken by JanusAQP to analyze the data then accordingly modify

internal data structures that will be used for query processing.

Results can be found in the right plot of Figure 7.We can see that

the data processing with a single thread takes less than 1.5 seconds

for a catch-up ratio of 10%, which is equivalent to a throughput of

processing 160,000 tuples per second. Furthermore, the data loading

cost is much higher than the data processing cost and we believe

the data loading cost can be further improved by more engineering

efforts and techniques such as client-assisted data loading[11].

6.6 Dynamic Query Templates
In this section, using the NYC Taxi dataset, we conduct experi-

ments to demonstrate the robustness of JanusAQP. In particular,

we implement the heuristic way of JanusAQP to handle new query

templates, as described in Subsection 5.5. We explore the error

considering all three cases: Different predicate attributes, different

aggregation attribute, and different aggregation function.

First, we consider the case where JanusAQP is constructed us-

ing one predicate attribute but the query uses another attribute

as predicate attribute. In Subsection 5.5 we proposed three ways

to handle it. Here we implement the simpler way where we ap-

ply uniform sampling using the samples 𝑆 which leads to higher

query latency similar to what we observed for RS in Table 2. The

results can be found in the left plot of Figure 8: the PickupOver-

Pickup baseline is the case where the query and JanusAQP both

use the PickupTime attribute as predicate attribute; the Dropof-

fOverDropoff baseline is the case where the query and JanusAQP
both use the DropoffTime attribute as predicate attribute; lastly,

the DropoffOverPickup baseline is the case where the query use

the DropoffTime attribute as predicate attribute while JanusAQP
is constructed using PickupTime as predicate attribute. We observe

that when the two attributes differs (DropoffOVerPickup) we have

the highest error (but still it happens to be quite competitive). After

a re-partitioning with respect to the new predicate attribute the

high accuracy can be restored (DropoffOverDropoff). Even though

we drew three curves over the entire progress, we assume that

the system first considers PickupOverPickup between [0.1 − 0.3)
(cycles), then DropoffOverPickup between [0.3 − 0.6) (stars), and
finally DropoffOverDropoff between [0.7 − 0.9] (triangles). We

present all values over the three curves to show all the details. This

is also the case in all plots of Figure 5.5.

Second, we consider the case where JanusAQP is constructed

using one aggregation attribute but the query uses a different ag-

gregation attribute. In Section 5, we described how the aggregation

attribute is used by our partitioning algorithm while constructing

JanusAQP. In this experiment, we show how the change of aggrega-

tion attribute affects the performance of JanusAQP. The result can
be found in the middle plot of Figure 8 where we show two baselines

indicating whether the aggregation attribute used by JanusAQP
is the same with the aggregate attribute of the query. We can see

the accuracy of the two baselines are quite close, which suggests

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.02

0.04

0.06

0.08

0.10

0.12

P9
5

R
el

at
iv

e
Er

ro
r

PickupOverPickup
DropoffOverDropoff
DropoffOverPickup

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.02

0.03

0.04

0.05

0.06 Same
Different

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.01

0.02

0.03

0.04

0.05

0.06
SUM
CNT
AVG

Figure 8:We evaluate the robustness of JanusAQP over three
scenarios where the predicate attribute, the aggregate at-
tribute, and the aggregate function used by the query work-
load might change from the ones that are used to construct
JanusAQP.

that JanusAQP is quite robust over the change of the aggregation

attribute.

Finally, we study how JanusAQP performs over different aggre-

gation functions. As we described earlier, SUM, CNT and AVG are

all part of the statistics we keep and maintain in the partition tree

therefore no additional effort is required to take care of a change

in aggregation function. Results in the right plot of 8 suggest all

the three aggregate functions can achieve good accuracy, which

also implies other aggregate functions such as STDDEV that can

be composed using SUM and CNT would also perform well.

Overall, we show that our system can support different query

templates with low error even with the heuristic way that stores

and maintains only one partition tree.

6.7 Multi-dimensional Query Templates
Next, we investigate the performance of JanusAQP with multi-

dimensional queries on the NASDAQ ETF Prices dataset. We ran-

domly generate 2000 queries from a 5-D query template that uses

the volume attribute as the target attribute, the date attribute and

the 4 price attributes as predicate attributes. We perform the same

workflow as we did in Section 6.2. We first compare the median rel-

ative error of JanusAQP (256,10%,1%) with DeepDB and the results

can be found in the left plot of Figure 9. We notice that the accuracy

of JanusAQP is better than DeepDB but the relative error increases

for both. This is because multi-dimensional queries are usually

more selective. Also, because the queries are generated using the

entire dataset, we notice that many of the ground truths generated

using the first 20% of the data are 0s. Therefore, in the experiment,

we start with 30% of the data. On the right plot of Figure 9, we can

find the re-optimization cost of JanusAQP is lower than DeepDB

but is more expensive than in the 1D setting. While the increase

of dimensions can indeed make it more expensive to process the

samples we fetched during catch-up, we believe the re-optimization

cost can be further improved with more engineering efforts.

6.8 Re-partitioning
In the first experiment, using the NYC Taxi dataset, JanusAQP
performs a periodic re-partitioning after every 10% insertions. For

comparison, the DPT baseline does not perform any re-partitioning

and we evaluate the accuracy. We deliberately skew the insertions

by sorting on pickUpDateTime so that new insertions would hit

13

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.0

0.1

0.2

0.3
M

ed
ia

n
R

el
at

iv
e

Er
ro

r

JanusAQP
DeepDB

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0

10

20

30

40

50

R
e-

op
ti

m
iz

at
io

n
C

os
t (

s)

JanusAQP
DeepDB

Figure 9: We compare the median relative error and the
re-optimization cost of JanusAQP with DeepDB on multi-
dimensional queries.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P9
5

R
el

at
iv

e
Er

ro
r

DPT
JanusAQP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Progress

0.02

0.03

0.04

0.05

0.06

P9
5

R
el

at
iv

e
Er

ro
r

DPT
JanusAQP

Figure 10: We compare the accuracy of JanusAQP and DPT
in two scenarios that cause imbalanced partition trees.

a small number of partitions. The results are illustrated in Figure

10(left), we can see the relative error of DPT increases drastically

due to a partition tree that becomes more and more imbalanced

with new insertions. With periodic re-partition, JanusAQP keeps

the accuracy at a controlled level.

In the second experiment, we use the pickupTimeOfDay as the

predicate attribute. Because the dataset is randomly distributed

over the pickupTimeOfDay attribute, the insertions are not skewed
as in the previous setting. To demonstrate a situation where a re-

partition is triggered by deletions, we randomly choose 10% of the

nodes and we randomly delete half of the samples that belong to

these nodes then we insert the next 10% data. After the insertion,

the re-partition will be triggered for JanusAQP. For comparison,

we use a DPT baseline that does not perform any re-partition. We

perform the same operations to the leaf nodes of the DPT baseline

then we evaluate the same set of queries. The results can be found

in the right plot of Figure 10, we can see the relative error of DPT
increases due to the imbalanced partition tree while the error of

JanusAQP drops because of re-partition.

6.9 A More Efficient Partitioning Algorithm
In Section 5, we propose a binary search-based (BS-based) parti-

tioning algorithm for 1 dimension that is much more efficient. In

this experiment, we compare the accuracy and time cost of the

BS-based algorithm with the dynamic programming-based parti-

tioning algorithm used by PASS on the Intel Wireless dataset. We

implement the BS-based algorithm in Python in our code base of

PASS for a fair comparison. We measure the time cost in seconds

of each partitioning algorithm given different number of partitions,

Table 3: We compare our new binary search-based (BS) par-
titioning algorithm with the dynamic programming-based
(DP) algorithm proposed in [30] on the Intel dataset.

16 32 64 128

Partition Time (s)

DP 16 22 382 6349

BS 0.3 0.3 0.4 1.6

Median RE (CNT)

DP 0.2% 0.1% 0.05% 0.04%

BS 0.6% 0.4% 0.1% 0.1%

Median RE (SUM)

DP 0.2% 0.1% 0.07% 0.05%

BS 1% 0.9% 0.2% 0.2%

Median RE (AVG)

DP 0.2% 0.1% 0.08% 0.05%

BS 1% 0.7% 0.2% 0.15%

we also compare the median relative error of the PASS variation

over 2000 randomly generate queries.

The result can be found in Table 3. We vary the number of

partitions from 16 to 128, as we increase the number of partitions,

the sample size used by the algorithms also increase. We notice

that the time cost of the DP-based algorithm increase drastically

with the number of partitions while the time cost of the BS-based

algorithm increase slightly. On the accuracy side, the DP-based

algorithm does lead to a lower error but the BS-based algorithm

also introduce good accuracy. Overall, we believe the BS-based

algorithm is more scalable than the DP-based algorithm and it

provides favorable trade-off between cost and accuracy.

REFERENCES
[1] Nasdaq bookviewer, 2021.

[2] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast decision support system

using approximate query answers. In In Proc. of 25th Intl. Conf. on Very Large
Data Bases. Citeseer, 1999.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable

summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of Database Systems, pages 23–34, 2012.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:

queries with bounded errors and bounded response times on very large data.

In Proceedings of the 8th ACM European Conference on Computer Systems, pages
29–42, 2013.

[5] J. L. Bentley and J. B. Saxe. Decomposable searching problems i. static-to-dynamic

transformation. Journal of Algorithms, 1(4):301–358, 1980.
[6] S. Chandrasekaran and M. J. Franklin. Psoup: a system for streaming queries

over streaming data. The VLDB Journal, 12(2):140–156, 2003.
[7] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver

bullet. In Proceedings of the 2017 ACM International Conference on Management
of Data, pages 511–519, 2017.

[8] G. Cormode. Sketch techniques for approximate query processing. Foundations
and Trends in Databases. NOW publishers, 2011.

[9] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al. Synopses for mas-

sive data: Samples, histograms, wavelets, sketches. Foundations and Trends® in
Databases, 4(1–3):1–294, 2011.

[10] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

[11] C. Ding, D. Tang, X. Liang, A. J. Elmore, and S. Krishnan. Ciao: An optimiza-

tion framework for client-assisted data loading. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 1979–1984. IEEE, 2021.

[12] D. Donjerkovic, R. Ramakrishnan, and Y. Ioannidis. Dynamic histograms: Cap-

turing evolving data sets. In Proceedings of 16th International Conference on Data
Engineering, pages 86–86. IEEE Computer Society, 2000.

[13] J. Erickson. Static-to-dynamic transformations. http://jeffe.cs.illinois.edu/

teaching/datastructures/notes/01-statictodynamic.pdf.

[14] E. Gan, P. Bailis, andM. Charikar. Coopstore: Optimizing precomputed summaries

for aggregation. Proceedings of the VLDB Endowment, 13(12):2174–2187, 2020.
[15] M. N. Garofalakis and P. B. Gibbons. Approximate query processing: Taming the

terabytes. In VLDB, volume 10, pages 645927–672356, 2001.

[16] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approx-

imate histograms. ACM Transactions on Database Systems (TODS), 27(3):261–298,
2002.

14

http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf

[17] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.

Fast, small-space algorithms for approximate histogram maintenance. In Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing, pages
389–398, 2002.

[18] Google. Google protocol buffer, 2021.

[19] S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for

histogram construction problems. Trans. on Datab. Syst., 31(1):396–438, 2006.
[20] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig.

Deepdb: Learn from data, not from queries! VLDB Endowment, 2019.
[21] H. Jagadish, H. Jin, B. C. Ooi, and K.-L. Tan. Global optimization of histograms.

ACM SIGMOD Record, 30(2):223–234, 2001.
[22] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel.

Optimal histograms with quality guarantees. In VLDB, volume 98, pages 24–27,

1998.

[23] C. Jermaine. Robust estimation with sampling and approximate pre-aggregation.

In Proceedings 2003 VLDB Conference, pages 886–897. Elsevier, 2003.
[24] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal. New sampling-based estimators

for OLAP queries. In 22nd International Conference on Data Engineering (ICDE’06),
pages 18–18. IEEE, 2006.

[25] S. Joshi and C. Jermaine. Materialized sample views for database approximation.

IEEE Transactions on Knowledge and Data Engineering, 20(3):337–351, 2008.
[26] M. Jurgens and H.-J. Lenz. The r/sub a/*-tree: an improved r*-tree with mate-

rialized data for supporting range queries on olap-data. In Proceedings Ninth
International Workshop on Database and Expert Systems Applications (Cat. No.
98EX130), pages 186–191. IEEE, 1998.

[27] N. Koudas, S.Muthukrishnan, andD. Srivastava. Optimal histograms for hierarchi-

cal range queries. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 196–204, 2000.

[28] I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries with a

multi-resolution tree structure. Acm sigmod record, 30(2):401–412, 2001.
[29] X. Liang, Z. Shang, S. Krishnan, A. J. Elmore, and M. J. Franklin. Fast and reliable

missing data contingency analysis with predicate-constraints. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
285–295, 2020.

[30] X. Liang, S. Sintos, Z. Shang, and S. Krishnan. Combining aggregation and

sampling (nearly) optimally for approximate query processing. In Proceedings of
the 2021 International Conference on Management of Data, pages 1129–1141, 2021.

[31] Q. Ma, A. M. Shanghooshabad, M. Almasi, M. Kurmanji, and P. Triantafillou.

Learned approximate query processing: Make it light, accurate and fast. In CIDR,
2021.

[32] M. Olma, O. Papapetrou, R. Appuswamy, and A. Ailamaki. Taster: self-tuning,

elastic and online approximate query processing. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 482–493. IEEE, 2019.

[33] O. Onyshchak. Stock market dataset. =https://www.kaggle.com/dsv/1054465,

2020.

[34] M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion

methods for decomposable searching problems. Information Processing Letters,
12(4):168–173, 1981.

[35] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing approx-

imate query processing. In Proceedings of the 2018 International Conference on
Management of Data, pages 1461–1476, 2018.

[36] Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari. Database learning: Toward

a database that becomes smarter every time. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 587–602, 2017.

[37] J. Peng, D. Zhang, J. Wang, and J. Pei. Aqp++ connecting approximate query pro-

cessing with aggregate precomputation for interactive analytics. In Proceedings
of the 2018 International Conference on Management of Data, pages 1477–1492,
2018.

[38] W. H. Peter Bodik et al. Intel wireless dataset. http://db.csail.mit.edu/labdata/

labdata.html, 2004.

[39] R. Poepsel-Lemaitre, M. Kiefer, J. von Hein, J.-A. Quiané-Ruiz, and V. Markl. In

the land of data streams where synopses are missing, one framework to bring

them all. 2021.

[40] K. Rong, Y. Lu, P. Bailis, S. Kandula, and P. Levis. Approximate partition selection

for big-data workloads using summary statistics. arXiv preprint arXiv:2008.10569,
2020.

[41] N. Taxi and L. Commission. New york city taxi trip records dataset. https:

//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, 2019.

[42] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional his-

tograms. In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pages 428–439, 2002.

[43] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

[44] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with

complex queries. Proceedings of the VLDB Endowment, 13(3):390–402, 2019.
[45] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and aggregation.

Proceedings of the VLDB Endowment, 9(3):84–95, 2015.

[46] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-

stein, S. Krishnan, and I. Stoica. Deep unsupervised cardinality estimation. arXiv
preprint arXiv:1905.04278, 2019.

15

=
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

A SAMPLING FROM KAFKA-LIKE SYSTEMS
Random sampling is a key building block of JanusAQP because

it is used in many components: we use random samples to build

the leaf layer of the partition tree and initialize the reservoir that

are later used to solve queries. During the catch-up phase, we also

use random samples to construct the summaries that are stored

in the leaf nodes. Random sampling affects both the accuracy and

performance of the entire JanusAQP system: a biased sample hurts

the accuracy of the system and expensive sampling operations leads

to a higher latency and lower throughput.

Designing a random sampler for message brokers like Kafka

can be a non-trivial task because the API of such systems usually

does not provide random access to the data. To retrieve data from a

Kafka topic, a Kafka consumer has to send an offset to the server

indicating the location it wants to access data from. Therefore, a

naive random sampler can be implemented by using the poll()
API with a random offset.

However, such a naive implementation can be expensive be-

cause each poll could retrieve a batch of thousands of tuples that

are contiguous (therefore biased). To guarantee unbiased sampling,

we will have to keep only a small portion from each batch and

discard most of the tuples, set another random offset, repeat the

process until we collected enough samples.

To build a scalable, efficient and unbiased random sampler for

Kafka, we need more control over the polling process besides the

offset, to be more specific, we want to control the size of each poll.

We propose two sampling methods:

Sequential Sampler A sequential sampler retrieves the data

in a sequential manner. In each poll, a random sample is drawn

from the batch and the rest tuples are discard. Sequential samplers

work the best when the size of the dataset is medium to large

because the entire dataset is transferred from Kafka to the sampler.

Therefore, one overhead of this approach is the network traffic of

transferring the entire dataset, another drawback of a sequential

sampler is that the random samples are only available until the

sampler have retrieved the entire dataset, the high latency might

not be acceptable in some situations.

Singleton Sampler In each poll, a singleton sampler request

one tuple from a random offset, it repeats until enough sample has

been collected. Singleton samplers minimize the network traffic

with the cost of server-side overhead due to a more frequent use of

the API. The main advantage of a singleton sampler is that it offers

lower latency because the random sample is built incrementally, a

small random sample can be available with a lower latency.

In general, we observe that, for light-weight sampling tasks

or tasks that requires low latency, a singleton sampler works the

best. In scenarios where the dataset size is medium to large and

the expected latency is acceptable, the sequential sampler might

be preferred for a more consistent performance. There might be an

interesting mid-ground for sampling from Kafka-like systems that

can offer better efficiency and latency and we plan to investigate in

a future work.

Experiments. In this experiment, we study the performance of

the two sampling strategies discussed in Section A with the Intel

wireless dataset. We implement samplers with different poll size

and measure the time cost of collecting 1 million tuples from Kafka.

Essentially, this experiment measures the overhead introduced by

transferring the data and calling Kafka API.

Results can be found in Table A where the Singleton sampler

is represented by the row with pollSize equals to 1. Rows with

pollSize larger than 1 are sequential samplers which retrieve the

entire dataset and sample from each poll.

pollSize nPolls total(ms) ms/poll EquivSingletonSR

1 1000000 19000 0.019 —

10 10000 4000 0.04 0.21

100 10000 2000 0.02 0.11

1000 1000 1500 1.5 0.08

10000 100 1400 14 0.075

100000 10 1700 17 0.09

Table 4:We use a singleton sampler (pollSize=1) and sequen-
tial samplers (pollSize>1) to sample 1 million tuples, given
the latency of each sequential samplers, we derive a equiva-
lent sample rate of the singleton sampler indicate a sample
rate above which sequential samplers take less time to col-
lect all requested random samples. If the expected total la-
tency is acceptable, sequential samplers might be preferred
in these scenarios.

Because we have to wait a total(ms) time for sequential sam-

plers to collect the samples.We calculate the applicable sampleRate
for each sequential sampler above which they can achieve a lower

total(ms). For example, if our sample rate is 10% which is larger

than 7.5% achieved by the best Sequential sampler with pollSize of

10000, the singleton sampler will take more time than the sequen-

tial sampler to complete the sampling process. And the sequential

samplers might be preferred if the estimated latency of total(ms)
is acceptable.

In JanusAQP, because the sample rate we use during initializa-

tion is no larger than 1%, we always use a singleton sampler during

initialization, i.e. to collect sample to build the partition tree and to

initialized the strata. For the catch-up phase, if our catch-up rate is

larger than 10%, when dealing with a dataset of medium to large

size with an acceptable latency, we will prefer to use a sequential

sampler because we can have a complete catch-up with a better

accuracy, otherwise, a singleton sampler is preferred for the low

latency it offers and we will keep it running in background.

B SUFFICIENTLY LARGE STRATA FOR
PROPORTIONAL ALLOCATION

Let 𝛼 =𝑚/𝑁 be the current sampling rate. We argue that if each

stratum has size at least 𝑁𝑖 ≥ 16

𝛼 log𝑘 , then all of them satisfy

the proportional allocation requirements up to a factor of 2 with

probability at least 1 − 1/𝑘 .
Let 𝑋𝑖 be the number of samples in the 𝑖-th stratum with 𝑁𝑖 ≥

16

𝛼 log𝑘 . We have 𝐸 [𝑋𝑖] = 𝛼𝑁𝑖 . From Chernoff bound
4
we have

𝑃𝑟

[
𝑋𝑖 ≤

1

2

𝛼𝑁𝑖

]
≤ 1

𝑒𝛼𝑁𝑖/8
≤ 1

𝑒2 log𝑘
=

1

𝑘2
.

4
We use the multiplicative Chernoff bound: 𝑃𝑟 [𝑋 ≤ (1− 𝛿)`] ≤ 𝑒−𝛿

2`/2
, for 𝛿 ≥ 0,

and ` = 𝐸 [𝑋].
16

There are 𝑘 buckets, so every bucket satisfies the proportional

allocation requirements, up to a factor of 2, with probability at least

1 − 1/𝑘 .
Now, we discuss how easy is to satisfy the constraint 𝑁𝑖 ≥

16

𝛼 log(𝑘). The size of the dataset 𝑁 should be 𝑁 ≥ 16𝑘 log𝑘
𝛼 =

16𝑘 log𝑘
𝑚 𝑁 . Equivalently, 16𝑘 log(𝑘) ≤ 𝑚. This inequality is always

true for large enough datasets. For example, using 𝑁 = 4000000

(which is (on the smaller size) a typical size of the real datasets

we tried) with 𝛼 = 1% we have 16𝑘 log(𝑘) ≤ 40000 ⇔ 𝑘 ≤ 303,

which is always the case in our experiments. More generally, if

we set 𝑘 ≈ 0.25
100

𝑚, which is usually the largest value we use in

our experiments, then log(𝑘) ≤ 25, which is always true in real

scenarios.

C VARIANCE ESTIMATOR DETAILS
Using algebra we have the following formulas: For a COUNT/SUM

query 𝑞 (for COUNT we assume that 𝑡 .𝑎 = 1 for any tuple 𝑡),

𝑤𝑖 ·𝑚𝑒𝑎𝑛(𝜙𝑞 (𝑆𝑖)) =
1

𝑚𝑖

∑︁
𝑡 ∈𝑆𝑖

𝜙 (𝑡) = 𝑁𝑖

𝑚𝑖

∑︁
𝑡 ∈𝑆𝑖∩𝑞

𝑡 .𝑎

𝑤𝑖 ·𝑚𝑒𝑎𝑛(𝜙𝑞 (𝐻𝑖)) =
1

ℎ𝑖

∑︁
𝑡 ∈𝐻𝑖

𝜙 (𝑡) = 𝑁𝑖

ℎ𝑖

∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎

𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝑆𝑖))
𝑚𝑖

=
𝑁 2

𝑖

𝑚3

𝑖

𝑚𝑖

∑︁
𝑡 ∈𝑆𝑖∩𝑞

𝑡 .𝑎2 − ©«
∑︁

𝑡 ∈𝑆𝑖∩𝑞
𝑡 .𝑎

ª®¬
2

𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝐻𝑖))
ℎ𝑖

=
𝑁 2

𝑖

ℎ3
𝑖

ℎ𝑖
∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎2 − ©«
∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎
ª®¬
2 .

For an AVG query 𝑞 we have

𝑤𝑖 ·𝑚𝑒𝑎𝑛(𝜙𝑞 (𝑆𝑖)) =
𝑁𝑖

|𝑆𝑖 ∩ 𝑞 | ·∑𝑖∈I𝑞 𝑁𝑖

∑︁
𝑡 ∈𝑆𝑖∩𝑞

𝑡 .𝑎

𝑤𝑖 ·𝑚𝑒𝑎𝑛(𝜙𝑞 (𝐻𝑖)) =
𝑁𝑖

ℎ𝑖 ·
∑
𝑖∈I𝑞 𝑁𝑖

∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎,

where I𝑞 is the set of all leaf nodes intersected (either partially or

fully) by the query 𝑞.

𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝑆𝑖))
𝑚𝑖

=
𝑤2

𝑖

𝑚𝑖 · |𝑆𝑖 ∩ 𝑞 |2

𝑚𝑖

∑︁
𝑡 ∈𝑆𝑖∩𝑞

𝑡 .𝑎2 − ©«
∑︁

𝑡 ∈𝑆𝑖∩𝑞
𝑡 .𝑎

ª®¬
2

𝑤2

𝑖

𝑣𝑎𝑟 (𝜙𝑞 (𝐻𝑖))
ℎ𝑖

=
𝑤2

𝑖

ℎ3
𝑖

ℎ𝑖
∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎2 − ©«
∑︁
𝑡 ∈𝐻𝑖

𝑡 .𝑎
ª®¬
2

D PARTITION ALGORITHMS
D.1 Maximum variance under updates
An important procedure of all our algorithms is to find what is

the maximum error of a query that lies completely in a leaf node

or more generally in a rectangle. We explain how to do it for the

queries COUNT, SUM, AVG. In particular, we describe a stronger

result: We construct a dynamic data structure over a set of samples

𝑆 with efficient update time such that given a query rectangle, it

returns an approximation of the variance of the query with the

maximum variance in the query rectangle. This result leads to very

efficient dynamic algorithms for checking the maximum variance

and re-constructing a new partition, as we will see in the next

subsections. LetM(𝑅) be the value of the variance returned by our
approximation algorithm in a rectangle 𝑅.

COUNT queries. For COUNT queries it is known [30] that the

query with the maximum variance in a rectangle 𝑅 contains exactly

|𝑅∩𝑆 |/2 samples. Hence, we construct a dynamic range tree𝑇 over 𝑆

with space𝑂 (𝑚 log
𝑑𝑚).𝑇 can be constructed in𝑂 (𝑚 log

𝑑𝑚) time

and can be updated in 𝑂 (log𝑑𝑚) time. Given a query rectangle 𝑅,

we run a binary search using 𝑇 to find two rectangles that contain

|𝑅𝑖 |/2 items. The query runs in 𝑂 (log𝑑𝑚) time.

SUM queries. For SUM queries it is known [30] that we can get a

1

4
-approximation of the maximum variance query inside 𝑅 with the

following simple approach: Find two non-intersecting rectangles

𝑅1, 𝑅2 such that 𝑅1 ∪ 𝑅2 = 𝑅, and |𝑅1 ∩ 𝑆 | = |𝑅2 ∩ 𝑆 | = |𝑅 ∩ 𝑆 |/2.
Then, they compare

∑
𝑡 ∈𝑅1∩𝑆 𝑡 .𝑎

2
with

∑
𝑡 ∈𝑅2∩𝑆 𝑡 .𝑎

2
and return

the variance of the rectangle with the largest sum of squares. The

variance of this rectangle is a
1

4
-approximation of the maximum

variance in 𝑅. Range trees work for any aggregation function so

we can also use them to compute the sum of the values squared

in a rectangle or the variance of a rectangle. Hence, we can use

a dynamic range tree as we had in the COUNT case returning a

1

4
-approximation of the maximum variance. This data structure

has exactly the same complexities as the data structure for COUNT

queries.

AVG queries. For AVG queries the offline algorithms of [30]

cannot be efficiently extended to the dynamic case we are interested

in (is not known how to achieve polylog𝑚 update time). Here we

propose a new dynamic data structure for finding an approximation

of the maximum variance AVG query in a query rectangle efficiently.

The new data structure we propose does not only handle updates

efficiently, unlike the data structures in [30], but it also improves

the approximation factor for any dimension 𝑑 .

For a set of samples 𝑆 we construct a dynamic range tree 𝑇 ′
.

We also initialize an empty dynamic data structure 𝑇 that stores

weighted rectangles. Given a query rectangle 𝑅, it returns the rec-

tangle with the highest weight that lies completely inside 𝑅. For

example 𝑇 can be a dynamic range tree in 2𝑑 dimensions storing

each rectangle as a 2𝑑 point by creating a point from its two main

opposite corners. Notice that every 𝑑-th level node 𝑢 of 𝑇 ′
corre-

sponds to a rectangle 𝑅𝑢 . If |𝑅𝑢 ∩ 𝑆 | ≤ 𝛿𝑚 then we add 𝑅𝑢 in 𝑇

with weight 𝑆 (𝑅𝑢) =
∑
𝑡 ∈𝑅𝑢∩𝑆 𝑡 .𝑎

2
. If 𝛿𝑚 ≤ |𝑅𝑢 ∩ 𝑆 | ≤ 2𝛿𝑚 we

split 𝑅𝑢 into two rectangles 𝑅𝑢1
, 𝑅𝑢2

such that 𝑅𝑢1
∪ 𝑅𝑢2

= 𝑅𝑢 and

|𝑅𝑢1
∩𝑆 | = |𝑅𝑢2

∩𝑆 | = |𝑅𝑢 ∩𝑆 |/2. We add 𝑅𝑢1
, 𝑅𝑢2

in𝑇 with weights

𝑆 (𝑅𝑢1
) = ∑

𝑡 ∈𝑅𝑢
1
∩𝑆 𝑡 .𝑎

2
, 𝑆 (𝑅𝑢2

) = ∑
𝑡 ∈𝑅𝑢

2
∩𝑆 𝑡 .𝑎

2
. The tree 𝑇 ′

can

be constructed in �̃� (𝑚) time and it has �̃� (𝑚) space. In 𝑇 we might

insert �̃� (𝑚) rectangles so it has �̃� (𝑚) space and can be constructed

in �̃� (𝑚) time. For any insertion or deletion of a sample in 𝑆 ,𝑇 ′
can

be updated in �̃� (1) time by modifying at most �̃� (1) nodes. For each
modified node we update accordingly the corresponding rectangle

in 𝑇 in �̃� (1) time. Furthermore, after an update we traverse the

𝑑-th level of 𝑇 ′
from the updated leaf nodes to their roots inserting

or removing rectangles from𝑇 accordingly based on the number of

points they contain. Using [5, 13, 34] we can propose a simple dy-

namic data structure with amortized update time guarantee that can

17

be extended to worst case guarantee by standard techniques [13].

Overall our data structure can be constructed in𝑂 (𝑚 log
3𝑑𝑚) time,

has 𝑂 (log3𝑑𝑚) space and can be updated in 𝑂 (log3𝑑+1𝑚) time.

Given a query rectangle 𝑅 such that 𝑅 ∩ 𝑆 > 2𝛿𝑚 (as we had

in [30]) we show how to return an approximation of the maximum

variance query efficiently. We search𝑇 using the query rectangle 𝑅

and we get a set of �̃� (1) canonical nodes that contain all rectangles

completely inside𝑅. From the canonical subsets we get the rectangle

𝑞′ inside rectangle 𝑅 with the largest weight. If |𝑞′ ∩ 𝑆 | < 𝛿𝑚 then

using 𝑇 ′
we run binary search over all dimensions until we find

an expansion of 𝑞′ that contains exactly 𝛿𝑚 samples. This can

be done in �̃� (1) time. Without loss of generality assume that 𝑞′

contains exactly 𝛿𝑚 samples. Using 𝑇 ′
we measure the variance of

𝑞′ in 𝑅 in �̃� (1) time. In the end we return the variance of 𝑞′ as the
approximation of the maximum variance AVG query in the query

rectangle 𝑅. The query procedure takes �̃� (1) time.

Lemma D.1. It holds that a𝑠 (𝑞′) ≥ 1

4 log
𝑑+1𝑚

V(𝑅).

Proof. Let 𝑞 be the AVG query (a rectangle) with the maximum

variance in 𝑅. It is known from [30] that 𝑞 contains at most 2𝛿𝑚

and at least 𝛿𝑚 samples. Since |𝑅 ∩ 𝑆 | ≥ 2𝛿𝑚 we have that

|𝑅 ∩ 𝑆 |
∑︁

𝑡 ∈𝑞′∩𝑆
𝑡 .𝑎2 − ©«

∑︁
𝑡 ∈𝑞′∩𝑆

𝑡 .𝑎
ª®¬
2

≥ |𝑅 ∩ 𝑆 |
2

∑︁
𝑡 ∈𝑞′∩𝑆

𝑡 .𝑎2,

following from Lemma A.2 in [30]. Next, notice that a query pro-

cedure on 𝑇 ′
with the query range 𝑞 would give a set of log

𝑑𝑚

canonical rectangles that cover 𝑞 where each of them contains

at most 2𝛿𝑚 samples. We note that for each of these canonical

rectangles in 𝑇 ′
there are at most two rectangles in 𝑇 containing

the same items. Let 𝑋 be the set of rectangles in 𝑇 corresponding

to the canonical rectangles in 𝑇 ′
. From its definition it holds that

|𝑋 | ≤ 2 log
𝑑+1𝑚. All of these rectangles in 𝑋 lie completely inside

𝑅 so the query procedure will consider them to find the rectangle

with the largest weight. Hence it holds that∑︁
𝑡 ∈𝑞′∩𝑆

𝑡 .𝑎2 ≥ max

𝑥 ∈𝑋

∑︁
𝑡 ∈𝑥∩𝑆

𝑡 .𝑎2 ≥ 1

2 log
𝑑+1𝑚

∑︁
𝑡 ∈𝑞∩𝑆

𝑡 .𝑎2 .

Overall we have, (for simplicity |𝑅 | = |𝑅 ∩ 𝑆 |)

a𝑠 (𝑞′) =
1

|𝑅 | · |𝑞′ ∩ 𝑆 |2

|𝑅 ∩ 𝑆 |
∑︁

𝑡 ∈𝑞′∩𝑆
𝑡 .𝑎2 − ©«

∑︁
𝑡 ∈𝑞′∩𝑆

𝑡 .𝑎
ª®¬
2

≥ 1

|𝑅 | · |𝑞′ ∩ 𝑆 |2
|𝑅 ∩ 𝑆 |

2

∑︁
𝑡 ∈𝑞′∩𝑆

𝑡 .𝑎2

≥ 1

|𝑅 | · |𝑞′ ∩ 𝑆 |2
1

4 log
𝑑+1𝑚

|𝑅 ∩ 𝑆 |
∑︁

𝑡 ∈𝑞∩𝑆
𝑡 .𝑎2

≥ |𝑞 ∩ 𝑆 |2

|𝑞′ ∩ 𝑆 |2
1

4 log
𝑑+1𝑚

1

|𝑅 | · |𝑞 ∩ 𝑆 |2

|𝑅 ∩ 𝑆 |
∑︁

𝑡 ∈𝑞∩𝑆
𝑡 .𝑎2−©«

∑︁
𝑡 ∈𝑞∩𝑆

𝑡 .𝑎
ª®¬
2

≥ 1

4 log
𝑑𝑚

V(𝑅)

□

If 𝑑 = 1 we can modify the data structure so that it gives an

approximation factor 4.

Overall, given a set 𝑆 of 𝑚 points in 𝑑 dimensions we can

construct a data structure of space 𝑂 (𝑚 · polylog(𝑚)) in 𝑂 (𝑚 ·
polylog(𝑚)) time with update time𝑂 (polylog(𝑚)) such that given

a query rectangle it finds an approximation of the maximum vari-

ance COUNT, SUM or AVG query inside 𝑅 in 𝑂 (polylog(𝑚)) time.

D.2 Partition for 𝑑 = 1

For COUNT queries the optimum partition in 1D consists of

equal size buckets (intervals) so we can find the new partition

in𝑂 (𝑘 log𝑚) time by maintaining the order of the samples 𝑆 under

insertion or deletion using a balanced search binary tree where the

samples are stored in the leaf nodes. Such a tree can be updated in

𝑂 (log𝑚) time while the order of the samples on the real line is the

same as the order of the leaf nodes from left to right. When we have

to (re-)construct the partition we find the right endpoint of each

bucket using the search binary tree. Overall, we need𝑂 (log𝑚) time

to update the tree and𝑂 (𝑘 log𝑚) time to construct a new partition.

Next, we focus on SUM and AVG queries.

Bounding the error. We first show a lemma that bounds the

maximum length of the largest possible confidence interval among

queries that intersect one bucket of the partition. We assume that

the value of any item in D is bounded by a maximum value U
and a minimum non-zero value L. We allow items to take zero

values since this is often the case in real datasets but no item with

positive value less than L or larger than U exists. We assume that

U = 𝑂 (poly(𝑁)) and L = Ω(1/poly(𝑁)).

Lemma D.2. Let 𝑅 be any rectangle and let V𝑆 (𝑅),V𝐴 (𝑅) > 0

be the variance of the SUM and AVG query respectively with the
maximum variance in 𝑅. Then it holds that L√

2

≤
√︁
V𝑆 (𝑅) ≤ 𝑁U

and L√
2𝑁

≤
√︁
V𝐴 (𝑅) ≤

√
𝑁U.

Proof. Without loss of generality let 𝑞 be the SUM or AVG

query with the maximum variance in 𝑅.

First we focus on SUM queries. Let 𝑁𝑅 = |𝑅 ∩ D| be the

number of total tuples in 𝑅. Unless a𝑠 (𝑞) = 0, from [30], we

know that there exists a query 𝑞′ with |𝑞′ | = |𝑅 |/2 such that

a𝑠 (𝑞) ≥ 𝑁 2

𝑅

|𝑅 |3
|𝑅 |
2

∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2
, where

∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2 > 0. We also have∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2 ≥ L2
(and𝑤𝑢 = 1) leading to

√︁
V𝑆 (𝑅) ≥ 𝑁𝑅√

2 |𝑅 |
L ≥ L√

2

.

Furthermore, we have a𝑠 (𝑞) ≤ 𝑁 2

𝑅

|𝑅 |2 |𝑅 |
2U2 ≤ 𝑁 2U2

leading to√︁
V𝑆 (𝑅) ≤ 𝑁U.

Next, we consider AVG queries. Unless a𝑠 (𝑞) = 0, from [30], we

know that there exists a query 𝑞′ with |𝑞′ | = 𝛿𝑚 ≤ |𝑅 |/2 such that

a𝑠 (𝑞′) ≥ 1

|𝑅 |𝛿2𝑚2

|𝑅 |
2

∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2
, where

∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2 > 0.We also have∑
𝑡 ∈𝑞′ 𝑡 .𝑎

2 ≥ L2
(and 𝑤𝑢 = 1) leading to

√︁
V𝐴 (𝑅) ≥ 1√

2𝛿𝑚
L ≥

L√
2𝑁

. Furthermore, we have a𝑠 (𝑞) ≤ |𝑅 |
|𝑞 |2U

2 ≤ |𝑅 |U2 ≤ 𝑁H2

leading to

√︁
V𝐴 (𝑅) ≤

√
𝑁U. □

Since,U,L are bounded by a polynomial with respect to 𝑁 , we

have that the length of the longest confidence interval is bounded

18

by 𝑂 (poly(𝑁)) and Ω(1/poly(𝑁)), i.e.

Ω(1/poly(𝑁)) ≤
√︁
V𝑆 (𝑅),

√︁
V𝐴 (𝑅) ≤ 𝑂 (poly(𝑁)).

Description of algorithm. We describe the partition algorithm

for SUM queries. The procedure is identical for AVG queries and we

highlight the differences in the end of this section. For a parameter

𝜌 ∈ R with 𝜌 > 1, let 𝐸 = {𝜌𝑡 | 𝑡 ∈ Z, L√
2

≤ 𝜌𝑡 ≤ 𝑁U} ∪ {0},
be the discretization of the range [L√

2

, 𝑁U], i.e., the lower and

upper bound of the longest confidence interval (assuming queries

completely inside one bucket), by the multiplicative parameter 𝜌 .

For an interval 𝑏, let M(𝑏) be the approximation of the query

with the maximum variance in bucket 𝑏 (supporting updates) as

described in Section D.1. We run a binary search on the values of 𝐸.

For each value 𝑒 ∈ 𝐸 we consider, we try to construct a partition

of 𝑘 buckets such that in each bucket the length of the longest

confidence interval is at most 𝑒 . If there exists such a partition we

continue the binary search with values 𝑒 ′ < 𝑒 . If there is no such a

partition we continue the binary search with values 𝑒 ′ > 𝑒 . In the

end of the binary search we return the last partition that we were

able to compute.

It remains to describe how to check if a partition with 𝑘 buckets

(intervals) with maximum length confidence interval at most 𝑒

exists. We start with the leftmost sample, say 𝑡1, which is the left

boundary of the first bucket. In order to find its right boundary we

run a binary search on the samples 𝑆 . Let 𝑡 𝑗 be one of the right

boundaries we check in the binary search, and let 𝑏1 = [𝑡1, 𝑡 𝑗]. If√︁
M(𝑏1) < 𝑒 then we continue the binary search with a sample

at the right side of 𝑡 𝑗 (larger bucket). Otherwise, we continue the

binary search with a sample at the left side of 𝑡 𝑗 (smaller bucket).

When we find the maximal bucket with longest confidence interval

at most 𝑒 we continue with the second bucket repeating the same

process for at most 𝑘 buckets. In the end, if all samples in 𝑆 are

contained in 𝑘 buckets then we return that there exists a partition

(with 𝑘 buckets) with maximum variance at most 𝑒 . If we cannot

cover all samples in 𝑘 buckets then we return that there is no

partition (with 𝑘 buckets) with maximum variance at most 𝑒 .

The same algorithm also works for AVG queries. The only differ-

ence is that 𝐸 should be defined with respect to the upper and lower

bound of the longest confidence interval, as shown in Lemma D.2.

Correctness. Before we start with the correctness proof of our

algorithm we recall that in [30] we showed that under a mild as-

sumption, for two buckets 𝑏𝑖 , 𝑏 𝑗 if 𝑏𝑖 ⊆ 𝑏 𝑗 then
√︁
V(𝑏𝑖) ≤

√︁
V(𝑏 𝑗),

namely the length of the longest confidence interval in 𝑏𝑖 is smaller

than the length of the longest confidence interval in 𝑏 𝑗 . This is the

monotonic property of the longest confidence interval.

We assume that M(𝑏𝑖) computes a
1

𝛾 -approximation of the

maximum variance in 𝑏𝑖 , i.e.,M(𝑏𝑖) ≥ 1

𝛾V(𝑏𝑖). Let R∗
be the op-

timum partition and let 𝑏∗ be the bucket that contains the query
with the longest confidence interval in R∗

. First, we notice that if

𝑒 ≥
√︁
V(𝑏∗) then we always find a partition with longest confi-

dence interval at most 𝑒 . We can show it by induction on the right

boundaries of the buckets (intervals) and the monotonic property of

confidence intervals. For the base case, let 𝑏∗
1
= [𝑡1, 𝑡2] be the first

bucket of partition R∗
. The procedureM always underestimates

the maximum variance in an interval so the binary search in our

procedure will consider the right boundary to be greater than 𝑡2.

Let 𝑡𝑖 be the right boundary of the 𝑖-th bucket in R∗
and let assume

that the 𝑖-th bucket in our procedure has a right boundary 𝑡 𝑗 ≥ 𝑡𝑖 .

We consider the (𝑖 + 1)-th bucket in R∗
with boundaries [𝑡𝑖+1, 𝑡𝑟].

We show that the (𝑖 + 1)-th bucket in our procedure has a right

boundary at least 𝑡𝑟 . Let [𝑡𝑎, 𝑡𝑏] be the boundaries of the (𝑖 + 1)-th
bucket in our procedure. We have 𝑡𝑎 ≥ 𝑡𝑖+1. If 𝑡𝑎 = 𝑡𝑖+1 then 𝑡𝑏 ≥ 𝑡𝑟
as in the basis case. If 𝑡𝑎 > 𝑡𝑖+1 then because of the monotonic prop-

erty of the confidence intervals and the fact that the M procedure

underestimates the maximum variance we also have that 𝑡𝑏 ≥ 𝑡𝑟 .

Let 𝑒 ′ be the smallest value in 𝐸 such that

√︁
V(𝑏∗) ≤ 𝑒 ′. Because

of the previous observation our algorithm always returns at least

a valid partition for an 𝑒 ≤ 𝑒 ′. For every bucket 𝑏 of this partition,√︁
M(𝑏) ≤ 𝑒 . Let 𝑏 ′ be the bucket in the returned partition contain-

ing the query with the longest confidence interval in the partition.

We have,

√︁
V(𝑏 ′) ≤

√︁
𝛾M(𝑏 ′) ≤ √

𝛾𝑒 ≤ √
𝛾𝑒 ′ ≤ 𝜌

√
𝛾
√︁
V(𝑏∗).

From Section D.1 we have that 𝛾 = 4 for SUM and AVG queries

queries. So we get a partition where the maximum error is within

2𝜌
√
2 of the optimum error for SUM queries and within 2𝜌 of the

optimum error for AVG queries.

Running time. We assume that M(·) can be computed in 𝑀

time. Since, L,U are polynomially bounded on 𝑁 we have that

|𝐸 | = 𝑂 (log𝜌 𝑁) and it can be constructed in 𝑂 (log𝜌 𝑁) time. The

binary search over 𝐸 takes at most 𝑂 (log log𝜌 𝑁) steps. For each
value 𝑒 ∈ 𝐸 of the binary search we check if there is a partition

with 𝑘 buckets and longest confidence interval at most 𝑒 . For each

possible bucket we run a binary search over the samples 𝑆 and

we run the procedure M to get an approximation of the maxi-

mum variance. Hence, we can decide if there exists a partition

with confidence interval 𝑒 in 𝑂 (𝑘𝑀 log𝑚) time. Overall, our algo-

rithm takes𝑂 (𝑘𝑀 log𝑚 log log𝜌 𝑁). If 𝜌 is a constant, for example

𝜌 = 2 then the running time is 𝑂 (𝑘𝑀 log𝑚 log log𝑁). From Sec-

tion D.1 we have that in 1-dimension𝑀 = 𝑂 (log𝑚) for SUM and

𝑀 = 𝑂 (log2𝑚) for AVG queries. Notice that if we skip the log

factors the running time depends only linearly on the number of

buckets 𝑘 .

D.3 Partition for higher dimensions
We construct a partition by building a k-d tree using the dynamic

proceduresM as shown in Section D.1. Using the results of [30] we

could construct a near optimum k-d tree in time 𝑂 (𝑘𝑚) skipping
the log factors. Here, we use our new results from Section D.1 to

construct a k-d tree faster (roughly𝑂 (𝑘)) with better approximation

approximation guarantees.

We start by constructing a dynamic data structure from Sec-

tion D.1 over the initial set of samples 𝑆 . Assume that after a number

of insertions and deletions in 𝑆 we want to (re)construct the tree

structure T over 𝑆 . We construct a partition tree on 𝑆 using ideas

from the balanced k-d tree construction. We pre-define an ordering

of the dimensions. Each node 𝑢 of the tree is associated with a rec-

tangle 𝑅𝑢 . We build the tree in 𝑘 iterations in a top-down manner

starting from the root 𝑣 such thatD ⊂ 𝑅𝑣 . In any iteration we store

and maintain the approximate maximum variance queries of every

leaf node in a max heap 𝐶 . In the end of the 𝑖-th iteration we have

a tree of 𝑖 leaf nodes. Let 𝑢 be the leaf node with the maximum

M(𝑅𝑢) value in𝐶 . We remove its value from𝐶 . We find the medium

19

coordinate with respect to the next dimension in the ordering (in

this branch of the tree) among the samples 𝑅𝑢 ∩ 𝑆 . We split 𝑅𝑢 on

the median into two rectangles 𝑅𝑢1
, 𝑅𝑢2

such that 𝑅𝑢1
∪ 𝑅𝑢2

= 𝑅𝑢
and we construct the children 𝑢1, 𝑢2 of the parent node 𝑢. Using the

algorithms from Section D.1 we computeM(𝑅𝑢1
),M(𝑅𝑢2

) and we

insert their values in the max-heap 𝐶 . We continue with the same

way until we construct a tree T with 𝑘 leaf nodes (buckets).

Aswe showed in [30] such a tree construction returns a partition

which is near optimal with respect to the optimum partition tree

construction following the same splitting criterion: split on the

median of the leaf node with the largest (real) maximum variance

query. In our case we do not always split the nod with the real

largest error since we use the approximation functionM(·).
For any query our data structure from Section D.1 can be up-

dated in �̃� (1) time. Given a (re-)partition activation query over a

set 𝑆 of𝑚 samples we can construct a new T with the following

guarantees: For SUM queries, T can be constructed in 𝑂 (𝑘 log𝑑𝑚)
time with approximation factor 2

√
𝑘 . For COUNT queries we get

the same construction time 𝑂 (𝑘 log𝑑𝑚) but the tree we construct
is optimum (with respect to the partition tree with same split crite-

rion). For AVG queries, T can be constructed in 𝑂 (𝑘 log2𝑑𝑚) time

with approximation factor 2 log
𝑑/2𝑚. In all cases we can construct

near-optimum partitions in �̃� (𝑘) time.

E RE-PARTITIONING TRIGGERS
A key contribution of JanusAQP is continuous re-optimization of

the partitioning. We describe how JanusAQP tracks the variances

of the current partitions and decides when to re-partition. We also

propose two ways to re-partition: partial or full re-partitioning.

Assume that the current partitioning is R and let M(R) be the
(approximate) maximum variance query with respect to the current

set of samples 𝑆 . The automatic procedure first checks the number

of samples in each bucket (leaf node) of the current T . If there is a

leaf node 𝑖 associated with partition 𝑅𝑖 such that |𝑆𝑖 | << 1

𝛼 log𝑚

(recall that𝛼 is the sampling rate) then there are not enough samples

in 𝑢 to make robust estimators. Hence, we need to find a new re-

partition of 𝑆 . Even if the number of samples in each bucket is large

our system might enable a re-partition: For a partition 𝑅𝑖 in the leaf

node layer of T letM𝑖 = M(𝑅𝑖) be the (approximate) maximum

variance at the moment we constructed T . Let 𝛽 > 1 be a parameter

that controls the maximum allowable change on the variance. It can

either be decided by the user or we can set it to 𝛽 = 10. Assume that

an update occurred in the leaf node associated with the partition 𝑅𝑖 .

After the update we run the function M ′
𝑖
= M(𝑅𝑖) and we update

M(R) if needed. If 1

𝛽
M𝑖 ≤ M ′

𝑖
≤ 𝛽M𝑖 then the new maximum

variance in partition 𝑏𝑖 is not very different than before so we do

not trigger a re-partition. Otherwise, the maximum variance in

bucket 𝑏𝑖 changed by a factor larger than 𝛽 from the initial variance

M𝑖 . In this case a re-partition might find a new tree with smaller

maximum error. We compute a new partitioning R ′
and hence a

new tree T . If M(R ′) < 1

𝛽
M(R) then we activate a re-partition

restarting the catch-up phase over the new tree T . On the other

hand, ifM(R ′) ≥ 1

𝛽
M(R) then our current partitioning R is good

enough (its worst error is close to the optimum one) so we can still

use it. Of course, the user can also manually trigger re-partitioning.

For example, the user can choose to re-partition once every hour,

day, or after 𝜏 insertions and deletions have occurred.

Next, we propose two ways to re-partition the index. In par-

ticular, the user can select either partial re-partitioning or full re-

partitioning. full re-partitioning is easy; using the algorithms from

the previous subsections we can construct a new partitioning and a

new tree structure in near-linear time with respect to the samples.

Hence, we focus on partial re-partitioning. Instead of re-partitioning

the entire space we can only re-partition the area around the "prob-

lematic" leaf node. Let 𝑏𝑖 be this leaf node with high error or small

number of samples. In order to define the neighboring area around

𝑏𝑖 we propose either a predefined way or an automatic way. In both

cases, the neighboring area is defined by a parameter𝜓 , which is

the level of the tree above 𝑏𝑖 that the tree needs to be updated. In

the predefined way, the parameter 𝜓 is a known parameter. We

find the node 𝑣 which is defined as an ancestor of the leaf node

𝑏𝑖 ,𝜓 levels above 𝑏𝑖 . Let T𝑢 is the subtree with root node 𝑢 and let

𝑙𝑢 be the number of leaf nodes in T𝑢 . Using the algorithms from

the previous subsections we find a near optimum partition starting

from node 𝑢 with 𝑙𝑢 leaf nodes. The running time is near-linear

with respect to the samples stored T𝑢 . In the automatic way, we

do not know the parameter𝜓 upfront so we try different values of

𝜓 running a binary search on the levels of the tree until we find

a partition with low enough error. For each different value of 𝜓

we try, we run the same partial re-partitioning algorithm as in the

static case starting from the node𝑢 we are considering in the binary

search.

Generally, partial re-partitioning is faster than the full re-

partitioning since it only suffices to find a better partitioning in

a small area of the space. Furthermore, in partial re-partitioning

we can still keep all the current estimations in all nodes of T \ T𝑢 ,
i.e., the nodes of the tree that are not changed. Hence, the error of

queries after a partial re-partitioning is also lower than the error

of the queries immediately after a full re-partitioning. However, in

both cases we need to restart the catch-up phase over the new tree

in order to get good estimators to the nodes that were changed by

the partial re-partitioning. Recall that we cannot get samples from

a particular area (ideally samples that stored in the leaf nodes of T𝑢)
hence we run the catch-up phase getting samples from the entire

space. We finally note that while the catch-up phase considers sam-

ples from the entire space, we only use these samples to improve

the estimators in the nodes that are still under-represented, i.e.,

the catch-up phase time threshold for these nodes has not been

completed.

20

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Approximate Query Processing
	2.2 Related work
	2.3 Partition Trees for AQP

	3 System Architecture
	3.1 Construction and Optimization API
	3.2 Data and Query API

	4 Dynamic Partition Trees
	4.1 Incrementally Maintaining Nodes
	4.2 Maintaining Stratified Samples
	4.3 Re-initialization and Catch-Up
	4.4 Answering Queries With a DPT

	5 Optimal DPT Partitioning
	5.1 Preliminaries and Problem Setup
	5.2 Partitioning for d=1
	5.3 Partitioning in Higher Dimensions
	5.4 Re-Partitioning Triggers
	5.5 Discussion: Selection of Parameters and Single Synopsis

	6 Experiments
	6.1 Setup
	6.2 Accuracy
	6.3 Online Performance
	6.4 Handling Deletion
	6.5 The Catch-up Phase
	6.6 Dynamic Query Templates
	6.7 Multi-dimensional Query Templates
	6.8 Re-partitioning
	6.9 A More Efficient Partitioning Algorithm

	References
	A Sampling from Kafka-like Systems
	B Sufficiently Large Strata for Proportional Allocation
	C Variance Estimator Details
	D Partition algorithms
	D.1 Maximum variance under updates
	D.2 Partition for d=1
	D.3 Partition for higher dimensions

	E Re-Partitioning Triggers

