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Abstract—In recent years, group buying has become one
popular kind of online shopping activities, thanks to its larger
sales and lower unit price. Unfortunately, seldom research focuses
on the recommendations specifically for group buying by now.
Although some recommendation models have been proposed
for group recommendation, they can not be directly used to
achieve the real-world group buying recommendation, due to the
essential difference between group recommendation and group
buying recommendation. In this paper, we first formalize the
task of group buying recommendation into two sub-tasks. Then,
based on our insights into the correlations and interactions
between the two sub-tasks, we propose a novel recommendation
model for group buying, namely MGBR, which is built mainly
with a multi-task learning module. To improve recommendation
performance further, we devise some collaborative expert net-
works and adjusted gates in the multi-task learning module, to
promote the information interaction between the two sub-tasks.
Furthermore, we propose two auxiliary losses corresponding to
the two sub-tasks, to refine the representation learning in our
model. Our extensive experiments not only demonstrate that
the augmented representations in our model result in better
performance than previous recommendation models, but also
justify the impacts of the specially designed components in
our model. To reproduce our model’s recommendation results
conveniently, we have provided our model’s source code and
dataset on https://github.com/DeqingYang/MGBR.

Index Terms—recommendation, group buying, multi-task
learning, expert network, gated unit

I. INTRODUCTION

In the last decade, online shopping has become one kind
of frequent user activities on Web, and produced great value
for many enterprises and society. More recently, more and
more users would like to participate in a group buying rather
than commit an individual purchase for their favorite products,
since one product’s deal price in group buying is generally
lower than that in individual purchase.

Besides the deal price, a group buying is essentially different
from an individual purchase. We illustrate it with the example
in Fig. 1, which comes from the real-world group buying
process of online shopping. Fig. 1 (a) depicts the traditional
individual purchase, where a user (customer) selects one
favorite product from the candidate product list on the e-
commerce platform, and directly buys it without considering
other customers’ purchases. By contrast, the group buying
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Fig. 1. The comparison between individual purchase and group buying. In
(a) individual purchase, a customer selects his/her favorite product from the
candidate product list, to buy it without considering other users’ purchases.
In (b) group buying, an initiator selects one of his/her favorite products to
launch a group buying at first, and waits for other users to participate in the
group. Then, another user selects a group from the candidate group list, to
join it as the role of participant.

depicted by Fig. 1 (b) has two phases in fact. In the first phase,
a user first selects one favorite product from the candidate
list to launch a group for a more lower deal price. Such a
user is identified as the initiator of group buying. In the next
phase, another user would select one group from the candidate
group list, to join it as the role of participant. Each candidate
group consists of a product and the corresponding initiator,
and may also include other participants who have joined the
group before. Thus, there are three types of objects in one
group, i.e., initiator, participant and item. A group buying is
dealt only when the condition is satisfied, e.g., the number of
participants satisfies the preset threshold.

Given the great value of recommender systems in promot-
ing online shopping, the recommendation for group buying
deserves being developed. Therefore, we dedicate to pro-
pose an effective recommendation model for group buying
in this paper, which is seldom studied by previous research
of recommendation. Similar to group recommendation [1]–
[3], there is also a user group consisting of one initiator and
some participants in group buying, who interact with the same
item. However, the existing models of group recommendation
[4]–[7] can not be used directly to achieve group buying
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recommendation due to the following reasons.
1. According to the two phases described in Fig. 1, the

recommendation task of group buying addressed in this paper
can be divided into two sub-tasks. The first sub-task is to
recommend items for a given initiator that he/she would like to
launch a group buying. The second sub-task is to recommend
participants to join the group given an initiator and the selected
item. By contrast, the only task of group recommendation
is just to recommend items for a given user group that the
users in the group would like to buy. Accordingly, most
of the existing group recommendation models mainly focus
on how to learn group (preference) representations through
aggregating the preferences of group members [4], [8].

2. In addition, unlike group buying, the users in group rec-
ommendation do not play different roles of initiator and partic-
ipant. The previous group recommendation models generally
leverage the interactions of group-item-user to learn group
representations [4], [7], and some models also leverage the
relationships between different groups [6]. Comparatively, the
correlations and interactions between initiators, participants
and items in group buying are more complicated. It is crucial
for group buying modeling to leverage these complicated
correlations and interactions sufficiently and correctly.

Therefore, it is challenging to design a recommendation
model specifically for group buying. To achieve effective
recommendation towards above distinct properties of group
buying, we propose a novel recommendation model to ac-
complish the two sub-tasks of group buying recommendation
simultaneously. We denote our model as MGBR (Muti-task
learning based Group Buying Recommendation), in which
the major multi-task learning module is harnessed to better
learn the embeddings of initiators, items and participants.
Specifically, based on our insights that the two sub-tasks of
group buying recommendation are correlated to each other, we
devise some expert networks along with adjusted gates in the
multi-task learning module, to promote the information inter-
action between the two sub-tasks. As a result, the significant
information is encoded into the learned embeddings to enhance
our model’s recommendation performance. In addition, in
order to refine the representation learning in our model, two
auxiliary losses corresponding to the two sub-tasks are further
proposed to optimize our model training, resulting in more
performance gains.

In summary, our contributions in this paper include:
1. We formalize the task of group buying recommendation

into two correlated sub-tasks, which indeed conforms to the
real-world settings of online shopping. To the best of our
knowledge, this is the first to propose a solution of accom-
plishing these two sub-tasks simultaneously.

2. We propose a novel recommendation model MGBR to
achieve the objectives of group buying recommendation, in
which we build a multi-task learning module and further
devise adjusted gate units, to promote effective information
interaction between the two sub-tasks.

3. We further propose two auxiliary learning objectives
based on our deep insights into the two sub-tasks of group

buying, to refine the representation learning in our model,
resulting in further enhanced performance.

4. Our extensive experiments upon a real-world group
buying dataset not only demonstrate our model’s advantage
over the compared recommendation models, but also justify
the impacts of the significant components in our model.

The rest of this paper is organized as follows. In Section II,
we first formalize the task of group buying recommendation
and then describe our model in detail. Next, we display
the experiment results to verify our model’s performance on
group buying recommendation in Section III. We introduce the
representative works related to our research in Section IV and
conclude our work in Section V.

II. METHODOLOGY

In this section, we first formalize the recommendation task
of group buying addressed in this paper, and then detail our
proposed recommendation model for group buying.

A. Task Formalization

At first, we use u, i, p to represent an initiator, item and
participant, respectively. According to our description about
the group buying process, the two sub-tasks of group buying
recommendation can be formalized as follows.

Task A: Recommending an i for a given u to launch a group
buying through computing a scoring function s(i|u).

Task B: Recommending a p for a given pair (u, i) through
computing a scoring function s(p|u, i).

As other recommendation models, the recommended objects
(i and p) are determined based on the computed s(i|u) and
s(p|u, i) for all items (i) and participants (p) in the candidate
lists, respectively.

Then, we explain the rationality of computing s(i|u) and
s(p|u, i) to achieve the two sub-tasks of group buying rec-
ommendation. Formally, given an observed deal group <
u, i,G > where G = {p1, p2, ..., p|G|} is the participant
group, a group buying recommendation model should max-
imize the probability of observing this deal group, that is
P (u, i, p1, p2, ..., p|G|). In most of group buying’s real sce-
narios, the participants in one group are not familiar with
each other, especially for the deal groups needs hundreds of
participants. It indicates that each participant is independent
to each other. Thus, we have

P (u, i, p1, p2, ..., p|G|) = P (p1, p2, ..., p|G||u, i)P (i|u)P (u)
P (u, i, p1, p2, ..., p|G|) ∝ P (p1, p2, ..., p|G||u, i)P (i|u)

P (p1, p2, ..., p|G||u, i) = P (p1|u, i)P (p2|u, i)...P (p|G||u, i).

Accordingly, the probability P (i|u) and P (p|u, i) should be
maximized by a good recommendation model, which just
correspond to (are proportional to) s(i|u) and s(p|u, i), re-
spectively.

The training set of our model learning is collected from
the observed deal groups. Specifically, for an observed group
< u, i,G >, (u, i) is a positive sample of task A. And
(u, i, p1), (u, i, p2), ..., (u, i, p|G|) are the positive samples of
task B. For task A and task B, their negative samples are
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Fig. 2. The overview of our proposed MGBR model for group buying recommendation. It consists of three major modules: multi-view embedding learning
module, multi-task learning module and prediction module. In the first module, the embeddings of initiators, items and participants are learned through the
GCNs on three views (graphs). The second module is built with some expert networks and gates, to further learn the object embeddings based on the information
interaction between the two sub-tasks. In the prediction module, the prediction scores for candidate items and participants are respectively computed by two
MLPs fed with the output embeddings in the previous module.

generated through negative sampling, of which the details will
be introduced in the following experiment section.

In addition, we denote all user set and item set as U and
I, respectively. Obviously, u, p ∈ U and i ∈ I. We further
use N+ and N− to denote the positive samples and negative
samples of model training, respectively.

B. Model Overview
We first introduce the pipeline (framework) of our model

briefly, as depicted in Fig. 2, which consists of three major
steps (modules), i.e., multi-view embedding learning, multi-
task learning, and model prediction. At first, in the multi-
view embedding learning module, the embeddings of all user
(initiators and participants) and items are learned through the
graph convolutional networks (GCNs) on three graphs (views)
that include different types of connections between initiators,
items and participants. The second module is a multi-task
learning framework, which is built with some expert networks
and gates to exploit the information interaction between the
two sub-tasks, since the two sub-tasks are mutually correlated
according to the primary principle of group buying. In model
prediction module, a multi-layer perceptron (MLP) is built for
each sub-task, which is fed with the embeddings output by the
gates in the previous module, to computes the score for each
candidate item or participant. Furthermore, in order to refine
the representation learning of initiators, items and participants
in our model, two auxiliary losses are proposed for the two
sub-tasks to optimize our model training, resulting in more
performance gains.

C. Multi-view Embedding Learning with GCNs

1) Insights into Object Interactions among Groups: As
introduced in Section II-A, our model aims to compute s(i|u)
and s(p|u, i), which are computed based on the embeddings of
the three types of objects, i.e., u, i and p. Thus, learning object
embeddings is the preliminary step of our model. According
to the positive samples from the observed deal groups, the
massive connections (interactions) between the three types of
objects are witnessed, based on which the embedding features
can be extracted. For example, the user-item interaction graph
in many collaborative-filtering (CF) based recommendation
models [9], [10] is often leveraged to encode the collaborative
signals into the embeddings of users and items, which are
significant for the model to generate accurate results. In fact,
three undirected graphs can be constructed in our scenario of
group buying recommendation, each of which includes two
types of objects, i.e., (u, i), (p, i) and (u, p). We denote these
graphs as GUI , GPI and GUP , and name them as initiator-
view, participant-view and social-view, respectively. All of the
structural features in GUI , GPI and GUP are significant to
learn the embeddings of u, i and p. Given that GCN [11]’s
capability of modeling the connections between nodes in a
graph, we also apply GCNs on the three graphs to learn
their node embeddings. Then, the embeddings of u, i and p
are obtained, and therefore we call this step as multi-view
embedding learning.

2) Detailed Operations: Specifically, GUI only includes
initiator nodes and item nodes. The edge between u and i



is established in GUI if u selects i to launch a group buying.
In fact, GUI is just the user-item interaction graph in task
A. Similarly, GPI only includes participant nodes and item
nodes, and the edge between p and i is established if p has
joined the group buying involving i. For GUP , it only has
initiator nodes and participant nodes, i.e., only has user nodes.
The edge between u and p is established if p has joined the
group launched by u. Please note that, to save computation
costs and reduce connection noises, the edge between any two
participants of a group is omitted in GUP

1. It is because we
believe that in one group the initiator’s preference is more
important than other participants’ preferences on learning a
participant’s preference, since a participant is often less aware
who has also participated in the group. Thus, we learn a
participant’s preference from GUP without p-p edges.

In brief, GUI , GPI and GUP represent distinct connections
between u, i, p. Particularly, user preferences on items can be
extracted from GUI and GPI , but they focus on different user
roles, i.e., initiator and participant. The preference similarities
between users are extracted from GUP , which help the model
better recommend participants for a given group.

Formally, suppose Xl
UI ∈ R(|U|+|I|)×d, Xl

PI ∈
R(|U|+|I|)×d and Xl

UP ∈ R|U|×d are the node embedding
matrices learned at the l-th (1 ≤ l ≤ H) layer of the GCN
on GUI , GPI and GUP , respectively, and d is embedding
dimension. Then, the computations on the l-th layer are as
follows,

Xl
UI = σ(ÂUIX

l−1
UI W

l−1
UI ), (1)

Xl
PI = σ(ÂPIX

l−1
PI Wl−1

PI ), (2)

Xl
UP = σ(ÂUPX

l−1
UPW

l−1
UP ), (3)

where ÂUI ∈ R(|U|+|I|)×(|U|+|I|), ÂPI ∈ R(|U|+|I|)×(|U|+|I|)

and ÂUP ∈ R|U|×|U| are the normalized adjacency matrices
with self-loops of GUI , GPI and GUP , respectively. And
Wl−1

UI ,W
l−1
PI ,W

l−1
UP ∈ Rd×d are trainable parameter matri-

ces, σ is Sigmoid function. Particularly, X0
UI ,X

0
PI ,X

0
UP are

randomly initialized by a Gaussian distribution (0, 1).
As shown in Fig. 2, each of u, i, p has two embeddings of

different views through the GCNs on the three views, since
each of them is involved in two views. As a result, we directly
obtain the multi-view embeddings of u, i, p as follows,

eu = eUI
u ||eUP

u , (4)

ei = eUI
i ||ePI

i , (5)

ep = ePI
p ||eUP

p , (6)

where || is concatenation operator, and eUI
u , eUP

u ∈ Rd are
u’s embeddings output by the GCN’s H-th layer on GUI and
GUP , perspectively. The similar notations are used for i and
p. The eu, ei, ep ∈ R2d learned in this module will be used
as the input of the next multi-task learning module.

1We have verified that the variant of incorporating the edges between
participants even has slightly poor performance.

D. Multi-task Learning with Expert Networks and Gated Units

1) Insights into Learning Two Sub-tasks: It is reasonable
to leverage multi-task learning framework in our model, since
the objective of group buying recommendation are divide into
task A and task B, as we mentioned before. We should notice
that these two sub-tasks are mutual correlated. In task A, user
u selects item i from the candidate item list to launch a group
buying, not only based on his/her preference on i but also the
consideration whether i is more favorable among the latent
participants. It is up to the specific setting in real-wold group
buying. In general, the more latent participants would like to
buy i, the more likely the group buying of i is to be achieved.
Recall the example in Fig. 1 (b), the initiator in Phase 1
may like all of the recommended cellphone, T-shirt and book.
He would prefer to select the cellphone instead of the book
to launch a group buying, if he knows in advance that two
participants will follow him to join the group of buying the
cellphone in Phase 2, who are more than the followers in other
two groups.

Accordingly, our model’s learning of task A requires the
intervention of participant information (embeddings) in task B,
which encode participants’ preference features. In addition, the
learning of task B also needs the information of initiator and
item in task A, since the objective of task B is to compute
s(p|u, i). Notably, each pair in the triple (u, i, p) indicates
distinct information. Particularly, (u, i) indicates information
of u’s preferences on i, which is more focused on by task A.
(u, p) indicates the preference similarity between u and p, and
(i, p) indicates the information of p’s preference on i, both of
which are more focused on by task B.

2) Detailed Operations: Inspired by above insights into
learning two sub-tasks in group buying recommendation, some
information encoded into the object embeddings should be
shared sufficiently by task A and task B, to enhance the
learning effects of two sub-tasks. Given that the expert network
is an effective solution for multi-task learning [12], we also
build some expert networks along with gates in this module
to achieve learning two sub-tasks, of which the architecture
is depicted in Fig. 3. In brief, there are three sub-modules
in our multi-task learning module, which correspond to the
learning of task A, task B and shared information (denoted
as S), respectively. For each sub-module, K expert networks
collaborate with one gate to learn object embeddings.

For clear statement, we use A,B, S to denote the three
sub-modules, and distinguish their corresponding notations.
Formally, suppose elAi

∈ Rd is the output embedding of the
i-th (1 ≤ i ≤ K) expert network A at layer l (1 ≤ l ≤ L),
and computed as

elAi
= (gl−1

A ||gl−1
S )Wl

Ai
, (7)

where gl−1
A ,gl−1

S ∈ Rd are the output embeddings of gate A
and gate S at layer l− 1, respectively, and Wl−1

Ai
∈ R2d×d is

a trainable weight matrix.
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Fig. 3. The architecture of the l-th layer in the multi-task learning module of our model. It consists of K expert networks and one gate corresponding to
task A, task B and shared information S, respectively.

Similarly, we also compute the output embedding of the i-th
expert network B at layer l as

elBi
= (gl−1

B ||gl−1
S )Wl

Bi
, (8)

where gl−1
B ∈ Rd is the output embedding of gate B at layer

l − 1, and Wl−1
Bi
∈ R2d×d is a trainable weight matrix.

For the output embedding of the i-th expert network S at
layer l, which should involve gate A and gate B besides gate
S. Thus, we have

elSi
= (gl−1

A ||gl−1
S ||gl−1

B )Wl
Si
, (9)

where Wl−1
Si
∈ R3d×d is also a trainable weight matrix.

Next, we introduce how to compute the output embeddings
of all gates mentioned in Eq. 7 ∼ 9 as follows.

To fully reflect the insights introduced in Section II-D1, we
append the adjusted gated unit for gate A, B and S, besides the
generic gated unit, which follows the principle of self-attention
in [13]. According to this principle, the embeddings learned
by the gate are the attentive aggregation of the embeddings
learned by expert network A, B and S. Specifically, the output
embedding of each gate consists of two sections.

For gate A, the first section of output embedding at layer
l is calculated through the following generic gated operations
as

gl
A1 = elA,inWA

[
El

A

El
S

]
∈ Rd,

El
A =


elA1

elA2

...
elAK

 , El
S =


elS1

elS2

...
elSK

 ,
elA,in = gl−1

A ||gl−1
S ,

(10)

where elA,in ∈ R2d is the input embedding of expert network
A at layer l, and WA ∈ R2d×2K is a trainable weight matrix.
Eq. 10 implies that the information of gl

A1 is extracted from
the expert network at layer l in terms of the information in
the previous layer.

Furthermore, the second section of gate A’s output embed-
ding at layer l is calculated as

gl
A2 = (eu||ei)WA,uiE

l
A + (ei||ep)WA,ipE

l
S

+ (eu||ep)WA,upE
l
S ,

(11)

where WA,ui,WA,ip,WA,up ∈ R4d×K are both trainable
weight matrices, and gl

A2 ∈ Rd. Eq. 11 implies that the
information of gl

A2 is also extracted from the expert network
at layer l but in terms of the input (u, i, p)’s information. In
addition, the output embeddings of expert network A interact
with eu||ei instead of ei||ep and eu||ep, because task A
focuses more on the information of (u, i). Meanwhile, the
information from (i, p) and (u, p) are transferred through
expert network S.

Then, the overall output embedding of gate A at layer l is

gl
A = gl

A1 + αAg
l
A2, (12)

where αA ∈ (0, 1) is a control coefficient.



Similarly, the output embedding of gate B is calculated as

gl
B1 = elB,inWB

[
El

B

El
S

]
, El

B =


elB1

elB2

...
elBK

 ,
elB,in = gl−1

B ||gl−1
S ,

gl
B2 = (eu||ei)WB,uiE

l
S + (ei||ep)WB,ipE

l
B

+ (eu||ep)WB,upE
l
B ,

gl
B = gl

B1 + αBg
l
B2.

(13)

Compared with gl
A and gl

B , the computation of gl
S is not

so complicate, which is calculated as

gl
S = elS,inWS

 El
A

El
S

El
B

 , elS,in = gl−1
A ||gl−1

S ||gl−1
B , (14)

where WS ∈ R3d×3K is also a trainable weight matrix.
In addition, to compute e1Ai

, e1Bi
, e1Si

∈ Rd we set

g0
A = g0

B = g0
S = eu||ei||ep, (15)

which are just the inputs of the expert networks at the first
layer, and also the inputs of the multi-task learning module.
Accordingly, the weight matrices in the first layer of expert
networks have different sizes to that in other layers, i.e.,
W1

Ai
∈ R6d×d,W1

Bi
∈ R6d×d,W1

Si
∈ R9d×d.

E. Prediction Module

In this module, our model predicts s(i|u) and s(p|u, i)
respectively with the output embeddings of gate A and gate
B at the final layer (layer L) respectively. As we introduced
before, the two scores are used to achieve the two sub-tasks
in group buying recommendation, and computed as

s(i|u) = σ(MLPA(g
L
A))

= σ
(
MLPA(MTLA(eu||ei||ep))

)
,

(16)

s(p|u, i) = σ(MLPB(g
L
B))

= σ
(
MLPB(MTLB(eu||ei||ep))

)
,

(17)

where MLPA/B() represents the operations of MLP fed with
the output embedding of gate A/B at the last layer. MTLA/B()
represents the operations of our multi-task learning module.
Then, the candidate item with the largest s(i|u) is taken as
the recommendation result of task A. Similarly, the candidate
participant with the largest s(p|u, i) is taken as the recommen-
dation result of task B.

Please note that, the ep in Eq. 16 is obtained by a different
way of that in Eq. 17. In task A, all users except for u are
the potential participants for the group buying of i. Thus, we
average the embeddings of all users as the ep in Eq. 16. By
contrast, in task B, the ep in Eq. 17 is just the embedding
of the candidate participant who needs being judged by the
model.

F. Model Optimization

In fact, the recommendation task of our work is also the
ranking-based recommendation of implicit feedback [9], [14]–
[17]. Thus, for both of the two sub-tasks in our model, we use
the Bayesian ranking loss (BPR) [18] as the objectives of our
model optimization. Specifically, the overall loss of our model
learning is as follows,

L = LA + βLB , (18)

and

LA = − 1

|N+
A ∪N

−
A |

∑
(u,i)∈N+

A

∑
(u,i′)∈N−A

log σ
(
s(i|u)− s(i′|u)

)
,

LB = − 1

|N+
B ∪N

−
B |
×∑

(u,i,p)∈N+
B

∑
(u,i,p′)∈N−B

log σ
(
s(p|u, i)− s(p′|u, i)

)
,

(19)

where β is the control coefficient (weight) of LB , N+
A/B

(N−A/B) denotes the positive (negative) training samples of
task A/B. We adopt negative sampling to collect the negative
samples in our training set, which will be detailed in the
subsequent experiment section.

In addition, we adopt Adam [19] as the optimization method
to train our model.

G. Refining Representation Learning with Auxiliary Losses

Based on our insights into the two sub-tasks of group
buying recommendation, we further propose two auxiliary
losses for our model training to refine the representation
(object embedding) learning in our model. These auxiliary
losses’ effects on enhancing recommendation performance are
verified by our experiments.

1) Task A’s Auxiliary Loss: Although the information of the
participants in task B would influence task A, according to our
aforementioned analysis, in task A the model should pay more
attention to the match between u and i, rather than the match
between (u, i) and p. It is because that the preference on i
is the primary reason for u to launch a group buying with
i. Another merit of such consideration is to avoid introducing
more noise from the potential participants into task A learning.
It implies that, for a positive (observed) triple (u, i, p) from
historical group buying records, replacing i with other items
degrades the model’s prediction score more than replacing p
with other users. Accordingly, our model should try to ensure

s(u, i, p) > s(u, i′, p),

s(u, i, p′) > s(u, i′, p),
(20)

where s(u, i, p) is computed as s(i|u) in Eq. 16 except that
ep is just the embedding of the participant p. i′ (p′) is the
corrupted item (participant) not existing in the true group
buying records.

To propose the auxiliary loss for task A, for a given
triple t = (u, i, p) in the positive samples of task A’s



training set, we first define T I
t = {(u, i′, p)|i′ ∈ I \ i} and

T P
t = {(u, i, p′)|p′ ∈ U \ Gu,i} where Gu,i is the set of all

participants who have joined the group including u and i. In
our experiments, we set |T I

t | and |T P
t | of any t to the same

fixed size, denoted as |T |, through negative sampling.
Besides BPR loss, the ListNet loss [20] is also a list-wise

loss appropriate for ranking-based recommendation. Thus,
based on above idea, we propose the following auxiliary loss
of task A as

L′A = − 1

|N+
A | × 2|T |

×∑
t∈N+

A

∑
(u,i,p)∈T I

t ∪T P
t

y(u,i,p) log s(u, i, p),
(21)

where y(u,i,p) = 1 if triple (u, i, p) ∈ Tp, otherwise y(u,i,p) =
0. In fact, Eq. 21 is proposed to fine-tune the embeddings of
u, i, p, of which the idea is similar to contrastive learning [21].

2) Task B’s Auxiliary Loss: The consideration of refining
representation learning in task B is different to that in task
A. On the one hand, replacing i with other item i′ in a true
triple (u, i, p) should degrade the model’s prediction score
apparently, since i′ can not attract the participant to join the
group due to the mismatch between p’s preference on i′.
On the other hand, replacing p with other user p′ in a true
triple (u, i, p) should also degrade the model’s prediction score
apparently, still due to the mismatch between p′’s preference
on i. Accordingly, our model should try to ensure

s(p|u, i) > s(p|u, i′), (22)

and
s(p|u, i) > s(p′|u, i). (23)

In fact, encouraging Eq. 23 is just the objective of task
B, which has been reflected by the loss of Eq. 19. Thus
encouraging Eq. 22 can be regarded as the auxiliary objective
of task B. Given that Eq. 22 is also a form of pair ranking,
we implement it also by a BPR-based loss as

L′B = − 1

|N+
B | × |T |

×∑
t∈N+

B

∑
(u,i′,p)∈T I

t

log σ
(
s(p|u, i)− s(p|u, i′)

)
.

(24)

Then, the overall loss of our model in Eq. 18 is modified
as

L = LA + βLB + βAL′A + βBL′B , (25)

where βA, βB are also the control coefficients of auxiliary
losses.

H. Time Complexity Analysis

Given that we build multiple layers consisting of expert
networks and gates in the multi-task learning module of
MGBR, to achieve complicated information interaction be-
tween sub-module A, B and S, MGBR’s time consumption
is undoubtedly bigger than the recommendation models only
with GCNs and the matrix factorization (MF) based models.

We mainly analyze the time complexity of MGBR’s multi-task
learning module as follows, and display the empirical results of
comparing the time consumption of MGBR and other models
in the subsequent experiment section.

At first, the time complexity of multi-view embedding
learning is O

(
|U|2d + (|U| + |I|)2d + (|U| + |I|)2d

)
=

O(|U| + |I|)2d). Then, we analyze the time complexity of
processing a sample (u, i, p) in MGBR’s multi-task learning
module. For one layer consisting of K expert networks and
one gate, one expert consumes the time of O(d2), hence 3K
experts consume O(3Kd2) = O(Kd2). In the adjusted gate
unit, the time complexity of computing gl

A1 in Eq. 10 is
O(2d × 2K + d × 2K) = O(Kd). And the time complexity
of computing gl

A2 in Eq. 11 is O
(
3(4d × K + d × K)

)
=

O(Kd). So it consumes O(Kd) to obtain gl
A. Similarly, the

calculation of gl
B and gl

S is also O(Kd). Thus, the time
complexity of L layers in the multi-task learning module is
O
(
L(Kd2+Kd+Kd)

)
= O(LKd2). Given that L and K are

generally small number, the time consumption of the multi-
task learning module is approximate to O(d2), i.e., the square
of embedding dimension, which is affordable.

III. EXPERIMENTS

In this section, we conduct extensive experiments on one
real-world dataset of group buying to answer the following
research questions:
• RQ1: Does our proposed recommendation model perform

better than previous models on the recommendation of
group buying?

• RQ2: Can the specifically designed components of our
model contribute to the performance improvement of
group buying recommendation?

• RQ3: How do the hyper-parameters of our model affect
the performance of group buying recommendation?

A. Experiment Data

1) Dataset of Group Buying: By now, seldom group buying
datasets from the real-world e-commerce platforms are avail-
able. The datasets used in the previous group recommendation
models [4]–[6] can not be used to evaluate our task of group
buying, due to the essential difference between them that we
have mentioned in Section I. In our experiments, we used
a public group buying dataset extracted from Beibei2 [22]
to evaluate all compared models. Beibei is the largest e-
commerce platform in China for maternal and infant products.
This dataset contains the logs of sufficient group buying
records, from which the initiator, product and participants of
each deal group can be identified. Furthermore, two users
(either an initiator or a participant) in a deal group of training
set are recognized as a pair of social friends.

Although we only used this one dataset for our evaluations
which only includes the products of maternal and infant, we
believe that the evaluation results can justify our model’s
feasibility to other group buying scenarios, since the group

2https://github.com/Sweetnow/group-buying-recommendation



buying on other e-commerce platforms has the same (or very
similar) properties as that of Beibei.

TABLE I
STATISTICS OF THE PREPROCESSED EXPERIMENT DATASET.

Object Number
user 125,012
item 30,516

deal group 430,360

2) Sample Collection: Before collecting the samples of our
training and test set, we first filtered out the users who have
less than five purchase records in the original Beibei dataset,
which follows the popular manipulation in previous work [16],
[18]. Then, we removed each group including the filtered users
(no matter initiator or participant) and used the rest dataset in
our experiment. The statistics of our preprocessed dataset is
listed in Table I.

The training and test samples of task A and task B were col-
lected as follows. Each pair (u, i) and triple (u, i, p) observed
from any dealt group in the processed dataset are used as one
positive sample of task A and task B, respectively. Then, for
any initiator u of a group, we randomly selected a product
(negative item) from the products that u has not bought, to
accompany u as a negative sample of task A. For an observed
deal group < u, i,G > where G is the participant set, we
randomly selected a user (negative participant) from U \G to
accompany (u, i) as a negative sample of task B. The ratio of
positive samples to negative samples is 1:9. Accordingly, for
each test instance in task A (u) and each test instance in task
B ((u, i)), the sizes of their candidate lists are both 10. The
model should compute the score for each item/participant in
the candidate list, based on which each test instance’s ranking
list is determined. In addition, the ratio of training, validation
and test set is 7:3:1.

B. Baselines

We compared our model with the following recommen-
dation models in our experiments to answer RQ1. In fact,
all baselines can achieve the recommendation task of group
buying through appropriate tailor although none of them were
proposed specially for the two sub-tasks in this paper.

DeepMF [23]: It is a deep version of MF-based recom-
mendation model, in which the rows and columns of user-
item interaction matrix are input into multi-layer non-linear
projection neural networks, to learn the latent representations
of users and items.

NGCF [10]: It is a deep CF model with GCNs, which
explicitly models higher order connectivity between user-item
interactions to improve embedding representations.

DiffNet [24]: We believe that the social-based recommen-
dation models enhancing user preference modeling with social
links can also achieve the recommendation task of group
buying, since we regard the relationships between initiators
and participants as social links. Thus we also included social-
based recommendation models into our comparisons. DiffNet

is a representative social recommendation model with GCNs.
It utilizes social relations and stimulates the social diffusion
process on social networks for better representation learning
of users and items. We consider this recommendation model
in our comparisons due to that, the co-occurrence relationships
between users observed from historical purchase records can
be recognized as social links that are crucial for group buying
recommendation.

EATNN [25]: It is also a social-aware recommendation
model that uses attention mechanisms to automatically assign
personalized migration solutions to users by taking into ac-
count both their preferences on items and social relationships.

GBGCN [22]: It is in fact one of group recommendation
models. Although this model was proposed specifically for
group buying and also distinguishes the roles of initiator
and participant, it only achieves task A according to our
task formalization. In this model, both user-item interaction
graph and user-user social graph are constructed to learn the
embeddings of users and items. An embedding propagation
network is leveraged to extract user preferences in different
roles.

GBMF [22]: It was proposed as the variant of GBGCN,
which directly uses dot-based similarity function to calculate
scores of candidate items and candidate users as MF-based
recommendation models. It also updates the embeddings of
users and items for better performances.

We explain how to tailor these baselines to simultaneously
achieve the two sub-tasks of group buying recommendation
as our model. At first, task A can regarded as general
item recommendation, all baselines can achieve it directly.
Although all baselines were not designed specifically for task
B, we can tailor them to achieve task B, only through altering
their prediction layers and without modifying their major
frameworks. In fact, the representations (embeddings) of u, i, p
are both learned in all of the baselines. According to their
modeling principle, either embedding of u, i, p has encoded
the significant information from the rest two objects. Given
that task B is similar to user recommendation [26]–[28], i.e.,
for a given user (u) recommending another user (p) who has
the same/similar preference as u and would like to join u’s
group, we can directly use the distance of p’s embedding and
u’s embedding as s(p|u, i). Specifically, we used inner product
of two embeddings to measure their distance, since it is widely
used in many recommendation models [9], [10], [14].

In addition, we propose the following ablated variants of
our MGBR to answer RQ2.

MGBR-M: In this variant, the shared information of multi-
task learning framework is removed from our model. In other
words, expert network S and gate S are both removed, making
our model degrade into a two-tower model over the three
views.

MGBR-R: In this variant, we remove the auxiliary loss L′A
and L′B in our model training.

MGBR-M-R: In this variant, the shared information in the
multi-task learning framework, as well as the two auxiliary
losses are both removed.



MGBR-G: This variant replaces the adjusted gated units
with generic gated units, indicating that gl

A2 in Eq. 12 and gl
B2

in Eq. 13 are both removed. In other words, αA = αB = 0.
MGBR-D: In this variant, the three divided views

GUI ,GPI ,GUP are replaced with an overall heterogeneous
information network (HIN) including all nodes of u, i, p and
their relations. The embeddings of u, i, p are learned by the
GCN over this big HIN.

TABLE II
SOME HYPER-PARAMETER SETTINGS IN OUR EXPERIMENTS.

Para. Value Comment
d 128 embedding dimension
H 2 the number of GCN layers
K 6 the number of expert networks in each layer
L 2 the layer number of expert networks and gates
|T | 99 negative sampling size in the auxiliary losses
αA 0.1 control coefficient of Eq. 12
αB 0.1 control coefficient of Eq. 13
β 1 control coefficient of LB in Eq. 25
βA 0.3 control coefficient of L′

A in Eq. 25
βB 0.3 control coefficient of L′

B in Eq. 25
ρ 0.0002 learning rate
|B| 64 batch size

C. Implementation Details

All of our experiments were conducted on the workstations
of GeForce RTX 3090 with 24G memory and the environ-
ment of Ubuntu18.04.5 and torch1.8.0. The hyper-parameter
settings of all baselines for the following displayed results
were decided based on our tuning studies. For our MGBR,
some hyper-parameters’ optimal values in the subsequent
experiments are listed in Table II, wherein the tuning study
results of αA, αB , βA, βB will be displayed afterwards.

D. Evaluation Protocols

In our experiments, We adopted MRR@N (mean reciprocal
rank) and NDCG@N (normalized discounted cumulative gain)
[15], [17] to evaluate all models’ recommendation perfor-
mance, since they are very popular to evaluate ranking-based
recommendation. Particularly, NDCG is more sensitive than
MRR to the positive item/participant’s position in the ranking
list. f About the ratio of positive sample to negative sample in
the test set, we also adopted 1:9 to compute MRR/NDCG@10,
and further adopted 1:99 to compute MRR/NDCG@100 for
all compared models.

E. Overall Performance Comparisons

The performances scores of all compared models on the
two sub-tasks are listed in Table III, where the best scores
are bold. As well, the relative performance improvements
between our MGBR and the strongest baselines (highlighted
with underline) are also displayed. All reported performance
scores of each model are the average results of three runnings.
Based on these results, we have the following observations and
analyses.

1. Obviously, our MGBR has the best performance in
both of the two sub-tasks, which should be attributed to

several factors. At first, thanks to the GCNs on the multiple
views, MGBR can extract rich significant features from the
correlations between initiators, items and participants. Second,
the significant information is shared by the two sub-tasks in the
multi-task learning module. Furthermore, the auxiliary losses
help our model promote information interactions and reduce
conflicts between the two sub-tasks. It is no surprise that our
MGBR outperforms the baselines in task B more apparently
than in task A, since none of the baselines are designed for
task B. In addition, MGBR leverages the information of the
given u and i more sufficiently to predict p in task B.

2. Our MGBR outperforms GBGCN and GBMF on the two
sub-tasks, although these two baselines were also proposed
for group buying. Compared with GBMF, GBGCN has better
performance and further utilizes the features from the hetero-
geneous graph of initiators, items and participants, which also
verifies the advantage of introducing graph structural feature
and GCNs.

3. DiffNet performs poorly, although it has excellent per-
formance in social recommendation. The reason may be that
the co-occurrence relationships of users in the same groups
are not real social relationships, that only reflect the common
preferences of users. Comparatively, EATNN performs better
than DiffNet in Task A, but it is still inferior to our MGBR.

4. The power of GCN is the major reason of NGCF’s
superior performance over other baselines. In addition, unlike
DiffNet and GBGCN, it has no special design for capturing
social context, avoiding the influence of fake social relation-
ships in the dataset.

5. All baselines fail to obtain satisfactory performance in
task B, although all of them were trained on both task A and
task B simultaneously. It implies that the training for task B
is more difficult and worthwhile to be explored further. It is
also necessary to design specific module for task B in general
recommendation models.

F. Ablation Study

We also compared our MGBR with its ablated variants to
answer RQ2. All compared variants’ performance scores and
their relative performance drops compared with MGBR are
listed in Table IV, based on which we have the following
observations and analyses.

1. MGBR’s performance improvements over MGBR-M are
more than that over MGBR-R and MGBR-G, showing that the
shared expert networks and gates (S) are more significant than
the auxiliary losses and adjusted gated units on improving our
model’s performance.

2. MGBR’s superiority over MGBR-R, and MGBR-M’s
superiority over MGBR-M-R both justify the effectiveness of
refining representation learning with the auxiliary losses.

3. MGBR-G’s performance drop relatively to MGBR on
task B is more prominent than on task A. It is because
task B is indeed more difficult, since it requires models to
capture not only users’ personalized preferences, but also the
common preferences among different users. The adjusted gates
in MGBR was proposed to better achieve to the multi-task



TABLE III
OVERALL PERFORMANCE COMPARISONS BETWEEN OUR MGBR AND THE BASELINES ON TASK A AND TASK B OF GROUP BUYING RECOMMENDATION.

IT SHOWS THAT MGBR’S PERFORMANCE SUPERIORITY OVER THE BASELINES IS MORE REMARKABLE IN TASK B.

Model
Task Task A Task B

1:9 1:99 1:9 1:99
MRR@10 NDCG@10 MRR@100 NDCG@100 MRR@10 NDCG@10 MRR@100 NDCG@100

DeepMF 0.3763 0.5183 0.1672 0.3046 0.3070 0.4656 0.0654 0.2209
NGCF 0.5607 0.6617 0.2841 0.4150 0.3778 0.5211 0.1254 0.2748
DiffNet 0.3780 0.5206 0.1290 0.2771 0.3314 0.4844 0.0976 0.2483
EATNN 0.5827 0.6807 0.2240 0.3736 0.3404 0.4929 0.0727 0.2310
GBGCN 0.5095 0.6231 0.2775 0.4006 0.3668 0.5127 0.1168 0.2665
GBMF 0.3718 0.5135 0.1433 0.2867 0.3254 0.4794 0.0884 0.2406
MGBR 0.6401 0.7292 0.2876 0.4501 0.6484 0.7327 0.2877 0.4471

Improvement 9.85% 7.13% 1.23% 8.46% 71.65% 40.61% 129.43% 62.70%

TABLE IV
PERFORMANCE COMPARISONS BETWEEN OUR MODEL AND THE ABLATED VARIANTS.

Model
Task Task A

1:9 1:99
MRR@10 R. Drop NDCG@10 R. Drop MRR@100 R. Drop NDCG@100 R. Drop

MGBR-M-R 0.2531 -152.90% 0.4327 -68.5% 0.0809 -255.5% 0.2571 -75.1%
MGBR-M 0.2607 -145.53% 0.4401 -65.7% 0.1217 -136.3% 0.3095 -45.4%
MGBR-G 0.6126 -4.49% 0.7041 -3.56% 0.2732 -5.27% 0.4322 -4.14%
MGBR-R 0.4228 -51.40% 0.5663 -28.77% 0.1221 -135.54% 0.3136 -43.53%
MGBR-D 0.5189 -23.36% 0.6390 -14.12% 0.2091 -37.54% 0.3793 -18.67%
MGBR 0.6401 – 0.7292 – 0.2876 – 0.4501 –

Task B
MGBR-M-R 0.2344 -176.62% 0.4141 -76.9% 0.1043 -175.8% 0.2946 -51.8%

MGBR-M 0.2471 -162.40% 0.4272 -71.5% 0.1147 -150.8% 0.3051 -46.5%
MGBR-G 0.4707 -37.75% 0.6001 -22.10% 0.1797 -60.10% 0.3448 -29.67%
MGBR-R 0.4769 -35.96% 0.6074 -20.63% 0.1661 -73.21% 0.3437 -30.08%
MGBR-D 0.4494 -44.28% 0.5858 -25.08% 0.1501 -91.67% 0.3301 -35.44%
MGBR 0.6484 – 0.7327 – 0.2877 – 0.4471 –

TABLE V
COMPARISONS OF MODEL SCALE AND TIME CONSUMPTION (MINUTES).

Model Para. number Min./epoch
DeepMF 155,500 0.34
NGCF 9,962,176 3.17
DiffNet 15,556,217 1.67
EATNN 33,966,534 1.23
GBGCN 15,555,273 1.79
GBMF 1,555,280 1.03
MGBR 31,341,038 8.35

learning including the auxiliary learning objectives, which
leverages prior experiences (eu||ei, ei||ep, eu||ep) to assign
appropriate weights to different experts. Compared with task
B, task A is less sensitive to the choice of experts since it is
more simple.

4. MGBR-D is also inferior to MGBR, showing that includ-
ing all user and item nodes, along with their relations into an
HIN can not obtain the optimal node embeddings through the
GCN over the HIN. In fact, the divided views in MGBR can
effectively alleviate the negative interactive effects between
different relations.
G. Model Scale and Efficiency Comparisons

Table V lists the scale of model parameters and the time
consumption (minutes) of one training epoch for all compared
models. As we mentioned before, our MGBR is the most time-
consuming as it has more complex architecture (more param-
eters) than the baselines. In EATNN, each user is represented
by three kinds of embeddings, so it even has more parameters

than our MGBR due to its great number of users. However, it
only adopts attentions and MLP operations which are relatively
simple compared with MGBR’s architecture, thus consumes
less time.

H. Influence of Important Hyper-parameters

To answer RQ3, we also investigated the influence of some
important hyper-parameters of our model on recommendation
performance.

1) Impact of Auxiliary Loss Weight: The ablation studies
have verified that the two auxiliary losses, i.e., L′A and L′B
are helpful for our model to obtain improved performance.
To analyze the influence of the weight of L′A and L′B we
set βA = βB in Eq. 25 and set their values in the range
of {0.1, 0.2, 0.3, 0.4, 0.5}, and recorded the corresponding
recommendation performance comparison on the two sub-
tasks as shown in Fig. 4. According to the tuning results,
MGBR performs the best when βA = βB = 0.3. It shows
that either lower or higher value of βA and βB would hurt
model performance. Too small βA and βB make it difficult
to constrain our model with the auxiliary losses and reduce
the model’s generalization. While too large βA and βB would
cause our model to overlook fitting with the observed group
buying records.

2) Impact of Control Coefficient in Adjusted Gate: To
analyze the influence of the control coefficient in the adjusted
gates, we also set αA in Eq. 12 the same as αB in Eq. 13,
and varied their values in the range of {0.05, 0.1, 0.2, 0.3}.



Fig. 4. MGBR’s performance with different auxiliary loss weights.
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Fig. 5. MGBR’s performance with different control coefficients of adjusted
gates.

Our model’s performance corresponding to these values are
displayed in Fig. 5, showing that αA = αB = 0.1 is the
optimal setting for our model to achieve the best performance.
The large αA and αB indicate that the gate information is
extracted in terms of the information of (u, i, p) more than
the expert networks, resulting in the insufficient utilization of
expert network’s information. The small αA and αB result in
the insufficient utilization of (u, i, p)’s information, and also
hurt the model’s performance.

I. Case Study of Representation Learning

As other recommendation models, the representation learn-
ing of initiators, items and participants is the key of our
model to achieve the task of group buying recommendation.
Optimal object embeddings in the model evidently result in
better recommendation performance. In this subsection, we
visualize the effectiveness of the shared information (expert
network and gate S) in our multi-task learning module and

(a) MGBR-M-R (b) MGBR

initiator
item
participant

initiator
item
participant

Fig. 6. The object embedding comparisons between MGBR and MGBR-M-R
for some cases (better viewed in color). It shows that the shared information
in the multi-task learning module and the two auxiliary losses help our model
learn better embeddings of initiators, items, participants.

the auxiliary losses on refining the object embeddings through
some cases.

To this end, we applied PCA decomposition to project
all object embeddings into a 2-D space. Fig. 6 displays the
embeddings of some groups in MGBR-M-R (a) and MGBR
(b), where the colors indicate different groups. The stars,
plusses and dots represent the embeddings of initiators, items
and participants, respectively. From the figure, we observe
that the users and items of the same group (the same color)
in MGBR are more concentrated than that in MGBR-M-R,
and the embeddings of different groups are distinguishable.
It shows that, with the shared information in the multi-task
learning module and auxiliary losses, our model is capable
of leveraging the information interactions within one group to
learn better object embeddings, and thus improves recommen-
dation performance.

IV. RELATED WORK

A. Recommender Systems

1) Item Recommendation: Item recommendation [29] aims
to predict the probability of a user interacting with a candidate
item, and then recommend the item with the highest probabil-
ity from the candidate set to the user. In recent years, many
deep recommendation models [14], [15], [17], [23] have been
proposed. Besides leveraging user-item interactions to infer
the relationships between user and items, some literatures have
introduced social context into item recommendation, based on
the assumption that a user has the same or similar preference
as his/her friends. Jamali et al. [26] introduced social relations
in MF [30] to make the representations of social friends
more close, to enhance recommendation performance. [31]
recommends items for users through combining a user’s pref-
erence and his friends’ preferences. In addition, [24] uses the
propagation of user embedding on social networks to capture
social influences, and [25] adopts attention mechanisms to
automatically assign personalized migration solutions to users
by considering both their preferences on items and social
relationships.

2) User Recommendation: Besides item recommendation,
user recommendation [27], [28] is another popular scheme
in recommender systems, which generally predicts the prob-
ability of the interaction between two users. Traditional user
recommendation task is just a binary classification to judge



whether a candidate user deserves to be recommended to
the target user. The second sub-task in our group buying
recommendation is in fact a user recommendation task, but
the given object is an item and an initiator instead of a sole
user. The classical recommendation methods such as MF can
also be used to achieve user recommendation. For example,
SocialMF [26] adds trust propagation to MF, so as to improve
recommendation performance. SocialReg [32] uses two kinds
of social information to design social regularization terms to
constraint matrix decomposition objective function. Besides
the social links between users [33], other features about user
preferences can also be leveraged in promote recommendation
performance, including user tags [34], activities [27], etc.

3) Group Recommendation: Although there is essential
difference between group recommendation [1], [3] and group
buying recommendation, group recommendation is still the
recommendation category most related to group buying recom-
mendation. The key problems to achieve group recommenda-
tion include how to fuse the preference of each user in a group
into the group’s preference [2], and how to handle the disagree-
ments among group members [1]. The classical approaches
include [8], [35], [36]. Cao et al. [4] used attention mechanism
to learn precious user and group interest representations. Since
the social relationships among users indicate their preference
similarities, many group recommendation models leverage
social information to learn the group representations [7], [37]–
[39]. Specifically, GBGCN [22] was proposed to capture
structural information among group buying records, and model
user dual role, social influence and complex group buying
implicit feedback. Although it also focuses on group buying, it
still aims to solve the first sub-task, i.e., recommending items
to a given group as other group recommendation models. For
occasional group recommendation, GroupSA [40] models the
group decision making process as multiple voting processes,
and uses a stacked social self-attention network to simulate
how a group consensus is reached. In addition, the knowledge
graph (KG) is also helpful to learning group representations
[5]. Besides online shopping, group recommendation is also
applied in many other areas, such as POI recommendation [41]
and restaurant recommendation [42].

4) Graph Neural Networks for Recommendation: Graph
neural networks (GNNs) can capture structural features of
graphs via message passing between the nodes, which have
been widely used in recommender systems. For example,
GNN is used in the matrix completion task for recommen-
dation [43]. NGCF [10] uses embedding propagation on the
bipartite graph to model high-order collaborative signals. In
addition, GNNs have been successfully employ in session-
based recommendation. Wu et al. [44] used GNNs to capture
item relation between different sessions and in knowledge-
based recommendation. KGAT [45] harnesses graph attention
network (GAT) [46] to obtain more accurate and sufficient
feature representations. Meng et al. [47] leveraged GGNN [48]
to capture the complex patterns among the items in a session.

B. Multi-task Learning

Multi-task learning (MTL) helps recommender systems
achieve better recommendation through leveraging the in-
formation from different aspects, which has been widely
incorporated into many recommender systems [47]. A classical
MTL approach is hard-parameter sharing, forcing different
tasks to share the same parameters. For example, [49] uses
the shared-bottom structure to make all tasks share the bottom
layer parameters. In industry, ESSM [50] achieves CTR and
CVR tasks simultaneously, and generates outstanding results
on large-scale data. Similarly, [51] adds a counterfactual
learning task to ESSM to alleviate sample selection bias (SSB),
and thus achieves better performance on industrial data.

Comparatively, soft-parameter sharing only requires to share
a part of the parameters rather. Specifically, it allows each
task to select a sub-network, reducing the impact of corre-
lation between tasks. [51], [52] take mixture-of-expert as an
important component of MTL, employing different experts to
learn different aspects of the features. [12] proposes the idea
of multi-gate, that makes it possible for expert networks to
pass different information to different tasks. Ma et al. [53]
proposed a more flexible soft-parameter sharing approach to
add parameter sharing process inside the shared layers, and
make the information propagation between expert networks
trainable. [13] explicitly divides the expert networks into task-
share and task-specific parts, and replaces the fully connected
propagation between expert layers with the propagation be-
tween the two parts. Accordingly, the MTL of our MGBR
also belongs to soft-parameter sharing.

More recently, more flexible and robust MTL approaches
have been proposed. For example, AITM [54] takes the
sequential relationship into account and uses an information
migration module to model task dependencies. In this way,
information migration occurs not only at the bottom layers,
but also at the layers close to the output. [55] introduces
contrastive learning [21] to alleviate the parameter conflict
problem in MTL. Sun et al. [56] proposed the sparse-sharing
approaches, in which the parameters are partially shared across
tasks, making it more flexible to handle loosely related tasks.

V. CONCLUSION

In this paper, we pioneer the task formalization of group
buying recommendation for the online shopping platforms.
Aiming to achieve the two sub-tasks of group buying recom-
mendation simultaneously, we propose a novel recommenda-
tion model MGBR. Based on our insights into the correlations
and information interaction between the two sub-tasks, we
design collaborative expert networks and adjusted gated units
in MGBR’s multi-task learning module, to better learn the
object embeddings in buying groups. Furthermore, we propose
two auxiliary losses corresponding to the two sub-tasks for
model training, to refine representation learning. Our extensive
experiments evidently justify MGBR’s superior performance
of group buying recommendation over the previous recom-
mendation models.
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