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Abstract—Trajectory Representation Learning (TRL) is a pow-
erful tool for spatial-temporal data analysis and management.
TRL aims to convert complicated raw trajectories into low-
dimensional representation vectors, which can be applied to vari-
ous downstream tasks, such as trajectory classification, clustering,
and similarity computation. Existing TRL works usually treat
trajectories as ordinary sequence data, while some important
spatial-temporal characteristics, such as temporal regularities
and travel semantics, are not fully exploited. To fill this gap,
we propose a novel Self-supervised trajectory representation
learning framework with TemporAl Regularities and Travel
semantics, namely START. The proposed method consists of
two stages. The first stage is a Trajectory Pattern-Enhanced
Graph Attention Network (TPE-GAT), which converts the road
network features and travel semantics into representation vectors
of road segments. The second stage is a Time-Aware Trajectory
Encoder (TAT-Enc), which encodes representation vectors of
road segments in the same trajectory as a trajectory repre-
sentation vector, meanwhile incorporating temporal regularities
with the trajectory representation. Moreover, we also design
two self-supervised tasks, i.e., span-masked trajectory recovery
and trajectory contrastive learning, to introduce spatial-temporal
characteristics of trajectories into the training process of our
START framework. The effectiveness of the proposed method
is verified by extensive experiments on two large-scale real-
world datasets for three downstream tasks. The experiments also
demonstrate that our method can be transferred across different
cities to adapt heterogeneous trajectory datasets.

I. INTRODUCTION

With the rapid development of GPS-enabled devices, a
large amount of trajectory data can be collected in cities.
Trajectory data analysis and management, such as trajectory-
based prediction [1], [2], traffic prediction [3], [4], urban
dangerous goods management [5], and trajectory similarity
computation [6], have become a hot topic in the data engineer-
ing community. Traditional research on trajectory data analysis
requires manual feature engineering and unique models for
specific tasks, making them difficult to transfer to different
applications [7]. To improve the generality of tools for ana-
lyzing trajectory data analysis tools, Trajectory Representation
Learning (TRL) has emerged in recent years [8], [9]. TRL aims
to transform raw trajectories into generic low-dimensional rep-
resentation vectors that can be applied in various downstream
tasks rather than being limited to a specific task.
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(b) Periodic Patterns of
Urban Traffic.

(c) Time Interval Distri-
bution.

Fig. 1. Temporal Regularities and Travel Semantics in Trajectories. (Map
data © OpenStreetMap contributors, CC BY-SA.)

In the literature, earlier TRL studies directly use general
sequence-to-sequence models (such as LSTM [10] and Trans-
formers [11]) with reconstruction tasks to generate trajectory
representation vectors [7]–[9]. Such models consider trajecto-
ries as ordinary sequence data and thus cannot fully capture
spatial-temporal semantic information of trajectories in the
representation vectors. After this, many trajectory represen-
tation learning methods are proposed for specific downstream
tasks, such as for approximate trajectory similarity computa-
tion [12], [13], trajectory clustering [14], anomalous trajectory
detection [15] and path ranking [16].

In recent years, some two-stage methods have been pro-
posed to learn generic trajectory representations for multiple
downstream tasks [17], [18]. These methods first adopt a
graph representation learning to convert road segments of a
static road network into representation vectors and then use
sequential deep learning models with self-supervised tasks to
convert the road representation vectors in the same trajectory
into a trajectory representation vector. For example, Toast [17]
and PIM [18] use node2vec [19] to learn road representations
and respectively use Transformer with masked prediction and
RNN with mutual information maximization as self-supervised
tasks to generate generic trajectory representations. These
two-stage methods incorporate the static road network as
spatial semantic information in the trajectory representations
so they can improve downstream tasks. However, trajectory
data contains rather complicated spatial-temporal semantic
information. Many critical spatial-temporal characteristics and
semantic information are helpful for downstream tasks but are
still not fully utilized by existing works.

The first characteristic that should be considered in TRL
is travel semantics. As shown in Figure 1(a), road segments
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traversed by different trajectories with the same origin and des-
tination (OD) have different road types and visit frequencies,
i.e., the human mobility patterns. Both of these travel-related
semantics are useful for downstream tasks and should be
incorporated into trajectory representations. However, previous
works such as Toast [17] and PIM [18] only model the static
road network information in their representation learning but
fail to incorporate the travel semantic information. The second
characteristic that should be considered is temporal regulari-
ties. From a macro perspective, the trajectories generated by
vehicles in the city are influenced by the periodic temporal
patterns of urban traffic. As shown in Figure 1(b), the number
of urban trajectories exhibits an apparent periodic pattern, i.e.,
the number of trajectories during the morning and evening rush
hours is much larger than usual. A large number of trajectories
means congested road conditions, which naturally affects the
generation of trajectories. From a micro perspective, irregular
time intervals are another temporal regularity of trajectories.
As shown in Figure 1(c), for two trajectories with the same
shape, the sample points, i.e., road segments, can be distributed
quite differently on the time axis. It is because the travel time
of a road segment is dynamic, which can also reflect the con-
gestion level of roads. Both temporal regularities of periodic
patterns and irregular time intervals are useful for downstream
tasks. However, most previous works consider trajectories only
as sequences of locations [8], [17], [18] and do not consider
the temporal information in their methods. In addition, the self-
supervised tasks in existing TRL methods do not sufficiently
consider the spatial-temporal characteristics of the trajectories.
Most methods use general sequence reconstruction [8], [9] or
masked prediction tasks (MLM) [17] as their self-supervised
tasks, which treat trajectories as general sequence data and
fail to capture temporal and travel semantics. This problem
limits the performance of the learned representation vectors
on downstream tasks.

In this paper, we propose a novel Self-supervised tra-
jectory representation learning framework with TemporAl
Regularities and Travel semantics, abbreviated as START.
The framework integrates temporal regularities and travel
semantics into TRL using a two-stage learning method. The
first stage is a Trajectory Pattern-Enhanced Graph Attention
Network (TPE-GAT), which converts a road network into road
segment representation vectors. Travel semantics information
is also incorporated at this stage. Specifically, the TPE-GAT
module takes rich road features as input and extends Graph At-
tention Network [20] using a road segment transfer probability
matrix to model road visit frequencies. In this way, both the
travel semantics of road features and visit frequencies are inte-
grated into the road representations. The second stage converts
road representation sequences into trajectory representations
and incorporates temporal regularity information. Here we
propose a Time-Aware Trajectory Encoder Layer (TAT-Enc)
to incorporate temporal regularities. Specifically, the TAT-Enc
fuses minute and day-of-week indexes with road segment
representations to capture the periodic temporal patterns of
urban traffic and adopts a Time Interval-Aware Self-Attention

to process irregular time interval information.
We also design two self-supervised tasks to train our

START. The first is span-masked trajectory recovery, which
masks consecutive subsequences in trajectories to capture the
local features and order information. The second is trajectory
contrastive learning, which employs four data augmentation
methods that consider the spatial-temporal characteristics of
trajectories to train the contrastive learning loss. Compared
to the traditional self-supervised tasks such as sequence re-
construction and MLM, the proposed tasks fully consider
the spatial-temporal characteristics of the trajectories. The
effectiveness of the proposed method is verified by extensive
experiments on two large-scale datasets for three downstream
tasks. The results show that START significantly outperforms
the state-of-the-art models.

In summary, the main contributions of this paper are sum-
marized as follows:

• We propose a two-stage TRL method incorporating tem-
poral regularities and travel semantics into trajectory
representations. Compared to previous TRL research,
the proposed method can utilize more spatial-temporal
characteristics of trajectories for downstream tasks.

• We design two self-supervised tasks to train our START.
Compared to traditional self-supervised tasks for gen-
eral sequence representation learning, such as sequence
reconstruction and MLM, the proposed tasks are more
suitable for TRL since they account for the spatial-
temporal characteristics of trajectories. We believe these
tasks can be applied to other TRL model training.

• In addition to superior performance, the experiments
also demonstrate that the proposed self-supervised tasks
can use fewer data to outperform the supervised model.
Moreover, our methods can be transferred across hetero-
geneous road network datasets. To the best of our knowl-
edge, this is the first TRL method with this feature, which
is very useful for solving the problem of insufficient data
in many real-world applications.

II. PRELIMINARIES

In this section, we first introduce basic notations and pre-
liminaries used in this paper. Then we formalize the problem
of trajectory representation learning.

A. Notations and Definitions

Definition 1 (Road Network). We represent road network as a
directed graph G = (V, E ,FV ,A), where V = {v1, · · · , v|V|}
is a set of |V| vertices, each vertex vi representing a road
segment, Ni is the neighborhood of road segment vi, E ⊆
V × V is a set of edges, each ei,j = (vi, vj) representing the
intersection between road segments vi and vj , FV ∈ R|V|×din

is the features of road segments, and A ∈ R|V|×|V| is a binary
value adjacency matrix of network G indicating whether there
exists a directed link between roads.

Definition 2 (GPS-based Trajectory). A GPS-based trajectory
(or a raw trajectory) T raw is a sequence of spatial-temporal



Fig. 2. Overall Framework of START.

sample points recorded by GPS-enabled devices, a sample
point sp = ⟨lati, loni, ti⟩ is a triplet consisting of latitude,
longitude, and a visit timestamp.

Definition 3 (Road-network Constrained Trajectory). A road-
network constrained trajectory T is a time-ordered sequence
of m adjacent road segments generated by a user, i.e., T =
[⟨vi, ti⟩]mi=1, where vi ∈ V presents the i-th road segment and
ti is the visit timestamp for vi. For simplicity, we also use
roads to refer to road segments in the following.

In this study, we mainly focus on the road-network con-
strained trajectories. Therefore, given a raw trajectory T raw

and the road network G, we perform the map matching [21]
procedure to align trajectory points with road segments and
get the road-network constrained trajectory T .

B. Problem Statement

Given a trajectory dataset D = {Ti}|D|
i=1 and a road network

G, the Trajectory Representation Learning (TRL) task aims
to learn a generic low-dimensional representation pi ∈ Rd

for each trajectory Ti ∈ D. Specifically, in this study, we
aim to develop a self-supervised framework that encodes each
trajectory Ti into a generic d-dimensional representation vector
pi, which can be applied in various downstream tasks, such as
travel time estimation, trajectory classification, and trajectory
similarity computation.

III. METHOD

In this section, we introduce the proposed START frame-
work. Figure 2 provides an overview of it. We start with the
framework structure, including a trajectory pattern-enhanced
graph attention layer (TPE-GAT) and a time-aware trajectory
encoder layer (TAT-Enc). Then, we present two self-supervised
tasks to train START. Finally, we display how to adapt the
learned representations to specific downstream tasks.

A. Trajectory Pattern-Enhanced Graph Attention Layer

The Trajectory Pattern-Enhanced Graph Attention Network
(TPE-GAT) is the first stage of START, which converts a
road network into road representation vectors and incorporates
the travel semantics of the trajectories. As mentioned in
Section II-A, the roads in the trajectory have some important

inherent properties, and they are constrained by the connec-
tivity of the road network. Therefore, we learn the road-
level representation vector from both the road features and
network structure. Previous works often use random walk-
based models such as node2vec [19] to encode the static road
network as spatial semantic information used in the trajectory
representations [8], [17]. However, such learning methods
fail to incorporate road features and travel semantics in the
trajectories, such as visit frequencies.

Therefore, we propose using graph neural networks to cap-
ture both the road features and network structure. Considering
that the road network is a directed graph, we choose the graph
attention network (GAT) [20] because it can dynamically
assign weights to the neighborhood nodes by computing the at-
tention weights between pairs of nodes. However, the standard
GAT cannot capture the travel patterns in the trajectories. To
solve this problem, we propose a Trajectory Pattern-Enhanced
Graph Attention Network, namely TPE-GAT, which extends
the computation of attention weights of GAT by introducing
the transfer probability matrix between roads computed from
the historical data to model visiting frequencies of roads.

The TPE-GAT consists of L1 layers in total. First, we take
rich road features FV as input to the first layer. Specifically,
given a road vi, we consider six types of features, namely road
type, road length, number of lanes, maximum travel speed, in-
degrees, and out-degrees in the road network. We concatenate
these features to create the initialized road representation
h
(0)
i ∈ Rd0 for the road vi. Then, the attention weight αij

between road vi and vj in the l-th layer are computed as (l is
ignored here for simplicity):

eij = (hiW1 + hjW2 + ptransij W3)W
T
4 ,

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

,
(1)

where hi,hj ∈ Rdl are road representations of vi and
vj , W1,W2 ∈ Rdl×dl+1 ,W3,W4 ∈ R1×dl+1 are learnable
parameters, LeakyReLU is the activation function whose
negative input slope is 0.2 [20], and ptransij is the transfer
probability between vi and vj , which can be calculated as:

ptransij = count(vi → vj)/count(vi), (2)

where count(vi → vj) and count(vi) is the frequency of
edges (vi, vj) and road vi appeared in the trajectory dataset
D, respectively.

Then we obtain the output feature h̃i of the i-th road vi
through combining the features of its neighborhoods using the
attention weights as:

h̃
(l+1)
i = ELU

∑
j∈Ni

αijh
(l)
j W5

 , (3)

where W5 are the learnable parameters and ELU is the
Exponential Linear Unit activation function [20].

We use multi-head attention to stabilize the learning process
and incorporate various types of information. Specifically, H1



denotes the number of independent attention mechanisms that
are computed as Equations (1) and (3), then we concatenate
the outputs of these independent attention mechanisms as:

h
(l+1)
i =

H1

||
k=1

ELU

∑
j∈Ni

α
(k)
ij h

(l)
j W

(k)
5

 , (4)

where || represents concatenation, α(k)
ij are the attention scores

computed by the k-th attention head, W
(k)
5 is the weight

matrix of the corresponding linear transformation in layer l.
The TPE-GAT layer considers the connectivity between

roads due to both static road network structure and human
mobility. The output of the last layer is defined as ri ∈ Rd

and represents the representation of the road vi, which contains
road network contextual information and trajectory travel
semantics. Moreover, the TPE-GAT layer is trained together
with the trajectory encoder layer described below. We use
sparse matrix operations following [20] to enable the model
for large-scale road networks.

B. Time-Aware Trajectory Encoder Layer

After obtaining the road representations from the TPE-
GAT layer, we need to convert road representation sequences
into trajectory representations and incorporate temporal reg-
ularity information in the second stage. To model the co-
occurrence relationship between roads in the trajectory, we
use the Transformer encoder [11] because it can capture the
contextual information of the trajectory from the left and
right sides of the road to realize the full interaction between
roads. In addition, we extend the Transformer encoder and
propose a Time-Aware Trajectory Encoder Layer (TAT-Enc) to
incorporate temporal regularities in urban trajectories, which
consist of two modules. The first is a Trajectory Time Pattern
Extraction module that uses two temporal embeddings to
capture the periodic patterns of urban traffic. The second is a
Time Interval-Aware Self-Attention module to explicitly model
the irregular time intervals between roads in the trajectory.

1) Trajectory Time Pattern Extraction Module: To capture
the cyclical patterns of urban traffic, we use two temporal
embedding vectors to extract the periodicity of weeks and
days, respectively. For each visit timestamp ti of the road vi,
we use embedding vectors tmi(ti) ∈ Rd and tdi(ti) ∈ Rd to
embed the two periodic patterns, where mi(ti) and di(ti) are
functions of transforming ti into its minutes index (1 to 1440)
and day-of-week index (1 to 7).

Then we obtain the fused embeddings xi ∈ Rd of road vi
by summing several representations as follows:

xi = ri + tmi(ti) + tdi(ti) + pei, (5)

where ri denotes the road representations, tmi(ti) and tdi(ti)
are corresponding temporal representations, and pei denotes
the position encoding used in Transformer to introduce po-
sition information of the input trajectory. Finally, the initial
representation of the trajectory T is obtained by concatenating
the embeddings of roads in it as X = x1∥ . . . ∥x|T | ∈ R|T |×d.

2) Time Interval-aware Self-attention Module: In the stan-
dard multi-head self-attention of Transformer encoder, given
the input trajectory representation X , the H2 attention heads
transform X into the H2 query matrixes Qh = XWQ

h , key
matrixes Kh = XWK

h , and value matrixes Vh = XW V
h

synchronously, where WQ
h ,WK

h ,W V
h ∈ Rd×d′

are learnable
parameters and d′ = d/H2. Then the self-attention of the h-th
attention head is calculated as:

Ah(Qh,Kh,Vh) = softmax

(
QhK

T
h√

d′

)
Vh. (6)

To consider the irregular time intervals between road seg-
ments, which can reflect the congestion level of the road, we
propose a Time Interval-Aware Self-Attention to replace the
standard self-attention of the Transformer encoder as:

TAh(Qh,Kh,Vh) = softmax

(
QhK

T
h√

d′
+ ∆̃

)
Vh, (7)

where ∆̃ ∈ R|T |×|T | is an adaptive time interval matrix and
each element in it measures the impact among road segments
in a trajectory. Given two roads vi and vj , the element δij ∈ ∆̃
should have a large value when the time interval between vi
and vj is short, i.e., the two roads have strong impacts in
the self-attention, vice versa. In this way, the irregular time
intervals could be incorporated into the Transformer encoder.

The calculation process of ∆̃ is as follows. Given the
timestamp ti of the road vi, we calculate the relative time
interval δi,j = |ti−tj | for any two roads to obtain the original
time interval matrix ∆ as:

∆ =


δ1,1 δ1,2 · · · δ1,|T |
δ2,1 δ2,2 · · · δ2,|T |
· · · · · · · · · · · ·

δ|T |,1 δ|T |,2 · · · δ|T |,|T |

 . (8)

In the matrix ∆, the shorter the time interval between vi
and vj , the smaller the value of δi,j . Since the impact between
roads should become smaller with the time interval increasing,
i.e., the greater the time interval, the smaller the impact, we
introduce a decay function to process the raw value in ∆.
Specifically, we set δ′i,j = 1/log(e + δi,j), where e ≈ 2.718.
In this way, δ′i,j decreases with increasing time intervals.

Furthermore, we adopt a two-linear-transformation to pro-
cess δ′i,j as:

δ̃i,j = (LeakyReLU(δ′i,j ω1))ω
T
2 , (9)

where ω1,ω2 are learnable parameters and LeakyReLU is a
activation function whose negative input slope is 0.2. By this
method, δ̃i,j becomes learnable and can capture the irregular
time interval information. Finally, we plug δ̃i,j into Eq. (7) to
get the Time Interval-Aware Self-Attention.

Then we concatenate the output of the H2 attention heads
and project it through WO ∈ Rd×d to obtain the outputs
X ′ ∈ R|T |×d as:

X ′ = MultiAtt(Q,K,V ) = (TA1∥ . . . ∥TAH2
)WO. (10)

After the multi-head attention, we employ layer normal-
ization and residual connection following Transformer [11].



Finally, a position-wise feed-forward network (noted as FFN)
consists of two layers of linear transformations, and ReLU
activation is used to get the output representation Z of
trajectory T as:

Z = (ReLU(X ′W 1
F + b1F ))W

2
F + b2F , (11)

where W 1
F ,W

2
F ∈ Rd×d, b2F , b

2
F ∈ Rd are learnable pa-

rameters and ReLU is the activation function. The layer
normalization and residual connection are also used here.

3) Trajectory Representation Pooling: After stacking L2

layers of the self-attention module, we obtain the final output
representation Z ∈ R|T |×d, which has been fully interacted
between the road segments. Furthermore, following [22],
we extract the whole trajectory representation pi ∈ Rd by
inserting a placeholder in the first position throughout training
tasks and take it as the trajectory representation.

C. Self-supervised Pre-training Tasks

This work aims to learn trajectory representations self-
supervised to support multiple downstream tasks. Therefore,
considering the spatial-temporal characteristics of the trajecto-
ries, we design two self-supervised tasks which do not target
specific downstream tasks to learn generic representations.

1) Span-Masked Trajectory Recovery: Masked language
modeling (MLM) has proven its superiority in learning se-
quence data representations in many studies [17], [22]. Each
word in the sequence is masked independently with a probabil-
ity in the previous MLM task, and the model is used to predict
the masked words. However, this task is not fully applicable to
our task because the trajectory is a sequence of adjacent roads.
If we mask the road independently, the model can easily infer
the masked road based on its upstream and downstream roads
in the road network. Therefore, we propose the span-masked
method, where we select several consecutive subsequences of
length lm in the trajectory for masking, whose total length
is pm percent of the trajectory length. When masking the
trajectory, we replace the selected road vi with a special token
[MASK] and set the corresponding minute index mi(ti) and
day-of-week index di(ti) to a special token [MASKT]. After
obtaining the representation Z of the masked trajectory T , we
use a linear layer with parameters Wm ∈ Rd×|V|, bm ∈ R|V|

to predict the masked roads as:

Ẑ = ZWm + bm ∈ R|T |×|V|, (12)

Then we use the cross-entropy loss between masked roads and
predicted values as the optimized target:

Lmask
T = − 1

|M|
∑

vi∈M
log

exp(Ẑvi)∑
vj∈V exp(Ẑvj )

, (13)

where M is the set of masked roads. We average all losses of
Nb trajectories in a mini-batch to obtain the loss Lmask.

2) Trajectory Contrastive Learning: Mask prediction fo-
cuses on capturing co-occurrence relationships between roads
and contextual information of the road network. To improve
the modeling of the spatial-temporal characteristics and travel
semantics, we introduce a contrastive learning method.

Trajectory Data Augmentation Strategies. Contrastive learn-
ing aims to learn representations to bring semantically similar
positive samples closer and make negative samples farther
apart. Thus, the crucial question is how to construct different
views in contrastive learning. Considering the spatial-temporal
characteristics of the trajectories, we explore four data aug-
mentation strategies to generate views for contrastive learning.

• Trajectory Trimming: We obtain the enhanced trajectory
by randomly removing a continuous subsequence from
the trajectory. In order not to destroy the continuity and
travel semantics of the trajectory, we trim only at the
origin or destination of the trajectory, and the trimming
ratio r1 is a random sample of 0.05 − 0.15. This data
augmentation method is applied since the semantics of
trajectories with close origins or destinations are similar.

• Temporal Shifting: Influenced by the urban traffic pat-
terns, the road travel time is dynamic. Given a trajectory,
we randomly select a subset of roads (scale r2 = 0.15)
and perform a random perturbation by taug = tcur −
(tcur − this) ∗ r3, where r3 is a random sample of
0.15 − 0.30, tcur and this are the current and historical
average travel time of that road, respectively. Using
this augmentation method helps to capture the travel
semantics of the trajectory in the temporal dimension.

• Road Segments Mask: In the span-masked trajectory
recovery task, some roads and the corresponding times-
tamps of the trajectory are randomly selected and masked.
The masked trajectory can be considered as the trajectory
with missing values to learn the travel semantics of the
trajectories in both temporal and spatial dimensions.

• Dropout: Dropout is a widely used method to avoid
overfitting. Here we use it as a data augmentation method
to randomly drop some tokens with a certain probability
from the data embedding layer and set them to zero [23].

Contrastive Trajectory Learning. Following [24], we adopt
the normalized temperature-scaled cross-entropy loss with in-
batch negatives as the contrastive objective. We randomly
select Nb trajectories from the dataset D and then obtain
2Nb trajectories after data augmentation. Each trajectory (also
called the anchor) is trained to find out the corresponding data-
augmentation trajectory (the positive sample) among 2(Nb−1)
negative samples in the batch. Formally, the contrastive train-
ing objective for a positive pair (i, j) is defined as:

Lcon
i,j = − log

exp(sim(pi,pj)/τ)∑2N
k=1 1[k ̸=i] exp(sim(pi,pk)/τ)

, (14)

where τ is the temperature hyperparameter, sim(pi,pj) is
the cosine similarity pi·pj

∥pi∥∥pj∥ between pi and pj (· is the
inner product operation), 1 is the indicator equal to one if the
condition is satisfied, otherwise it is zero. We average all 2Nb

in-batch losses to obtain the contrastive loss Lcon.
We pre-train the proposed START with the two self-

supervised tasks above. The pre-training loss is defined as:

Lpre = λLmask + (1− λ)Lcon, (15)

where λ is the hyperparameter to balance the two tasks.



D. Model Fine-tuning and Downstream Tasks

In this section, we aim to adapt the learned representations
to specific downstream tasks, either directly or with the
necessary fine-tuning.

1) Trajectory Travel Time Estimation: This task aims to
estimate the travel time from the origin to the destination with
a given road sequence and the departure time. We build a
regression model using a single fully connected layer to obtain
the predicted value as ŷi = FC(pi). Then we use the mean
square error (MSE) as the optimization objective:

Lregress =
1

N

N∑
i=1

∥yi − ŷi∥2, (16)

where yi is the ground truth and N is the total number of
trajectories in the test dataset.

2) Trajectory Classification: This task aims to classify tra-
jectories based on a specific label, such as carrying passengers
or not, the driver ID, the transportation, etc. We employ a
simple fully connected layer with the softmax activation to
obtain the predicted value as ŷi = softmax(FC(pi)). Then
we optimize the model with the cross-entropy loss:

Lclassify =
1

N

N∑
i=1

C∑
c=1

−yi(c) log(ŷi(c)), (17)

where yi is the ground truth, N is the total number of trajec-
tories in the test dataset, and C is the number of categories.

3) Trajectory Similarity Computation and Search: In this
task, we design two sub-tasks: the most similar trajectory
search and the k-nearest trajectory search. Here we directly
use the representation pi obtained from the pre-training task
without fine-tuning. The most similar trajectory search task is
to find out the most similar trajectory from a large database
given a query. In the k-nearest trajectory search task, given a
trajectory, models need to find top-k similar trajectories from
candidates ignoring the rank. The detailed settings for these
two tasks can be found in Section IV-D4.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of the START framework. The experiments
include five parts:

• Performance Comparison. We compare the performance
of START with eight baselines on two large-scale datasets
for three downstream tasks. The experiment results show
the superior overall performance of START.

• Pre-training Effect Study. We demonstrate the effec-
tiveness of the self-supervised pre-training tasks over
small-size datasets and across datasets. The results show
that the self-supervised tasks can effectively reduce the
usage of training data, and the model can be transferred
across heterogeneous datasets. This nature is beneficial
for solving the problem of insufficient training data.

• Ablation Experiment. We use ablation studies to verify
the effectiveness of each sub-module of START.

TABLE I
STATISTICS OF THE TWO DATASETS AFTER PREPROCESSING.

Dataset BJ Porto
Time span 2015/11/01-2015/11/30 2013/07/01-2014/07/01
#Trajectory 1018312 695085

#Usr 1677 435
#Road Segment 38479 10903

train/eval/test 656221/174478/187613 417040/139020/139025

• Parameter Sensitivity Experiment. This experiment veri-
fies the stability of our method over key parameters.

• Efficiency and Scalability Study. This experiment clarifies
that our proposed framework is efficient and can scale for
large datasets.

A. Datasets and Preprocessing

We use two real-world, large-scale trajectory datasets in the
experiments, i.e., BJ and Porto. BJ was collected by taxis in
Beijing in November 2015. Porto is an open-source dataset
released for a Kaggle competition1 and is sampled every 15
seconds. We download map data of Beijing and Porto from
OpenStreetMap (OSM) [25] to construct the directed graph
(road network) G = (V, E ,FV ,A) defined in Definition 1.
The OSM data contains three parts: i) All road segments in the
cities. We use these roads to form the vertex set V of G, where
each road represents a vertex. ii) The connection relationships
between all roads. If two roads have a connection relation,
we define that the corresponding vertexes have an edge. We
use these connection relationships to form the binary value
adjacency matrix A and the edge set E of G. iii) The features
of roads. We select four important road features, i.e., road
type, length, number of lanes, and maximum travel speed,
and calculate the in-degree and out-degree of each road in
the adjacency matrix A to construct the road features FV .
Finally, we use the directed graph G of Beijing and Porto as
the input of our proposed START. Furthermore, we perform
map matching [21] to obtain the road-network constrained
trajectories. Details of the two datasets are given in Table I.

We ignore the roads that are not covered by the trajectories.
Besides, we also remove loop trajectories, trajectories with
lengths less than six, and users with less than 20 trajectories
and set the maximum trajectory length to 128. We split BJ
into the training, validation, and test datasets in chronological
order. The three datasets cover 18/5/7 days because there is
less data on November 25. For Porto, we split each month’s
data in chronological order with a ratio of 6:2:2 and combine
the data per month in the training, validation, and test datasets,
considering the effects of seasons. We use the same data
partitioning method in the pre-training and fine-tuning phases.
The codes and processed datasets are available here 2.

B. Baselines

We select the trajectory representation learning methods that
adopt self-supervised training methods and are suitable for
multiple downstream tasks, i.e., non-task-specific methods, as

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
2https://github.com/aptx1231/START

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://github.com/aptx1231/START


TABLE II
THREE DOWNSTREAM TASKS OVERALL PERFORMANCE ON BJ AND PORTO.

Travel Time Estimation Trajectory Classification Most Similar Trajectory Search

B
J

Models MAE ↓ MAPE(%) ↓ RMSE ↓ ACC ↑ F1 ↑ AUC ↑ MR ↓ HR@1 ↑ HR@5 ↑
traj2vec 10.13±0.12 37.95±0.92 56.83±0.47 0.811±6e-4 0.852±1e-3 0.873±2e-5 7.186±0.03 0.607±1e-4 0.766±7e-5

t2vec 10.03±0.10 36.42±1.31 56.65±0.12 0.814±1e-3 0.863±1e-2 0.879±9e-4 5.948±0.01 0.788±3e-4 0.935±8e-5
Trembr 9.997±0.11 34.20±0.88 36.97±0.38 0.818±1e-3 0.871±2e-3 0.880±2e-3 2.509±2e-3 0.884±5e-4 0.952±6e-5

Transformer 10.74±0.48 39.61±1.52 57.16±0.56 0.794±2e-3 0.845±1e-3 0.846±1e-3 40.60±0.19 0.515±1e-4 0.649±1e-4
BERT 10.21±0.14 37.31±0.17 37.09±0.36 0.804±3e-3 0.862±2e-3 0.864±3e-3 27.10±0.11 0.587±3e-3 0.712±4e-4
PIM 10.19±0.09 39.04±0.58 57.73±0.26 0.803±1e-3 0.861±1e-3 0.862±9e-4 23.51±0.12 0.760±4e-3 0.898±2e-4

PIM-TF 12.05±0.03 43.14±0.66 61.15±0.33 0.789±1e-3 0.849±2e-3 0.842±6e-3 86.45±0.32 0.296±2e-4 0.340±2e-4
Toast 10.69±0.22 35.37±1.14 57.41±0.41 0.810±2e-3 0.870±2e-3 0.871±2e-3 29.53±0.15 0.611±2e-4 0.746±3e-4

START 9.134±0.03 30.92±0.35 35.40±0.09 0.853±2e-3 0.896±1e-3 0.916±4e-4 1.295±1e-3 0.969±4e-4 0.997±4e-5
Improve 8.63% 9.59% 4.24% 4.28% 2.87% 4.09% 48.39% 9.62% 4.73%

Po
rt

o

Models MAE ↓ MAPE ↓ RMSE ↓ Micro-F1 ↑ Macro-F1 ↑ Recall@5 ↑ MR ↓ HR@1 ↑ HR@5 ↑
traj2vec 1.552±6e-3 23.70±0.35 2.351±4e-3 0.063±3e-3 0.038±3e-3 0.183±5e-3 30.52±0.13 0.552±3e-4 0.732±5e-4

t2vec 1.539±5e-3 23.65±0.12 2.324±5e-3 0.068±2e-4 0.048±3e-4 0.187±3e-4 12.70±0.08 0.746±3e-4 0.856±8e-4
Trembr 1.480±2e-3 22.64±0.37 2.164±0.01 0.071±9e-4 0.049±1e-3 0.192±2e-3 4.635±1e-3 0.846±4e-4 0.929±8e-5

Transformer 1.738±3e-3 25.72±0.26 2.637±2e-3 0.028±7e-3 0.018±5e-3 0.075±8e-3 68.58±0.21 0.447±2e-4 0.664±5e-5
BERT 1.593±7e-3 24.63±0.57 2.291±3e-3 0.065±3e-4 0.044±1e-3 0.184±1e-3 39.12±0.15 0.511±4e-3 0.714±5e-4
PIM 1.559±3e-3 24.68±0.25 2.339±0.01 0.061±4e-4 0.037±3e-4 0.153±5e-4 19.53±0.10 0.653±3e-4 0.774±7e-4

PIM-TF 1.945±2e-3 28.82±0.15 2.841±3e-4 0.025±4e-3 0.016±5e-3 0.069±7e-3 78.78±0.24 0.384±2e-5 0.547±3e-5
Toast 1.624±8e-3 24.63±0.33 2.445±5e-3 0.062±1e-3 0.035±4e-4 0.181±1e-3 22.61±0.12 0.684±2e-5 0.789±2e-5

START 1.334±3e-3 20.66±0.14 2.001±1e-3 0.089±4e-4 0.067±2e-3 0.244±1e-3 1.897±1e-3 0.921±3e-4 0.973±6e-5
Improve 9.86% 8.75% 7.53% 25.35% 36.73% 27.08% 59.07% 8.87% 4.74%

* All experiments are repeated ten times, and we report both the mean and standard deviation. The bold results are the best, and the underlined results are the
second best. The metric with ”↑” means that a larger result is better, and the metric ”↓” means that a smaller result is better.

our baselines. The baselines meet the criteria include three
categories:

(1) Encoder-decoder with reconstruction: This category uses
an RNN-based encoder-decoder model to convert raw trajec-
tories as representation vectors and adopts the reconstruction
self-supervised task to train the encoder-decoder model. We
select the following representative methods as the baselines.

• Traj2vec [9] converts trajectories to feature sequences
and uses a sequence-to-sequence (seq2seq) model to learn
representations.

• T2vec [8] is the state-of-the-art seq2seq trajectory rep-
resentation method with negative sampling and spatial
proximity aware loss. We use the decoder of t2vec to
recover the input trajectory without downsampling since
the data are road-network constrained trajectories.

• Trembr [7] is a seq2seq model whose decoder recon-
structs both roads and timestamps of the input trajectory.

(2) Two-stage representation models: This category first
converts road segments as representation vectors and then
generates trajectory representation vectors from the road rep-
resentation vectors in the same trajectory. We select the
following methods of this category as the baselines.

• PIM [18] uses node2vec to generate road representations
of the static road network and uses a mutual informa-
tion maximization method to train a LSTM encoder for
trajectory representation generation.

• PIM-TF replaces the LSTM encoder in PIM with a
transformer encoder.

• Toast [17] uses the context-aware node2vec to generate
road representations and uses the MLM and trajectory
discrimination task to train a Transformer encoder for
trajectory representation generation.

Besides, we also adopt classical self-supervised sequence
representation learning models as the baselines.

(3) Self-supervised sequence representation models: We
adopt Transformer and BERT that input with road-network
constrained trajectories as the baselines.

• Transformer [11] is a self-attention model of the encoder-
decoder architecture. We use MLM as the pre-training
self-supervised task.

• BERT [22] is a self-attention model. We train the model
with a MLM task and a classification task, splitting a
trajectory T as two parts, i.e., T1 and T2, and treating
(T1, T2) as positive samples and (T2, T1) as negative
samples.

The models mentioned in the related work section
but requiring supervised labels, such as NEUTRAJ [12],
Traj2SimVec [26] and T3S [13], and the methods that are not
suitable for multiple downstream tasks, such as DETECT [27]
and E2dtc [14], are not chosen as the baselines.

C. Experimental Settings

1) Model and Baseline Settings: All experiments are con-
ducted on Ubuntu 18.04 with an NVIDIA GeForce 3090 GPU.
We implement START and all baselines based on the PyTorch
1.7.1 [28]. We set the embedding size d to 256, the TPE-GAT
layers L1 to 3, and the TAT-Enc layers L2 to 6. The attention
heads H1 are [8, 16, 1] for TPE-GAT and H2 is 8 for TAT-
Enc. The mask length lm is 2 and the mask ratio pm is 15%.
The dropout ratio is 0.1, and the temperature parameter τ is
0.05. The default data augmentation methods are Trajectory
Trimming and Temporal Shifting. Finally, λ = 0.6 to balance
the pre-training losses. The baselines have the same settings
as START, with 256 hidden dimensions and six layers (or six
encoders and six decoders for the encoder-decoder model),
and the other settings follow their defaults.

2) Training Settings: We pre-train and fine-tune our model
using the optimizer AdamW [29]. The batch size is 64, and
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Fig. 3. MAPE on BJ Under Different Scenarios.

the training epoch is 30. The learning rate lr is 0.0002, and we
use the warm-up policy corresponding to increase lr linearly
for the first five epochs and decrease it after using a cosine
annealing schedule.

3) Evaluation Metrics: For the travel time estimation task,
we adopt three metrics, including mean absolute error (MAE),
mean absolute percentage error (MAPE), and root mean square
error (RMSE). For the trajectory classification task, we use
Accuracy (ACC), F1-score (F1), and Area Under ROC (AUC)
to evaluate binary classification tasks, and Micro-F1, Macro-
F1, and Recall@5 to evaluate multi-classification tasks. For
the most similar search task, we use Mean Rank(MR) and Hit
Ratio(HR@1, HR@5) to evaluate whether the model can find
the truth. For the k-nearest search task, we use Precision to
measure the coverage of the top-k results.

D. Performance Comparision

1) Overall Performance: Table II reports the overall results
on the three downstream tasks. Based on the table, we can
make the following observations.

• Our START achieves the best performance in terms
of all metrics on these three tasks for the two real-
world datasets. It confirms the superior performance of
our framework in learning trajectory representations by
introducing temporal regularities and travel semantics in
the pre-training phase.

• The encoder-decoder models with reconstruction outper-
form the sequence representation models (Transformer,
BERT). It could be because the pre-training methods of
these two models from the natural language processing
domain are not suitable for trajectory data, ignoring the
spatial-temporal characteristics.

• Trembr performs best among all baselines because it
considers the visit timestamp of each road in the de-
coding process, highlighting the importance of temporal
information in the trajectories.

• The performance of the two-stage models, i.e., PIM
and Toast, is unsatisfactory due to two factors. First,
they consider trajectories as ordinary road sequences and
ignore the temporal information. Second, their road rep-
resentation learning method does not adequately consider
the travel semantics, such as road visit frequencies.

2) Performance of Trajectory Travel Time Estimation: We
fine-tune all models with the objective function (16). Note that
no time information is fed into the model during fine-tuning,
except for the departure time to avoid information leakage. In
addition to the overall performance in Table II, to investigate
the performance of the model under different scenarios and

verify the role of pre-training with temporal regularities, we
present the MAPE results on different departure times, whether
it is a weekend or not, and the hops of the trajectory on
BJ in Figure 3. Here we compare three models, including
START, a variant without temporal (noted as w/o Temporal)
where the time embeddings and the time interval matrix are
removed, and the best baseline Trembr. We can observe the
following phenomena: (1) START consistently outperforms
others, regardless of the weekday or weekend or the trajectory
hop size. Moreover, START shows excellent performance,
especially in the late peak periods (16:00-21:00) and when
the trajectory is between 20 to 100 hops. (2) The no temporal
variant cannot capture temporal regularities and therefore has
worse performance than START, highlighting the importance
of temporal regularities when pre-training.

3) Performance of Trajectory Classification: We fine-tune
all models with the objective function (17). We use whether the
taxi carries passengers as a binary classification label in BJ and
the driver ID as the label in Porto for the multi-classification
(435 classes). As shown in Table II, our model consistently
outperforms all baselines because it can capture the underlying
travel semantics and achieves accurate performance.

4) Performance of Trajectory Similarity Search: The sim-
ilarity measure is a fundamental problem with various appli-
cations, such as identifying popular routes and similar drivers
in trajectory analysis. A recent study [8] proposes to use the
most similar trajectory search and the k-nearest trajectory
search to evaluate the effectiveness of different methods.
We adopt it in the experiments as it is currently the best
evaluation method that proves the effectiveness of the model
from multiple perspectives. Here we directly use the trajectory
representations obtained from the pre-training without fine-
tuning and use the Euclidean distance of the representations
to represent the similarity between the trajectories, i.e., the
smaller the distance, the greater the similarity.

(a) Most Similar Trajectory Search: The most similar
trajectory search task is to find out the most similar trajec-
tory T ′

a from a large trajectory database DD given a query
trajectory Ta in the query dataset DQ. However, the lack
of ground truth makes it difficult to evaluate the accuracy
of trajectory similarity. Li et al. [8] use downsampling in
various proportions to construct the query and ground truth
from the GPS-based trajectories. However, the influence of
downsampling can be eliminated after the map matching. Chen
et al. [17] propose a detour method to generate ground truth
for road-network constrained trajectories. Based on this, we
propose a ground truth generation method based on the top-k
detour. Specifically, we randomly select Nq trajectories from
the test dataset, denoted as the query dataset DQ. For each
trajectory Ta ∈ DQ, we select a section of consecutive sub-
trajectories Sa whose length does not exceed pd (e.g., 0.2)
of the original trajectory length. Then we perform a top-
k search [30] on the road network between the origin and
destination of Sa. If the travel time of the searched trajectory
exceeds a certain threshold td with respect to the original
trajectory, this trajectory is defined as S ′

a. The detour trajectory
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T ′
a of Ta is obtained by replacing Sa by S ′

a. In this way, we
can construct the detour dataset DQ

′ = {T ′
a}. Furthermore,

we extract other Nneg trajectories from the test dataset that
do not overlap with DQ, defined as the set DN , and use the
same method to obtain the corresponding detour dataset DN

′.
Together, DN

′ and DQ
′ form the database DD = DN

′∪DQ
′.

When using Ta to query the most similar trajectory in DD, T ′
a

will ideally rank first since it is generated from Ta, i.e., the
ground truth of Ta.

In the experiments we set Nq = 10, 000, Nneg = 100, 000,
select proportion pd = 0.2, time threshold td = 0.2. Table II
shows detailed results, and our model outperforms all base-
lines, especially in the mean rank (MR) metric. We attribute
this to the fact that the representations learned by the model
capture the travel semantics of the trajectories. In this way, the
model can find the shape and semantically similar trajectories,
an advantage that sequence-to-sequence models do not have.

(b) k-nearest Trajectory Search: In the k-nearest search
task, given a query trajectory, models need to find top-k
similar trajectories from the target database, ignoring the rank.
Here, we use each query trajectory Ta in the query dataset
DQ to find the k-nearest-neighbors from the database DD as
ground truth. Then we construct the transformed detour dataset
DQ

′ from DQ using the same method as above. For each
transformed query T ′

a ∈ DQ
′, we find the k-nearest-neighbors

from database DD and compare them to the ground truth.
Since different selection proportions pd significantly change
the generated trajectories, we vary pd from 0.1 to 0.5 to
generate multi-data to evaluate the models. Figure 4 shows
the Precision of different models when the pd is varied and
k is fixed at 5. The Precision of all methods decreases as
the selection proportion pd increases. START always stays
ahead and decreases more slowly, while Transformer, BERT,
PIM-TF, and Toast perform less well. This is likely because
the representations learned by the self-attention model are
anisotropic [31] and difficult to adapt to downstream tasks
without fine-tuning. If we change the time threshold td, we
obtain similar results not reported here.

(c) Comparision of Top-3 Similar Trajectories: To intu-
itively examine the search results of our proposed START, we
randomly select two trajectories and retrieve the top-3 similar
trajectories using START and Trembr, respectively, as shown
in Figure 5. The results show that START can find diverse
trajectories that are not exactly consistent with the query, but
their overall trends (shape, OD, etc.) are similar. Compared
with Trembr, the trajectory found by START is closer to the
query, while the result of Trembr deviates more from the

TABLE III
PERFORMANCE COMPARISON WHEN TRANSFER MODEL ACROSS

DATASETS.

Travel Time Estimation Trajectory Classification
Models MAE MAPE(%) RMSE Micro-F1 Macro-F1 Recall@2

No Pre-train Geolife 12.325 78.547 19.584 0.519 0.498 0.790
Pre-train Geolife 11.980 73.489 18.613 0.568 0.571 0.814

Porto-START 10.455 65.371 18.024 0.623 0.619 0.832
BJ-START 9.995 64.331 17.183 0.669 0.665 0.887

Porto-Trembr 15.200 80.294 23.223 0.507 0.468 0.728
BJ-Trembr 14.851 79.239 23.109 0.512 0.486 0.741

query, especially the top-3 of query 8379. This illustrates the
effectiveness of our proposed START in capturing the global
features and travel semantics of the trajectory.

E. Effect of Pre-training

In this section, we verify the effectiveness of the two pre-
training tasks we designed in two ways. One is to explore
whether the training data size can be reduced by pre-training.
The other is to investigate whether the pre-trained model can
be transferred to other small datasets, even with a hetero-
geneous road network, to solve the problem of insufficient
training data in many real-world applications.

1) Performance Over Small Size Datasets: One of the ad-
vantages of pre-training is that it can reduce the use of training
data. We reduce the training data size for pre-training and
fine-tuning and compare the proposed START with the variant
without pre-training (noted as No Pre-train), i.e., trained in a
supervised manner. Figure 6 shows performance on the entire
test dataset of travel time estimation (ETA) and trajectory
classification. We vary the size of the training data from 100k
to 400k and train both No Pre-train and START. We find that
the performance of both models improves with more labeled
data, and START consistently outperforms the No Pre-train
variant regardless of the training data size. Besides, as more
data is used for pre-training, the performance of the model
improves more significantly. These experiments show that pre-
training can effectively reduce the use of training data.

2) Transfer Model Across Datasets: We transfer the model
that pre-trained on a large dataset to another small dataset for
fine-tuning, with the expectation that the knowledge learned
from the large dataset will be transferred to the small one
to solve the problem of insufficient training data. The small
dataset is Geolife 3, a public dataset consisting of trajectories
from 2007 to 2012 in Beijing. Since we need to perform
map matching, we only keep the trajectories with four trans-
portation modes, including Car/Taxi, Walk, Bike, and Bus. In
this way, we obtain 5,760 trajectories after data processing.
In Table III, we compare the performance of the following
models: (1) START trained directly or pre-trained with fine-
tuned on Geolife (noted as No Pre-train Geolife, Pre-train
Geolife), (2) START pre-trained on BJ and Porto and fine-
tuned on Geolife (noted as BJ-START, Porto-START), and (3)
the best baseline Trembr pre-trained on BJ and Porto and fine-
tuned on Geolife (noted as BJ-Trembr, Porto-Trembr). Since
the source datasets are cab datasets, we use only the 882
Car/Taxi mode trajectories from the Geolife data for travel

3https://research.microsoft.com/en-us/projects

https://research.microsoft.com/en-us/projects
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Fig. 5. Comparision of Top-3 Similar Trajectories Retrieved by START and Trembr. (Map data © OpenStreetMap contributors, CC BY-SA.)
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time prediction. The label for the trajectory classification is
the four transportation modes.

We can conclude the following: (1) Direct pre-training
on small datasets can also improve performance compared
to non-pre-training. (2) Our proposed START, whether pre-
trained on BJ or Porto, outperforms the model pre-trained on
Geolife, showing that pre-training can significantly improve
performance on small datasets through knowledge transfer.
The model pre-trained on BJ performs better than the model
pre-trained on Porto because BJ and Geolife have the same
road network. The parameters of our TPE-GAT layer are
independent of the number of roads so that it can learn the
road representations as long as the road network and the road
features are given. Therefore, we can transfer START to a
heterogeneous road network dataset. In terms of performance
improvement, we argue that the model learns the deep travel
semantics of trajectories that are similar between different
cities, thus enabling improvements. (3) When the pre-trained
Trembr model is transferred to the Geolife dataset, perfor-
mance is even worse. This confirms that the sequence-to-
sequence model is unsuitable for transferring between datasets.
Instead, our proposed START is suitable for pre-training and
transfer learning to solve the insufficient data problem.

F. Ablation Study

To further investigate the effectiveness of each sub-module
in START, we conduct the following ablation experiments
on both datasets. All experiments are repeated ten times and
report the average results in Figure 7. Due to space limitations,
we show only one metric for each task.

1) Impact of Trajectory Pattern-Enhanced Graph Attention
Layer: (a) w/o TPE-GAT: this variant replaces the TPE-GAT
with randomly initialized learnable road embeddings. (b) w/
Node2vec: the variant replaces the TPE-GAT with learnable
road embeddings initialized by node2vec [19] algorithms. (c)
w/o TransProb: this variant removes the transfer probability
matrix in the TPE-GAT. We can see that performance drops
significantly without the TPE-GAT. The variant w/o TransProb
removes the transfer probability matrix so that the TPE-
GAT degenerates to a standard GAT. This variant performs
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better than the variant w/ Node2vec because compared with a
standard GAT, the node2vec only focuses on the road network
structure but ignores the road features. Moreover, this variant
performs worse than the original model, reflecting that with
transfer probabilities, the learned travel pattern enhanced-road
representations are more valuable than the simple aggregation
of the neighbors’ features by a standard GAT.

2) Impact of Time-Aware Trajectory Encoder Layer: (a)
w/o Time Emb: this variant drops the temporal embeddings
(tmi, tdi) to ignore the periodic temporal patterns. (b) w/o
Time interval: this variant drops the time interval matrix ∆̃. (c)
w/ Hop: this variant uses the number of hops between roads
instead of the time interval to obtain the relative distance,
i.e., using δi,j = |i − j| instead of δi,j = |ti − tj |. (d)
w/o Log: this variant replaces the logarithmic function that
processes the time interval, i.e., using δ′i,j = 1/δi,j instead of
δ′i,j = 1/log(e + δi,j). (e) w/o Adaptive: this variant drops
the Eq. (9), i.e., δ̃i,j = δ′i,j = 1/log(e + δi,j). In this
way, the time interval matrix remains constant during the
training process. We can see that the performance decreases
significantly after neglecting the periodic temporal patterns
(i.e., w/o Time Emb). It confirms the necessity of introducing
periodic urban patterns. Besides, removing the time interval
matrix leads to significant performance degradation. The vari-
ant w/ Hop performs worse than w/o Time interval, illustrating
the importance of using the time interval between roads to
measure the impacts among roads rather than using the hop
distance. Similarly, the variant w/o Log performs worse than
w/o Time interval because the inverse function changes too
little at larger time intervals. The model performance also
decreases if the matrix remains constant during the training
process (i.e., w/o Adaptive), indicating the value of making
the time interval matrix adaptive in model learning.
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3) Impact of Self-Supervised Tasks: (a) w/o Mask: this
variant removes the span-masked loss and trains only with
Lcon. (b) w/o Contra: this variant removes the contrastive
loss and trains only with Lmask. Results demonstrate that
both self-supervised pre-training tasks significantly affect the
performance of downstream tasks.

4) Impact of Data Augmentation Strategies: Data augmen-
tation strategies are central in contrastive learning to capture
the spatial-temporal characteristics and travel semantics. We
show performance with different pairs of methods to explore
our proposed four trajectory data augmentation strategies. Due
to space constraints, we only show the performance of travel
time prediction. As shown in Figure 8, we use a 4*4 grid
to show the performance of different pairs of augmentation
methods, where each row and column of the grid represents a
data augmentation method. Note that the smaller the MAPE,
i.e., the lighter the color, the better the performance. We find
that Temporal Shifting and Road Segments Mask perform best
in this task. This shows that temporal regularities matter since
both methods exhibit a change in the temporal dimension.
Besides, Dropout is a simple but efficient strategy that does
not break the semantics of the trajectory.

G. Parameter Sensitivity

We further conduct the parameter sensitivity analysis for
critical hyperparameters, e.g., encoder layers L2, embedding
size d, and batch size Nb on both datasets. We report only the
results of trajectory classification, and the results of the other
tasks are similar. From Figure 9, we can see that the model
performance initially improves with d and L2 increasing,
but when they are too large, the performance deteriorates
due to overfitting. Although previous studies have generally
recommended larger batch sizes for contrastive learning [24],
experiments have shown that model performance drops when
batch sizes are too large. This may be due to a large batch
introducing too many “hard” negative samples that differ
minimally from the given anchor, e.g., trajectories between
the same ODs departing simultaneously. It is inappropriate to
set these two semantically similar samples as a negative pair.
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H. Model Efficiency And Scalability

Since START is a pre-trained method for learning repre-
sentations that can be trained offline, in practicality, we are
more concerned with the time cost of encoding the trajectories
into representations and applying them to downstream tasks.
Here we use the default settings described in Section IV-C.
We report only the results for Porto due to space limitations,
and the results for BJ are similar.

First, we report the inference time of START and baselines,
i.e., the time cost of embedding 100k-400k trajectories in
Figure 10(a). The results show that self-attention models are
faster than RNN models. This is because RNN model need
O(L) sequential operations to process the trajectory while
self-attention model only need O(1). Here L is the length
of the trajectory. Besides, START is slightly slower than other
self-attention models because it introduces the TPE-GAT layer
and the time interval matrix, a tradeoff between performance
and efficiency. Even so, it takes only 25.8 seconds to encode
100,000 trajectories, and it can get even faster as the batch
size gets larger during inference.

In addition, we also compare the time cost of similarity
search. Figure 10(b) shows the average time cost of a query
for performing the most similar search with different query
sizes and database sizes. The size of the query and detour
dataset Nq varies from 10 to 10,000, and the size of the
negative samples Nneg is ten times Nq . In addition to the two
representative deep models Toast and Trembr, we also compare
some traditional algorithms including Dynamic Time Warping
(DTW) [32], Longest Common SubSequence (LCSS) [33],
Fr’echet Distance [34], and Edit Distance on Real Sequence
(EDR) [35]. For the deep models, we sum the time cost of
obtaining the representations and computing the similarities
using the representations.

We can see deep models are at least one order of magnitude
faster than the traditional algorithms because the complexity of
the traditional algorithms for computing the similarity is gen-
erally O(L2), while the deep models require only O(d) com-
plexity for computing the distance between the representations.
Here L is the length of the trajectory, and d is the embedding
size. Moreover, the deep models will be more efficient if we
generate representations offline. The linear complexity makes
START scale well on large datasets. Moreover, as shown in
Figure 10 (c), START outperforms traditional algorithms on
mean rank (MR) for search. This shows that START is not only
efficient but also can be used directly as a powerful metric for
computing trajectory similarity without fine-tuning.

Finally, from the two experiments above, it appears that



both the time for inference and the time for similarity search
of START increases linearly with the amount of data, which
means START can be scaled for large datasets.

V. RELATED WORK

A. Trajectory Representation Learning

Trajectory Representation Learning (TRL) is a powerful
tool for spatial-temporal data analysis and management. TRL
aims to convert raw trajectories into generic low-dimensional
representation vectors that can be applied to various down-
stream tasks. Two of the earliest works that introduce the
concept of trajectory representation learning into trajectory
data management are t2vec [8] and traj2vec [9]. T2vec [8]
is trained by reconstructing high-sampling trajectories from
low-sampling trajectories. Traj2vec [9] transforms trajecto-
ries into feature sequences and trains a sequence-to-sequence
(seq2seq) model based on reconstruction loss. Since then,
many trajectory representation learning methods have been
proposed for specific downstream tasks. For example, NEU-
TRAJ [12], Traj2SimVec [26], and T3S [13] aim to learn
trajectory representations for approximate trajectory similarity
computation. In addition, DETECT [27] and E2dtc [14] build
a seq2seq model trained with a reconstruction loss and a
cluster-oriented loss to learn representations for trajectory
clustering. GM-VSAE [15] and D-TkDI [16] learn trajectory
representations for anomalous trajectory detection and path
ranking, respectively.

Most previous TRL works consider trajectories as sequences
of locations, such as road segments, GPS sample points, or POI
points while ignoring the corresponding temporal information.
To the best of our knowledge, before our work, Trembr [7]
was the only work that considered temporal information
in self-supervised trajectory representation learning. Trembr
is an RNN-based encoder-decoder model that considers the
timestamps of each location in the decoding process. However,
Trembr does not capture the periodic patterns of urban traffic
or the irregular time intervals between trajectory samples. Our
model explicitly incorporates the two temporal regularities
into the trajectory representations, so it outperforms Trembr in
the experiments. In addition to GPS trajectories, some studies
focus on other types of trajectories. TRED [36], CTLTR [37],
and SelfTrip [38] are semi- or self-supervised representation
methods for trip recommendations based on sparse POI check-
in trajectories.

In recent years, some two-stage methods have been pro-
posed to learn generic trajectory representations for multiple
downstream tasks [17], [18]. These methods first adopt a graph
representation learning model to learn the road representation
vectors and then use sequence learning models with self-
supervised tasks to convert the road representation vectors
in the same trajectory into the trajectory representations. For
example, Toast [17] and PIM [18] use node2vec [19] to
learn road representations and respectively use Transformer
with masked prediction and RNN with mutual information
maximization as self-supervised tasks to generate trajectory

representations. Compared to our work, these two-stage meth-
ods consider trajectories as ordinary sequence data and thus ig-
nore the temporal information. Besides, they only incorporate
the static road network as spatial semantic information while
ignoring the travel semantics, such as road visit frequencies.

B. Self-supervised Learning
Self-supervised learning is a technique that enables learning

with unlabeled data and has recently achieved remarkable
success in various fields, such as computer vision [24], natural
language processing [22], [39], and data engineering [40],
[41]. Self-supervised methods primarily include generative,
predictive, and contrastive methods [42]. The generative meth-
ods learn representations based on reconstruction losses, such
as some seq2seq models mentioned in Section V-A. The
predictive methods construct labels based on the input data,
such as BERT [22], using the mask language prediction for
training. The contrastive methods construct positive and nega-
tive samples and train the models to close the distance between
positive pairs and push the distance between negative pairs.
SimCLR [24] is a contrastive learning method for visual repre-
sentations using normalized temperature-scaled cross-entropy
loss (NT-Xent) as training loss. SimCSE [23] uses standard
dropout as noise to construct positive instances for sentence
embeddings. ConSERT [39] proposes four different types of
contrastive learning data augmentation methods for learning
sentence embeddings. Although several works have focused
on the self-supervised learning of trajectories, our framework
is the first to use both predictive and contrastive methods to
capture the temporal regularities and travel semantics of the
road-network constrained trajectory.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a two-stage trajectory represen-
tation learning method, START, which incorporated tempo-
ral regularities and travel semantics into generic trajectory
representation learning. Furthermore, we designed two self-
supervised tasks to train our START, which fully considered
the spatial-temporal characteristics of trajectories. Extensive
experiments on two large-scale datasets for three downstream
tasks confirmed the superior performance of our proposed
framework compared with the state-of-the-art baselines. The
experiment results also demonstrated that our methods could
be transferred across heterogeneous trajectory datasets, which
was very useful for solving the problem of insufficient data.

In the future, we plan to explore more data augmentation
techniques for contrastive learning according to the specific
downstream tasks and extend the proposed framework to other
categories of trajectory data, such as POI check-in trajectories,
to support more applications.
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