
ar
X

iv
:2

21
2.

00
97

7v
1

 [
cs

.D
B

]
 2

 D
ec

 2
02

2

PSPC: Efficient Parallel Shortest Path Counting on

Large-Scale Graphs

You Peng
The Chinese University of Hong Kong

Hong Kong, China

ypeng@se.cuhk.edu.hk

Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China

yu@se.cuhk.edu.hk

Sibo Wang
The Chinese University of Hong Kong

Hong Kong, China

swang@se.cuhk.edu.hk

Abstract—In modern graph analytics, the shortest path is a
fundamental concept. Numerous recent works concentrate mostly
on the distance of these shortest paths. Nevertheless, in the
era of betweenness analysis, the counting of the shortest path
between s and t is equally crucial. It is also an important
issue in the area of graph databases. In recent years, several
studies have been conducted in an effort to tackle such issues.
Nonetheless, the present technique faces a considerable barrier
to parallel due to the dependencies in the index construction
stage, hence limiting its application possibilities and wasting the
potential hardware performance. To address this problem, we
provide a parallel shortest path counting method that could
avoid these dependencies and obtain approximately linear index
time speedup as the number of threads increases. Our empirical
evaluations verify the efficiency and effectiveness.

Index Terms—Parallel, Shortest Path Counting, Graph Data
Management

I. INTRODUCTION

The shortest path problem [1]–[9] is a basic one in the

field of graph analytics [10]–[12], and numerous studies have

been conducted on its related topics, e.g., shortest path dis-

tance [13]–[16], shortest path counting [17]–[20]. Given two

vertices s and t, a shortest path between them is the one

with the shortest length among all possible paths. A variety

of applications, e.g., geographic navigation, Internet routing,

socially tenuous group detecting [21], influential community

searching [22], event detection [23], betweenness central-

ity [24], [25], and route planning [13], [26], make extensive

use of it. In the aforementioned applications, distance between

s and t is frequently taken into account when determining the

vertices’ importance and relevance, e.g., the nearest keyword

search [27], and ranking search in social networks [5], [28]–

[36].

Beside distance, the shortest path counting (SPC) is a vital

aspect of the shortest path related problems. This is due

to the fact that basing relevance and importance merely on

distance is uninformative [17]. In addition, many graphs in the

real world have a limited diameter owing to the small-world

phenomenon. Consequently, numerous pairs of vertices have

the same distance between them. Several pairings of vertices

will be considered equally relevant based on the distance

information alone. This is really unrealistic. A typical example

is given as follows: Consider graph H in Figure 1. Both t1
and t2 are located at a distance of 2 from s in H . Therefore,

t1 and t2 are considered equally important to s based only on

their distance. However, such a conclusion is irrational, since

s and t2 are connected by the shortest paths and hence are

more relevant. In light of this, it is also essential to count the

number of shortest paths between any two specified vertices.

Even with a not-so-“small” diameter (the longest shortest

path), the distance is also uninformative. Consider a connected

unweighted graph G with n vertices and a diameter of d. Given

a vertex v, it could only differentiate d types of vertices if

basing merely on distance. In the most of real networks, e.g.,

SNAP [37], d≪ n.

t1 s

v1

v3

v2 v4

t2

Fig. 1: Graph H

Application. Listed below are some vital applications for the

SPC problem.

(1) Group Betweenness. The group betweenness exemplifies

a typical application of the SPC problem. Puzis et al. [25]

estimate the importance of a vertex set C to G based on

the group betweenness. Let Ps,t represent the set of short-

est paths connecting vertices s and t, spc(s, t) represent

the number of shortest paths connecting vertices s and t,
and spcC(s, t) indicate the # of the paths in Ps,t via C.

Group Betweenness of C, indicated by B̈(C), is defined as

B̈(C) =
∑

s,t spcC(s, t)/spc(s, t). As shown in [25], there

is an algorithm GBC for progressively evaluating B̈(C). In

particular, let C = {v1, ..., v|C|} and let Ci = {v1, ..., vi}.
GBC calculates B̈(Ci) in the i-th iteration by adding to

B̈(Ci−1) the total fraction of shortest paths that pass through

vi but not Ci−1. Therefore, after |C| iterations, B̈(C) is found.

GBC receives as input three |C| × |C| matrices D,
∑

,

and B̃, which store for ∀x, y ∈ C the distance between x
and y, spc(x, y), and the path betweenness of (x, y), respec-

tively. After computing B̈(Ci), GBC modifies B̃ depending

on D and
∑

such that B̃vi+1,vi+1
= B̈(Ci+1)− B̈(Ci).

This makes it simple to compute B̈(Ci+1) in the subsequent

iteration. Overall, GBC needs O(T + |C|3) time, where T
is the construction time for D,

∑
, and B̃. In tasks such as

estimating group betweenness distribution, the # of groups

http://arxiv.org/abs/2212.00977v1

to evaluate is vast. To reduce the online time necessary to

generate D,
∑

, and B̃, [25] proposes to pre-compute and

store the distance, the # of shortest paths, and the path

betweenness for every pair of vertices, incurring prohibitive

overhead. Although distance hub labeling and VC-dimension-

based techniques [38] may minimize the cost associated with

distance and path betweenness, the cost regarding SPC remains

intractable.

(2) Road Networks. In real-world road network applications,

the greater the number of shortest routes, the greater the num-

ber of traffic possibilities and the flexibility of route planning

from the origin to the destination. For example, the top-k
nearest neighbours search attempts to locate k objects adjacent

to the query vertex inside a candidate set. It is a leading

provider of taxi (e.g., Uber), restaurant (e.g., Tripadvisor), and

hotel (e.g., Booking) recommendation services. A candidate

item may be more desirable than others with the same or

comparable distance if many shortest paths go to it, since we

have more backup routing options and a greater chance of

avoiding traffic congestion. In a movie ticket application, for

instance, there are two theatres with the same shortest distance

to the source location. Given the available traffic possibilities,

we may choose the route with the most shortest paths. In

addition to acting as a proximity measure, the shortest path

count has been employed as a building component in the

computation of betweenness centrality [25], [39].

Challenges. In the above application, the main obstacle is the

increasing graph size of real applications. At the current stage,

large-scale graphs are common for real applications. Never-

theless, the state-of-the-art algorithm for building an index

based on node orders limits its scalability. To address this

issue, we carefully designed a different scalable algorithm for

this problem. Our experiments demonstrate that our algorithm

could build an index for large-scale graphs. In addition, the

query time is scalable.

Contributions. The primary contributions are listed below.

(1) Parallel Algorithm. This paper begins by analyzing the

interdependence of the current hub labeling approach and

explaining the challenge of parallel processing. It redesigns

another propagation mechanism to avoid these dependencies

by detecting the dependencies.

(2) Acceleration Optimizations. This paper investigates

scheduling planning and landmark-based labeling to boost

efficiency. Using these optimization techniques, our index

creation phase might be accelerated significantly.

(3) Hybrid Vertex Ordering. Classical vertex orders for the

SPC involve ordering by the degree and ordering by the

significant path. In road networks, the significant-path-based

ordering surpasses the degree-based ordering. Nevertheless,

significant-path-based ordering must select the next vertex

based on the shortest path trees built in the current vertex’s

construction, implying a dependency for each vertex and

leading parallel processing challenging. This paper proposes

a vertex-based ordering for the road network and a degree-

based ordering for the social network to fill this gap. Then, it

mixes them to provide a hybrid ordering for a scalable index

construction process.

TABLE I: The summary of notations

Notation Definition

G = (V, E) a given undirected and unweighted graph

m, n the number of edges(vertices) for G

nbr(v) the set of neighbors of v

deg(v) the degree of v

len(p) the length of a path p
len(p) = l if p = (v0, v1, ..., vl)

rev(p) the reverse of a path p
rev(p) = (vl, vl−1, ..., v0) if p = (v0, v1, ..., vl)

ps,t a shortest path from s to t

Ps,t the set of shortest paths from s to t

SPCs,t the shortest path counting from s to t

LC , LNC the canonical and non-canonical labels

dis(u,w) the distance from vertex u to w

L(v) ESPC index for vertice v

Cv,w the trough path counting from v to w

rev(p) the reverse path of p

(4) Comprehensive Experimental Evaluation. In order to illus-

trate the effectiveness and efficiency of our algorithms, 10
datasets are employed in this study. The experimental results

indicate that our method outperforms the baselines in terms

of index building time and generates comparable index sizes.

Furthermore, our method scales approximately linearly with

the number of threads.

Roadmap. The rest of the paper is organized as follows.

Section VI presents important related works. Section II in-

troduces the preliminaries of the SPC problem. Section V

experimentally evaluates our proposed approaches on real

small-world networks and Section VII concludes the paper.

II. PRELIMINARIES

Graphs. This paper concentrates on an unweighted and undi-

rected graph denoted by G = (V,E), where V and E represent

the set of vertices and edges in G, respectively. Let n = |V |
and m = |E| denote the number of vertices and the number

of edges, respectively. For each vertex v ∈ V , let nbr(v) be

the set of v′s neighbors and deg(v) be the degree of v. A path

p from vertex s to vertex t is defined as a sequence of vertices

(s = v0, v1, ..., vl = t) such that (vi, vi+1) ∈ E for 0 ≤ i < l.
The length of p, denoted by len(p), is the number of edges

included in p. In other words, len(p) = l. For simplicity, this

work uses the notation rev(p) to denote the reverse of a path.

Specifically, rev(p) = (vl, vl−1, ..., v0). A path from s to t is

shortest if its length is no larger than any other path from s
to t.

The notations are summarized in Table I.

A. 2-Hop Labeling for Shortest Path Counting

To efficiently process point-to-point SPC queries, the 2-hop

labeling technique [17] precomputes the SPC information from

each node to pre-selected hub nodes and utilizes the 2-hop

via hubs to respond to a query. It presents the hub labeling

method for the shortest path counting between vertices s and

t, SPC(s, t). The shortest path counting between vertices s and

t in a directed graph seeks to determine the total number of all

the shortest paths from s to t. [17] proposed a 2-hop labeling

scheme and an index construction algorithm to build the index

efficiently and enable real-time shortest path counting queries.

v2

v3 v1

v4v5v6

v7 v8

v10

v9

Fig. 2: An Undirected Graph. The total order ≤ is

v1 ≤ v7 ≤ v4 ≤ v10 ≤ v3 ≤ v5 ≤ v6 ≤ v2 ≤ v8 ≤
v9.

TABLE II: Shortest Path Counting Labels of Fig. 2
Vertex L(·)
v1 (v1, 0, 1)
v2 (v1, 2, 2) (v7, 2, 1) (v4, 1, 1) (v10, 1, 1) (v2, 0, 1)
v3 (v1, 1, 1) (v7, 2, 1) (v3, 0, 1)
v4 (v1, 1, 1) (v7, 1, 1) (v4, 0, 1)
v5 (v1, 1, 1) (v7, 1, 1) (v5, 0, 1)
v6 (v1, 2, 1) (v7, 1, 1) (v3, 1, 1) (v6, 0, 1)
v7 (v1, 2, 2) (v7, 0, 1)
v8 (v1, 3, 3) (v7, 1, 1) (v10, 2, 1) (v8, 0, 1)
v9 (v1, 2, 1) (v7, 2, 1) (v4, 3, 1) (v10, 1, 1) (v8, 1, 1) (v9, 0, 1)
v10 (v1, 1, 1) (v7, 3, 2) (v4, 2, 1) (v10, 0, 1)

The hub labeling scheme supports the cover constraint, Exact

Shortest Path Covering (ESPC), which implies that it not only

encodes the shortest distance between two vertices but also

ensures that such shortest paths are correctly counted. HP-

SPC is the algorithm developed for constructing the SPC label

index that satisfies ESPC.

Formally, given a directed graph G, HP-SPC assigns each

vertex v ∈ G an in-label Lin(v) and an out-label Lout(v),
consisting of entries of the form (w, sd(v, w), θv,w). The

shortest distance between v and w is denoted by sd(v, w),
and the number of shortest paths between v and w is denoted

by θv,w. If w ∈ Lin(v) or w ∈ Lout(v), then w is considered

a hub of v.

In essence, the in-label Lin(v) keeps track of the distance

and counting information from its hubs to itself, whereas the

out-label Lout(v) records distance and counting information

from v to its hubs. HP-SPC adheres to the cover constraint,

which states that for each given starting vertex s and ending

vertex t, there exists a vertex w ∈ Lout(s) ∩ Lin(t) that lies

on the shortest path from s to t.

In addition, HP-SPC guarantees the correctness of shortest

path counting by including the shortest path from s to t via

a hub vertex once during the label construction. SPC(s, t) is

evaluated by scanning the Lout(s) and Lin(t) for the shortest

distance via common hubs and adding the multiplication of the

corresponding count. Equation (1) identifies all common hubs

(on the shortest paths) from Lout(s) and Lin(t). Equation (2)

determines the result of SPC(s, t).

H = {h| argmin
h∈Lout(s)∩Lin(t)

{sd(s, h) + sd(h, t)}} (1)

SPC(s, t) =
∑

h∈H

θ(s, h) · θ(h, t) (2)

Example 1. Figure 2 depicts an undirected graph with 10
vertices, and Table II provides its hub labeling index for SPC

queries. SPC(v10, v7) is used as an example to determine the

shortest paths counting from v10 to v7. By scanning L(v10)
and L(v7), two common hubs {v1, v7} are found. The shortest

distance through v1 is 2 + 2 = 4, whereas the counting is 2
· 1 = 2; The shortest distance via v7 is 3 + 0 = 3, and the

counting is 1 · 2 = 2. Therefore, the number of shortest paths

from v10 to v7 is 2 + 2 = 4 with a length of 4.

III. PSPC ALGORITHM DESCRIPTION FROM THE

COVERING SIDE

This section presents our parallel method for the SPC

problem. First, the Shortest Path Covering is defined.

Definition 1. (Shortest Path Covering). T (v) represents a

set of entries of the form (w,Cv,w), where Cv,w ⊂ Pv,w

represents a subset of the shortest paths from v to w. For

each pair of vertices u and v, the shortest paths are covered

by T (u) and T (v) as a multiset as follows:

cover(T (u), T (v)) =

{p1 ⊙ rev(p2)|(w,Cu,w) ∈ T (u), (w,Cv,w) ∈ T (v),

p1 ∈ Cu,w, p2 ∈ Cv,w,

sd(u,w) + sd(v, w) = sd(u, v)}
(3)

It is noted that w is the common vertex in both T (u) and

T (v).

This is followed by the definition of Exact Shortest Path

Covering.

Definition 2. (Exact Shortest Path Covering). T (·) is an exact

shortest path covering (ESPC for short), which means that for

any two vertices u and v, the multiset cover (T (u), T (v)) must

be identical to Pu,v , i.e., the set of shortest paths between u
and v.

The Construction of an ESPC Index. The construction pro-

cess of an ESPC is explained. Let ≤ be a total order over

V . A trough path [40] is a path whose endpoint is ranked

higher than all the other vertices. A trough shortest path is

a path that is both trough and shortest. For a shortest path

p ∈ SPu,v , there exists a vertex w with the highest rank.

Thus, p could be divided into two trough shortest paths pu,w
and pw,v. By doing this, we could find the exact shortest path

covering by using the trough shortest paths of u and v.

Consider, for instance, the graph G′ in Figure 2, and a total

order ≤ where v1 ≤ v7 ≤ v4 ≤ v10 ≤ v3 ≤ v5 ≤ v6 ≤ v2 ≤
v8 ≤ v9. The path (v3, v1, v10) is not a trough path since v1
has a higher rank than both endpoints v3 and v10. The path

(v6, v3, v1) is the trough shortest path because one endpoint

(i.e. v1) has the highest rank and the path is the shortest. Given

a total order ≤ over the vertices, an ESPC can be constructed

as follows. T (v) is initially empty for each vertex v. Then, for

any two (potentially identical) vertices v and w with w ≤ v,

an entry (w,Cv,w) is added to T (v), where Cv,w is the set of

all trough shortest paths from v to w. This Cv,w is not empty.

Note that for every such label entry, since w ≤ v, w has the

highest rank in p for each path p ∈ Cv,w. T≤(·) and L≤(·)
denote the T (·) constructed this way and the corresponding

L(·), respectively. The ESPC result in Figure 2 is shown in

Table II.

Then, this work investigates why the state-of-the-art al-

gorithm [17] cannot be parallelized. In the state-of-the-art

algorithm, the label entries are separated into two types:

canonical labels (Lc) and non-canonical labels (Lnc).

ps,t denotes a shortest path in G from s to t. The shortest

distance between s and t in G, denoted by sdG(s, t) is defined

as the length of the shortest path between s and t in G. The

set of all shortest paths from s to t is denoted by Ps,t, and

the set of the vertices involved in Ps,t is denoted by Qs,t.

spcG(s, t) denotes the number of shortest paths from s to t in

G. When the context is clear, sd(s, t) and spc(s, t) are used

instead of sdG(s, t) and spcG(s, t) for simplicity. Let ≤ be a

total order over V . For two distinct vertices w and v, if w ≤ v,

then w has a higher rank than v. The total order of vertices

is an order that the ESPC index constructs for each vertex.

It could be obtained by ranking all the vertices in any order,

e.g., sorting the vertices by the degree order.

[17] defined the Canonical Hubs as follows: given a total

order ≤ over the vertices, is one that comprises the following

hubs: For two vertices v and w, w ∈ L(v) if and only if w is

the highest-ranked vertex in Qv,w.

Definition 3. (Canonical Hubs). A canonical hub labeling,

given a total order ≤ over the vertices, is one that comprises

the following hubs: For two vertices v and w, w ∈ L(v) if

and only if w is the highest-ranked vertex in Qv,w.

Thus, non-canonical hubs are those hubs that do not comply

with the definition of Canonical hubs and also in ESPC.

A. Trough Path Property

The labels of Lc demonstrate an essential node-order char-

acteristic.

Theorem 1. For each pair of vertices ∀u, v ∈ V , v is a hub

of u in Lc, i.e., (v, dis(v, u), c(v, u)) ∈ Lc(u), if and only if

paths SP (u, ..., v) are the trough paths between u and v, i.e.,

v is the highest-ranked node along all the shortest paths from

u to v.

Proof. This property is proved by contradiction. SP (u, .., v)
represents the set of all shortest paths from u to v. Consider

a node uh that is the highest-ranked node in SP (u, ..., v).
Assume that there exists a node uc in SP (u, ..., v) such that

uc does not have a hub of uh in the label set. Lc
<uh

denotes

the label index when finishing the pruned BFS for all vertices

whose rank is higher than uh. Consider the construction of

ESPC, and the iteration when the pruned BFS sourced uh is

performing. When there is no hub of uh for uc in this iteration,

then either

• Query(uc, uh, L
c
<uh

) = (d1, c1) and d1 < dis(uc, uh),
or

• uc is not explored in the Pruned BFS sourced from

uh, indicating that there is a vertex u′
c on the short-

est paths from uc to uh and could be pruned with

Query(u′
c, uh, L

c
<uh

= (d2, c2)) with d2 < dis(uh, u
′
c).

In either scenario, it needs a common hub between uh and

uc to produce the query result. Otherwise, some shortest paths

would be omitted from in our index, which would violate the

definition of ESPC. Nevertheless, such a common hub cannot

exist since i) uc, u
′
c ∈ SP (u, ..., v) and ii) uh is the highest-

ranked vertex in SP (u, ..., v). This results in a contradiction.

Since all nodes in SP (u, ..., v) have uh as their hubs, the

theorem can be proved in the two cases: i) uh = v, i.e., v is

the highest-ranked vertex in SP (u, ..., v), the v is a hub of u
and ii) if r(uh) > r(v), when before the pruned BFS sourced

from v is performed, uh is already a common hub of u and

v. Since uh is on the shortest path between u and v, the label

with hub v on u is inserted into the cL or pruned.

B. Order Property

The labels are partitioned in the index according to their

hub nodes to see the dependency among the labels. Let v1 ≤
v2 ≤ ... ≤ vn represent the node order under which label set

the index was constructed.

Two distinct sets are defined. Recall that the HP-SPCs

index consists of n iterations where the i-th iteration executes

a pruned BFS sourced from vi. LSPC
<i (u) is the snapshot

of LSPC(u) at the beginning of the i-th iteration, and by

LSPC
i (u) the incremental label of u built in the i-th iteration.

It is notable that LSPC
<i (u) = Lc

<i(u) ∪ Lnc
<i(u)

Definition 4. (Order Specific Label Set). LSPC(u) =
(vi, dis(vi, u), c) ∈ LSPC , for ∀i ∈ [1, n], u ∈ V . Let

LSPC
i =

⋃
u∈V LSPC

i (u).

Definition 5. (Order Partial Label Set). LSPC
<i (u) =

(vj , dis(vj , u), c) ∈ LSPC |j < i for ∀i ∈ [1, n + 1], u ∈ V .

Let LSPC
<i =

⋃
u∈V LSPC

<i . LSPC
<n+1 = LSPC .

The following lemma demonstrates that the pruning condi-

tion in HP-SPCs results in an order dependency among labels.

Lemma 1 (Order Dependency). The LSPC
i would depend on

LSPC
<i (u). Specifically, LSPC

i (u) would be updated as follows:

• If Query(vi, u, L
SPC
<i) = (d1, c1), and d1 > dis(vi, u),

then Lc
i(u) = (vi, dis(vi, u), count(vi, u)).

• If Query(vi, u, L
SPC
<i) = (d1, c1), and d1 = dis(vi, u),

then Lnc
i (u) = (vi, dis(vi, u), count(vi, u) + c1).

• Otherwise, LSPC
i (u) = ∅.

Proof. Let S be the set of nodes on the shortest path from vi
to u (including vi and u). Let w be the node with the highest

rank in S. If vi = w, according to Theorem 1, i) vi is a hub of

u in Lc and ii) for ∀v ∈ S vi, v is not a hub of vi in LSPC , and

hence, if Query(vi, u, L
SPC
<i = (d1, c1)), then d1 > dis(vi, u).

If r(vi) < r(w), then vi is not a hub of u in Lc and label

(w, dis(w, vi), dw1), (w, dis(w, u), dw2) ∈ LSPC
<i and thus

Query(vi, u, L
SPC
<i) = (d2, c2), then d2 = dis(vi, u). It is

only necessary to update Lnc
≤i in the i-th iteration.

Lemma 1 demonstrates that LSPC
i (u) depends on LSPC

<i

while LSPC
<i (u) depends on LSPC

i−1 . Such a convolved de-

pendency is difficult to remove so long as the labels are

constructed in the node order.

C. Distance Dependency

To break the order dependency in the label construction, we

consider the pruning condition where Query(vi, u, L
SPC
<i) =

(dis(u, vi), count(u, vi)). It prunes a node label on u, and

there must be two labels on u and vi to a common hub w
such that dis(u,w) + dis(w, vi) < dis(u, vi). Consequently,

dis(u,w) and dis(w, vi) must be smaller than dis(u, vi). In

other words, none of the labels with distances greater than

dis(u, vi) influence the query result of Query(vi, u, L
SPC
<i)

and the corresponding pruning outcomes.

Based on the above intuition, the label entries in LSPC

are categorized by their label distances. The reorganized label

sets will pave the way to our Parallel Shortest Path Counting

Labeling approach and are hence referred to as PSPC label

sets. Let D be the diameter of graph G.

Definition 6. (Distance Specific Label Set). LPSPC
d (u) =

(u, dis(v, u), c) ∈ LSPC(v)|dis(v, u) = d, for ∀u ∈ V, d ∈
[1, D]. Let LPSPC

d = LSPC
d (u)|u ∈ V .

Similarly, the partial label of a node then becomes the set of

label entries with a distance no larger than a certain distance

and is defined in Definition 7.

Definition 7. (Distance Partial Label Set). LPSPC
≤d (u) =

(v, dis(v, u), c) ∈ LSPC(u)|dis(v, u) ≤ d, for ∀u ∈ V , d ∈
[1, D + 1]. Let LPSPC =

⋃
u∈V LPSPC(u). In particular,

LPSPC(u) = LPSPC
≤D+1(u).

Theorem 2 describes the equivalence between the index

LSPC and the new index LPSPC .

Theorem 2. LSPC = LPSPC .

Proof. Since each label (v, dis(u, v), c) in LSPC has

dis(v, u) ≤ D, LPSPC contains all labels in LSPC and, by

definition, no additional labels.

Distance Dependency. Definitions 6 and 7 provide us the op-

tion to eliminate the order dependency in the label construction

process.

Theorem 3. LPSPC
d (u) relies on LSPC

≤d . Specifically, given a

node u, for a node v ∈ V with r(v) > r(u) and dis(u, v) = d,

(v, d, count(v, u)) ∈ LPSPC
d (u) ∈ LSPC

d (u) if and only if

Query(u, v, LPSPC
≤d) = (d0, c0) and d0 > d

Proof. Consider a node v with dis(u, v) = d. S denotes the

set of nodes on the shortest paths from u to v and let w be

the highest-ranked node in S. According to Theorem 1, there

are two cases that are exclusive:

1) w = v iff v is the hub of i in Lc.

2) w 6= v indicates that

a) w is the hub of both u and v, and

b) dis(u,w), dis(w, v) ≤ d and hence,

Query(u, v, LPSPC
≤d) = (d0, c0) and d0 = d.

Therefore, if (v, dis(v, u), c) /∈ LPSCP
d (u), namely, v is not

a hub of u, then w 6= v, and then Query(u, v, LPSCP
≤d) =

(d0, c0) and d0 = d. Besides, if (v, dis(v, u), c0) ∈
LPSPC
d (u), namely, v is a hub of u, v is the highest-ranked

node in S and therefore, no other node in S can be a hub of

v, that is, Query(u, v, LPSPC
≤d) = (d0, c0) and d0 > d.

By transforming the order dependency to distance depen-

dency, the index may be constructed in D iterations, where D
denotes the diameter of the graph.

D. The Parallelized Labeling Method

To apply Theorem 3 to construct LPSPC
d (u), it is costly

to examine all the node pairs with a distance equal to d.

This section provides a practical algorithm, Parallel Shortest

Path Counting (PSPC), to construct the index LPSPC in label

propagation.

Propagation-Based Label Construction. This subsection

provides a positive answer to the following question: can

LPSPC
d (u) be built by gathering the labels of its neigh-

bors, namely, LPSPC
d−1 (v) is sufficient to create LPSPC

d (u) in

Lemma 2.

Lemma 2. All the hub nodes of labels in LPSPC
d (u) appear

in labels
⋃

v∈N(u)LPSPC
d−1

(v) as hub nodes.

Proof. It is shown that if a node is not a hub of any node v ∈
N(u) in LPSPC

d−1 (v), then it is not a hub of u in LPSPC
d (u).

Let w 6= u be a hub of u in LPSPC
d (u) but is not a hub of

any node v ∈ N(u) in LPSPC
d−1 (v). Note that the SPC was

built in a BFS search. Consider the iteration when the pruned

BFS search is sourced from w. Since w 6= u and w is a hub

of u, there is a shortest path from w to u such that w is a

hub of all nodes on the path. Let s be the predecessor of u on

the shortest path. s ∈ N(v) and (w, dis(w, s), cw,s) ∈ LSPC .

Since dis(w, s) = d− 1, w is a hub of LPSCP
d−1 (s), this leads

to the contradiction.

Pruning Conditions. According to Lemma 2, LPSPC(u) may

be constructed iteratively, with the initial condition being

the insertion of u into the label LSPC
0 (u) as its own hub.

Nevertheless, pouring all nodes in
⋃

v∈N(u) L
SPC
d−1 (v) directly

into LSPC
d (u) produces a large set of candidate labels. Con-

sequently, two rules are proposed to prune superfluous label

entries.

Lemma 3. A hub w in the label set
⋃

v∈N(u) L
PSPC
d−1 (v) is

not a hub of u if r(w) < r(u).

Lemma 4. A hub w in the label set
⋃

v∈N(u) L
PSPC
d−1 (v) is not

a hub of u in LPSPC
d (v) if Query(w, u, LPSPC

≤d) = (d0, c0)
and d0 < d.

Proof. If Query(w, u, LPSPC
≤d) = (d0, c0), and d0 < d, then

dis(w, u) 6= d, w is not a hub of u with distance dis(w, u) =
d. If Query(w, u, LPSPC

≤d) = d, two situations are discussed:

1) dis(w, u) < d, w is not a hub of u with distance d.

2) dis(w, u) = d, there is a node z on the shortest path

between w and u with r(z) > r(w). According to

Theorem 1, w is not a hub of u in Lc. Then, these

newly found shortest paths could be added into Lnc.

Therefore, w is not a hub of u if Query(w, u, LPSPC
≤d) =

(d0, c0) and d0 < d.

Based on the above pruning rules, the label propagation

function is proposed to find the exact LPSPC
d (u), ∀u ∈ V .

Cd(v) denote the set of hub nodes in label set LPSPC
d (v),

for ∀v ∈ V and d ∈ [1, D + 1].

Definition 8 (Label Propagation Function). LPSPC
d (u) =⋃

w∈Cd−1(v),for∀v∈N(u) L
PSPC
d (u,w) where LPSPC

d (u) =




∅ if r(w) < r(u) or

Query(w, u, LPSPC
≤d) = (d0, c0), and d0 < d;

(w, dis(w, u)) otherwise

(4)

Proof. L′ denote the label set computed from Equation 4. It

is shown that L′ = LPSPC
d (u) in two directions. Due to the

correctness of Lemma 2, and the pruning conditions, the label

set LPSPC
d (u) ⊂ L′. The following parts demonstrate L′ ⊂

LPSPC
d (u). Let (w, dis(w, u) be a label in L′. Equation 4

shows that r(w) > r(u) and Query(w, u, LPSPC
≤d) ≥ d.

If in Lc, w is not a hub of u, then according to Theorem 1,

there exists a node s that in S − the set of all nodes in the

shortest path between w and u − with r(s) > r(w) > r(u).
Therefore, dis(w, s), dis(s, u) < d and dis(w, u) ≤ d, and

consequently, Query(w, u, LPSPC
≤d) < d, this leads to the

contradiction.

Therefore, w is a hub of u in LSPC . Additionally, if

dis(w, u) < d, Query(w, u, LPSPC
≤d) = (d0, c0) and d0 < d,

there is a contradiction. Thus, dis(w, u) = d. Now, it has been

proved that w is a hub of u in LSPC with dis(w, u) = d, i.e.,

w is a hub of u in LPSPC
d (u) which completes the proof.

E. Propagation Paradigms

There are two paradigms for label propagation. The first one

is Push-Based paradigm, whereas the second one is Pull-Based

paradigm. Then, the benefits and drawbacks are discussed.

Definition 9 (Push-Based Label Propagation). In ith iteration,

vertex v propagates its label entries to all of its out-neighbors.

The Algorithm is illustrated in the following manner: Line 1

tackles all the vertices in parallel. For each vertex v ∈ V , it

pushes its in-neighbors in Line 2. Followed, Line 3 inserts all

the candidates’ hubs to C(u). Line 5 eliminates the duplicate

candidates. Line 6 traverses each element in the C(u) recur-

sively. Then, two pruning conditions are validated in Lines 7

and 9, respectively. If not pruned, this index entry would be

inserted into LSPC
d (u) in Line 11.

Definition 10 (Pull-Based Label Propagation). In ith iteration,

vertex v receives all the label entries from all of its in-

neighbors.

The details of Algorithm 2 are illustrated as follows: Line 1

tackles all the vertices in parallel. For each vertex v ∈ V , it

pulls its in-neighbors in Line 2. Followed, Line 3 inserts all the

Algorithm 1: PUSH(G,LSPC
d−1)

1 for each u ∈ V in parallel do

2 for each vk ∈ Gout(u) do

3 C(vk) ← hubs ∈ LSPC
d−1 [u] ;

4 for each u ∈ V in parallel do

5 Remove the duplicates in C ;

6 for each c ∈ C(u) do

7 if r(c.v) < r(u) then

8 continue;

9 if Query(c.v, u, LSPC
d) < d then

10 continue;

11 Insert(c) into LSPC
d (u);

candidates’ hubs to C(u). Line 4 removes the duplicate can-

didates. Line 5 traverses each element in the C(u) recursively.

Then, in Lines 6 and 8, two pruning conditions are validated,

respectively. This index entry would be inserted into LSPC
d (u)

in Line 10 if not pruned.

Algorithm 2: PULL(G,LSPC
d−1)

1 for each u ∈ V in parallel do

2 for each vk ∈ Gin(vi) do

3 C(u) ← hubs ∈ LSPC
d−1 [vk] ;

4 Remove the duplicates in C ;

5 for each c ∈ C(u) do

6 if r(c.v) < r(u) then

7 continue;

8 if Query(c.v, u, LSPC
d) < d then

9 continue;

10 Insert(c) into LSPC
d (u);

Example 2. Figure 3 depicts an example of the difference be-

tween PULL-based and PUSH-based propagation paradigms.

In the original graph G in Figure 3(a), there are 5 vertices and

6 edges. In the (i + 1)-th iteration of the index construction,

Figure 3(b) indicates how pull-based method works. For

instance, vertex 1 received the i-th iteration’s index entry

from all of its neighbors (in-neighbors in directed graphs),

i.e., vertices 2, 3, 4, and 5. If available, each vertex of the

(i + 1)-th iteration in graph 3(b) may be assigned with one

thread. It is not necessary to allocate each edge to a single

thread since there are several erroneous index entries that may

be merged or removed to accelerate the process. Figure 3(c)

demonstrates how the push-based method runs. In contrast to

the pull-based, the i-th iteration’s vertex processing can be

parallelize at the vertex level.

Candidates Elimination. In this part, the duplicate removal

method is briefly discussed. The reason is that there are

numerous duplicate candidates for one vertex. In shortest path

counting, the counting number could be fairly large. Then, one

vertex v would receive all of its neighbors’ label entries in a

single iteration. In such a scenario, there could be multiple

1

2 3

45

(a) Original Graph G

2 31 54

� 31 54

i-th round

�+���� ���	

pa��l
e� ��

������ v����c�s

(b) PULL

� 31 54

� 31 54

�� ! "#$%&

'()*,. /0134

56789:;< =>

?@AB vCDEFGHI

(c) PUSH

Fig. 3: Pull-based and Push-based Paradigms.

duplicate candidates. If they were not merged, the overall

computation cost would be prohibitively expensive. Thus,

this part investigates the method for eliminating duplicate

candidates.

The PULL-based paradigm is employed to simplify. To

reduce the potential label entries for each label entry (v, d, c)
received by vertex u, there are primarily two types of opera-

tions, named Label Elimination and Label Merging.

Two pruning rules are proposed to speed up this index

construction process.

• Label Elimination. For two label entries L1 (v1, d1, c1)
and L2 (v2, d2, c2) for vertex u, (v1, d1, c1), if v1 = v2∧
d1 < d2, then L2 is eliminated by L1.

• Label Merging. For two label entries L1 (v1, d1, c1) and

L2 (v2, d2, c2) for vertex u, (v1, d1, c1), if v1 = v2 ∧
d1 = d2, then L1 and L2 could be merged into a L3

(v1, d1, c1 + c2).

Lemma 5. These two pruning rules Label Elimination and

Label Merging do not affect the correctness of the parallel

shortest path counting algorithm.

Proof. We simply prove its correctness by contradiction. Due

to the space limit, we only prove the correctness of Label

Elimination, while the proof for Label Merging is similar.

Assume Label Elimination missed a label entry Lo (vo, do, co),
which is caused by the elimination of L2 (v2, d2, c2). Thus,

there must exist a label entry L′
o (vo, do − d2 + d1, c

′
o) by

replacing the L2 parts with L1. This contradicts the fact that

Lo (vo, do, co) is necessary.

Time and Space Complexity. Since these two types of opera-

tions are based on v1 = v2, (v, d, c) can be stored into map by

using v as the key. For the label entries with the same key, it

is necessary to sort them and then conduct Label Elimination

and Label Merging. Assume there are η candidates, the worst-

case time complexity would be O(η × logη). The worst case

of η is the number of vertices whose rank is lower than the

current vertex.

F. Schedule Plan

A basic objective of parallel index construction is to balance

workloads. This subsection investigates how to allocate tasks

in the most equitable manner feasible.

Node-Order-Based Schedule. Assume there are n vertices and

t threads, order[i] indicates the vertex id which ranks i. In

our index construction algorithm, tasks are allocated according

to the node order. In each iteration for distance d, the ti ∈
[0, t−1] thread would cope with all the tasks for vertex whose

order ranges in [ti × ⌊n/t⌋, (ti + 1)× ⌊n/t⌋).

Fig. 4: Node-order based schedule.

Example 3. Figure 4 illustrates an example of how the node-

order based schedule works. There are 20 vertices and 7
threads. Consequently, threads 0 would cope with vertices with

order values in (0, 1, 2). Such a schedule plan would result in

an imbalance between vertices. For instance, in Pull-Based

Paradigm, vertices with order 0 would receive no candidates

according to Lemma 3.

Cost-Function-Based Dynamic Schedule. Motivated by Exam-

ple 3, such a schedule could cause an imbalance of tasks for

threads. Therefore, this part proposes a dynamic cost-function-

based schedule for improved scalability.

Definition 11. cost(vi) =
∑

vj∈Nbr(vi)
{|u||u ∈ Lvj

and r(v(u)) < r(vi)}

Since the precise cost function is expensive to calculate,

an approximation-based approach is proposed for measuring

the cost and the schedule. In addition, rather than statically

assigning each thread with an equal amount of tasks, it

dynamically allocates tasks when tasks on it finish.

G. Vertex Ordering Strategies

The vertex order is crucial for both HP-SPCs and PSPC

since it has a significant impact on indexing time, index

size, and the query time. An efficient ordering scheme should

rank vertices that cover more shortest paths higher s.t. later

searches in HP-SPCs can be reduced as early as possible,

thereby reducing the number of label entries generated. In the

literature, several heuristics for obtaining such orderings have

been investigated. For the sake of completeness, two state-

of-the-art schemes are reviewed, namely, degree-based and

significant-path-based, below.

Degree-Based Scheme. Vertices are arranged in ascending de-

gree order. This technique is based on the premise that vertices

with a higher degree have stronger connections to many other

vertices, and as a result, many shortest paths will pass through

them.

Significant-Path-Based Scheme. The significant-path-based

method is more adaptable than the degree-based scheme,

which utilizes only local information. Let w1, w2, ..., wn be

the ordering generated under this scheme, where wi is the i-th
hub to be pushed. Given wi, the scheme determines wi+1 as

follows. When pushing hub wi in SPC, a partial shortest-path

tree Twi
rooted at wi will be produced. For each vertex v in

Twi
, let des(v) be the number of descendants and par(v) be the

parent of v. Beginning with wi, the scheme computes a signif-

icant path Psig to a leaf by iteratively selecting a child v with

the largest des(v). psig is intuitively a path that many shortest

paths intersect. Then, among all vertices on psig other than wi,

vertex v with the largest deg(v) · (des(par(v)) − des(v)) is

empirically selected as wi+1. w1 is initially configured to have

the highest degree in G. The Significant-Path-Based Scheme is

the most efficient order in [17]. Nevertheless, as stated before,

this ordering needs to compute the next vertex based on the

current vertex’s shortest path tree, which naturally includes a

dependency on the index construction process and hence is

not suited for parallel processing.

Halin [41], and Robertson et al. [42] introduced tree decom-

position, which is a technique for mapping a graph to a tree

in order to expedite the resolution of certain computational

problems in graphs. Bodlaender’s introductory survey can be

found in [43]. Vertices are naturally arranged in a hierarchy

through tree decomposition. Therefore, this paper utilizes tree

decomposition to create the vertex hierarchy, and demonstrate

that the effectiveness of this hierarchy in answering shortest

path counting queries in a road network. Given a graph

G(V,E), a tree decomposition of it is defined as follows [43]:

Definition 12 (Tree Decomposition). A tree decomposition of

a graph G(V,E), denoted as TG, is a rooted tree in which

each node X ∈ V (TG) is a subset of V (G) (i.e., X ⊂ V (G))
such that the following three conditions hold:

•
⋃

X∈V (TG) X = V ;

• For every (u, v) ∈ E(G), there exists X ∈ V (TG) s.t.

u ∈ X and v ∈ X .

• For every v ∈ V (G) the set {X |v ∈ X} forms a

connected subtree of TG.

Road Network Order. In the road networks, the degree order

is inefficient since there are two many low-degree vertices

with the same degree. Thus, a Tree Decomposition method

is proposed in [44] to address the shortest distance queries.

For instance, there are v1, ..., vn vertices and a vertex order

is demanded. This technique also has a natural dependency

structure. The main steps of obtaining this order could be listed

as follows:

• Set Q = ∅ as a queue. In this first iteration, vertex u0 with

the lowest degree would be inserted into Q. Then, u0 is

removed from this graph, for vertex u ∈ Neighbor(u0),

this step connects them and update their degree as

deg(u) + deg(u0)− 1.

• Likewise, in the i-th iteration, the ui (the lowest de-

gree vertex in the current graph) are pushed into the

Q. Then, ui is removed from this graph, for vertex

u ∈ Neighbor(ui), this step connects them and update

their degree as deg(u) + deg(ui)− 1.

• This step could produce a resultant vertex order by

append vertices in Q into the R from the back of the

queue to the front.

Then, the original graph could be divided into core- and

fringe-parts, and employ a hybrid vertex ordering.

Hybrid Vertex Ordering. Therefore, a hybrid vertex ordering

is proposed, which compromises between the computational

efficiency of degree vertex order and the index size effective-

ness of the road network order. All vertices are divided into

two categories, core-part, and fringe-part. To achieve this, a

threshold δ is set for the node degree. If a vertex v, has a

degree larger than δ, then v would be divided into core-part.

Otherwise, it would be divided into the fringe-part. Each part

would utilize the corresponding order.

H. Landmark-Based Filtering

This subsection introduces landmark pruning. Landmark-

based techniques are proved to be efficient in the Label

Constrained Reachability problem [45]. The overall idea is to

choose small groupings of vertices as landmarks and construct

some small indexes on them to accelerate the whole index

construction process. This work follows the strategies in [45]

to select landmarks. To begin, the definition of landmarks is

introduced.

Definition 13. (Landmark). Given a threshold θ, a vertex v
is a landmark if and only if degree(v) ≥ θ.

In the index construction process, the distances from land-

marks are frequently used. Based on this observation, this

work proposes a landmark-based filtering to further expedite

the index construction process.
In the classical shortest path counting with a 2-hop labeling

index, vertices are explored individually. It processes vertex

serially. For a vertex u, once it is explored, there is no need

to utilize its distance information due to the pruning rule 1.

Thus, there is no need to construct such a landmark index.
Nevertheless, the facts alter for our parallel algorithm. Re-

garding the parallel algorithm, the label propagation is divided

by distance iteration. Since the degree of the landmarks is quite

high, the labels from the landmarks would be the majority

in each iteration. Consequently, if the distance information is

stored from these landmarks, these queries could be instantly

answered if landmarks are involved.
Furthermore, since all the distances are in increasing order.

One bit is needed to store the “True” or “False” information,

and it is sufficient to answer queries for pruning.

IV. INDEX SIZE REDUCTION

Two index reduction techniques proposed in [17] are ana-

lyzed in the context of parallel. They are 1-shell reduction and

neighborhood-equivalence reduction to reduce the index size.

A. Reduction by 1-Shell

Shortest path counting problem is simple in the tree: there is

only one shortest path between any two vertices in it. Despite

the fact that graphs are often far more complex than trees, trees

are more common. Graph G can always be transformed into

a core-fringe structure. If it is not empty, it consists of trees,

as will be shown following. Additionally, each of these trees

connects to the remaining of G with no more than one edge.

Consequently, it is safe to trim G′s fringe without affecting the

shortest paths inside the core. In this situation, the 1-shell of

G is characterized by the fringe. Specifically, the 1-shell of G
is defined as the maximum subgraph within which each vertex

is incident to at least k edges. The k-core of G is defined as

the largest subgraph within which each vertex is incident to

at least k edges.

During the index construction process of our parallel algo-

rithm, the graph could be divided into a core-fringe structure.

Regarding the fringe structure consisting of trees, they can

be deleted from the original graph and utilize them during

the query procedure. Therefore, the Reduction by 1-Shell

technique does not influence our parallel paradigm.

Query Evaluation in Parallel. A query(s, t) is processed

in the following manner. If shr(s) = shr(t), 1 is directly

returned; otherwise, a query(shr(s), shr(t)) is issued on G(s)
and its result is returned.

B. Reduction by Equivalence Relation

Given an undirected graph G and two vertices u and v, it is

straightforward to demonstrate that spcG(u,w) = spcG(v, w)
for ∀w 6= u, v if u and v share the same neighborhoods. In fact,

a shortest path from u to w can be modified with a shortest

path from v to w by substituting u for v, and vice versa. In

this situation, the label of v alone would serve to answer any

query involving {u, v}, and other vertices. In other words, it is

permissible to eliminate the label of u, hence reducing the size

of the index. u is neighborhood equivalent to v, indicated by

u ≡ v, if nbr(u) {v} = nbr(v) {u}. In other words, if u and

v are not adjacent, they must have the same set of neighbors;

otherwise, the neighbors of u and v must be identical after

eliminating u and v. It is feasible to demonstrate that is an

equivalence relation. This equivalence has been implemented

in graph reduction tasks such as subgraph isomorphism [46]

and distance hub labeling [47]. As will be shown, the relation

may also be utilized to reduce the graph size. However, straight

application without adjustment might result in findings that are

grossly underestimated.

During the index creation phase of our parallel approach,

vertices with an Equivalence Relation are eliminated, leaving

a single vertex to represent them. A weight is assigned to it

depending on the quantity of equivalents.

Query Evaluation. Next, two query schemes are discussed

for handling a query (s, t). Assume w.l.o.g. that s, t ∈ I and

s 6= t. In this case, Rs = nbr(s) and Rt = nbr(t).
As for the query process, it could also speed up with a

parallel framework. It could be parallel twofold: i) Since each

query is independent of the other, it is natural to dynamically

assign the query to the available thread. ii) Since the query

is a set intersection, it could parallelize at the label entry

granularity. Then, all the counting of the shortest path is

summed up.

V. EXPERIMENTAL RESULTS

This section evaluates the effectiveness and efficiency of the

proposed techniques on comprehensive experiments.

A. Experimental Settings

Algorithms. We compared the proposed algorithms with base-

line solutions.

• HP-SPCs. The state-of-the-art shortest path counting al-

gorithm proposed in [17].

• PSPC. Our parallel shortest path counting algorithm in a

single thread.

• PSCP+. Our parallel shortest path counting algorithm in

20 threads.

Datasets Table III shows the important statistics of real graphs

used in the experiments. 10 publicly available datasets are

used. The largest dataset Indochina is a web graph from

LAW1. The remaining 9 graphs, downloaded from KONECT

[48]2 and SNAP [49]3, include an interaction network (Wiki-

Conflict), a coauthorship network (DBLP), a location-based

social network (Gowalla), 2 web networks (Berkstan and

Google), and 4 social networks (Facebook, Youtube, Petster,

and Flickr). All of the graphs are unweighted. Directed

graphs were converted to undirected ones in our testings. For

query performance evaluation, 10,000 random queries were

employed, and the average time is reported.

Settings In experiments, all programs were implemented in

standard c++11 and compiled with g++4.8.5.

All experiments were performed on a machine with 20X Intel

Xeon 2.3GHz and 385GB main memory running Linux(Red

Hat Linux 7.3 64-bit). The number of landmarks is set to 100
by default.

TABLE III: Statistics of Datasets.

Name Dataset |V | |E| davg
FB Facebook 63,731 817,035 25.6

GW Gowalla 196,591 950,327 9.7

WI WikiConflict 118,100 2,027,871 34.3

GO Google 875,713 4,322,051 9.9

DB DBLP 1,314,050 5,326,414 8.1

BE Berkstan 685,230 6,649,470 19.4

YT Youtube 3,223,589 9,375,374 5.8

PE Pester 623,766 15,695,166 50.3

FL Flickr 2,302,925 22,838,276 19.8

IN Indochina 7,414,866 150,984,819 40.7

Exp 1: Indexing Time. This experiment evaluates the index-

ing time for three algorithms, HP-SPCs, PSPC, and PSCP+.

The ordering time is also counted in the indexing time. What

stands out in Figure 5 is that PSPC could beat HP-SPCs in the

1http://law.di.unimi.it
2http://konect.uni-koblenz.de
3https://snap.stanford.edu

http://law.di.unimi.it
http://konect.uni-koblenz.de
https://snap.stanford.edu

101

102

103

104

105

INT

FB GW WI GO DB BE YT PE FL IN

T
im

e(
s)

HP-SPC PSPC PSPC+

Fig. 5: Indexing Time (s) for HP-SPCs, PSPC, and PSCP+.

101

102

103

104

105

INT

FB GW WI GO DB BE YT PE FL IN

S
iz

e
(M

B
)

HP-SPC PSPC PSPC+

Fig. 6: Indexing Size (MB) for HP-SPCs, PSPC, and PSCP+.

100

101

102

103

INF

FB GW WI GO DB BE YT PE FL IN

HP-SPC PSPC PSPC+

Fig. 7: Query Time (microsecond) for HP-SPCs, PSPC, and PSCP+.

7 of 10 datasets for single-core, except GW , GO, and BE.

The PSPC could construct an index about 27% faster than

HP-SPCs in YT, and about 18% faster on average. Moreover,

PSPC could naturally be paralleled since the label entries in

each round are divided into independent sets, while HP-SPCs

need to obey label dependency due to the node order rank.

As for the multiple cores, the speedup of our PSCP+ could

achieve nearly linear speedup with the growth of the number

of cores. It is also apparent from this table that only PSCP+

could construct the index for billion-scale, which is urgently

demanded in real-world applications. In the tested 10 datasets,

PSCP+could achieve at least 12 speedups when using 20
threads compared with the single thread.

Exp 2: Index Size. Figure 6 shows the results on index

size. What is striking about the table is that PSPC and

PSCP+ return the same index size. The reason behind this

phenomenon is that the dependencies are eliminated between

each thread. Thus, the final index would be the same with

any number of threads. As for the HP-SPCs, the index size

is similar to PSPC and PSCP+. The reason behind this result

is that the parallel paradigm does not affect index size. What

is interesting about the data in this figure is that PSPC and

PSCP+could achieve the same index size, which indicates

that there is no dependency on the index construction in

each iteration. Specifically, in each iteration, the execution

order of each vertex in Pull-Based Paradigmor Push-Based

Paradigmdoes not affect the final result of our index. Figure 6

illustrates that PSPC and PSCP+ could construct a smaller

index size in the datasets of FB, GW , Y T , PE, and FL.

From the shortest path cover perspective, one of the most

important factors for the index size is the node order of the

original graph. Thus, it would compare different node orders

in the following experiments.

Exp 3: Query Time. Exp 3 evaluates the average query time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(a) FB

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(b) GO

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(c) GW

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(d) WI

Fig. 8: Speedup of indexing time when tuning the # of threads.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(a) FB

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(b) GO

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(c) GW

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

of Threads

(d) WI

Fig. 9: Speedup of query time when tuning the # of threads.

101

102

103

INF

FB GW WI GO

T
im

e(
s)

NLL LL

(a) Landmark labeling

101

102

103

INF

FB GW WI GO

T
im

e(
s)

Static Dynamic

(b) Schedule plan

101

102

103

INF

FB GW WI GO BE YT

T
im

e(
s)

Degree Sig Hybrid

(c) Node order

Fig. 10: Ablation analysis of different techniques with 20
threads.

taken by HP-SPCs, PSPC, and PSCP+ with 100,000 random

queries for each dataset. Figure 7 illustrates the query time

of HP-SPCs, PSPC, and PSCP+. What is striking about the

figures is that the query time of HP-SPCs and PSPC is similar.

Both of them could answer queries in about 100 microseconds.

Nevertheless, with the parallel techniques in PSCP+, PSCP+

could achieve a nearly linear speedup when compared with

HP-SPCs and PSPC. The main reason is that the query is very

efficient and there is no significant bottleneck in the query

process. Thus, a divide and conquer strategy on the query

workload could achieve a linear speedup.

Exp 4: Indexing Speedup on Multi-Cores. The speedup of

the index time of an approach on x cores is calculated by

using the index time of the approach with 1 core dividing that

of x cores.

Thus, when the core number is 1, the speedup is constantly

1; when an approach fails in indexing on 1 core within the time

limit, its speedup cannot be derived. This experiment evaluates

the scalability of PSCP+ by varying the number of threads on

four datasets, i.e., FB, GO, GW, and WI. It is illustrated in

Figure 8 that PSCP+ could achieve nearly linear scalability

with the growth of threads. When the number of threads is

20, PSCP+ could achieve 16.7, 11.8, 11.9, and 15.4 speedups

for FB, GO, GW, and WI, respectively. It is shown that the

scalability of PSCP+ is better in FB and WI than that of GO

and GW. According to the statistics in III, FB and GW have

a high average degree, i.e., 25.6 and 34.3 respectively, while

GW and WI have a lower average degree, i.e., 9.7 and 9.9,

respectively. What stands out in Figure 9 is that the speedup

of query time could achieve nearly linear scalability with the

growth of threads. A similar trend could be observed in terms

of query time’s scalability.

Exp 5: Ablation Analysis. Exp 5 analyzes the influence of

separate techniques for the shortest path counting problem

in terms of scalability. It evaluates the proposed techniques,

i.e., landmark labeling, schedule plan, and node order, un-

der 20 threads. Since these techniques do not have many

effects on the indexing size and query time, it only compares

their indexing time. Figure 10 includes three sub-figures, i.e.,

Figure 10(a), 10(b), and 10(c). In Figure 10(a), LL denotes

landmark labeling, while NLL indicates the index construction

without landmark labeling. What stands out in this figure is

that landmark labeling could achieve about a little faster than

that without landmark labeling. Figure 10(b) illustrates that

our cost function-based schedule plan could achieve about

somewhat faster indexing time than that of the static schedule

plan. What is striking in Figure 10(c) indicates the hybrid node

order could be the fastest among these three node orders.

Exp 6: The effect of δ. Figure 11 shows the effect of δ in

terms of index time, index size, and query time. What stands

out in this figure is that when the δ increases, the index time,

index size, and query time decrease first and then increase.

The reason would be that the tree decomposition order would

101

102

103

104

FB GW WI GO

S
iz

e(
M

B
)

(a) Index Size(MB)

101

102

103

104

FB GW WI GO

T
im

e(
s)

(b) Index Time(s)

100

101

102

103

104

FB GW WI GO

T
im

e(
us

)

(c) Query Time(us)

Fig. 11: The effect of threshold δ.

101

102

103

INF

 0 50 100 150 200 250

In
de

xi
ng

 ti
m

e(
s)

of landmarks

FB
GO
GW
WI

(a) Node order

Fig. 12: The effect of # of landmarks.

101
103
105

FB GW WI GO DB BE YT PE FL IN

T
im

e(
s)

Order LL LC

Fig. 13: The time cost of different part during index construc-

tion. Order indicates the time cost for node ordering, while LL

and LC denote the Landmark labeling and Label Construction,

respectively.

be suitable for the vertices with small order. Thus, the δ is set

to 5 from the empirical study.

Exp 7: The effect of # of landmarks. Figure 12 illustrates

the effect of # of landmarks. Since the landmarks do not

affect the index size and query time, we only compare the

index time. What is striking in this figure is that when the

number of landmarks increases, the index time decreases first

and then increases. The reason would be that there is an extra

cost if landmark-based filtering returns a false result. When

the number of landmarks increases, the possibility of returning

false may increase.

Exp 8: Break Down the Indexing Time. Figure 13 illustrates

the separate time cost for the node ordering, landmark labeling

(LL), and label construction (LC). What stands out in the

figure is that the LC dominates all the other two phases, which

is the most time-consuming part. Although the LL and Order

do not cost too much time, their results have an important

impact on the LC phase.

VI. RELATED WORKS

In this section, some important related works are surveyed

as follows.

Counting. Counting the occurrences of certain structs is also

fundamental in graph analytics [5], [6], [29], [50]. [51]

present randomized algorithms with provable guarantee to

count cliques and 5-vertex subgraphs in a graph, respectively.

An algorithm that counts triangles in O(m1.41) time is shown

in [52]. There are also many works on counting paths and

cycles in the literature.

The problem of exactly counting paths and cycles of length

l, parameterized by l, is #W[1]-complete under parameterized

Turing reductions [53]. In addition, given vertices s and t, the

problem of counting the # of simple paths between s and t is

#P-complete [54], [55]. [56] and [19] also study the problem

of counting shortest paths for two vertices, but unlike this

work, they focus on planar graphs and probabilistic networks,

respectively.

Dynamic Maintenance for 2-hop Labeling. To adapt to the

dynamic update of the network, some works [57]–[59] pro-

posed dynamic algorithms to deal with edge insertion and

deletion. For the edge insertion, a partial BFS for each affected

hub is started from one of the inserted-edge endpoints and

creates a label when finding the tentative distance is shorter

than the query answer from the previous index. Also, hub

labeling is used in the related constrained path-based problems,

e.g., label constrained [4], [8], [36].

VII. FUTURE WORK AND CONCLUSION

Future Work. Experiments demonstrate that for graphs such

as DB and FL, our techniques require much more indexing

time and index space than for other graphs of comparable size.

Unfortunately, it is currently unclear what properties of these

graphs contribute to this inefficiency. It would be interesting

to investigate it in our future work.

Conclusion. We study the problem of counting the # of

shortest paths between two vertices s and t in the context of

parallel. To address the scalability issue of existing work, we

propose a parallel algorithm to speedup this problem. We also

investigate the proper vertex ordering for the parallel index

construction. Our comprehensive experimental study verifies

the effectiveness and efficiency of our algorithms.

ACKNOWLEDGMENT

This work is supported by Hong Kong RGC GRF grant (No.

14203618, No. 14202919, No. 14205520, and No. 14217322),

RGC CRF grant (No. C4158-20G), Hong Kong ITC ITF grant

(No. MRP/071/20X), and NSFC grant (No. U1936205).

REFERENCES

[1] A. D. Zhu, X. Xiao, S. Wang, and W. Lin, “Efficient single-source
shortest path and distance queries on large graphs,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 998–1006, 2013.

[2] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route
planning on public transportation networks: A labelling approach,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 967–982, 2015.

[3] S. Wang, X. Xiao, Y. Yang, and W. Lin, “Effective indexing for
approximate constrained shortest path queries on large road networks,”
Proceedings of the VLDB Endowment, vol. 10, no. 2, pp. 61–72, 2016.

[4] Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang, “Answering billion-
scale label-constrained reachability queries within microsecond,” Pro-
ceedings of the VLDB Endowment, vol. 13, no. 6, pp. 812–825, 2020.

[5] Q. Feng, Y. Peng, W. Zhang, Y. Zhang, and X. Lin, “Towards real-time
counting shortest cycles on dynamic graphs: A hub labeling approach,”
in ICDE, IEEE, 2022.

[6] Z. Yuan, Y. Peng, P. Cheng, L. Han, X. Lin, L. Chen, and W. Zhang,
“Efficient k-clique listing with set intersection speedup,” in ICDE, IEEE,
2022.

[7] Y. Peng, S. Bian, R. Li, S. Wang, and J. X. Yu, “Finding top-r influential
communities under aggregation function,” in ICDE, IEEE, 2022.

[8] X. Chen, Y. Peng, S. Wang, and J. X. Yu, “Dlcr : Efficient indexing
for label-constrained reachability queries on large dynamic graphs,”
Proceedings of the VLDB Endowment, 2022.

[9] L. Qin, W. Zhang, Y. Zhang, Y. Peng, H. Kato, W. Wang, and
C. Xiao, Software Foundations for Data Interoperability and Large Scale
Graph Data Analytics: 4th International Workshop, SFDI 2020, and
2nd International Workshop, LSGDA 2020, Held in Conjunction with
VLDB 2020, Tokyo, Japan, September 4, 2020, Proceedings, vol. 1281.
Springer Nature, 2020.

[10] Z. Yang, L. Lai, X. Lin, K. Hao, and W. Zhang, “Huge: An efficient
and scalable subgraph enumeration system,” in Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21, (New
York, NY, USA), p. 2049–2062, Association for Computing Machinery,
2021.

[11] Q. Shi, Y. Wang, P. Yao, and C. Zhang, “Indexing the extended dyck-cfl
reachability for context-sensitive program analysis,” Proceedings of the
ACM on Programming Languages, vol. 6, no. OOPSLA2, pp. 1438–
1468, 2022.

[12] Y. Peng, Z. Ma, W. Zhang, X. Lin, Y. Zhang, and X. Chen, “Efficiently
answering quality constrained shortest distance queries in large graphs,”
arXiv preprint arXiv:2211.08648, 2022.

[13] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A
hub-based labeling algorithm for shortest paths in road networks,” in
International Symposium on Experimental Algorithms, pp. 230–241,
Springer, 2011.

[14] T. Akiba, C. Sommer, and K.-i. Kawarabayashi, “Shortest-path queries
for complex networks: exploiting low tree-width outside the core,”
in Proceedings of the 15th International Conference on Extending
Database Technology, pp. 144–155, 2012.

[15] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-
path distance queries on large evolving networks by pruned landmark
labeling,” in Proceedings of the 23rd international conference on World
wide web, pp. 237–248, 2014.

[16] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin, “Scaling
distance labeling on small-world networks,” in Proceedings of the 2019
International Conference on Management of Data, pp. 1060–1077, 2019.

[17] Y. Zhang and J. X. Yu, “Hub labeling for shortest path counting,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 1813–1828, 2020.

[18] T. Oyama and H. Morohosi, “Applying the shortest-path-counting prob-
lem to evaluate the importance of city road segments and the connect-
edness of the network-structured system,” International Transactions in
Operational Research, vol. 11, no. 5, pp. 555–573, 2004.

[19] Y. Ren, A. Ay, and T. Kahveci, “Shortest path counting in probabilistic
biological networks,” BMC bioinformatics, vol. 19, no. 1, pp. 1–19,
2018.

[20] A. Botea, M. Mattetti, A. Kishimoto, R. Marinescu, and E. Daly,
“Counting vertex-disjoint shortest paths in graphs,” in Proceedings of
the International Symposium on Combinatorial Search, vol. 12, pp. 28–
36, 2021.

[21] C.-Y. Shen, L.-H. Huang, D.-N. Yang, H.-H. Shuai, W.-C. Lee, and M.-S.
Chen, “On finding socially tenuous groups for online social networks,”
in Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 415–424, 2017.

[22] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu, “Most
influential community search over large social networks,” in 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pp. 871–
882, IEEE, 2017.

[23] P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and N. Tatti, “Event de-
tection in activity networks,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 1176–1185, 2014.

[24] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[25] R. Puzis, Y. Elovici, and S. Dolev, “Fast algorithm for successive com-
putation of group betweenness centrality,” Physical Review E, vol. 76,
no. 5, p. 056709, 2007.

[26] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hier-
archical hub labelings for shortest paths,” in European Symposium on
Algorithms, pp. 24–35, Springer, 2012.

[27] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong, “Exact top-k nearest
keyword search in large networks,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, pp. 393–
404, 2015.

[28] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C.
Reis, and B. Ribeiro-Neto, “Efficient search ranking in social networks,”
in Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, pp. 563–572, 2007.

[29] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-
time constrained cycle detection in large dynamic graphs,” Proceedings
of the VLDB Endowment, vol. 11, no. 12, pp. 1876–1888, 2018.

[30] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient probabilistic
k-core computation on uncertain graphs,” in 2018 IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), pp. 1192–1203, IEEE,
2018.

[31] Y. Peng, Y. Zhang, X. Lin, W. Zhang, L. Qin, and J. Zhou, “Towards
bridging theory and practice: hop-constrained st simple path enumera-
tion,” Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 463–476,
2019.

[32] Z. Lai, Y. Peng, S. Yang, X. Lin, and W. Zhang, “Pefp: Efficient k-hop
constrained s-t simple path enumeration on fpga,” in ICDE, IEEE, 2021.

[33] X. Jin, Z. Yang, X. Lin, S. Yang, L. Qin, and Y. Peng, “Fast:
Fpga-based subgraph matching on massive graphs,” arXiv preprint
arXiv:2102.10768, 2021.

[34] Y. Peng, X. Lin, Y. Zhang, W. Zhang, L. Qin, and J. Zhou, “Efficient
hop-constrained s-t simple path enumeration,” The VLDB Journal, pp. 1–
24, 2021.

[35] Y. Peng, W. Zhao, W. Zhang, X. Lin, and Y. Zhang, “Dlq: A system
for label-constrained reachability queries on dynamic graphs,” in Pro-
ceedings of the 230th ACM International Conference on Information &
Knowledge Management, 2021.

[36] Y. Peng, X. Lin, Y. Zhang, W. Zhang, and L. Qin, “Answering reach-
ability and k-reach queries on large graphs with label-constraints,” The
VLDB Journal, pp. 1–25, 2021.

[37] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data , June 2014.

[38] M. Riondato and E. M. Kornaropoulos, “Fast approximation of be-
tweenness centrality through sampling,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 438–475, 2016.

[39] M. Pontecorvi and V. Ramachandran, “A faster algorithm for fully dy-
namic betweenness centrality,” arXiv preprint arXiv:1506.05783, 2015.

[40] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu, “Hop doubling label
indexing for point-to-point distance querying on scale-free networks,”
arXiv preprint arXiv:1403.0779, 2014.

[41] R. Halin, “S-functions for graphs,” Journal of geometry, vol. 8, no. 1,
pp. 171–186, 1976.

[42] N. Robertson and P. D. Seymour, “Graph minors. iii. planar tree-width,”
Journal of Combinatorial Theory, Series B, vol. 36, no. 1, pp. 49–64,
1984.

[43] H. L. Bodlaender, “A tourist guide through treewidth,” Acta cybernetica,
vol. 11, no. 1-2, p. 1, 1994.

[44] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu, “When
hierarchy meets 2-hop-labeling: Efficient shortest distance queries on
road networks,” in Proceedings of the 2018 International Conference
on Management of Data, pp. 709–724, 2018.

http://snap.stanford.edu/data

[45] L. D. Valstar, G. H. Fletcher, and Y. Yoshida, “Landmark indexing
for evaluation of label-constrained reachability queries,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
pp. 345–358, 2017.

[46] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Robust
distance queries on massive networks,” in European Symposium on
Algorithms, pp. 321–333, Springer, 2014.

[47] W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph com-
pression,” in Proceedings of the 2012 ACM SIGMOD international
conference on management of data, pp. 157–168, 2012.

[48] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd international conference on World Wide Web, pp. 1343–1350,
2013.

[49] J. Leskovec, A. Krevl, and S. Datasets, “Stanford large network dataset
collection,” 2011.

[50] S. Jain and C. Seshadhri, “A fast and provable method for estimating
clique counts using turán’s theorem,” in Proceedings of the 26th inter-
national conference on world wide web, pp. 441–449, 2017.

[51] A. Pinar, C. Seshadhri, and V. Vishal, “Escape: Efficiently counting all
5-vertex subgraphs,” in Proceedings of the 26th international conference
on world wide web, pp. 1431–1440, 2017.

[52] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[53] J. Flum and M. Grohe, “The parameterized complexity of counting
problems,” SIAM Journal on Computing, vol. 33, no. 4, pp. 892–922,
2004.

[54] B. Roberts and D. P. Kroese, “Estimating the number of st paths in a
graph.,” J. Graph Algorithms Appl., vol. 11, no. 1, pp. 195–214, 2007.

[55] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[56] I. Bezáková and A. Searns, “On counting oracles for path problems,” in
29th International Symposium on Algorithms and Computation (ISAAC
2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[57] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-
path distance queries on large evolving networks by pruned landmark
labeling,” in Proceedings of the 23rd international conference on World
wide web, pp. 237–248, 2014.

[58] G. D’angelo, M. D’emidio, and D. Frigioni, “Fully dynamic 2-hop cover
labeling,” Journal of Experimental Algorithmics (JEA), vol. 24, pp. 1–
36, 2019.

[59] Y. Qin, Q. Z. Sheng, N. J. Falkner, L. Yao, and S. Parkinson, “Efficient
computation of distance labeling for decremental updates in large
dynamic graphs,” World Wide Web, vol. 20, no. 5, pp. 915–937, 2017.

	I Introduction
	II Preliminaries
	II-A 2-Hop Labeling for Shortest Path Counting

	III PSPC algorithm description from the Covering Side
	III-A Trough Path Property
	III-B Order Property
	III-C Distance Dependency
	III-D The Parallelized Labeling Method
	III-E Propagation Paradigms
	III-F Schedule Plan
	III-G Vertex Ordering Strategies
	III-H Landmark-Based Filtering

	IV Index Size Reduction
	IV-A Reduction by 1-Shell
	IV-B Reduction by Equivalence Relation

	V Experimental Results
	V-A Experimental Settings

	VI Related Works
	VII Future Work and Conclusion
	References

