2211.10909v1 [cs.DB] 20 Nov 2022

arxXiv

TSExrrLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

Technical Report”

Yiru Chen
yiru.chen@columbia.edu
Columbia University
New York, NY, USA

ABSTRACT

Aggregated time series can be generated effortlessly everywhere,
e.g., “total confirmed covid-19 cases since 2019”, “S&P500 during the
year 2020”, and “total liquor sales over time”. Understanding “how”
and “why” these key performance indicators(KPI) evolve over time
is critical to making data-informed decisions. Existing explanation
engines focus on explaining the difference between two relations.
However, this falls short of explaining KPI's continuous changes
over time, as it overlooks explanations in between by only looking
at the two endpoints. Motivated by this, we propose TSEXPLAIN, a
system that explains aggregated time series by surfacing the under-
lying evolving top contributors. Under the hood, we leverage the
existing work on two-relations diff as a building block and formulate
a K-Segmentation problem to segment the time series such that each
segment after segmentation shares consistent explanations, i.e., con-
tributors. To quantify consistency in each segment, we propose a
novel within-segment variance design based on top explanations; to
derive the optimal K-Segmentation scheme, we develop a dynamic
programming algorithm. Experiments on synthetic and real-world
datasets show that our explanation-aware segmentation can effec-
tively identify evolving explanations for aggregated time series and
outperform explanation-agnostic segmentation. Further, we pro-
posed an optimal selection strategy of K and several optimizations
to speed up TSExpLAIN for interactive user experience, achieving
up to 13X efficiency improvement.

1 INTRODUCTION

Time series data is gaining increasing popularity these days across
sectors ranging from finance, retail, IoT to DevOps. Time series
analysis is crucial for uncovering insights from time series data and
helping business users make data-informed decisions. A business
analyst typically focuses on three questions: “what happened” to
understand the changes in key performance indicator (KPI), “why
happened” to reason why KPI changes, and “now what” [3] to
guide what actions should be taken. “What” questions have been
extensively studied both academia-wise [12] and industry-wise [11,
31, 43]. “Why” questions are starting to attract wide attentions [2,
47, 51]. Existing explanation engines focus on explaining (1) one
aggregated value [11, 19] or (2) differences between two given
relations: a test relation and a control relation [1, 2, 11, 16, 27, 30,
33, 37-39, 41, 44, 47, 51].

However, KPIs are typically monitored continuously, reporting
some aggregated time series. Simply explaining one aggregated
value overlooks the trend of time series, e.g. “why up/down”; merely

“Please see our published version in ICDE 2023.

Silu Huang
siluhuang@microsoft.com
Microsoft Research
Redmond, WA, USA

le7 le6

N)
N

— Us Exclude CA p2

N

-

Total Confirmed Cases

Total Confirmed Cases
°

01 L
012% 033% 0608 0 4024 123 022 1334 0608 830 4024 1230
Date Date

(a) Total Confirmed Cases (b) 10 Example States

Figure 1: COVID-19 Total Confirmed Cases [20]

focusing on its two endpoints and explaining their difference over-
looks the evolving explanations in between. As evidence, although
key influencer feature which explains the difference between
two given relations is well received in PowerBI community, a highly
voted feature request in PowerBI Idea Forum is called key influ-
encer! over time [34]. Below are some quotes from the user: “the
mix of factors/influencers tends to be more dynamic than static over
time...It would be nice to add a time dimension to the Key Influencers
analysis to understand how the top key influencers evolve over the
evaluated period" [34]. In time-series scenarios, it is often more
desired to explain the evolving dynamics over time than only to
consider two end timestamps.

Disclaimer. We remark that identifying the root cause of “why”
questions in general is only plausible when combining human
interpretations with tools. Quoted from Tableau ExplainData home-
page [44]: “The tool uncovers and describes relationships in your
data. It can’t tell you what is causing the relationships or how
to interpret the data” Following the literature [1, 2, 47, 51], the
explanation in our work does not equate to “cause”, instead it cor-
responds to the data slice that contributes most to the overall change
as we will describe in our Background Section (Definition 3.1).

Motivating Examples. We now describe three application scenar-
ios of explaining changes in continuously evolving KPIs.

® COVID-19. Figure 1a depicts the total number of covid-19
confirmed cases during year 2020. This time series is obtained by
performing a groupby-aggregate query over the original table [20],
which consists of attributes like state, total_confirmed_cases, and
daily_confirmed_cases. By looking at Figure 1a, users can get an
understanding of how overall trend evolves over time. One natural

'Influencer corresponds to explanation in our notion.

followup question is “what makes the increase” — how different
states contribute to the increase as time went along? Manual drill-
down and browsing are laborious and overwhelming especially
when there is a large number of attributes and each attribute is
of high cardinality. Figure 1b illustrates a sample drill-down view
along attribute state: first, looking at these sampled 10 states is
already distracting, let alone full 58 states in the US; more impor-
tantly, it is still not clear what the answer to the above question
is, though we do observe that each state contributes differently as
time moves along. For instance, state=NY drives the initial outbreak
in the US, while state=CA contributes most during the end of 2020.

® S&P500. S&P500 [49] is a stock market index tracking the per-
formance of around 500 companies in the US. In a nutshell, S&P500
is calculated as the weighted average of these companies’ stock
prices. After seeing how S&P500 evolves during 2020, users might be
interested in explaining the movement of S&500 by stock category.
Intuitively, different stock categories drive the drop and rebound of
S&P500. For instance, Category=Financial plays a significant role
in the drop during early covid-19 outbreak, but does not contribute
to the rebound that much during the second quater of 2020.

e Liquor-sales. The liquor-sales time series corresponds
to query SELECT date, SUM(Bottles_Sold) FROM Liquor GROUP BY
date, where each row in relation Liquor represents a liquor purchase
transaction with attributes including date, Bottle_Volume(ml), Pack,
Category_Name, and Bottles_Sold. Data analysts may wonder why
the total bottles sold turns up since mid-January-2020 and how
drinking behavior changes during pandemic. As we will show in our
experiment, it turns out that people favors large pack liquor during
pandemic, leading to sharp sales increase of Pack=12 and Pack=24;
and that people increase the purchase of large volume liquor such
as Bottle_Volume(ml)=750 and Bottle_Volume(ml)=1750.

Problem and Challenges. These motivating examples can all be
abstracted as the same problem: given a relation R, a set of explain-
by attributes from R, and a time series aggregated from R, identify
the top explanations, i.e., conjunctions of predicates over explain-
by attributes, that contribute to the changes in the given aggregated
time series. Let us illustrate the motivating example of covid-19
using this problem formulation. Given a relation Covid-19, where
each row records the total number of confirmed cases in a state on
a particular date, a set of explain-by attributes, e.g., [state], and
a time series aggregated from R, e.g., Figure 1a corresponding to
query “SELECT date, SUM(total_confirmed_cases) FROM Covid-19
GROUP BY date”, our goal is to identify explanations, e.g., state=NY,
that explains the surge in Figure 1a. There are two main challenges
in solving this problem: (a) explanations evolve over time; (b)
interactivity is critical for data exploration and analytics.
Challenge (a): explanations tend to change over time. For in-
stance, by looking at Figure 1b, we can observe that the increase in
New York(NY) is the main reason of the total increase in Figure 1a
during 2020-04 and 2020-05, while California(CA) is the driving
force during December 2020. Similarly, different stock categories
are responsible for the surges and declines of S&P500 during dif-
ferent periods. Specifically, technology and financial industries
play leading role in the sink of S&P500 during the initial covid-19
outbreak (around 2020-02-06 to 2020-03-24); while technology
industry is the top-contributor for S&500’s bounce back since

Yiru Chen and Silu Huang

— WA — NY IL — CA — TX — CA
— NY — NJ — CA — TX IL — TX
— CA — MA — NY FL — CA FL

2e6

16 J— /
:/

5-A 5_’)_9 9_7_5

Y7 an 12T 4231

Figure 2: Evolving Explanations of Figure 1a.

2020-03-24, but financial industry is not. Having observed that
explanations evolve along the time, our first technical challenge
lies in how to identify time period with consistent explanations
and how to derive explanations for each consistent time period.
Challenge (b): data analysts typically explore “what” and “why”
questions iteratively to understand data and uncover insights. Stud-
ies [28] have shown that low latency is critical in fostering user
interaction, exploration, and the extraction of insights. It is desired
that each query, including both “what” and “why” queries, can get
answered in a second to ensure interactivity. Thus, how to reduce
the latency for deriving explanations poses another challenge.

Prior Works. “Why” questions are gradually gaining attraction
both academia-wise and industrial-wise. However, instead of ex-
plaining the continuous changes in a time series, existing works
focus on explaining either (1) one aggregated value [19], e.g., point
p1 in Figure 1a; or (2) the difference between two given relations [2,
27,33, 39, 44, 51], e.g., a test relation and a control relation corre-
sponding to point p; and py respectively in Figure 1a. Reiterating
the “Disclaimer” above, these tools can recommend and expedite an-
swering “why” questions, but the human-in-the-loop interpretation
is still required for true root cause analysis. To summarize, no prior
works have studied the problem of explaining the evolving changes
in time series as depicted in our motivating examples. Please refer
to Section 2 for detailed comparison.

Our Solution. We propose TSEXPLAIN, a system to explain the
continuous changes in aggregated time series. In TSEXPLAIN, given
arelation, users can freely perform OLAP operations, including drill-
down, roll-up, slicing, and dicing, and visualize what has happened
to some KPI. To explain, users can then specify the time period
they are interested as well as a set of explain-by attributes based on
their domain knowledge. For the COVID-19 example, TSEXPLAIN
returns a trendline visualization in Figure 2, where the whole input
time series get partitioned into a few non-overlapping time periods
and each time period is associated with the KPI trendlines for top
explanations. We can see that in early stage, NY and WA are the
main contributors to the case increase; while CA, TX, IL,and FL
become the main contributors later 2020.

Technically, to tackle challenge (a) of deriving evolving expla-
nations, we formulate a K-Segmentation problem, aiming to parti-
tion the input time period into K smaller time periods such that
each time period shares consistent top explanations. Further-
more, since K is hard to specify in practice, TSExpLAIN employs
“Elbow method” [40] for identifying the optimal K. We demonstrate

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

the effectiveness of our problem formulation with both synthetic
and real-world datasets. As for challenge (b) of interactivity, we
first analyze the complexity of each step in TSExpLAIN, identify-
ing the bottleneck in the whole pipeline. Next, we propose several
optimizations for reducing the bottlenecks in TSExpLAIN. In our ex-
periments, TSEXPLAIN has successfully answered all queries within
one second.

Contributions. The contributions of this paper are as follows:

e We formulate K-Segmentation problem for explaining the con-
tinuous changes in an aggregated time series. (Section 3)

e We propose a novel within-segment variance design based on
top explanations to quantify consistency in each segment and
experimentally prove its effectiveness. (Section 4)

e We develop a dynamic program algorithm, perform complexity
analysis, propose optimal selection strategy of K, and develop
several optimizations for improving efficiency. (Section 5)

e We conduct experiments on both synthetic and real-world datasets,
demonstrating the effectiveness and efficiency of TSEXpLAIN.
(Section 4.2 and 7)

2 RELATED WORK

Data Explanation Existing data explanation engines mainly fo-
cuses on explaining (1) one aggregated value [11, 19] or (2) the dif-
ference between two relations [1, 2, 11, 16, 27, 30, 33, 37-39, 41, 44,
47, 51]. In academia, SmartDrillDown [19] explains one aggregated
value by identifying explanations (called rules in SmartDrillDown)
that have high aggregate value. IDIFF [39] identifies the differences
between two instances of an OLAP cube. Scorpion [51] and Mac-
robase [2] aim to find the difference between outlier and inlier
data. RSExplain [37] proposes an intervention-based framework to
explain why SQL expression’s result is high (or low). X-Ray [47]
tries to reveal the common properties among all incorrect triples
versus correct triples. Abuzaid et al. [1] unified various explana-
tion engines and abstracted out a logical operator called diff. The
cascading analysts algorithm [38] provides top non-overlapping
explanations accounting for the major difference of two specified
sets. Li et al. [27] also compares two set differences but with aug-
mented information from other related tables. In industry, Google
Trend integrates an explanation component for single value and
two relation; Tableau [43] provides Explain data [44] feature;
PowerBI [31] supports functionality like Key Influener [33]; star-
tups like SisuData [41] is built to support “why” questions natively
and scalably. However, all prior works fall short of explaining ag-
gregated time series because (1) only explaining one aggregated
value overlooks the trend of time series -“why up/down”; (2) only
focusing on two set differences (i.e., two endpoints in time series)
dismisses the explanation in between. Our TSEXPLAIN aims to iden-
tify the evolving explanations for aggregated time series over time.

Time Series Segmentation Time series segmentation has been
studied for decades. We note that the word “segmentation” is some-
what overloaded in the literature. One line of segmentation works
focuses on visual-based piecewise linear approximation. Specifi-
cally, [24, 46] use the sliding windows algorithm, which anchors
the left point of a potential segment, then attempts to approximate
the data to the right with increasing longer segments. Douglas
et al., [8] and Ramer et al., [35] designs top-down algorithms to

partition the visualization. [22] and [14] have used the bottom-up
algorithm to merge from the finest segments. Keogh et al. [21] show
that the bottom-up algorithm achieves the best results compared
with sliding window and top-down, and further introduced a new
online algorithm that combines the sliding window and bottom-up
to avoid rescanning of the data when streaming.

Another line of work is semantic segmentation including FLUSS [9,
10], AutoPlait [29], NNSegment proposed in LimeSegment [42],
which aims to divide a time series into internally consistent sub-
sequences, e.g., segmenting the heartbeat cycles when a person
switches from running to walking. Thus, these algorithms require
an extra input called subsequence length, e.g., a heartbeat cycle.
However, our task is to explain the trends in the aggregated time
series (e.g., the trend of total covid cases) instead of explaining
or identifying the periodic difference in one time-series instance.
Hence, our segmentation does not rely on the period length.

To conclude, unlike all above, TSEXPLAIN is the first to segment
time series based on segments’ explanations.

Time-series ML Model Explanation The time-series ML model
takes a univariate or multivariate time series as input and outputs
a prediction label. Unlike text or image models, there is limited lit-
erature on black box Time-series ML Model explainability. FIT [45]
is an explainability framework that defines the importance of each
observation based on its contribution to the black box model’s dis-
tributional shift. Similarly, Rooke et al. [36] extend FIT into WinIT,
which measures the effect on the distribution shift of groups of
observations. Labaien et al. [25] finds the minimum perturbation
required to change a black box model output. Recently, LimeSeg-
ment [42] selects representative input time series segments as ex-
planations for time-series classifier’s output. In these works, the
“explain target” is the prediction label and the time series serves
as the “explain feature”. Contrarily, the “explain target” in TSEx-
PLAIN is the up/down trend in an aggregated time series and the
explain-by attributes are our “explain features”. Unlike explaining
instance-level prediction of the black box ML model, TSEXPLAIN is
aggregation-level explanation for white-box aggregation.

3 PROBLEM OVERVIEW

In this section, we start with existing works on two-relations diff
and how they fall short for explaining aggregated time series, fol-
lowed by formal formulations of our problem: K-Segmentation.

3.1 Background

3.1.1 Two-Relations Diff. Diff operator [1] focuses on identifying
the difference between two relations. Given a test relation R; and a
control relation R, the diff operator returns explanations describing
how these two relations differ.

DEFINITION 3.1 (EXPLANATION [1]). Given a set of explain-by
attributes A, an explanation E of order f3 is defined as a conjunction
of § predicates, denoted as E = (A1=a1&...&Aﬁ:aﬁ) where A; € A.

Explain-by attributes A can be specified by users based on their
domain knowledge; otherwise, dimension attributes from R; are
used. Intuitively, an explanation E corresponds to a data slice satis-
fying the predicate, and this data slice contributes to the overall dif-
ference between R; and R.. To quantify how well an explanation E

Symb. [Definition [Mathematical Expression

A explain-by attributes A={A1, Ay, ...}

E an explanation

E= (A] =ay ..&Aﬂ=aﬁ), AieA

v(E) difference score of E Definition 3.2

7(E) change effect of E Definition 3.3

Em m non-overlap E Em={E1,...Em}
E;, top-m non-overlap E B, =argmax, [¥,. y(E)]

ts time series ts={p1, .-pi, --pn} over [t1, ty]
i ith cutting position ¢; € [1,n] at time ¢,

P; segment i Pi=[pc;, pe;,,] from te; to te,,,
Pr K-segment scheme Pr={P1,Ps,.,Px}

& evolving explanations | E=[Ey, (tc,, tc,), - By (tegs tersy)]

Table 1: Notations

explains the difference between R; and R, diff operator [1] provides
a difference metric abstraction, denoted as y(E). Such abstraction is
capable of encapsulating the semantics of many prior explanation
engines [2,47,51]. Commonly used y (E) include absolute-change,
relative-change, risk-ratio. Throughout this paper, we focus
on absolute-change. Other metrics can be applied similarly.

DEFINITION 3.2 (Absolute-change). Given a test relation Ry, a
control relation R, an aggregate function f (M, R) on some measure
attribute M in relation R, and an explanation E, the absolute change
refers to the absolute difference between [f(M, R;) — f(M, R;)] be-
fore and after removing records that explanation E corresponds to,
i, y(E) = |[F(M.R) — (M, Re)] — [F(M, R — 05R;)) - f(M, Re —
oxRc)]|, where o:R; and o;R. denote records satisfying the predi-
cate E in relation R; and R, respectively.

As the name indicates, absolute-change only cares about the
absolute change of [f(M, R;) — f(M, R;)] no matter the change is
an increase or decrease. To distinguish an increase from a decrease,
we use 7(E) to denote the change effect caused by including data
that E corresponds to: intuitively, if including E leads to an increase
in [f(M,R;) — f(M,R.)], 7(E) = +; otherwise, 7(E) = —.

DEFINITION 3.3 (CHANGE EFrFECT). Following the setting in Defi-
nition 3.2, the change effect of an explanation E is defined as 7(E) =
sign([f (M, Ry) = f (M, Re)] = [f (M, Ry = 0xR)) = f (M, Re = 0¢Re)]).

Now we have described Absolute-change as an example of
y(E). With a difference metric y(E), we can then rank each candi-
date explanation and return top-m explanations with the highest
y(E). However, these top-m explanations may contain overlapping
records. Consequently, the effects of these records get duplicated,
introducing bias in the top-m explanations. Alternatively, we can
constrain these m explanations to be non-overlapping and define
top-m non-overlapping explanations as in Definition 3.5. Two ex-
planations E; and Ej are said to be non-overlapping if their cor-
respondent records are non-overlapping in any relation R, i.e.,
or,RN oz, R=0,VR.

DEFINITION 3.4 (M NON-OVERLAPPING EXPLANATIONS). Given
a difference metric y(E) and an explanation order threshold f, let
E;n, denote a set of m non-overlapping explanations, i.e., E, =

Yiru Chen and Silu Huang

{E1, ...Em}, where each E; has its order < f§ and is non-overlapping
with Ej, VEZ',E]' € Enm.

DEFINITION 3.5 (ToP-M NON-OVERLAPPING EXPLANATIONS 2).
Top-m non-overlapping explanations are defined as E, with the
highest accumulative diff score, i.e., By, =argmax, [¥,. y(E)].

Cascading analyst algorithm [38] is designed for returning top-m
non-overlapping explanations. We will use term top-explanation
for simplicity whenever there is no ambiguity.

Example 3.1 (Two-Relations Diff). Consider the two points p;
and p in Figure 1a — the underlying data corresponds to p; and p;
constitute a control relation R; and a test relation R; respectively.
Two-relations diff aims to explain the difference between R; and R;.
First, users can specify a set of explain-by attributes, e.g., [state,
County]. Take explanation E=(state=CA) as an example. It is of order
one, i.e., f = 1 and its difference score y(E) can be calculated as
[(p2.v = p1.v) = (p5.0 — p;.0)| using absolute-change as shown in
Figure 1a. We can then obtain Top-3 non-overlapping explanations
for differing R; and R; using cascading analyst algorithm [38] —
Ej={E1=(state=CA), E=(state=TX), E3=(state=FL)}.

3.1.2 Aggregated Time Series. Time series is a series of data points
indexed in time order. An aggregated time series refers to a special
type of time series, where each point p is associated with a times-
tamp p.t and an aggregated value p.ov, derived by aggregating all
records at timestamp p.t. Essentially, an aggregated time series cor-
responds to the result of some group-by query. Consider a relation R
with {D;} dimension attributes and {M;} measure attributes, and a
group-by query in the form of {SELECT T, f(M) FROM R GROUP BY T3,
where T denotes some time-related ordinal dimension (T € {D;}),
and f(M) is some aggregate function on measure M (M € {M;}).
The query result can be denoted by an aggregated time series ts
with value f(M) over time dimension T.

DEFINITION 3.6 (AGGREGATED TIME SERIES). An aggregated time
series ts over time [#1,1,] is a series of points {p1, ..., pi; ..., Pn}
ordered by time dimension T and each point’s value p;.v is an
aggregated number from a list of records with the same time p;.t.

Data analysts often visualize aggregated time series to help
understand data’s overall trend as time goes along as shown in
Figure la. A natural follow-up question is “what makes ups and
downs". Different from two-relations diff described in Section 3.1.1,
this "explain" question focuses on the whole time horizon and the
underlying top-explanation tends to evolve dynamically along the
time even when the overall trend looks the same visually.

DEFINITION 3.7 (EVOLVING EXPLANATIONS). Given m and an
aggregated time series ts over time [t1, t,], evolving explanations is
a sequence of top-explanation at different periods, denoted as & =
[Epy(teys tey)s By (teys teg)s oo By (bcps tepyy)]s Where g = 1, x4y = 1,
{ca, c3..c } denote the (k-1) cutting positions in between, and each
E},, (te;. te;,,) denotes top-explanation from t, to fc,,, .

Example 3.2 (Evolving Explanations). Figure la depicts an aggre-
gated time series that corresponds to a groupby-aggregate query
Definition 3.5 is defined over E,,. Alternatively, we can define top-m as at most
m explanations, i.e., B}, =arg max(z_|x<mj [2Zres, ¥ (E)]. Our proposed solution in
Section 4 and 5 can work with it in a similar way.

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

with f(M)=SUM(total_confirmed_cases) ontable Covid-19.Fig-
ure 2 illustrates the underlying evolving explanations for the in-
crease in Figure 1a. We have six different time periods, where each

period shares the same intrinsic explanations while neighboring

periods have different ones. For instance, the top-3 contributors

are B (tc,, te;)={E1=(state=NY), Ex=(state=NJ), E3=(state=MA)} dur-
ing t.,=2020-3-14 and t¢,=2020-5-4; E} (tc,, tc,)={E1=(state=CA),

Ey=(state=TX), E3=(state=FL)} from 2020-11-27 to 2020-12-31.

3.2 Problem Definition

Motivated by the observation that top contributor (i.e., explanation)
evolves over time, we study the problem of identifying evolving
explanations for the continuous changes happened in an aggregated
time series. The overall problem of identifying evolving explana-
tions can be decomposed into two sub-problems: (a). segmenta-
tion; (b). find the explanations that contributes most in each seg-
ment. These two sub-problems are intertwined with each other: the
goodness of a segmentation scheme depends on how cohesive top-
explanations are within each segment; meanwhile, top-explanation
are derived for each segment after obtaining the optimal segmen-
tation scheme. We remark that performing segmentation with-
out considering explanation information is insufficient, as we will
demonstrate experimentally in Section 7.

Segmentation. To explain the continuous change in an aggregated
time series ts over time [#1, ¢,], we need to partition the whole time
domain [t1, t,] into non-overlapping segments, such that each seg-
ment P;=[pe;, pc,,,] during time t., and t.,,, shares the same intrin-
sic explanations while neighboring segments have different ones.
This resembles the well-studied clustering problem, whose goal is to
minimize within-cluster variance and maximize inter-cluster vari-
ance. In particular, given a segment number K, we abstract our prob-
lem as a K-Segmentation problem, adapting the optimization for-
mula from K-Means [13]. Let Pk denote a K-segmentation scheme:
Pk = {P1=[pcy> Pe, s P2=[peys Pes]--- Pk =[Peks Pex 1} where ¢1=1,
ck+1=n, and {cg, c3...,cx} are (K-1) cutting positions. In Exam-
ple 3.2 (Figure 2), K=6 and the cutting positions {cy, ...,c5} corre-
spond to time {3-14, 5-4, 5-29, 9-25, 11-27}. Next, we formulate
K-Segmentation problem as below:

PrROBLEM 1 (K-SEGMENTATION). Given an aggregated time series
ts and a segmentation number K, identify the optimal segmen-
tation scheme ;. = argming, _(p, _ p,} Z£1|P,~|var(Pi) where
var(P;) denotes the variance in segment P;.

We remark that the design of within-segment variance var(P;)
is critical to the effectiveness of K-Segmentation. No prior works
have studied var(P;) with the goal of quantifying explanation con-
sistency. This is challenging as we will dive into in Section 4.

Explain trend in each segment. Given a fixed segment P; =
[Pe;s Pe;yy] from time t¢; to t¢,,,, we will now describe how to ex-
plain the trend in P; with only one static top-explanation E},, (t¢,, t¢,,,)
— static top-explanation is a special case of evolving explanations
& with segment number K = 1. If P; is cohesive, meaning that P;
has consistent top-explanation during t¢, and t,,,, we can simply
focus on its two endpoints and then employ prior works on two-
relations diff (Section 3.1). The derived top-explanation Ej, explains

the changes from time ¢, to f.,,,. However, when P; is not cohe-
sive, there exists no single static top-explanation E}, that is capable
of explaining the whole trend evolvement in P;. Nevertheless, we
can still derive some static top-explanation by looking at its two
endpoints and using two-relations diff [38], though the explanation
quality might be poor. As we will elaborate in Section 4.1, each
segment in the optimal K-segmentation $ is deemed to be cohe-
sive, and the case of incohesive segment would only occur during
the exploration phase over candidate segmentation schemes. In all,
when given a segment P; = [pc;, p,,,], we first obtain a control
relation Rc={SELECT * FROM R WHERE T = t;} and a test relation
Ry={SELECT * FROM R WHERE T = t,,, } at two endpoints, and then
derive top-explanation with cascading analyst algorithm [38].

Now that we can exploit existing works for deriving static top-
explanation within each segment, our problem of identifying evolv-
ing explanations boils down to a K-segmentation problem. As K is
not easy to specify in practice, TSExpLAIN identifies the optimal K
for users by default, as we will discuss in Section 6.

4 K-SEGMENTATION

Designing a good within-segment variance to quantify explanation
consistency is the key to our work’s success and it is definitely non-
trivial. In this section, we will start with our design of var(P;) in
Problem 1, followed by an experiment illustrating its effectiveness.

4.1 Design of Within-Segment Variance

Per our definition in Problem 1, K-Segmentation is similar to K-
Means clustering. We carefully design the within-segment variance
var(P;) through making analogy to K-Means algorithm. However,
different from K-Means or any existing variance design, var(P;) in
K-Segmentation should be regarding the variance of top-explanations
within each segment P;.

First, let us review the problem formulation of K-Means. Given
a set of objects (01,02, ...,0n) as inputs, where each object is a d-
dimensional vector, K-Means aims to partition these n objects into K
partitions Px={P1, P2..Px } minimizing the within-cluster variance:

K
arg min Z |P;|var(P;) (1)
Pr =1
1
var(P;) = — dist (o, 1) (2)
: |Pi|0;i s

where y; is the centroid of partition P; and dist (o, y;) denotes the
distance between an object o and the centroid y; in P;, e.g., L2 dis-
tance. Comparing Problem 1 with Eq. 1, we can see K-Segmentation
employs the same optimization objective as K-Means but with a
customized var(P;). To develop a good var(P;) in K-Segmentation,
careful thoughts are required around: (1) what is an “object”; (2)
what is the centroid of a segment; and (3) how to measure the
distance between object and centroid based on explanations.

4.1.1 Object in K-Segmentation. Given an aggregated time series
ts = {p1,p2, ... pn}, K-Segmentation aims to segment ts into K
partitions such that explanations are shared within each partition.
Since each single point itself cannot reveal any time series trend, the
atomic unit for partitioning is a segment of size two, i.e., [pi, pi+1].
That is, an object in K-Segmentation refers to a segment of size

v Object:P; €1 JEa*(Pj)={E}, E, Ef}
v =110, 7, 4}
Ti={+ o+ +)

: Centroid: P;

~ 7{100 80 50}
T/‘:{'v Lt}

\4

Figure 3: Object, Centroid, and Top-Explanations

two as shown in Figure 3 and there is in total (n — 1) objects, i.e.,
{o1 = [p1, p2l, 02 = [p2, p3]. ... on-1 = [pn-1, pnl}.

4.1.2 Centroid of a partition. Different from the general K-Means,
objects in K-Segmentation follows a time ordering where 0; <
02 < ... < 0op—1, and a partitioning scheme in K-Segmentation is
only valid when objects in each partition form a segment. Hence, a
partition in K-Segmentation can be denoted as P; = [pe;, pc;,,] with
objects {o¢; =[pc;, Pe;+1], 0c;+1- 0cip 1= [Pejss—1> Pe;yy] - Naturally,
we can use segment [p¢;, pc,,,] as the centroid of partition P;.

4.1.3 Distance between object and centroid. In essence, both object
and centroid are segments of the input time series ¢s. Next, we focus
on the design of distance between segments. Distance between two
objects or between an object and a centroid follow naturally.

High-Level Idea. As our goal is to group objects with the same top-
explanations into one partition, the distance between two segments
shall be based on their top-explanations. Given two segments P; and
Pj, their top-explanations Ej;, (P;) and Ej, (P;) can be derived based
on Section 3.1. Each is a ranked list of explanations, i.e., E}, (P;) =
[Eil,EiZ, - E"] and Ej, (Pj) = [E},E?, E;."] as shown in Figure 3.
Strawman approaches like measuring the Jaccard distance between
Ej,(P;) and Ej, (P;) fall short when there are multiple explain-by
attributes. For instance, it is unclear how to quantify the partial over-
lap betweenE}:{state=WA} andE?z{state=WA and age>50}. Al-
ternatively, we can measure the distance between P; and P; by how
well E;, (P;) explains P; and how well E},, (P;) explains P;.

How well Ej, (P;) explains P;. We draw inspirations from infor-
mation retrieval community. Normalized discounted cumulative
gain (NDCQG) is a commonly used measure for ranking quality in
information retrieval and we adapt NDCG to quantify how well
E},(P;) explains P;. To model our scenario after the web search
setting, we can treat each segment P; as a query and each explana-
tion E as a document. By, (P;) corresponds a ranked list of retrieved
documents returned by the search engine, while E}, (P;) is the ideal
retrieved document list. The relevance between a segment P; and an
explanation E is quantified by the difference metric y(E, P;). As il-
lustrated in Table 2 (row in blue), given an explanation E; € En, (Pj)
with rank r, the relevance of E; towards P; can be calculated as
y(E; , P;). However, explanation E; might make KPI increase in seg-
ment P;, but lead to a decrease in segment P; (see Definition 3.3).
Thus, when E; has opposite effects on P; and P}, we shall rectify

Yiru Chen and Silu Huang

How well E;,, (P;) explains P;
Effect (+/-) Relevance Rectified
Rank | Expl onP; [onP; | onP Relevance j
v | B | wEL Py | 2B P || y(ET P v (£ Pu)x
j ot | viEp L Le(r,p)=c(ELP)
1 Ejl. + + y(EL P;) y(E} I P;)
2 E?. + + v(E%, P;) y(E%, P;)
3 Ej + - y(Ej,Pi) 0
. L Y(ELP) y(E3P)
Discounted cumulative gain (DCG): Togy (D) T Togy (1) T Togy (199)

Table 2: Example of DCG Between E;, (P;) and P;

the relevance to zero as our ultimate goal is to measure the distance
between P; with P;. Formally, we denote the rectified relevance as
Y(E;, P;) and we have Y(E;, Pi):y(E;, P;) x]]'T(E;,Pj):T(Ejr-,Pi) . Take
E3 in Table 2 as an example, E3 contributes the increase in segment
Pj but the decrease in P;, thus the relevance is rectified to 0.

Now we have mapped our scenario to query-document retrieval
setting, i.e., query P;, retrieved document list E;, (P;), and the
rectified relevance formula y, NDCG(P;, By, (Pj)) can be calcu-
lated using Eq. 3, 4, and 5. It quantifies how well Ej, (P;) explains
P;, with ranges from 0 to 1. At an extreme, when E;, (P;) is ex-
actly the same as Ej, (P;) and with the same effect on P; and P;j,
NDCG(P;, By, (Pj))=1, meaning Ej, (P;) explains P; perfectly.

7(E7, Py)
DCG(P;, By, (Pj)) = Zm ®
Y(Ez’Pl Y(EI’PZ
DCG(P;, m(Pl))—Zlog (r+1) Zlogz(r+1) @
. DCG(P;, B}, (Pj))
NDCG(P;, Ep, (P))) = ®

DCG(P;, Ep, (Pi))

Calculating Distance. We can then define the distance between
P; and Pj as in Eq. 6, where NDCG(P;, Ey, (P})) quantifies how
well E;, (P;) explains P; and NDCG(Pj, By, (P;)) quantifies how
well E},, (P;) explains P;.
NDCG(Pi, E*m(PJ)) + NDCG(PJ', E’:n(Pl)) (6)
2

Eq. 6 averages NDCG(P;, E;, (P;)) and NDCG(P},Ey}, (P;)) to
obtain the similarity between P; and Pj, followed by a complement
to get the distance. dist(P;, P;) is symmetric with ranges [0, 1].

dist(P;, Pj) =1—

4.1.4 Putting all together. Given a partition P; = [pe;, pe;,,], it
contains a continuous list of objects {Px = [px, px+1]} Where ¢; <
x < ci+1 and its centroid is P; = [pe;, pe;,, |- Using Eq. 6 and 2, we
can derive our variance of P; as in Eq. 7.

cipp—1

Z dist(Px, P;), where Py = [anpx+1]

h)

1

var(P;)) = ———
Ci+1 — Cj

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

Our problem formulation of K-Segmentation is now complete,
by instantiating var(P;) in Problem 1 with Eq. 7.

4.2 Effectiveness of Variance

In this subsection, we evaluate the effectiveness of our variance
design. We term our variance metric in Equation (7) tse. Since
real-world datasets lack its ground truth of evolving explanations,
we synthesize datasets with ground truths and evaluate how tse
performs compared with other alternatives. We will evaluate the
end-to-end effectiveness in Section 7.

4.2.1 Synthetic datasets. We synthesize datasets and generate their
ground truth K-Segmentation $. Each dataset is one relation
R with schema: T, sales, category. The aggregated time series
represents how the total sales changes along the time T — SELECT T,
count(sales) FROM R GROUP BY T. We set the explain-by attributes
A={category} and there are three categories: aj, az, as. Each
predicate e.g., {category=a; } denotes an explanation E.

Synthesize Procedure The aggregated sales time series can be
viewed as a summation of each category’s time series. We start
by synthesizing each category’s time series. In detail, we first ran-
domly pick cutting points {ci, cj.l_} for each category E;’s time
series — {SELECT T, count(sales) FROM R WHERE category=a; GROUP
BY T3. For each segment [pc;-(,pc;-m],l < k < ji defined by these
cutting points, we synthesize either an upward or downward trend
in linear shape. We restrict the adjacent segments to have different
up or down trends. We can then derive the ground truth segmen-
tation’s cutting points of the aggregated time series as the union
of each category’s cutting points, i.e., U?:l {ci, cj.i}. We treat
U?:l{ci, céi} as our ground truth because (1) each predicate has
a consistent up or down trend in each segment; (2) our restriction
that adjacent segments have different trend direction guarantees
that every cutting point is necessary and U?:l{ci, v cj.i} is the
minimal coherent segmentation method. We set the time series’
length at 100 and synthesize 20 datasets with seven different levels
of SNR;g. The lower the SNR;p is, the noisier the time series is.
We remark that the number K and the length of each segment are
diverse in our synthetic datasets, with segment number K varying
from 2 to 10 and segment length varying from 6 to 84 as shown in
Figure 4.

IS
N
o

Frequency
Frequency

2 4 6 8 10 40 60
Segment number K Length

Figure 4: Distribution of segment number K and length of
each segment.

Signal-to-Noise Ratio Real-world data is quite noisy. For our syn-
thetic dataset, we add Gaussian Noise N (0, 02) to each predicate’s
time series to simulate noisy time series. We quantify the noise

level using signal-to-noise level, namely SNR [48]. We add different
noise SNR;g = 20, 25..,50 to each dataset. The lower the SNR is,
the noisier the time series is.

Example 4.1 (Synthetic Dataset and Ground Truth Segmentation).
In Figure 5, the dash lines illustrate each predicate’s time series, and
the noise level is SNR = 35. The predicate category = al has its
cutting points at 52, 76, the predicate category = a2 has its cutting
point at 70, 90, and the predicatecategory = a3 has its cutting
point at 31. Thus, in this example, we can derive the aggregated
time series cutting point as the union of three predicates’ - { 31, 52,
70, 76, 90 }.

Figure 5: A synthetic time series with SNR = 35.

4.2.2 Effectiveness. We compare tse with other alternatives in
terms of effectiveness.

Alternatives We design our alternatives by enumerating other
reasonable distance metrics and variance structures.

Change dist(P;, P;) definition and keep the variance structure. Dif-
ferent from our metric in eq. (6), if we only consider how well each
object’s explanation Ej, (P;) explains the centroid P;, we can derive
dist1 in eq. (8); or if we only consider how well the centroid’s
E;, (P;) explains each object Pj, we can derive dist2 in eq. (9).

dist1 :dist(Pi,Pj) =1- NDCG(PI',E:;I(P]')) 8)

diStZ:dist(Pi,Pj) =1 —NDCG(PJ',E*m(Pi)) 9)

Change the variance structure and keep the dist(P;, P}) definition.

Instead of comparing the centroid with each object, we compare
all possible object pairs. We name this metric allpair.

allpair:var(P)) = AVG{Z Zdist(Px, Py)}, Px, Py C P;
Py Py
(10)
Based on tse, dist1, dist2, allpair, if we further change
the second term in the distance metric to its 12 norm, we can derive
Stse/Sallpair, Sdist1 and Sdist2 correspondingly. Till now, we
have eight different forms of metrics.

Evaluation As shown in eq. (1), our problem is to find the segmen-
tation that minimizes the objective score. Thus, the effectiveness
criteria of variance design is whether the ground truth can score
the lowest or close to the lowest in noisy datasets.

We compare tse with all other alternatives. Given one metric
and one dataset D with its ground truth, the K-segmentation search
space Pk is huge and each segmentation scheme has its metric
score. We study how the ground truth segmentation’s score ranks
among all possible segmentation schemes: the higher the rank is,
the better the metric is. Because Pk space is huge, we sample 10000
random segmentation schemes, and rank the ground truth among

all the samples, denoted as ground truth rank. On this dataset D, we
calculate all eight metric’s ground truth rank following the same
method. To compare all the metrics on D, we rank across all the
eight metrics from rank 1 (highest rank) to rank 8 (lowest rank)
ascendingly based on their own ground truth rank. The higher
a metric’s rank is, the fewer segmentation schemes have lower
variance than the ground truth, indicating that this metric is more
effective on D. Figure 6 averages each metric’s rank over all datasets
at the same SNR level and shows how different metrics’ ranks
change along with the noisy level. When SNR = 50dB, we can see
that all metrics rank 1st because the ground truth all achieves the
lowest score. What’s more, tse metric always has the highest rank
compared with other metrics no matter what level the SNR is.

factor(variance)

dist2

allpair

Rank

-
e

—#- Stse
=¥ Sdist1
— Sdist2

' ' ! —— Sallpair
20 30 40 50
SNR

Figure 6: The average rank of all metrics at different SNRs.

Takeaway. Compared with other alternative metrics, tse is the
most effective one.

5 OUR SOLUTION: TSEXPLAIN

Now we have formulated our K-Segmentation problem (Problem 1),
together with the designed within-segment variance in Eq. 7. In this
section, we will present our solution TSExpPLAIN: we will start with a
dynamic programming (DP) algorithm for solving K-Segmentation,
assuming var(Py) is available for each partition Py ; next, we will de-
scribe our solution pipeline (Figure 7) — steps for preparing var(Py)
and DP - together with complexity analysis; last, we propose sev-
eral optimizations for speeding up TSEXPLAIN.

5.1 DP for K-Segmentation

Different from K-Means, which is computationally intractable (NP-
Hard), K-Segmentation is polynomial solvable. At a high-level, the
search space in K-Means is K", while it is (I’ézzl) in K-Segmentation
as the task is essentially to identify (K — 1) cutting positions among
the (n — 2) non-endpoints of a given time series ts.

Intuitively, K-segmentation exhibits optimal substructure — the
optimal solution of K-segmentation can be constructed from the
optimal solutions of its subproblems. Thus, we can use dynamic
programming for solving K-Segmentation. Let D(j, k) denote the
minimal total within-segment variance of k-segments over time
range [t1,t;], ie, D(j,k) = minp, _p, _p;] Zf:1|P,-|var(Pl~). To
derive D(j, k), we can enumerate different positions of the last cut
j’ and calculate the smallest total variance among all possible j’.
When the last cut is fixed at position j’, the minimal total variance
of k-segments can be decomposed into two parts: the minimal
total variance of (k — 1)-segments over time range [t1,tj] and

Yiru Chen and Silu Huang

(b) (c)
Pre-processing Cascading _’q_n_a_lyﬂl E* |K-Segmentation| D{N, K)
Optimization I: |
Data Cube Guess-and-Verify | 7z

Figure 7: Solution Pipeline in TSEXpLAIN

the variance of the k% segment during [t,t;],ie, D(j’, k- 1) +
|Pr.|var(Pg). The DP recursion function is expressed in Eq. 11.

D(j,k) = argmin[D(j’,k = 1) + P |var(Px)], Pr=[py.p;] (11)
1<j7<j

D(j, k) is recursively computed with Eq. 11, which involves cal-
culating variance var(Py) for all segment P = [pj/,p;] where

1 < j" < j < n.Given a segment P, = [pjr, pj], its var(Py) is
computed via the distance dist (P, Pyx) between centroid segment

Py and each object segment Py = [px, px+1] where j/ < x < j as
shown in Eq. 7. Now to calculate dist(Py, Pyx), we need to identify
the top-explanations Ej, in segment P; and Py. Top-explanations

E;,, is derived with Cascading Analyst algorithm [38], which re-
quires computing the diff score y(E) for each explanation E. In Sec-
tion 5.2, we will present our solution pipeline consisting of three
modules: (a.) Preprocessing module for calculating y(E); (b.) Cascad-
ing Analyst module for deriving E},; and (c.) K-Segmentation module
for computing dist(Py, Pyx), var(Py), and finally D(j, k). We will
also analyze the time complexity for each module, pinpointing the
bottleneck in the whole pipeline for optimizations in Section 5.3.

5.2 Solution Pipeline and Complexity Analysis

The overall solution pipeline is depicted in Figure 7 with module
(a) Preprocessing, (b) Cascading Analyst, and (c) K-Segmentation.
In the following, we will dive into each module and analyze its
computational complexity. The optimization modules with blue
background in Figure 7 will be introduced in Section 5.3.

Precomputation. Module (a) is responsible for computing the diff
score y(E) for each candidate explanation E over every segment
[pj,pj] where 1 < j* < j < n. Given an explanation order thresh-
old f3, we can enumerate all candidate explanations — each is in the
form of E = [A1=ay, ...,A5=aﬁ] where 1 < § < f. Let € be the total
number of candidate explanations. By default, f is set as 3.

As illustrated in Figure 7, given an explanation E and a segment
[pj:, pjl, the difference score y(E), i.e., absolute-change in Def-
inition 3.2, can be calculated by looking at the points at time ¢;
and t; of the aggregated time-series ts(R) and ts(R — ozR), i.e., the
aggregated time-series from relation R when excluding data with
predicate E. As most aggregate function f(M) is decomposable,
e.g., SUM, AVG, Variance, we can derive ts(R — ozR) by using ts(R)
and ts(ozR). Since TSEXPLAIN is designed to integrate with existing
interactive data analysis tools like PowerBI, data cube is typically
maintained in memory and thus we can easily access ts(R) and
ts(ogR) from the data cube.

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

Time complexity: for each segment [pj/, p;] and explanation E, it
takes O(1) for computing the difference score y(E). There is in total
n? segments and e explanations, thus the total time complexity for

module (a) is O(e - n?).

The Cascading Analysts (CA) Algorithm. Module (b) is respon-
sible for calculating top-explanation Ey, for each segment [pj/, p;].
TSExpLAIN employs [38] to identify top-explanation (Definition 3.5).
In a nutshell, the CA algorithm simulates what a data analyst would
perform during data analysis: recursively perform drill-down oper-
ations in dimensions and select data slices they are interested in.
Each data slice is summarized by some conjunction predicate, i.e.,
an explanation in our context. Different from manual data analyt-
ics, here the drill-down dimensions and data slices are selected via
dynamic programming to maximize the total diff score y(E) under
the constraint that the number of data slices is < m.

N
Drill Down along '\\jw'

Dimension A;

Drill Down along
Dimension 4,

Drill Down along
Dimension A;

Figure 8: Illustration of Cascading Analyst

Given three explain-by attributes A={A;, A;, A, }, Figure 8 illus-
trates the CA algorithm for identifying top-5 explanations. Each
node in Figure 8 corresponds to an explanation E and is associ-
ated with its diff score y(E) obtained from module (a). For in-
stance, the left-most node at level one denotes explanation E =
(A,-:al!) and the left-most node at level two denotes explanation
E= (Ai:al? &A j:a}.). To identify top-m non-overlapping explana-
tions, the algorithm starts from the root node with m quotas. It
enumerates the first drill-down dimension, e.g., dimension A; as
shown in Figure 8, as well as the quota assigned to each drill-down
sub-tree, e.g., two out of five is assigned to the subtree rooted at
node (Ai:al?) and (A,-:af) respectively and another one is assigned
to the subtree rooted at node (Ai:ai"). Again, for the sub-tree
rooted at node (Ai:a%) with two quotas, the algorithm enumer-
ates next dimension to drill down (i.e., A; in Figure 8), and assigns
quota to each drill-down sub-tree (i.e., one to (Ai:alg &Aj:a}.) and
one to (Ai=a?&A j =a§)). This process is conducted recursively. The
enumeration of drill-down dimension and quota assignment are
performed via dynamic programming to maximize the total score
>.r Y(E) under the constraint that the total quota is < m. In Fig-
ure 8, the algorithm returns top-5 explanations (nodes in blue) with
maximum Y y (E)=3+3+4+4+3=17. Please refer to [38] 3 for details.

3[38] also works with the alternative Definition 3.5 in footnote 1.

Time complexity: the CA algorithm [38] takes O(e - | A| - m?) per
segment, where € is the total number of candidate explanations,
| A| is the number of explain-by attributes, and m is a user-specified
explanation number. By default, m is set as 3. Since there are in
total n? segments, the total time complexity is O(e - |A| - m? - n?)

K-Segmentation. Module (c) is responsible for identifying the best
K-segmentation scheme #y that minimizes the total variance. As
described in Section 4.1 (Eq. 6), we first compute dist (P, Pyx) based
on the top-explanations E;, on centroid segment Pr=[pj:, p;] and
object Px=[px, px+1] obtained from module (b); next, var(Py) is
calculated for every segment based on Eq. 7; lastly, DP is utilized
for deriving D(n, K) and the optimal segmentation scheme ..
Time complexity: for each pair of (P, Py), calculating dist (P, Py)
takes O(m) in looking at top-m explanations. There are (n-I) cen-
troid segments Py, of length # I where 1< I<n and each P;. of length
I contains I objects Py. In total, we have 27:_11 I(n = 1)=0(n?) pairs
of (P, Px) and thus the time complexity for calculating all distance
is O(m - n®). Similarly, the total time complexity for calculating
variance var(Py) of all P is O(n?). With var(Py) available, DP
takes O(n - nK) = O(n%K), as each step in Eq. 11 involves O(n) for
enumerating the last cut’s position and there is in total nK steps.
Thus, the complexity of module (c) is O(m - n® + K - n?).
Takeaway. To sum up, the total time complexity is O(e-n?+e-|A|-
m? - n?+m - n3+K - n?) — it grows linearly to € and |A|, quadratic
to m, and cubed to n. In general, m, K, and |A| are small due to
user’s limited perception. Thus, the runtime depends mostly on the
number of candidate explanations € and the size of the aggregated
time series n. Next, we focus on reducing € and n for speedup.

5.3 Optimizations

As the takeaway above describes, the runtime largely depends on
the number of candidate explanations € and the time series length
n. For Liquor dataset used in Section 7, € is around 5000 even when
only two explain-by attributes are considered, i.e., |A|=2, and n is
around 300. Next, we introduce two optimizations for speedup: (I.)
guess-and-verify to reduce € and (II.) sketching to reduce n.

5.3.1 Guess-and-verify. As discussed in Section 5.2, the CA al-
gorithm is one of the bottlenecks in our pipeline. Guess-and-verify
is designed to reduce the input explanation number () in CA.

High-level Idea. To ensure non-overlapping, CA algorithm recur-
sively drills down dimensions and selects data slices (explanations)
as shown in Figure 8. The intuition behind guess-and-verify is
that explanation E with higher diff score y(E) is more likely to be
in the top-m non-overlapping explanations Ej,. Thus, instead of
using all candidate explanations as the input of CA algorithm, we
can take a guess and limit the input to only include top explanations
with the highest diff score. A smaller input size can dramatically re-
duce the runtime of the CA algorithm, but the returned results E
may not be the optimal top-m non-overlapping explanations E},.
To mitigate this, we verify whether the returned result is optimal.
This process is repeated until the result is verified to be optimal.
Specifically, we first sort all explanations in descending order of
Y(E), denoted as y. Next, we go through the following two phases

A segment [p;, p;] has length (j — i).

iteratively: (1) guess and (2) verify. In each iteration, first take a
guess on the input size ra; then run the CA algorithm with the first
m explanations in y and obtain the result E; verify if E is optimal.

X =1{En,Bn.- B}
Sorted by Diff score (E)

L1 J
- Erﬁ E,.' - By,
=3 =1 7=1

Cascading Analyst
Top-m Explanations T3 Es*=[Bn, Ev,]
75 B3 Sy Dirg s By
Top-2 E;*[E, , E,]
Top-1: E; *=[E},]

T

Verify NO

Verification Condition
Best(3) »= Best(2) + y(Eryta) 112941 ygg
Best(3) »= Best(1) = 7(Era,y) * ¥(Ersyy) 11354141

Verification Condition

Equation 167) YES

Figure 9: Guess-and-Verify

Guess. Naively selecting the first m explanations in y might result
in explanations that overlap with each other, though the total dif-
ference score is the largest. Alternatively, we hypothesize that the
answer of the CA algorithm comes from the top m candidate expla-
nations in y. If the returned result passes the verification condition,
terminate; otherwise, increase 7 to 2m as shown in Figure 9.

Verify. Taking the first ma explanations in y as the input, the result
I@ returned by CA algorithm is not guaranteed to be optimal since
some explanation E € E}; might rank after m in . To ensure the
optimality, we design a sufficient condition such that once this
condition is satisfied, it is guaranteed that the returned result is op-
timal. Let y=[E,,, Ey,.., Er_] be the ordered explanation list ranked
by y(E). With [E,, Ey,.., Ey,,] as input, let E*m be the top-m non-
overlapping explanations returned by CA algorithm and Best[m] be
the corresponding total difference score. Given m, the CA algorithm
not only returns Best[m], but also Best[m’] for every 1< m’<m as
a side product of dynamic programming. Best[0] = 0. With these
notations, we can now present the verification condition in Eq. 12.
The high-level idea is that each explanation can be categorized into
the following two classes: (1) with rank < r, and (2) with rank
>m. Thus, we can upper bound the total difference score of each
candidate m non-overlapping explanations by the right-hand side
of Eq. 12, where the first term corresponds to the score of class (1)
and the second term upper bounds the score of class (2). Hence, if
we ensure that the current best solution (left-hand side of Eq. 12)
has higher total score than all candidate solutions (right-hand side
of Equation 12), we can safely terminate and output the optimal
top-explanation. Proofs are omitted due to space limitation.

Best[m] > Best[m'] + Z

1<j<m-m’

Y(Erpy;) YO<m' <m (12)

Time complexity: guess-and-verify decreases the complex-
ity from O(e - |A| - m? - n?) to O(m - |A| - m? - n?) at the best
case. Empirically, when m = 3, we initialize ra = 30.

5.3.2 Sketching. Asdiscussed in Section 5.2, the time complexity
in each module is at least quadratic to the time series size n. This

Yiru Chen and Silu Huang

is because each point is treated as a candidate cutting position in
K-Segmentation and thus the total number of segments involved in
each module is O(n?). Hence, reducing the number of candidate cut-
ting positions can dramatically improve the efficiency. Sketching
is designed for this purpose, as depicted in Figure 7.

High-level Idea. Given a time series with n points, K-Segmentation
aims to select (K-1) cutting points out of (n-2) non-endpoints. Our
intuition is that some points are worse-suitable to be used as the
cutting points and can be eliminated in a more cost-effective man-
ner; next, since the remaining points is of a much smaller size, it
is affordable to input them in our solution pipeline (Section 5.2).
We call the remaining points sketch, as its role is to represent the
original n points in the given time series. In particular, Sketching
consists of two phases: (I) sketch selection and (II.) pipeline with
sketch. We propose to select sketch using our proposed pipeline
in Section 5.2, but with the constraint that each segment’s length
to be within L, where L << N.

Sketch Selection. There are two main requirements for sketch
selection. First, the process should be efficient; second, the se-
lected sketch should contain promising points for small-variance
K-segmentation scheme (Eq. 7). Strawman approaches like random
sampling or evenly spaced sampling are fast, but does not meet re-
quirement two. To satisfy both, we propose to utilize our proposed
pipeline in Section 5.2, but with some constraint. As we will detail
below, the constraint is used to reduce the pipeline runtime (require-
ment one); and the pipeline is used to identify promising cutting
points for minimizing the total variance in Eq. 7 (requirement two).
As discussed, the number of segments considered in our solution
pipeline (Section 5.2) is O(n?). To alleviate this bottleneck, we can
restrict each segment’s length to be within L, where L << N.In
this way, we only need to compute the diff score y(E) (module a),
top-explanations E},, (module b), distance dist(Py, Py) and variance
varPy (module c) for segments with length < L. This reduces the
total number of considered segments from O(n?) to O(Ln). More
specifically, to derive a sketch of size |S|, we set K = |S| in our
K-segmentation pipeline and set the maximum segment length
threshold as L. Empirically, we set L=min(0.05N, 20) and |S|=3T".
Time complexity: In phase I (sketch selection), module (a): the
time of computing the diff scores turns to O(e - L - n); module (b):
the time of CA algorithm turns to O(e - |A| - m? - Ln); module (c):
the time of computing distance and variance turns to O(m - L? - n),
and the time of DP turns to O(L - nK). The total time complexity
is reduced by at least ’%, compared to the pipeline without
constraint. In phase II (pipeline with Sketch), module (a): the time
of computing the diff scores turns to O((e-|S|%); module (b): the time
of cascading analyst turns to O(e-|A|-m?-|S|?); Module (c): the time
of computing distance and variance scores turns to O(m-|S|?-n), and
the time of DP turns to O(K - |5|?). The total time complexity is

reduced by (%)2, compared to the pipeline without sketch.

6 OPTIMAL SELECTION OF K

In real-world datasets, it is hard for users to specify the number of
segments K in advance. By varying segment number K, TSEXPLAIN
outputs segmentation schemes with different variance scores, gener-
ating a K-V ariance curve. The left-hand side of Figure 11 illustrates

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

an example. Intuitively, K-Variance curves decrease monotonically
as the increase of K. At an extreme, when K=n-1, the total variance
reaches a minimum score of zero. Furthermore, the total variance
score drops quickly when K is small and slows down when K grows
larger. This indicates that the marginal improvement of increasing
K becomes smaller when K is large. Also, a larger K brings about
too many segments, which would exceed user perception limita-
tions. Thus, our goal is to identify the optimal K with relatively low
variance and keep the segmentation scheme concise.

Such a task is well-studied in the machine learning commu-
nity [23]. We borrow the idea of a well-known method named
the “Elbow method” [23, 32] which picks the “elbow point” of the
K-Variance curve as the optimal K. We use a task-agnostic algo-
rithm [40] to automatically determine the “elbow point” of our
K-Variance curve. This algorithm first normalizes the curve to be
from (0,0) to (1, 1). Then, it picks K*=arg maxy [total_var(K) — K]
as the “elbow point" where total_var(K) denotes the normalized
total variance when the segment number is K.

In our implementation, we collect the dynamic programming
results D(n, K) varying K from 1 to 20, plot the K-Variance curve,
and then choose the elbow point. We note that compared to calcu-
lating D(n, K = 20), collecting D(n, K) with varying K from 1 to 20
does not add extra cost, since D(n, K) gets generated for 1 < K < 20
during the dynamic programming process of D(n, K = 20). We con-
strain K to be at most 20 due to user perception limitation: when
K is too large, e.g., K > 20, it would be hard for users to interpret
the explanation results. We admit that when the time series is long,
i.e., n is large, restricting K under 20 might not return the explana-
tions at the finest granularity, but we argue that explanations at
coarse grain with K < 20 is a better choice considering user percep-
tion limit. Empirically, we observe that TSExPLAIN chooses 6 or 7
segments in most cases in our real-world experiments (Section 7.4).

7 EXPERIMENTS

In this section, we answer two questions: (1) how effective is TSEx-
PLAIN in identifying the evolving explanations; (Section 7.3 and 7.4)
(2) how fast is TSEXPLAIN (Section 7.5).

The current TSExPLAIN is implemented in C++. All experiments
below are run single-threaded on a Macbook Air 2020 with Apple
M1 chip 8-core CPU and 16GB memory.

7.1 Datasets

We introduce the datasets used in the experiments.

7.1.1 Synthetic datasets. We synthesize 20 different datasets with 7
different levels of SNR ;g (section 4.2.1). In total, we have 140 differ-
ent datasets. The aggregated time series is SELECT T, count(sales)
FROM R GROUP BY T and the explain-by attribute is category.

7.1.2 Real-world datasets. We use the three real-word datasets in
the motivating examples of Section 1. Here, we briefly go through
the aggregated time series, explain-by attributes. In practice, we
expect users to provide explain-by attributes based on their domain
knowledge.

Covid. [7] records the daily/total confirmed cases of 58 states.
Naturally, there are two aggregated time series: (D the covid total
confirmed cases trend, SELECT date, SUM(total-confirmed-cases)

FROM Covid GROUP BY date; (2) the covid daily confirmed cases trend,
SELECT date, SUM(daily-confirmed-cases) FROM Covid GROUP BY
date. We choose state as our explain-by attribute to answer "which
states are the main contributors to the rises or drops?".

S&P 500. contains 503 company® stock price (price) and free-
float shares (share) from 2020-1-1 to 2020-10-1. Based on the S&P
500 index formula[5], we derive the S&P 500 index’s time serie as
SELECT date, SUM(ericesshare) ,q spsgp-index FROM Sp500 GROUP BY
date, where divisor is a constant. We try to explain the S&P 500
index’s crashes and rebound using the hierarchical explain-by fea-

tures - category, subcatagory, stock.

Liquor. contains liquor purchase transactions in lowa from 2020-
1-2 to 2020-6-30. The time series is SELECT date, SUM(Bottles Sold)
FROM Liquor GROUP BY date. We pick four attributes out of 24
attributes as our explain by features: Bottle Volume (ml) - the
size of each bottle in a purchase (e.g., 750ml); Pack — the number
of bottles per pack (e.g., 6); Category Name — the category of the
purchased liquor (e.g., American Flavored Vodka); Vendor Name -
the vendor of the purchased liquor (e.g. Phillips Beverage). Below,
we use BV, P, CN, and VN to represent them respectively for short.

7.2 Baseline

TSExPLAIN is the first explanation-aware segmentation to surface
the evolving explanations for time series. The closest segmentation
works are the bottom up algorithm (Bottom-Up) which performs
best overall in piecewise linear approximation [21] and recent se-
mantic segmentation algorithm - FLUSS [9] and NNSegment [42].
All these methods are explanation-agnostic, partition time series
solely based on the visual shapes, and require segment number
as input. For a fair comparison, the K for baselines is either given
or borrowed from TSEXPLAIN’s results. Implementation wise, we
reproduce Bottom-Up based on the pseudo-code in Keogh et al [21].
FLUSS is implemented using Stump library [26] and NNSegment is
implemented using the authors’ code [42].

7.3 Explanations of Synthetic Datasets

We evaluate TSExPLAIN’s effectiveness on synthetic datasets and
perform quantitative comparisons between TSEXPLAIN and the
three baselines. For fair comparison, we adopt the oracle segment
number K of the ground truth, and we run TSExpPLAIN and baselines
with known K.

Metric We propose a metric to compare the effectiveness of these
methods by quantifying the distance between these methods’ out-
put and ground truth. We calculate the edit distance between out-
puts and ground truth. Since different datasets have different seg-
ment number K and time series lengths n, we normalize our edit
distance by K and n. The lower the metric is, the more effective the
method is. We term this metric distance percent(%).

Figure 10 shows the comparison between TSExPLAIN and base-
lines. As FLUSS and NNSegment both involves parameter, i.e. pe-
riod and window size, we try mutiple parameters and report the
best overall results we found. The x-axis is SNR, and the y-axis

5S&P 500 has 505 components and the components are adjusted along the time. We
select the 503 companies that are in the component list during the whole period.

is the distance percent(%). We report the average distance per-
cent for each SNR level. As we can see, TSEXPLAIN always has
the best performance than all three baselines and Bottom-Up is
the most comparable baseline among all three. When SNR > 35,
the distance percent(%) of TSEXPLAIN is close to 0, indicating for
cleaner datasets, TSEXPLAIN’s output is almost the same as ground
truth. However, the baselines are incapable to detect ground truth
even with clean datasets.

10-
5_ ‘ L
0- U U U U " U '
20 25 30 35 40 45 50

SNR

. Bottom-Up . FLUSS . NNsegment . TSExplain

distance percent(%)

Figure 10: Distance percentage of TSExpLAIN and baselines

Takeaway. For synthetic datasets, TSEXPLAIN performs much more
effectively than all baselines. Bottom-Up is the most comparable
baseline. For less noisy dataset, TSEXPLAIN can accurately detect
the ground truth, while baselines can not.

7.4 Case Study on Real-World Datasets

This subsection demonstrates TSEXPLAIN's effectiveness on three
different real-world datasets: Covid, S&P500, and Liquor, and gives
an illustrative comparison between TSExpLAIN and baselines. For
fair comparison, TSEXpLAIN recommends the K and our baseline
uses the same segment number K. In this experiments, we focus on
the top three explanations and set each explanation’s order as 3. For
very fuzzy datasets, we apply a moving average to smooth it before
explaining it. The moving average window can be customized in
the interface’s panel as shown in the demo [6].

7.4.1 Covid. We explain the two time series in Covid dataset,

total-confirmed-cases and daily-confirmed-cases separately.

Total-confirmed-cases. TSExpLAIN identifies that the opti-
mal K equals 6 based on the optimal selection of K in Section 6.
Figure 11 shows TSEXPLAIN’s output segmentation scheme with
the top three explanations’ trend and three baselines’ output. Please
refer to the legend of Figure 2 for the top-3 explanations of TSEx-
PLAIN. In TSEXPLAIN’s output, the first segment is from 1/22 to 3/14,
where the increase of total-confirmed-cases is due to WA, NY,
CA’s increase. From 3/14 to 5/4, NY increases the most, followed by
NJ and MA. Then, between 5/4 and 5/29, IL, CA, NY slowly increase.
Later on, the confirmed cases surge mainly because of the sharp
increase in CA, TX, FL, and IL, especially IL increases quickly

Contrarily, in the baselines, some neighboring segments’ expla-
nations are exactly the same, i.e., 6/16-7/31 and 7/31-11/2 in Bottom-
Up, 6/28-8/9 and 8/9-10/3 in NNSegment, as shown in Figure 11c
and Figure 11e; while FLUSS segmentation (Figure 11d) segments

Yiru Chen and Silu Huang

Covid total-confirmed-cases

2e7
le7
5e6
(a) The total confirmed cases trend.
— Top-1 —— Top-2 —— Top-3
2e6 /
=
_—
1-22 3-14 5-4 5-29 9-25 11-27 12-31
(b) TSEXPLAIN segmentation.
2e6
/Z
/
0 — | —
1-22 3-29 6-16 7-31 11-2 11-3012-31

(c) Bottom-Up segmentation.

] /

0 T T
1-222-62-223-83-23 4-7 12-31

(d) FLUSS segmentation.

2e6 /
I

122 3-28 6-28) 103 114 12°31

(e) NNSegment segmentation.

Figure 11: Segmentation of total-confirmed-cases.

the early time into a lot of small segments which is hard to inter-
pret. In addition, none of the baselines detect the top-explanations’
changes from NY during 3/14-5/4 to IL during 5/4-5/29 as reported
in news[50].

Segment Top-1 Expl Top-2 Expl Top-3 Expl

1/22 ~3/7 Washington + New York + California +

3/7 ~4/7 New York + New Jersey + Massachusetts +
4/7 ~5/25 New York - New Jersey - California +
5/25 ~7/16 Florida + Texas + California +
7/16 ~9/9 Florida - Texas - California -

9/9 ~11/10 Illinois + Texas + Wisconsin +
11/10 ~12/31 California + New York + Illinois -

Table 3: Expl. in Fig. 12(middle). +/- denote change effect.

Daily-confirmed-cases. In Figure 12 and table 3, TSEXPLAIN
segments this time series into seven periods. Specifically, from 3/7
to 4/6, NY, NJ, and MA’s rises contribute to the overall rise in the US.
From 4/7 to 5/25, NY and NJ decline dramatically, and TSEXpLAIN
captures an interesting pattern that CA starts to rise. During the
holiday season in 2020, namely the last segment, CA and NY surge
again while IL declines. Compared to TSEXpLAIN, the Bottom-Up
segmentation does not detect the changes during 3/7 - 5/25. The
FLUSS performs very poorly without revealing the explanation
during 2/28-9/10 at all. The NNSegment segmentation is similar to
our TSEXPLAIN explanation. However, it segments the up and down
trend during 6/23 -8/26 to a whole segment which makes it users
hard to interpret the explanations.

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

Covid daily-confirmed-cases

2e5
le5
(a) The daily confirmed cases trend.
— Top-1 — Top-2 — Top-3
2e4 :
0 I e ——
1-22 3-7 4-7 5-25 7-16 9-9 11-10 12-31

(b) TSEXPLAIN segmentation.

2e4 f
| —— =

1-22 3-12 6-15 7-20 8-28 10-19 11-18 12-31

(c) Bottom-Up segmentation.

zed %
e —— =
0
1-222-7 2-28 8-108-26 10-50-21 1231
(d) FLUSS segmentation.
2e4
0 —
1-22 314 411 514 6-23 8-26 10-29 12-31

(e) NNSegment segmentation.

Figure 12: Segmentation of daily-confirmed-cases. Left is the
K-Variance curve. Right shows aggregated time series(top),
TSExpLAIN results(middle), baseline results(bottom).

Segment Top-1 Expl Top-2 Expl Top-3 Expl
1/2 ~2/6 technology + energy - internet retail +
2/6 ~3/24 technology - financial - communication -

3/24 ~8/25 technology + consumer cyclical + communication +
8/25 ~10/1 financial -
Table 4: TSExpLAIN Explanations of S&P 500 in Figure 13(mid-
dle). All the explanations are related to attribute category,
except internet retail + is related to subcategory. We omit
the attribute name for short.

technology - communication -

7.4.2 S&P 500. Figure 13 and Table 4 show TSEXPLAIN explanation
results. TSExpPLAIN finds the elbow point at four and segments the
time series into four small segments. Before the market crash from
1/2 to 2/6, the S&P 500 rises mainly due to the rises of category
technology and subcategory internet retail; meanwhile, category
energy slightly drops. Also, TSEXPLAIN recognizes the market crash
at 3/24. TSExPLAIN explains that stocks belonging to category tech-
nology, financial, and communication contribute the most to the
crash. After that, the category technology contributes most to the
recovery during 3/24 ~8/25 and the drop during 8/25 ~10/1. We
can also discover an interesting fact that financial category drops
dramatically from 2/6 to 3/24, but does not bounce back a lot as
technology and communication category do during the stock mar-
ket recovery. In the Bottom-Up approach, although it detects the
market crashing point on 3/24, however, the decreasing influencers

S&P 500

3e3
3e3

(a) The S&P500 trend.

— Top-1 — Top-2 —— Top-3
8e24 / —
5e2 | —_— S
2e2
1-2 2-6 3-24 8-25 10-1

(b) TSEXPLAIN segmentation.

ge2 | EE———l s

5e2{ | _——

2e2i— | | , ,
12 224 324 8-24 10-1

(c) Bottom-Up segmentation.

5]
ge2{ | -

5e2
2e2 {—
1-2 1-22 3-2 3-18 10-1

—

(d) FLUSS segmentation.
8e2 e

5e2
2e2

12 211 312 413 10-1

(e) NNSegment segmentation.

Figure 13: Segmentation of S&P 500. Left shows the K-
Variance Curve. Right shows aggregated time series(top),
TSExrLAIN results(middle), baseline results(bottom).

- technology, financial, communication service categories are de-
tected starting from 2/24 which is much later than TSExpLAIN. And
FLUSS and NNSegment do not detect the crash point well and also
can not recognize the drop from Aug to Oct.

7.4.3 Liquor. Figure 14 shows that TSEXPLAIN segments the time
series into seven segments and Table 5 shows each segment’s expla-
nations. TSEXPLAIN recognizes that overall, from 1/20 to 4/21, the
large pack liquor increases a lot, i.e., pack = 12, 24, 48. These indicate
that people favor large-pack liquor at the beginning of the pandemic.
We also remark that the underlying top explanations can be a com-
bination of up and down trends. For example, the main reasons for
the overall increase from 3/6 to 3/31 are BV=1000(-), BV=17508P=6(+)
and BV=7508&P=12(+). TSEXPLAIN explains this in such way that (I)
BV=1000 decreases sharply, otherwise the overall bottles sold can in-
crease much more; (2) BV=17508P=6(+) and BV=750&P=12(+) directly
contribute to the increase. Moreover, with some background knowl-
edge, we find that liquor with Bv=1000 is mainly sold in indepen-
dent stores. In March, Iowa’s close down proclamation[17] requires
restaurants and bars to shut down, and most indepen dent retailers
rely on selling liquor to bars and restaurants. As a result, their
business significantly declined. In late April, Iowa Governor issued
a proclamation reopening restaurants, and the business of inde-
pendent liquor stores gradually recovered. We can see TSEXPLAIN
recognizes that from 4/21 to 5/8, Bv=1000ml&Pack=12 increases a
lot and from 5/8 to 6/10, BV=1000 becomes the top increasing ex-
planation indicating that independent stores benefited from the

reopening policy. In comparison, the explanations of the Bottom-Up
results look flat, as shown at the bottom of Figure 14(c), indicating
the detected explanations change subtly. This is similar with FLUSS
and NNSegment. Moreover, the top-2 and top-3 explanations during
3/25-4/17 returned by FLUSS have only subtle changes in bottles
sold. For NNSegment, the explanations during 1/23-2/7 and 2/7-2/25
are exactly the same, and the changes made by top-2 and top-3
explanations of the last segment are very small as well. Also, we
remark that although we specify four explain-by attributes, the
results are only about BV and P. This indicates that TSEXPLAIN is
able to identify interesting attributes and ignore the less interesting
ones, i.e. VN and CN.

Bottles Sold
le5
le5
(a) The bottles sold trend.
— Top-1 — Top-2 — Top-3
Se4i___ | — _— — |
2e4 [=
B — e
1-2 1-20 3-6 3-31 4-21 5-8 6-10 6-30
(b) TSEXPLAIN segmentation.
5e4 o P — — |
2e4 o " 0
12 120 3-163-24 5-5 529 6-10 6-30
(c) Bottom-Up Segmentation.
Se4 I _—
- — -
2ed — —
12 127 2-10 224 311 3-25 417 6-30
(d) FLUSS segmentation.
Sed4q___ | e e
I -
0 —
1-2 123 27 225 3-10 4-10 5-21 6-30

(e) NNSegment segmentation.

Figure 14: Segmentation of Liquor. Right shows the K-
Variance Curve. Left shows aggregated time series(top),
TSExpLAIN results(middle), baseline results(bottom).

Segment Top-1 Expl Top-2 Expl Top-3 Expl

1/2 ~1/20 P=12 - P=6 - BV=375&P=24 -
1/20 ~3/6 P=12 + P=6 + P=48 +

3/6 ~3/31 BV=1000 - BV=1750&P=6 + BV=750&P=12 +
3/31~4/21 P=12+ BV=1750&P=6 - P=24 +

4/21 ~5/8 BV=1750&P=12 - P=6 + BV=1000&P=12 +
5/8 ~6/10 BV=1000 + BV=1750&P=6 - BV=750&P=12 -

6/10 ~6/30 P=12 + BV=1750&P=6 + P=24 +
Table 5: TSExpLAIN Explanations of Liquor in Fig. 12(middle).

Yiru Chen and Silu Huang

dataset € filterede n

total-confirmed-cases 58 54 345
daily-confirmed-cases 58 55 345
S&P 500 610 329 151
Liquor 8197 1812 128

Table 6: Real-world Dataset Statistics.

7.4.4 Sensimivity To K. TSExPLAIN adopts the elbow method to
detect the optimal K. We observe that a slight change of the optimal
K will only bring up a slight shift in the results, e.g., remove or add
one cutting point if K minuses/adds 1.

Takeaway. TSExpLAIN effectively explains real-world datasets
while the baseline defects in that:

o Less explanation diversity: the neighboring segments have
the same explanations.

o Less effectiveness: the underlying key explanations can not
be detected, and explanations are detected relatively late.

o Less significance: The explanations detected change subtly.

7.5 Efficiency Evaluation

We conduct three experiments to evaluate the efficiency. In the
first experiment, we report the breakdown latency and study the
impact of our optimization strategies. In the second experiment,
we compare the end-to-end runtime between TSEXPLAIN and all
three baselines. In the third experiment, we study the scalability of
TSEXPLAIN.

7.5.1 Latency Breakdown and Quality.

Methods. Besides the two optimizations in Section 5.3, we intro-
duce another straight-forward optimization - filter. The filtering
protocol works as follows: given an explanation E, if each point
in its aggregated time series has value smaller than a ratio of the
corresponding value in the overall aggregated time series, we filter
this explanation E as its support is low and thus insignificant. We
set ratio as 0.001 by default.

We study TSExpLAIN with different optimizations: VANILLAT-
SExPLAIN (short as Vanilla) is the plain version without any opti-
mization; w filter filters out the explanations below the default
ratio; 01 represents the algorithm which applies guess-and-verify
after filtering; likewise, 02 applies sketching and 01+02 applies both
optimizations. Table 6 summarizes the statistics of the datasets.
€ is the total candidate explanation number, n is the time series
length, and #record is the dataset record number. We also report the
filtered €. We remark that in this experiment, K is unspecified, and
the time of selecting the optimal K via the Elbow Method (Section 6)
is included in the latency (Figure 15).

Latency. Figure 15 illustrates the breakdown latency of TSEx-
PLAIN. The overall latency breaks down into three parts — pre-
computation(blue), the cascading analysts algorithm(orange), K-
segmentation(green) corresponding to three modules in section 5.2.

For Covid total and daily-confirmed-cases dataset, the fil-
tering strategy only slightly improves since the predicate number
€ does not change a lot before and after filtering. In contrast, the
sketching in 02 significantly reduces the latency of the cascading

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

Total-confirmed-cases Daily-confirmed-cases

015 0.20
o 0.15
2010
] 0.10
~0.05 0.05
0.00 0.00
yori@ et O 02 41402 yori@ ket O 02 1x02
S&p 500 Liquor
0.3 10 = Precomputation
8 == Seomentation
02
0.1
0 0
ganile | gieet ol o2 0“07- varile - e ol oz 01_\.07—
Figure 15: Latency of TSEXPLAIN.
dataset Variance(Vanilla) Variance(01+02)
total-confirmed-cases 22.602 22.744
daily-confirmed-cases 91.619 91.994
S&P 500 5.002 5.002
Liquor 33.6533 33.6533

Table 7: Quality of optimization strategies.

analysts algorithm and K-segmentation. Overall, 01+02 reduces
the latency of total-confirmed-cases from 175 ms to 33ms, and
the latency of daily-confirmed-cases from 217ms to 43ms. For
S&P 500 dataset, the filtering strategy reduces the latency to half.
Guess-and-verifly slightly reduces the latency, and together with
sketching optimization, the overall latency is only 102 ms. For the
Liquor dataset, the predicate number € is very large even after filter-
ing. The cascading analyst algorithm is the bottleneck. The Vanilla
version takes 9.888s. After filtering, it still takes 2.59s. Since the
predicate number ¢ is large, 01 (Guess-and-verify) takes big ef-
fect in this case. Each optimization 01 or 02 alone can significantly
shrink the runtime to around 1.1s. The two optimizations together
reduce the runtime to 756 ms. Although the precomputation is
inevitable, the time of the cascading analyst algorithm has been
reduced from vanilla — 8.754s to 01+02 — around 200ms.

Quality. Except guess-and-verify, filter and sketching
both approximate the results without formal guarantee. Thus, we
study the impact of optimizations in terms of the result quality.

Table 7 illustrates the segmentation scheme’s total variance of
01+02 compared with the Vanilla version. The variances and out-
put segmentation of both algorithms are exactly the same for S&P
500 and Liquor datasets. For the Covid datasets, the difference is
less than 1% and in the output segmentation, only two cutting
points are slightly different — the corresponding distances are less
than four days. Such a small discrepancy demonstrates that our
optimization’s effect on result quality is neglectable.

7.5.2 End-to-end Efficiency Comparison with Baselines.

Total-confirmed-cases Daily-confirmed-cases Liquor-sales
10
=== Segmentation
0.6 0.6 e Explanation
0.5 0.5 81 mm overall
o4 0.4 6
2
g
E 0.3 0.3 4
0.2 0.2
0.1 0.1 2
0.0 — 0.0
NG R N\ ORI SRS S ORI RN S
WP W P S W P S W P
o SRS o S S ST
‘b& V\\\cﬁ/ N < ‘b& 2 N & ‘b"é V\\@e N <

Figure 16: Efficiency comparison with baselines.

Methods. The three baselines in Section 7.2 solely focus on vi-
sual shape based segmentation without providing any explanations
and require the segmentation number as an input. To make them
comparable, first, after segmenting using each baseline, we add the
explanation module using the CA algorithm in Section 5.2; second,
we reuse the optimal K TSExpPLAIN finds in Section 7.4, and then
run all baselines and TSExpLAIN with this given optimal K. We also
remark that the latency of determining the optimal K is very low,
around 2ms in our experiments.

Results. Figure 16 reports the end-to-end efficiency comparison.
For each baseline, we report the segmentation and explanation time
separately, while for TSEXPLAIN, we show the overall time since our
segmentation module interleaves with the explanation module. To
illustrate the effectiveness of our proposed optimizations, we also
report VANILLATSExXpLAIN (VANILLA). We can tell that for different
datasets, FLUSS is always the slowest, NNSegment and Bottom-Up
rank in the middle. VANILLATSEXPLAIN is similar to the Bottom-Up
on the COVID-19 datasets and becomes slow when the predicate
number goes up in the Liquor-sales dataset. Yet, combined with all
the proposed optimizations, TSEXPLAIN is the fastest compared to
all baselines on all datasets.

7.5.3 Scalability.

In the scalability experiment, we synthesized new time series
following the procedure in Sec VILA of different lengths = 100,
200, 400, 800, 1600, 3200, 6400. For each length, we synthesize five
different time series. We explain these time series using VANIL-
LATSExPLAIN (without any optimizations) and TSExpLAIN with all
optimizations mentioned in the paper. Figure 17 reports the aver-
age latency of different time series lengths. We terminate when the
latency is greater than 100s. VANTILLATSEXPLAIN’s latency increases
exponentially. With optimizations, TSEXPLAIN’s latency increases
much slower when the time series becomes longer. In particular,
TSEXPLAIN can interactively explain the synthetic time series with
length = 3200 in 982 ms.

Takeaway. TSEXPLAIN can explain these three time series within
800ms, and our optimizations have accelerated the running time up
to 13X with neglectable effects on quality. What’s more, TSEXpLAIN
is faster than all the baselines.

8 DISCUSSION

Time-varying Attribute. Different from non-temporal attributes,
time-varying attributes are those whose values may change over

2
10 —— VANILLATSEXPLAIN

TSEXPLAIN
10!

10°

Time (s)

0 1000 2000 3000 4000 5000 6000
Length

Figure 17: Different latency for time series of different
lengths.

Total deaths

le5
5e4

—— vaccinated=NO —— age-group=50+

1le5 /_///
5e4

14 31 52

Figure 18: Segmentation of weekly total deaths. Overall
trend(top). TSExpPLAIN results(bottom).

time [18]. Augmenting dataset with time-varying attributes can
sometimes add insights in explaining trends. Below we demonstrate
an example of using TSEXPLAIN with time-varying attributes.

The covid death dataset [4] records weekly deaths of different
age groups and different vaccinated status from week 14 to 52 in
2021. The vaccinated attribute is a time-varying attribute since a
person of vaccinated=NO can shift to vaccinated=YES in the near
future. However, age-group is a static attribute because one person
belonging to a specific age group will not change within a year. We
explain the total death trend in Figure 18(top) using the attributes
age-group and vaccinated. Figure 18(bottom) shows the result
that before week 31, the main contributor is the unvaccinated peo-
ple and after week 32, the main contributor shifts to elder people
with age-group=50+. Combined with human knowledge that the
vaccinated population is gradually becoming large along the time,
we can get the insight that at the beginning, unvaccinated people
(including unvaccinated elders) are the major factor of total deaths
since unvaccinated young people also face high risk. Later on, elder
people no matter vaccinated or not are the major reason as more
young people get protected from vaccines while elder people do
not get protected that well even vaccinated.

Real-time Time Series. We briefly discuss how TSEXPLAIN can be
extended to support real-time time series explanation. TSEXPLAIN
first gives users the segmentation results of existing time series and
meanwhile, caches all unit segments’ top explanations. When new
data arrives, it incrementally computes the top explanations for
the new time series, runs the segmentation algorithm based on the
existing time series’ cutting point and newly arrived data points,
and updates the segmentation results.

Seasonal Datasets For seasonality datasets, TSEXPLAIN can ex-
plain the seasonality dataset directly and detect the repeated pattern

Yiru Chen and Silu Huang

of evolving explanations which indicates the periodicity property.
Users can also first decompose the seasonal datasets [15] and ex-
plain the seasonality and trend separately.

9 CONCLUSION

This work introduces TSEXPLAIN, the first explanation engine that
identifies the evolving explanations for aggregated time series. We
formulate the problem for deriving evolving explanations as a K-
Segmentation problem, aiming to partition the input time series
into K smaller segments such that each period has consistent top
explanations. We propose a novel variance metric to quantify the
consistency in each segment and develop a dynamic programming
algorithm for identifying the optimal K-Segmentation scheme. TSExX-
PLAIN can automatically identify the optimal K using the "elbow
method". In the experiments, we show TSEXPLAIN can effectively
discover the evolving explanation on synthetic and real-world
datasets. We propose optimizations that enable TSEXPLAIN to an-
swer all our queries interactively within one second. Several future
work directions include extending the difference metric library,
recommending explain-by attributes, adding hints for segments
with higher variance for further inspection.

TSExpLAIN: Explaining Aggregated Time Series
by Surfacing Evolving Contributors

REFERENCES

(1]

=
22

[10

(11

[12]

[13]

[14

[15]

[16
[17]

[18]

=
o

[20]

[21

[22]

[23

[24]

[25

Firas Abuzaid, P. Kraft, Sahaana Suri, Edward Gan, E. Xu, Atul Shenoy, Asvin
Anathanaraya, John Sheu, E. Meijer, Xi Wu, J. Naughton, Peter Bailis, and M.
Zaharia. 2018. DIFF: A Relational Interface for Large-Scale Data Explanation.
Proc. VLDB Endow. 12 (2018), 419-432.

Peter Bailis, Edward Gan, S. Madden, D. Narayanan, Kexin Rong, and Sahaana
Suri. 2017. MacroBase: Prioritizing Attention in Fast Data. Proceedings of the
2017 ACM International Conference on Management of Data (2017).

Berit Hoffmann. 2021. Unveiling Sisu’s vision for Decision Intelligence. https:
//sisudata.com/blog/unveiling-vision-decision-intelligence.

CDC COVID-19 Response, Epidemiology Task Force. 2022. Rates of COVID-19
Deaths by Age Group and Vaccination Status. https://data.cdc.gov/Public-
Health-Surveillance/Rates- of-COVID- 19- Cases-or-Deaths-by- Age-Group-
and/3rge-nu2a.

CHAD LANGAGER. 2021. How Is the Value of the S&P 500 Calculated? https://
www.investopedia.com/ask/answers/05/sp500calculation.asp. [Online; accessed
5-October-2021].

Yiru Chen and Silu Huang. 2021. TSExplain: Surfacing Evolving Explanations for
Time Series. In Proceedings of the 2021 International Conference on Management
of Data. 2686-2690.

Ensheng Dong, Hongru Du, and Lauren Gardner. 2020. An interactive web-based
dashboard to track COVID-19 in real time. The Lancet infectious diseases 20, 5
(2020), 533-534

David H Douglas and Thomas K Peucker. 1973. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature. Carto-
graphica: the international journal for geographic information and geovisualization
10, 2 (1973), 112-122.

Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liud-
mila Ulanova, and Eamonn Keogh. 2017. Matrix profile VIII: domain agnostic
online semantic segmentation at superhuman performance levels. In 2017 IEEE
international conference on data mining (ICDM). IEEE, 117-126.

Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding, Paul
Hibbing, Samuel LaMunion, Andrew Kaplan, Scott E Crouter, and Eamonn Keogh.
2019. Domain agnostic online semantic segmentation for multi-dimensional time
series. Data mining and knowledge discovery 33, 1 (2019), 96-130.

Google Trend. 2020. Taylor Swift compared with Kim Kardashian.
https://trends.google.com/trends/explore?q=%2Fm%2F0d1567, %2Fm%
2F0261x8t&date=now%207-d&geo=US.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1,1 (1997), 29-53.

John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series ¢ (applied
statistics) 28, 1 (1979), 100-108.

Jim Hunter and Neil McIntosh. 1999. Knowledge-based event detection in complex
time series data. In Joint European Conference on Artificial Intelligence in Medicine
and Medical Decision Making. Springer, 271-280.

Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles and
practice. OTexts.

Imply. 2021. Imply Explain Feature. https://docs.imply.io/latest/explain/.

Towa Government. 2020. Gov. Reynolds issues a State of Public Health Disaster
Emergency. https://idph.iowa.gov/News/ArtMID/646/ArticleID/158309/Gov-
Reynolds-issues-a-State- of-Public-Health- Disaster- Emergency-31720?fbclid=
IwAR1gjXuRQH37snyHWqL7-GlI4DOsRLAliqd94DD7m_sJaJr381SOC417pwE.
[Online; accessed 5-October-2021].

Christian S Jensen and Richard T Snodgrass. 1996. Semantics of time-varying
information. Information Systems 21, 4 (1996), 311-352.

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2017. Interac-
tive data exploration with smart drill-down. IEEE Transactions on Knowledge and
Data Engineering 31, 1 (2017), 46—60.

Johns Hopkins University. 2021. COVID-19 Data Repository. https://github.com/
CSSEGISandData/COVID-19.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. 2004. Segmenting
time series: A survey and novel approach. In Data mining in time series databases.
World Scientific, 1-21.

Eamonn J Keogh, Padhraic Smyth, et al. 1997. A probabilistic approach to fast
pattern matching in time series databases.. In Kdd, Vol. 1997. 24-30.

Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90-95.

Antti Koski, Martti Juhola, and Merik Meriste. 1995. Syntactic recognition of
ECG signals by attributed finite automata. Pattern Recognition 28, 12 (1995),
1927-1940.

Jokin Labaien, Ekhi Zugasti, and Xabier De Carlos. 2020. Contrastive explanations
for a deep learning model on time-series data. In International Conference on Big
Data Analytics and Knowledge Discovery. Springer, 235-244.

[26]

[27

[28

[29

&
=)

'S
&

'S
=)

[38

[39

[40

™~
2

N
=

N
)

Sean M Law. 2019. STUMPY: A powerful and scalable Python library for time
series data mining. Journal of Open Source Software 4, 39 (2019), 1504.

Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2021.
Putting Things into Context: Rich Explanations for Query Answers using Join
Graphs. In Proceedings of the 2021 International Conference on Management of
Data. 1051-1063.

Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on
Exploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph. 20, 12 (2014),
2122-2131. https://doi.org/10.1109/TVCG.2014.2346452

Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. Autoplait:
Automatic mining of co-evolving time sequences. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 193-204.

Zhengjie Miao, Andrew Lee, and Sudeepa Roy. 2019. LensXPlain: Visualizing
and explaining contributing subsets for aggregate query answers. Proceedings of
the VLDB Endowment 12, 12 (2019), 1898-1901.

Microsoft. 2021. PowerBI. https://powerbi.microsoft.com/en-us/.

Andrew Ng. 2012. Clustering with the k-means algorithm. Machine Learning
(2012).

PowerBI. 2021. Create Key Influencers Visualizations. https://docs.microsoft.
com/en-us/power-bi/visuals/power-bi-visualization-influencers.

PowerBI. 2021. Key Influencer Over Time. https://ideas.powerbi.com/ideas/idea/
?ideaid=57440365-96af-4362- 9b8f-5d096bd92788.

Urs Ramer. 1972. An iterative procedure for the polygonal approximation of
plane curves. Computer graphics and image processing 1, 3 (1972), 244-256.
Clayton Rooke, Jonathan Smith, Kin Kwan Leung, Maksims Volkovs, and Saba
Zuberi. 2021. Temporal Dependencies in Feature Importance for Time Series
Predictions. arXiv preprint arXiv:2107.14317 (2021).

Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for
database queries. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 1579-1590.

M. Ruhl, M. Sundararajan, and Qiqi Yan. 2018. The Cascading Analysts Algorithm.
Proceedings of the 2018 International Conference on Management of Data (2018).
Sunita Sarawagi. 2001. idiff: Informative summarization of differences in mul-
tidimensional aggregates. Data Mining and Knowledge Discovery 5, 4 (2001),
255-276.

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Finding
a" kneedle” in a haystack: Detecting knee points in system behavior. In 2011 31st
international conference on distributed computing systems workshops. IEEE, 166—
171.

Sisu Data. 2021. Augmented Analytics for Strategic Data Teams. https://sisudata.
com/.

Torty Sivill and Peter Flach. 2022. LIMESegment: Meaningful, Realistic Time
Series Explanations. In International Conference on Artificial Intelligence and
Statistics. PMLR, 3418-3433.

Tableau. 2021. BI and Analytics Software. https://www.tableau.com/.

Tableau. 2021. Explain Data. www.tableau.com/products/new-features/explain-
data.

Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and
Anna Goldenberg. 2020. What went wrong and when? Instance-wise feature
importance for time-series black-box models. Advances in Neural Information
Processing Systems 33 (2020), 799-809.

HJLM Vullings, MHG Verhaegen, and Henk B Verbruggen. 1997. ECG segmenta-
tion using time-warping. In International Symposium on Intelligent Data Analysis.
Springer, 275-285.

Xiaolan Wang, X. Dong, and A. Meliou. 2015. Data X-Ray: A Diagnostic Tool for
Data Errors. In SIGMOD ’15.

Wikipedia, the free encyclopedia. 2021. Signal-to-noise ratio. https://otexts.com/
fpp2/classical-decomposition.html.

Wikipedia, the free encyclopedia. 2021. S&P500 Index. https://en.wikipedia.org/
wiki/S%26P_500.

WTTW. 2020. Illinois Seeing More and More COVID-19 Cases as Testing Con-
tinues to Increase. https://news.wttw.com/2020/05/02/illinois- seeing-more-and-
more-covid-19-cases-testing-continues-increase.

E. Wu and S. Madden. 2013. Scorpion: Explaining Away Outliers in Aggregate
Queries. Proc. VLDB Endow. 6 (2013), 553-564.

https://sisudata.com/blog/unveiling-vision-decision-intelligence
https://sisudata.com/blog/unveiling-vision-decision-intelligence
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://www.investopedia.com/ask/answers/05/sp500calculation.asp
https://www.investopedia.com/ask/answers/05/sp500calculation.asp
https://trends.google.com/trends/explore?q=%2Fm%2F0dl567,%2Fm%2F0261x8t&date=now%207-d&geo=US
https://trends.google.com/trends/explore?q=%2Fm%2F0dl567,%2Fm%2F0261x8t&date=now%207-d&geo=US
https://docs.imply.io/latest/explain/
https://idph.iowa.gov/News/ArtMID/646/ArticleID/158309/Gov-Reynolds-issues-a-State-of-Public-Health-Disaster-Emergency-31720?fbclid=IwAR1gjXuRQH37snyHWqL7-GlI4DOsRLAliqd94DD7m_sJaJr38lSOC4I7pwE
https://idph.iowa.gov/News/ArtMID/646/ArticleID/158309/Gov-Reynolds-issues-a-State-of-Public-Health-Disaster-Emergency-31720?fbclid=IwAR1gjXuRQH37snyHWqL7-GlI4DOsRLAliqd94DD7m_sJaJr38lSOC4I7pwE
https://idph.iowa.gov/News/ArtMID/646/ArticleID/158309/Gov-Reynolds-issues-a-State-of-Public-Health-Disaster-Emergency-31720?fbclid=IwAR1gjXuRQH37snyHWqL7-GlI4DOsRLAliqd94DD7m_sJaJr38lSOC4I7pwE
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://doi.org/10.1109/TVCG.2014.2346452
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-influencers
https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-influencers
https://ideas.powerbi.com/ideas/idea/?ideaid=57440365-96af-4362-9b8f-5d096bd92788
https://ideas.powerbi.com/ideas/idea/?ideaid=57440365-96af-4362-9b8f-5d096bd92788
https://sisudata.com/
https://sisudata.com/
https://www.tableau.com/
www.tableau.com/products/new-features/explain-data
www.tableau.com/products/new-features/explain-data
https://otexts.com/fpp2/classical-decomposition.html
https://otexts.com/fpp2/classical-decomposition.html
https://en.wikipedia.org/wiki/S%26P_500
https://en.wikipedia.org/wiki/S%26P_500
https://news.wttw.com/2020/05/02/illinois-seeing-more-and-more-covid-19-cases-testing-continues-increase
https://news.wttw.com/2020/05/02/illinois-seeing-more-and-more-covid-19-cases-testing-continues-increase

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Overview
	3.1 Background
	3.2 Problem Definition

	4 K-Segmentation
	4.1 Design of Within-Segment Variance
	4.2 Effectiveness of Variance

	5 Our Solution: TSExplain
	5.1 DP for K-Segmentation
	5.2 Solution Pipeline and Complexity Analysis
	5.3 Optimizations

	6 Optimal Selection of K
	7 Experiments
	7.1 Datasets
	7.2 Baseline
	7.3 Explanations of Synthetic Datasets
	7.4 Case Study on Real-World Datasets
	7.5 Efficiency Evaluation

	8 Discussion
	9 Conclusion
	References

