
Reinforcement Learning Enhanced Weighted
Sampling for Accurate Subgraph Counting on Fully

Dynamic Graph Streams
Kaixin Wang∗, Cheng Long∗§, Da Yan†, Jie Zhang∗, H. V. Jagadish‡

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
†Department of Computer Science, University of Alabama at Birmingham, United States

‡Computer Science and Engineering, University of Michigan, United States
{kaixin.wang, c.long, zhangj}@ntu.edu.sg, yanda@uab.edu, jag@umich.edu

Abstract—As the popularity of graph data increases, there is
a growing need to count the occurrences of subgraph patterns of
interest, for a variety of applications. Many graphs are massive
in scale and also fully dynamic (with insertions and deletions
of edges), rendering exact computation of these counts to be
infeasible. Common practice is, instead, to use a small set of
edges as a sample to estimate the counts. Existing sampling
algorithms for fully dynamic graphs sample the edges with
uniform probability. In this paper, we show that we can do much
better if we sample edges based on their individual properties.
Specifically, we propose a weighted sampling algorithm called
WSD for estimating the subgraph count in a fully dynamic graph
stream, which samples the edges based on their weights that
indicate their importance and reflect their properties. We deter-
mine the weights of edges in a data-driven fashion, using a novel
method based on reinforcement learning. We conduct extensive
experiments to verify that our technique can produce estimates
with smaller errors while often running faster compared with
existing algorithms.

I. INTRODUCTION

Graphs have been widely used to represent the data struc-
tures in online social networks (e.g., Facebook and Twit-
ter) and Internet applications (e.g., Youtube, blogs, and web
pages), where vertices represent individuals or entities and
edges represent interactions or connections among them.
Counting a certain subgraph pattern (e.g., triangle) on these
graphs can help reveal network structure information [1],
detect anomalous behavior [2], [3] and identify the interests
of users [4], [5]. For example, in social network analysis, a
triangle has been proven to be an evidence of the phenomena
of homophily [6], [7] (i.e., people tend to make friends with
who are similar to them) and transitivity [8], [9] (i.e., people
who share common friends become friends). Therefore, many
concepts in social network, such as clustering coefficient [10]
and transitivity ratio [11], are based on the triangle count.
Moreover, [12], [13] show that in web networks, normal nodes
usually have similar and mild ratios of the triangle counts
to the degrees whereas spammers or harmful accounts are
often linked with fewer but remarkably well-connected nodes,
resulting in extremely high ratios. Therefore, they propose to

§Corresponding author.

detect anomalous nodes and structures in email systems and
phone call networks based on the triangle counts and degrees
information, and the effectiveness of the proposed method has
been verified via case studies [2].

Among the existing studies for estimating the count of
a certain subgraph pattern, some focus on insertion-only
graph streams [2], [14], [15] and others on fully dynamic
graph streams (which involve both insertions and deletions
of edges) [16], [3], [17], [18], [19]. In this paper, we study
the problem on fully dynamic graph streams since they are
more general than insertion-only graph streams and in many of
these applications, the graphs are in the form of fully-dynamic
graph streams with edges inserted and deleted dynamically.
For example, in a social network such as Facebook, connec-
tions and disconnections among users would happen as time
goes by, which correspond to edge insertions and deletions,
respectively.

We observe that the existing studies for fully dynamic graph
streams all sample the edges with uniform probabilities, e.g.,
each edge is treated equally for sampling [3], [16], [17], [18],
[19], which would likely result in sub-optimal samples. To
illustrate, suppose that we would like to estimate the number
of triangles (3-cliques) in a social network like Twitter. There
would be more triangles involving two celebrities if they
subscribe each other, and thus the edge between them should
be sampled with a higher probability than those among the
generic public so as to achieve smaller estimation variance.

Motivated by the phenomenon that different edges have
different importance and should be assigned with different
probabilities for sampling, in this paper, we aim to develop
a weighted sampling algorithm for estimating the count of a
certain subgraph structure on fully dynamic graph streams. In
a weighted sampling algorithm, each edge would be assigned
with a weight indicating the importance of the edge such
that edges with higher weights would be sampled with higher
probabilities. This immediately gives rise to two problems.
First, how can we perform weighted sampling on a fully
dynamic graph stream? Second, while we can all intuitively
see that more important edges should be weighted higher, what
exactly should these weights be? In this paper, we address both

ar
X

iv
:2

21
1.

06
79

3v
1

 [
cs

.D
B

]
 1

3
N

ov
 2

02
2

these problems in turn.
To address the first problem, we first review an existing

weighted sampling framework called GPS [14] for insertion-
only graph streams. Specifically, GPS maintains a reservoir of
a fixed size M . Whenever an edge is inserted, it computes a
rank of the edge in a probabilistic manner such that it would
be more likely that the rank is higher if the edge’s weight
is higher. It then samples the edge if its rank is among the
top-M . However, GPS is not capable of dealing with fully-
dynamic graph streams since an edge with its rank not among
the top-M may be sampled if some space of the reservoir
has been released due to some edge deletions that happened
earlier. We then present an adaption of GPS called GPS-A,
which works similarly as GPS for edge insertions and attaches
to each edge to be deleted a binary tag without practically
deleting it. GPS-A works for fully-dynamic graph streams
with both insertions and deletions, but is lazy to clear up
the space taken for storing edges that have been deleted in a
reservoir, which results in low accuracy. Finally, we introduce
a carefully designed weighted sampling framework called
weighted sampling with deletions (WSD) for fully-dynamic
graph streams. WSD extends GPS in a smart and careful way
such that it can handle both edge insertions and deletions
and avoid the drawback of GPS-A, i.e., the edges that have
been deleted would not be stored in a reservoir. One intuition
behind WSD is that it maintains a rank threshold and samples
an edge only if its rank exceeds the threshold. The threshold is
updated properly such that any two edges with equal weights
would be sampled with equal probabilities. We then construct
an estimator of the count of a certain subgraph pattern based
on the sampled edges in the reservoir by WSD and prove the
unbiasedness of the estimator.

For the second problem, the conventional approach has
been to use heuristics to set the weights. For example, in
the weighted sampling method GPS on insertion-only graph
streams, the strategy is to set the weight of an edge to be
number of connections between the edge and those in the
reservoir or the number of subgraph structures formed by the
edge and those in the reservoir. Nevertheless, the heuristic-
based methods are non-adaptive to the underlying dynamics.
To fully unleash the power of WSD, we further propose an
adaptive way of setting the weights of edges via reinforcement
learning (RL). Specifically, we regard the sampling process for
subgraph counting problem as a sequential decision making
process, i.e., we make a decision on how to set the weight of
each new edge. We then model the sequential decision process
as a Markov Decision Process (MDP) [20] and use a policy
gradient method to learn a policy for the MDP. We carefully
design the MDP including states and rewards such that (1) the
states capture both temporal and topological information of the
edge dynamics and can be easily computed with the sampled
edges, and (2) the objective of maximizing the rewards of the
policy is consistent with the goal of minimizing the estimation
error.

In summary, the main contributions of this paper are as
follows.

• We propose a new fixed-size, weight-sensitive, one-pass
sampling method WSD to handle fully dynamic graph
streams. WSD is the first weighted sampling method for
fully dynamic graph steams. Based on WSD, we construct
an estimator of the count of a given subgraph structure
and prove the unbiasedness of the estimator. (Section III)

• We develop a reinforcement learning-based method for
setting the weights of edges in WSD in a data-driven
fashion, which is superior over heuristic-based methods.
(Section IV)

• We conduct extensive experiments on several real graphs,
including community networks, citation graphs, social
networks and web graphs to verify that the new sampling
framework WSD and the RL-based weighting method
work better than the state-of-the-art methods. For ex-
ample, WSD improves the effectiveness by 25% - 47%
and often runs faster than the state-of-the-art method
WRS [17], [18]. (Section V)

For the rest of the paper, we present the problem definition
in Section II, review the related work in Section VI, and
conclude the paper in Section VII.

II. PRELIMINARIES AND PROBLEM DEFINITION

We first review the problem of counting subgraphs in a fully
dynamic graph stream [16]. Consider a dynamic graph G,
which evolves over time with the edges being inserted and
deleted dynamically. Formally, the graph G can be modelled
as an edge stream S = {s(1), s(2), · · · }, where s(t) = (op, et)
represents an event of inserting (indicated by op = +) or
deleting (indicated by op = −) the edge et. We denote by
S(t) the sequence of the first t edge events, i.e., S(t) =
{s(1), s(2), · · · , s(t)} ⊂ S. Let G(t) = (V (t), E(t)) be the
induced graph from S(t). We assume that all edge events are
feasible, i.e., if e ∈ E(t) (resp. e /∈ E(t)), s(t+1) cannot be
(+, e) (resp. (−, e)).

Consider a certain subgraph pattern H (e.g., a triangle). We
use |H| to denote the number of edges in H . Given a graph
G(t) = (V (t), E(t)), we use the notation J (t) to denote the
set of all subgraphs which are isomorphic to H in G(t). Each
subgraph J ∈ J can be uniquely identified by a set of ordered
edges J = {ei1 , ei2 , · · · , ei|H|} with i1 < i2 < · · · < i|H|
being the arrival order of these edges.

Definition 1 (Subgraph Counting in Fully Dynamic Graph
Streams [16], [17]). Given a fully dynamic graph stream S,
the problem is to estimate |J (t)| for any t accurately with the
following constraints.
• No Knowledge. We have no knowledge about the stream

(e.g., the size of stream, the number of vertices and edges,
etc.) in advance.

• Limited Memory. We can store at most M edges in
a reservoir, where M is a predefined parameter and
independent to the size of the stream.

• Single Pass. Edge insertions and deletions are processed
one by one in their arrival order. Edges cannot be
accessed again once they are discarded.

These three constraints are inherited from existing stud-
ies [16], [17], on which we elaborate as follows. First, the “no
knowledge” constraint naturally holds in many social network
analytics applications, e.g., we normally cannot know how
many connections would be formed in a social network in the
future. Second, the “limited memory” constraint often holds
when (1) we aim to achieve real-time responses (which is only
possible when a limited number of edges are stored and used
for estimating the properties of a graph) and/or (2) the graph
is huge (e.g., it is web-scale and cannot fit in main memory in
many cases). Third, the “single pass” constraint holds when
we have a very high efficiency requirement since scanning a
stream multiple times would be costly.

III. WEIGHTED SAMPLING FRAMEWORKS AND
SUBGRAPH COUNT ESTIMATORS

In this section, we first review an existing weighted sam-
pling framework called GPS [14], which only works for
insertion-only graph streams, in Section III-A. We then present
a straightforward adaption of GPS called GPS-A, which works
similarly as GPS for edge insertions and attaches to each edge
to be deleted a binary tag without practically deleting it, in
Section III-B. GPS-A works for fully-dynamic graph streams
with both insertions and deletions, but is lazy to clear up
the space taken for storing edges that have been deleted in a
reservoir, which results in low accuracy. Finally, we introduce
a carefully designed weighted sampling framework called
weighted sampling with deletions (WSD) for fully-dynamic
graph streams in Section III-C. WSD extends GPS in a smart
and careful way such that it can handle both edge insertions
and deletions and avoid the drawback of GPS-A, i.e., the edges
that have been deleted would not be stored in a reservoir.

A. GPS Framework

Sampling Process. GPS framework follows the priority sam-
pling scheme [21] and aims to sample a fixed-size reservoir of
edges via a single pass such that edges that are deemed more
important are sampled with higher probabilities. Specifically,
when handling an event (+, et) at time step t, it involves
three steps. First, it assigns the edge et an appropriate weight
denoted by w(et), based on the current reservoir R(t−1). For
example, it sets the weight to be the number of subgraph
structures (e.g., triangles) that would be newly formed by et
as an indicator of the importance of et - the larger the number
is, the higher the weight is [14]. We denote by W (e,R) the
function that computes the weight of an edge e based on a
reservoirR. Second, it samples a value u from (0, 1] uniformly
and computes a rank for the edge et, denoted by r(et), based
on w(et) and u. For an edge with a higher weight, its rank
would be likely higher - the randomness here is due to the
sampling process of the value u. We denote by r = f(w) the
function that computes the rank of an edge with the weight
w. For example, f(w) = w/u is used as the rank function in
[14], where u is a random value uniformly sampled in range
(0, 1]. Third, it includes the edge et in the reservoir if either
(1) the reservoir is not full or (2) the rank of et is larger than

the smallest rank of an edge in the reservoir (in this case the
edge with the smallest rank in the reservoir would be dropped
due to the capacity limit of the reservoir); otherwise, it does
not include the edge et in the reservoir. For this step, it uses
a minimum priority queue with the size equal to M and the
keys to be the ranks of edges in the queue.

With GPS, at the end of time step t, for each edge e that
has been inserted, the probability that edge e is included in the
reservoir, i.e., R(t), is equal to the probability that e’s rank,
i.e., r(e), is larger than the (M + 1)th largest rank among
those of edges that have been inserted (including e), which
we denote by rM+1. For t ≤M , we define rM+1 to be equal
to 0. Specifically, we have the following equation.

P[e ∈ R(t)] = P[r(e) > rM+1] (1)

Note that this probability depends on the rank function. For
example in [14], r = f(w) = w/u, then P[r > rM+1] =
min{1, w/rM+1}. The above equation has been proven
in [14]. Here, we provide some intuitive explanations. For
t ≤M , each edge that has been inserted would be included in
the reservoir for sure, and thus the equation holds. For t > M ,
the reservoir stores those edges with the M th largest ranks,
and thus the probability that an edge to be included in the
reservoir should be equal to the probability that its rank is
larger than the (M + 1)th largest rank of the edges that have
been inserted.

Estimator and Analysis. It has been proven in [14] that the
probability that a set of edges E = {e1, · · · , e|E|} (|E| ≤M)
is included in the reservoir R at the end of time t is as follows.

P[E ⊂ R] =
∏
e∈E

P[e ∈ R] =
∏
e∈E

P[r(e) > rM+1] (2)

where rM+1 is observed at t. Let J = {ei1 , ei2 , · · · , ei|H|}
be a subgraph pattern formed at time ta(J). Note that ta(J) is
the time at which the last edge of J appears, i.e., ta(J) = i|H|.
We define a random variable XJ

GPS for J as follows.

XJ
GPS =

∏
e∈J\ei|H|

I(e ∈ R)
P[r(e) > rM+1]

(3)

where I(·) is an indicator function, and rM+1 and R are the
(M + 1)th largest rank and the reservoir observed just after
time ta(J)−1. We define an estimator of the count of subgraph
structures at any time t, denoted by c

(t)
GPS, by the following

equation.
c
(t)
GPS =

∑
J∈A(t)

XJ
GPS (4)

where A(t) is set of subgraphs which are isomorphic to H and
have been added to the graph G(t) by time t. In [14], it has
been shown that the above estimator c(t)GPS is unbiased.

Theorem 1 (Unbiasedness of the GPS estimator [14]). Given
the graph stream S, which only consists of edge insertion
events, and M ≥ |H|, ∀t, we have

E[c(t)GPS] = |A(t)| = |J (t)|. (5)

Inapplicability of GPS for Fully Dynamic Graph Streams.
Unfortunately, GPS cannot be applied to fully dynamic graph
streams, which involve both edge insertions and edge dele-
tions. The reason is as follows. The correctness of GPS relies
on the fact it guarantees that the edges with equal weights
would be included in the reservoir with the equal probabilities
(as shown in Eq. (1)). However, this would no longer be
guaranteed when GPS is applied to fully dynamic graph
streams directly. To illustrate, consider a scenario below.

Example 1. Consider an edge stream where (1) all edges are
assigned with equal weights, (2) at time t (t > M + 1) the
first event of an edge deletion, i.e., (−, et), happens, and (3)
at time t′ = t+1, an event of edge insertion (+, et′) happens.
Let p and p′ be the probability that an edge is included in
the reservoir at time t and t′, respectively. Obviously, we have
0 < p′ ≤ p < 1 since the probability that an edge is included
in the reservoir cannot be increasing. Note that probabilities p
and p′ are shared by all edges since they have equal weights.
Let p′′ be the probability that the edge et′ is inserted into
the reservoir when the reservoir is full at time t′. Note that
p′′ is different from p′. We then deduce that for edge et′ , the
probability that it is included in the reservoir should be equal
to p · 1+ (1− p) · p′′. For the term p · 1, it corresponds to the
case that et has been included in the reservoir and then deleted
from the reservoir at time t (and thus the probability for this
case is equal to p), and in this case, et′ would be included in
the reservoir for sure (i.e., with the probability 1) since (1) the
reservoir would be not full when inserting et′ , and (2) GPS
would unconditionally include an edge when the reservoir is
not full. For the term (1−p)·p′′, it corresponds to the case that
et has not been included in the reservoir at time t (and thus
the probability for this case is equal to (1 − p)), and in this
case, et′ would be included in the reservoir with probability
p′′ (by definition of p′′). In conclusion, the probability that et′
would be included in the reservoir at time t′ is larger than
that for other edges since p · 1+(1−p) ·p′′ > p ≥ p′ (though
all edges are assigned with equal weights), which implies that
GPS would fail in this scenario.

B. GPS-A Framework

Sampling Process. In GPS-A, the sampling process is exactly
the same as that of GPS except that when a deletion event
happens on an edge in the reservoir, we only attach a “DEL”
tag to the edge, but we do not remove the edge from the
reservoir. Equivalently speaking, we ignore the deletion oper-
ations during the sampling process first (by attaching the tags
to edges only), and when constructing the estimator, we would
neglect those edges with the tags. In this way, the probabilities
of including the edges with equal weights in the reservoir
would be equal, in the same way as GPS. The drawback of
GPS-A is that some space of the reservoir, which is taken by
the edges with the “DEL” tags and can be used for including
other edges otherwise, would be wasted.

Estimator and Analysis. Since GPS-A simply attaches a tag
to each of the deleted edges, Eq. (2) also holds for GPS-A.
We denote by Rtag the set of edges with the “DEL” tags in
the reservoir R. Let J = {ei1 , ei2 , · · · , ei|H|} be a subgraph
formed at time ta(J). Note that ta(J) is the time at which the
last edge of J appears, i.e., ta(J) = i|H|. We define a random
variable XJ

GPS-A for J as follows.

XJ
GPS-A =

∏
e∈J\ei|H|

I(e ∈ R \ Rtag)

P[r(e) > rM+1]
(6)

where I(·) is an indicator function, R and rM+1 are the
reservoir and the (M + 1)th largest rank of an edge among
those that have appeared, as observed just after time ta(J)−1.
Assume that a subgraph J is destroyed at time td(J) when a
deletion event happens on an edge ex of J . We define another
random variable Y J

GPS-A for J as follows.

Y J
GPS-A =

∏
e∈J\ex

I(e ∈ R \ Rtag)

P[r(e) > rM+1]
(7)

where R and rM+1 are the reservoir and the (M + 1)th

largest rank of an edge among those that have appeared, as
observed just after time td(J)−1. Based on these two subgraph
estimators, we define an estimator of the count of subgraph
structures at any time t, denoted by c(t)GPS-A, as follows.

c
(t)
GPS-A =

∑
J∈A(t)

XJ
GPS-A −

∑
J∈D(t)

Y J
GPS-A (8)

where A(t) (resp. D(t)) is set of subgraphs which are isomor-
phic to H and have been added to (resp. deleted from) the
graph G(t) by time t.

Theorem 2 (Unbiasedness of the subgraph count estimator of
GPS-A). Given the graph stream S and M ≥ |H|, ∀t, we
have

E[c(t)GPS-A] = |A(t)| − |D(t)| = |J (t)|. (9)

The unbiasedness of c(t)GPS-A can be verified based on Eq. (2).
Detailed proof can be found in Appendix A.

Theorem 3 (Complexities of GPS-A). The time and space
complexity of GPS-A is O((|A| + |D|) · logM · γ(M)) and
O(M), respectively, where |A| (resp. |D|) is the number of
insertion (resp. deletion) events in the stream, M is the max-
imum size of the reservoir, and γ(M) is the time complexity
of enumerating the subgraphs formed by the sampled edges.

Proof. The time complexity is as follows. Consider an event
of inserting an edge e = (u, v). Finding the subgraphs formed
by e and some sampled edges would cost γ(M). For example,
for triangle counting, γ(M) = O(|N (u)|+ |N (v)|) = O(M)
(which corresponds to the cost of computing the intersection
between N (u) and N (v)), where N (u) (resp. N (v)) is the
set of the neighbors of u (resp. v) in the sampled graph. Then,
after calculating e’s weight and rank, it takes O(logM) time
to add the edge into a priority queue if it is included in the
reservoir. Consider an event of edge deletion. Similarly, finding

Algorithm 1: WSD Framework

Input: An edge event stream S = {s(1), s(2), · · · }.
Output: A reservoir R of sampled items.

1 Let R be a min-priority queue with the maximum size M
2 R← Φ, τp ← 0, τq ← 0
3 foreach (op, et) ∈ S do
4 if op = + then
5 insert(et)
6 else
7 delete(et)

8 function insert(e) // Case 1 & Case 2
9 w(e)←W (e,R)

10 r(e)← f(w(e))
11 if |R| < M then
12 if r(e) > τp then // Case 1.1
13 R← R∪ e
14 else
15 em ← the edge with the minimum rank in R
16 τp ← r(em)
17 if r(e) > τp then // Case 2.1
18 R← (R \ em) ∪ e
19 τq ← τp
20 else if r(e) > τq then // Case 2.2
21 τq ← r(e)

22 function delete(e) // Case 3
23 if e ∈ R then
24 R ← R \ e

the subgraphs that are destroyed with this edge deletion would
cost γ(M). Then, we need to identify the position of the edge
in the reservoir and assign it the tag if it is sampled, which
costs O(logM). Thus, the total time cost is O((|A| + |D|) ·
logM · γ(M)). The space complexity is O(M) since we can
store at most M edges in the reservoir.

Drawbacks of GPS-A. As mentioned before, GPS-A has an
intrinsic drawback, i.e., those edges that have been included in
the reservoir and then deleted would occupy some of storage
of the reservoir without any benefits (for estimating the count
of the subgraph structures). As the sampling process goes on,
the reservoir would become smaller and smaller practically,
which would result in low accuracy. Furthermore, it requires
some extra space for storing the “DEL” tags.

C. WSD Framework

Sampling Process. In WSD, we also use a min-priority queue
with a fixed size of M for storing the sampled edges. To
avoid the drawbacks of GPS-A, when the deletion of an edge
happens, we directly remove the edge from the reservoir if it
exists in the reservoir. To ensure the correctness, we maintain
two variables, namely τp and τq , throughout the sampling
process.

• τp. We use it as a rank threshold such that for each
insertion event (+, et) at time t, we sample edge et only
if et’s rank is larger than τp.

• τq . It is a rank value for computing the probability with
which an edge is sampled to the reservoir at the end of
time t.

We maintain τq and τp appropriately such that at the end
of time t, for each edge e that has been inserted by time t
(inclusively) and not deleted yet, the probability e is sampled
in the reservoir is equal to the probability that e’s rank is larger
than τq , i.e.,

P[e ∈ R(t)] = P[r(e) > τq] (10)

Similarly, this probability depends on the rank function. If we
adopt r = f(w) = w/u, then P[r > τq] = min{1, w/τq}. We
will prove Eq. (10) formally later in Lemma 1. We note that
τp (resp. τq) is not always equal to the M th (resp. (M +1)th)
rank of those edges that have been inserted, which reflects one
of the differences between WSD and GPS-A.

Specifically, we present the sampling process of WSD as
follows. First, we initialize the queue to be empty and both
variables τp and τq to be 0. Then, we present the sampling
process in the following cases.
• Case 1: For an event (+, et) with a non-full reservoir.

We (1) assign et a weight, w(et), based on the reservoir
and (2) compute the rank of edge et, i.e., r(et), based on
w(et) and a random value u randomly sampled in (0, 1].

– Case 1.1: r(et) > τp. We include edge et in the
reservoir.

– Case 1.2: r(et) ≤ τp. We discard edge et.
• Case 2: For an event (+, et) with a full reservoir. We

do (1) and (2) as in Case 1, and (3) update τp to be
minimum rank of the edges in the reservoir.

– Case 2.1: r(et) > τp. We exclude the edge with the
minimum rank, include edge et in the reservoir, and
update τq to be τp.

– Case 2.2: τq < r(et) ≤ τp. We discard edge et, and
update τq to be r(et).

– Case 2.3: r(et) ≤ τq . We discard the edge et.
• Case 3: For an event (−, et). We drop et from the

reservoir if et has been sampled before and do nothing
otherwise.

The pseudo-code of WSD is presented in Algorithm 1. We
explain some of the intuitions behind the sampling process of
WSD. First, in Case 1, we do not update τp or τq , which we
explain as follows. In this case, the reservoir is not full, and
thus no edges that have been included in the reservoir would
be dropped. This implies that the probabilities of including
these edges in the reservoir would not be changed, which
further implies that τq should be retained since we aim to use
τq for computing these probabilities, as shown in Eq. (10).
Correspondingly, the rank threshold τp which has been used
for sampling previous edges should be retained.

To see this, we consider the same scenario described in
Section III-A. Let p be the probability that an edge is included
in the reservoir at time t. Let τ be the value of τp observed at
t− 1. Let τ ′ (resp. τ ′′) be the value of τp observed at t′ if the

reservoir is non-full (resp. full). Let p(τ), p(τ ′) and p(τ ′′) be
the probabilities that an edge’s rank is no less than τ , τ ′ and
τ ′′, respectively. Consider an edge e before et′ . The probability
that e is included in the reservoir at t′ is p·p(τ)+(1−p)·p(τ ′′).
For the term p · p(τ), it corresponds to case that et has been
included in the reservoir at t (which has the probability of
p), and p(τ) corresponds to the conditional probability that e
is in the reservoir at t − 1 (in this case, e would be in the
reservoir at t′ for sure since the reservoir is not full at t′).
For the term (1 − p) · p(τ ′′), it corresponds the case that et
has not been included in the reservoir at t (which has the
probability of (1− p), and in this case the reservoir is full at
the beginning of t′ and p(τ ′′) corresponds to the conditional
probability that e is in the reservoir at t′. Consider the edge
et′ . The probability that et′ is included in the reservoir at t′

is p · p(τ ′) + (1− p) · p(τ ′′), which can be verified similarly.
In order to guarantee that the probabilities for e and et′ to be
included are equal, it is necessary to have τ ′ = τ (i.e., τp is
retained).

Second, in Case 2, we update τp to be the minimum rank
of edges in the reservoir since the reservoir is full and for
any edge et to be included in the reservoir, its rank r(et)
should be larger than the minimum rank of existing edges in
the reservoir. In addition, depending on the rank of et, we
update the reservoir and τp correspondingly. In particular, in
Case 2.1 and Case 2.2, we update τp appropriately so as to
make sure Eq. (10) holds.

Third, in Case 3, we do not update τp or τq since after
an edge is deleted, the probability that a remaining edge that
has been inserted is included in the reservoir would not be
affected.

Lemma 1. In WSD, at the end of a time t, the probability
that an edge e is sampled in the reservoir, i.e., P[e ∈ R(t)], is
equal to P[r(e) > τq], where τq is observed at time t.

Proof. We prove this lemma by deduction. When t ≤M , τq is
always 0. Each edge would be included into reservoir for sure,
which implies that Eq. (10) holds. Assume that Eq. (10) holds
for t = k (k ≥M), i.e., P[e ∈ R(k)] = P[r(e) > τ (k)q], where
R(k) and τ (k)q correspond to R and τq as observed at time k,
respectively. Consider t = k+1. There are three possible cases
of how the reservoir may change (cases as defined before).

• Case 1. Consider an edge e (before ek+1). Since (1) no
edges that have been included in the reservoir would be
dropped, which implies that the probabilities of including
these edges in the reservoir would not be changed, and
(2) we hold τq , we have P[e ∈ R(k+1)] = P[e ∈ R(k)] =
P[r(e) > τ (k)q] = P[r(e) > τ (k+1)

q]. Consider ek+1. Since
we hold τp, we would sample ek+1 with the exactly the
same probability as we sample those edges before ek+1

with equal weights. Therefore, Eq. (10) holds.
• Case 2. Consider ek+1. We compare r(ek+1) with τp,

which corresponds to the minimum rank of the edges in
R(k). In case that ek+1 is included into the reservoir,
we update τ (k+1)

q to τp. Therefore, at the end of time

t = k + 1, P[ek+1 ∈ R(k+1)] = P[r(ek+1) > τp] =
P[r(ek+1) > τ (k+1)

q]. Consider an edge e (before ek+1).
It can be verified that at the end of time t, e is included
in the reservoir only if its rank is larger than τq , i.e.,
P[e ∈ R(k+1)] = P[r(e) > τq]. Thus, Eq. (10) holds.

• Case 3. Since (1) the deletion of ek+1 would not
affect other edges’ probabilities, and (2) we do not
update τq . Consider an edge e (before ek+1). We have
P[e ∈ R(k+1)] = P[e ∈ R(k)] = P[r(e) > τ (k)q] =

P[r(e) > τ (k+1)
q]. That is, Eq. (10) holds.

Therefore, ∀t, Eq (10) holds.

Estimator and Analysis. Let J = {ei1 , ei2 , · · · , ei|H|} be a
subgraph formed at time ta(J). Note that ta(J) is the time at
which the last edge of J appears, i.e., ta(J) = i|H|. We define
a random variable XJ

WSD for J as follows.

XJ
WSD =

∏
e∈J\ei|H|

I(e ∈ R)
P[r(e) > τq]

(11)

where R and τq are the reservoir and the rank value, as
observed just after time ta(J)− 1. Assume that a subgraph J
is destroyed at time td(J) when a deletion event happens on
an edge ex of J . We define another random variable Y J

WSD for
J as follows.

Y J
WSD =

∏
e∈J\ex

I(e ∈ R)
P[r(e) > τq]

(12)

where R and τq are the reservoir and the rank value, as
observed just after time td(J)−1. Based on these two subgraph
estimators, we define an estimator of the count of subgraph
structures at any time t as follows.

c
(t)
WSD =

∑
J∈A(t)

XJ
WSD −

∑
J∈D(t)

Y J
WSD (13)

where A(t) (resp. D(t)) is set of subgraphs which are isomor-
phic to H and have been added to (resp. deleted from) the
graph G(t) by time t.

Theorem 4 (Unbiasedness of the subgraph count estimator of
WSD). Given the graph stream S and M ≥ |H|, ∀t, we have

E[c(t)WSD] = |J (t)|. (14)

We provide a sketch of the proof here and put the details
in Appendix B. We first prove by deduction that at the end
of time t for all cases, the probability that a set of edges
E = {e1, · · · , e|E|} (|E| ≤M) is included in R(t) is

P[E ⊂ R(t)] =
∏
e∈E

P[e ∈ R(t)] =
∏
e∈E

P[r(e) > τq], (15)

where τq is observed at time t. Then, we prove the following
two statements based on Eq (15).

E[XJ
WSD] = 1, E[Y J

WSD] = 1. (16)

Algorithm 2: Subgraph Counting with WSD

Input: An edge event stream S and a subgraph pattern H .
Output: Estimated subgraph count c.

1 Let R be a priority queue with the maximum size M
2 R← Φ, τp ← 0, τq ← 0, c← 0
3 foreach (op, et) ∈ S do
4 H ← {J ⊂ (R∪ et) | et ∈ J, J ∼= H}
5 foreach J ∈ H do
6 if op = + then
7 c← c+

∏
e∈J\et

1

P[r(e) > τq]

8 else
9 c← c−

∏
e∈J\et

1

P[r(e) > τq]

10 if op = + then
11 insert(et)
12 else
13 delete(et)

14 return c

Finally, based on the linearity of expectation, we have

E[c(t)WSD] =
∑

J∈A(t)

E[XJ
WSD]−

∑
J∈D(t)

E[Y J
WSD]

=
∑

J∈A(t)

1−
∑

J∈D(t)

1 = |A(t)| − |D(t)| = |J (t)|.
(17)

Implementation of the estimator. The subgraph counting on
fully dynamic graph streams with WSD is shown in Algo-
rithm 2. We initialize the counter c as 0 at the beginning.
When an edge insertion (resp. deletion) event happens, we
check whether the edge forms some subgraph structures with
the sampled edges. If yes, we add (resp. subtract) the product
of the inverse probabilities of these sampled edges, as defined
in Eq. (11) (resp. Eq. (12)), to (resp. from) the counter. Then
we update the reservoir based on insert (resp. delete)
function defined in Algorithm 1.

Theorem 5 (Complexities of WSD). The time and space
complexity of WSD is O((|A|+|D|)·logM ·γ(M)) and O(M),
respectively, where all notations have the same meanings as
those in Theorem 3.

Proof. They can be verified similarly as those of GPS-A.

Remarks. (1) WSD v.s. GPS-A. While they have the same
time complexity, WSD would run slightly faster than GPS-A
in practice. This is because the reservoir of GPS-A is always
full when t ≥M while the reservoir of WSD could be smaller
than M after some deletion events happen. For subsequent
insertion events, it would take more time to add an edge
to the reservoir of GPS-A than to that of WSD. (2) WSD
v.s. Existing algorithms Triest [16], ThinkD [19] and
WRS [17]. Existing algorithms all have a time complexity of

O((|A|+|D|·M)·γ(M)). Thus, when the number of deletions
satisfies

|D| > logM − 1

M − logM
· |A| ≈ logM

M
· |A|, (18)

WSD would run faster than existing algorithms.

IV. REINFORCEMENT LEARNING BASED WEIGHT
FUNCTION

Recall that in the WSD algorithm, one step is to set the
weight of an edge e when it is inserted given the current
reservoir R. This step is modelled as a weight function
W (e,R). Due to the online nature and the one-pass sampling
setting, the weights cannot be set optimally for optimizing
some objective (e.g., minimizing the variance of the estimator).
A common practice is to set the weights using some heuristics.
For example, one heuristic is to use the number of subgraph
structures that would be newly formed by the new edge as
an indicator of the importance of the edge - the larger the
number is, the higher the weight is [14]. While this heuristic
is intuitive enough, it cannot be adaptive to different datasets
and/or the underlying dynamics of edges. According to our
experimental results, this heuristic based cannot work stably
when the order of edge insertions/deletions is changed.

We observe that whenever an edge is inserted, WSD needs to
decide the weight of the edge. In addition, the weights decided
for different edges would collectively affect the sampling
process (i.e., the probabilities that the edges are sampled).
This naturally triggers us to think of the reinforcement learning
(RL) for this task of deciding the weights during the sampling
process. Note that RL is well known for effectively making
sequential decisions so as to optimize an objective that is
collectively affected by the decisions made at each step [20].
Next, we present our RL based method for this task by
formalizing it as an Markov decision process (MDP) [20] in
Section IV-A and then presenting the algorithm for learning
the policy based on the MDP (which would be then used for
deciding the weights of edges during the sampling process) in
Section IV-B.

A. Weight Function Modeled as an MDP

Let t1, t2, · · · be the time steps, at which the edge insertion
events happen. We define an MDP, which consists of (1) states,
(2) actions, (3) transitions and (4) rewards, as follows.

(1) States. We denote the state at time tk by sk. Intuitively,
the state sk should capture essential information of the edge in
the whole graph G(tk). Since we have no access to the edges
which have not been sampled in the reservoir, we rely on the
edges in the reservoir R and the new edge e. We identify two
types of information, namely the topological information and
the temporal information, for defining the state sk.

To capture the topological information of the new edge e =
(u, v), we take the number of subgraph patterns which are
newly formed by e and some edges sampled in the reservoir,
denoted by |Hk| (which is computed in line 4 of Algorithm 2).
Besides, we take the number of the neighbors of u (resp. v)

in the sampled graph, denoted by |Nk(u)| (resp. |Nk(v)|). We
concatenate these values together and form a vector, denoted
by sgk, that is,

sgk = [|Hk|, |Nk(u)|, |Nk(v)|]. (19)

The rationale of sgk is as follows. The number of the subgraphs
|Hk| indicates the importance of the edge e to some extent
- if the edge e can form more subgraphs in the sampled
graph, it has a larger probability to form more subgraphs
in the complete graph. The numbers of neighbors (|Nk(u)|
and |Nk(v)|) indicate the potential of the edge e for forming
subgraphs in the future. For example, in the example discussed
in Section I, famous people can form more triangles than the
general public since they have more connections with others.
For other subgraphs, similarly, the edges that are adjacent to
more others tend to have higher chance to form subgraphs.

To capture the temporal information of the new edge e =
(u, v), we consider all subgraphs that are formed by the edge
e, i.e., Hk. For each such subgraph, it is associated with an
ordered set of edges, i.e., J = {ei1 , ei2 , · · · , ei|H|}, where
i1 < i2 < · · · < i|H| = tk. Note that ei|H| = e. Then for
each entry j ∈ [1, |H|], we take the maximum value ij among
these |Hk| subgraphs and denote it by vj , that is,

vj = max{ij | eij ∈ J, J ∈ Hk}. (20)

Finally, we concatenate these values vj for j ∈ [1, |H|] and
form a vector, denoted by svk, that is

svk = [v1, v2, · · · , v|H|]. (21)

The rationale of svk is that it provides the temporal information
related to edge e. For example, if the elements of svk are large,
we know that the subgraphs are more likely to be formed
with recent edges, and thus sampling edge e with a larger
probability may help form more subgraphs in the near future.

In summary, we define the state sk to be a (|H| + 3)-
dimension vector, which captures both topological and tem-
poral information, as follows.

sk = [sgk, s
v
k] ∈ R|H|+3. (22)

(2) Actions. We denote the action at time tk by ak. Recall
that at time tk, the state is sk, and we need to assign a weight
for the edge e to represent its importance. Formally, we define
ak as follows.

ak = w (w > 0), (23)

which means we assign a positive real weight w to the edge,
i.e., W (e,R) = w.
(3) Transitions. Let sk be a state and suppose that we take
an action ak = w, which assigns the edge e a weight w. Then
the WSD algorithm would proceed with the weight of e until
a new edge insertion arrives. Then, we arrive a new state and
compute the state sk+1 accordingly.
(4) Rewards. We first define the error between the estimation
and the ground truth at time t, denoted by ε(t), as follows.

ε(t) = |c(t) − |J (t)||, (24)

where c(t) is the value of the subgraph estimation and |J (t)| is
the value of the ground truth of the subgraph counts. Consider
that we take action ak at a state sk and then we arrive at a new
state sk+1. We define the reward associated with this transition
from sk to sk+1, denoted by rk, as follows,

rk = ε(tk)− ε(tk+1), (25)

The intuition is that if the error between the estimation and
the ground truth resulted from the reservoir after processing
the edges between tk and tk+1, i.e., ε(tk+1), is smaller, then
the reward is larger. It is worthy of noting that with the
reward defined as above, the objective of the MDP, which is
to maximize the accumulative rewards, would be equivalent to
that of the subgraph counting problem, which is to minimize
the estimation error. To see this, suppose that we go through
a sequence of states s1, s2, · · · , sN and correspondingly we
receive a sequence of rewards r1, r2, · · · , rN−1. In the case
that the future rewards are not discounted, we have

N−1∑
i=1

ri =

N−1∑
i=1

(ε(ti)− ε(ti+1)) = ε(t1)− ε(tN) = −ε(tN)

(26)
Note that ε(t1) = 0 because at the very beginning, the estima-
tion and the ground truth are both 0, and ε(tN) corresponds
to the error of the subgraph counts at time tN .

B. Policy learning
The core problem of an MDP is to find an optimal policy

for the agent, which corresponds to a function that specifies
the action that the agent should choose in a specific state so
as to maximize the accumulative rewards. In our MDP, the
states are high dimensional vectors, and the actions are in a
continuous domain. Therefore, we adopt DDPG [22], an actor-
critic method, to solve our MDP as it targets the same setting.
Specifically, DDPG maintains two main networks. One is an
actor network µ(s; θ), parameterized by θ, which specifies the
policy by deterministically mapping a state to a specific action,

a = µ(s; θ) = σ(W s+ b) (27)

where θ denotes the parameters {W , b}, and σ denotes the
activation function. The other is a critic network Q(s, a;φ),
parameterized by φ, which approximates the expected accu-
mulative rewards the agent would receive by following any
policy after seeing state s and taking action a.

For the training process, DDPG initializes two main net-
works µ(s; θ) and Q(s, a;φ). It also involves two target
networks µ′(s; θ′) and Q′(s, a;φ′), which are used for cal-
culating the losses for training the main networks. Besides, it
maintains a replay memory, which contains the transitions that
are used for training the network. The training process is as
follows. Consider N experiences sampled uniformly from the
replay memory, i.e., (si, ai, ri, si+1) for i = 1, 2, · · · , N . For
the critic network Q(s, a;φ), it computes the loss using the
Bellman equation [23], i.e.,

L(φ) =
1

N

N∑
i=1

(yi −Q(si, ai;φ))
2 (28)

TABLE I
DATASET STATISTICS.

Category Graph (Train) |E| Graph (Test) |E|

Citation cit-HepTH (HE) 2.67M cit-patent (PT) 16.5M
Community com-DBLP (DB) 1.04M com-youtube (YT) 2.99M

Social soc-Texas84 (TX) 1.59M soc-twitter (TW) 265M
Web web-Stanford (SF) 2.31M web-google (GL) 5.10M

yi = ri + γ ·Q′(si+1, µ
′(si+1; θ

′);φ′) (29)

where γ is a discount factor. For the actor network µ(s; θ), it
computes a loss as the negation of the expected return, i.e.,

L(θ) = − 1

N

N∑
i=1

Q(si, µ(si; θ);φ) (30)

Finally, it updates the parameters θ and φ by gradient descent.

V. EXPERIMENTS

A. Experimental Setup

Datasets. We use both real datasets and synthetic datasets in
our experiments. We use four types of real graphs, including
citation graphs, web graphs, community networks and online
social networks, which are collected from an open-source
network repository [24], [25]. For each graph in a dataset,
we ignore the directions, weights and self-loops (if any).
There are two ways to generate deletions for constructing fully
dynamic graph streams, namely (1) massive deletion [16] and
(2) light deletion [17], respectively. We generate fully dynamic
graph streams under the massive deletion scenario as follows.
All edges are inserted in their natural order but each edge
insertion is followed with probability α by a massive deletion
event where each edge currently in the graph is deleted with
probability βm independently. We generate fully dynamic
graph streams under the light deletion scenario as follows.
All edges are inserted in their natural order and each edge
has probability βl to be deleted, where the deletion is located
at a random position after the corresponding edge insertion.
Following the existing study [17], we generate some synthetic
datasets by Forest Fire (FF) [26] model G(n, p), in which n
represents the number of vertices and p controls the density of
the graph. Specifically, vertices arrive one at a time and form
edges with some subset of the earlier vertices. Since the graph
G generated by FF maintains the structural properties (heavy-
tailed degree distributions, communities, etc.) and temporal
properties (densification, etc.) of the real graphs, we transform
G into an edge stream in their natural order. To ensure the
synthetic datasets have similar scales as the real graphs, we
set n = 2M and p = 0.5 based on empirical results.

Baselines and Metrics. We consider two instances of the WSD
algorithm, which adopt two different weight functions. The
first one uses the learned policy via reinforcement learning,
which we denote by WSD-L. The second one uses a weight
function defined with an existing heuristic [14], which we
denote by WSD-H. Specifically, in WSD-H, W (e,R) = 9 ·
|H(e)| + 1 [14], where |H(e)| is the number of subgraphs
completed by edge e and some other edges in R. We compare

our WSD algorithms with three existing algorithms, namely
Triest [16], ThinkD [19] and WRS [17]. We also com-
pare our algorithm with the adapted framework GPS-A. All
algorithms are single-pass algorithms that estimate the triangle
counts with a fixed budget for storing sampled edges. For the
subgraph patterns, we first choose the triangle (3-clique) and
the wedge (length-2 paths) by following the existing study [14]
since these are the two mostly used subgraph structures. In
addition, we also consider a dense subgraph pattern, i.e., 4-
clique, to verify that our algorithm can also work well on some
large subgraph structures. We compare different algorithms by
using the following metrics.
• Absolute Relative Error (ARE). Let X be the ground

truth of the number of subgraphs at the end of the input
streams and X̂ be an estimated value of X . The absolute

relative error is
|X̂ −X|

X
× 100%.

• Mean Absolute Relative Error (MARE). Let Xt be
the ground truth of the number of subgraphs by t and X̂t

be an estimated value of Xt. The mean absolute relative

error is
1

T

T∑
i=1

|X̂i −Xi|
Xi

× 100%.

Due to the random nature of all algorithms, for all experiments,
given a setting, we report the mean over 100 times of sampling.

Policy Learning. There are two neural networks used in
WSD-L method. The actor network µ(s; θ) involves one input
layer and one output layer, and uses ReLU function as the ac-
tivation function. We add one to the output to avoid assigning
zero weights. The critic network Q(s, a;φ) involves one input
layer, one hidden layer and one output layer, where the hidden
layer involves 10 neurons and uses ReLU as the activation
function. To avoid data scale issues, batch normalization is
employed before the activation. For each graph in a real
dataset, we use another real graph under the same type for
training, as specified in Table I, since they may have some
similar structural and temporal properties. For each graph in
the synthetic dataset, we generate a graph G(n = 2M, p = 0.5)
by FF model for training. Under massive (resp. light) deletion
scenario, we generate 10 different edge event streams with
the same parameters α and βm (resp. βl) and use these
generated graphs for training based on empirical findings.
Basically, using fewer streams would suffer from the over-
fitting problem and using more would incur larger training
cost without improving the quality of the model much. We
set the maximum size of the replay buffer as 10,000 and
the parameter N as 128. We train the networks for 1,000
iterations. In addition, we use the Adam stochastic gradient
descent with learning rate of 0.001. For the reward discount
γ, we set it as 0.99.

Evaluation Platform. All methods for comparison are im-
plemented in C++. Note that we first implement and train
WSD-L using Pytorch (Python 3.6). Then we hardcode the
parameters θ = {W , b} in C++ to improve the efficiency.
All experiments are conducted on a machine with Intel Core
i9-10940X CPU and a single Nvidia GeForce 2080Ti GPU.

TABLE II
RESULTS OF COUNTING WEDGES UNDER THE MASSIVE DELETION

SCENARIO, WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000, α = 3, 000, 000−1 AND βm = 0.8.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 0.046 0.051 0.058 0.077 0.071 0.062
com-YT 0.011 0.013 0.061 0.125 0.104 0.092
soc-TW 0.243 0.411 0.434 0.627 0.572 0.483
web-GL 0.041 0.044 0.117 0.815 0.670 0.366
synthetic 0.107 0.148 0.192 0.564 0.324 0.231

Mean Absolute Relative Error (%)

cit-PT 0.036 0.039 0.072 0.104 0.067 0.054
com-YT 0.007 0.008 0.057 0.061 0.054 0.044
soc-TW 0.306 0.451 0.688 1.310 1.003 0.894
web-GL 0.039 0.040 0.078 0.771 0.253 0.101
synthetic 0.213 0.312 0.401 0.646 0.769 0.443

Running Time (s)

cit-PT 65.9 62.4 67.1 186.7 188.0 191.9
com-YT 9.6 9.3 9.9 7.8 7.9 8.1
soc-TW 1,940.7 1,832.2 2,981.9 4,392.3 4,417.3 4,592.1
web-GL 13.7 13.2 14.3 14.1 14.6 14.8
synthetic 43.3 42.9 45.2 262.7 263.2 267.9

TABLE III
RESULTS OF COUNTING TRIANGLES UNDER THE MASSIVE DELETION

SCENARIO, WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000, α = 3, 000, 000−1 AND βm = 0.8.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 0.075 0.083 0.106 0.175 0.143 0.142
com-YT 0.048 0.053 0.073 0.188 0.109 0.067
soc-TW 0.404 0.712 0.893 1.214 1.056 0.952
web-GL 0.031 0.037 0.734 0.197 0.195 0.136

synthetic 2.507 3.124 3.612 4.293 3.318 3.143

Mean Absolute Relative Error (%)

cit-PT 0.059 0.065 0.083 0.113 0.089 0.079
com-YT 0.052 0.064 0.141 0.236 0.144 0.204
soc-TW 0.513 0.748 0.946 1.433 1.341 1.005
web-GL 0.054 0.088 0.207 1.024 0.809 0.319

synthetic 3.614 4.278 4.662 6.691 5.643 4.817

Running Time (s)

cit-PT 70.4 66.7 71.5 189.5 193.1 197.4
com-YT 10.2 9.9 10.6 8.0 8.2 8.3
soc-TW 2,144.4 2,091.9 3,329.3 4,810.8 4,839.3 5,023.5
web-GL 16.1 14.9 17.3 16.9 17.5 18.4

synthetic 49.3 48.1 53.7 260.2 262.1 265.0

Implementation codes and datasets can be found via this link
https://github.com/wangkaixin219/WSD/.

B. Experimental Results

(1) Evaluation on real and synthetic datasets. Table II and
Table III show the results of counting triangles and wedges un-
der massive deletion scenario. The result of counting 4-cliques
and those under the light deletion show similar clues and are
thus presented in Appendix C. Consider the effectiveness. The
results meet our expectations that weighted sampling works
better than uniform sampling on all datasets and under two
metrics. In addition, because WSD-L uses RL to adaptively
capture the importance of the edges, it further improves the
effectiveness of WSD-H which applies a heuristic based weight
function. Consider the efficiency. As analyzed in Section III-C,
for all datasets except com-YT, we observe that the number

0.01 0.05 0.1 0.5 1 5
Stream size |S| (billion)

10−2

10−1

100

AR
E
(%

)

WSD-L
WSD-H

(a) ARE (massive deletion scenario)

0.01 0.05 0.1 0.5 1 5
Stream size |S| (billion)

102

103

104

Ti
m
e
(s
)

WSD-L
WSD-H

(b) Time (massive deletion scenario)

Fig. 1. Results on scalability test of counting triangles, reporting the ARE and
running time of WSD-L and WSD-H with different stream sizes (synthetic).

of generated deletions satisfies |D| > (logM)/M · |A|, where
(logM)/M ≈ 3 × 10−5, and thus our proposed algorithms
run much faster than existing algorithms. In addition, because
WSD-L needs to calculate a state when an insertion event
comes, it runs slightly slower than WSD-H. Compared among
different subgraph patterns, the ARE and MARE become
larger as the size of the subgraph pattern increases. The
reasons are as follows. First, when the size of the subgraph
pattern increases, it becomes more difficult for a new edge
to form some subgraph structures with the sampled edges.
For example, when an edge event comes, a 4-clique could be
formed only if the other 5 edges have been sampled while a
wedge would be formed if the other edge has been sampled.
Also, the inclusion probability of a large subgraph pattern is
usually much smaller than that of a small subgraph pattern,
which means a higher variance would be produced when
counting larger subgraph structures.
(2) Scalability test. To study the scalability of WSD-L and
WSD-H, we generate a series of graphs with different sizes.
To be specific, we first use FF model G(n = 1B, p = 0.5) to
generate the whole graph with slightly more than 5B edges
(5.07 billion edges). We then create the edge event stream by
adding deletions under massive and light deletion scenarios.
Finally, we generate graphs with different sizes by picking the
first 10M, 50M, 100M, 500M, 1B and 5B edge events. We set
M as 1M following [14]. The results under massive deletion
scenario are shown in Figure 1. Consider the effectiveness.
We observe that as the size of the stream increases, the ARE
results also increases. The reason is that for all sizes of the
streams, we use 1M edges as the sample. Therefore, the
estimation results on a stream with more edge events would
be less accurate. Still, we can provide a relatively accurate
estimation (< 1% error) when we sample only 0.02% edges.
Consider the efficiency. The running time of WSD is linear to
the size of the stream, which is consistent with our theoretical
analysis of the time complexity of WSD. Moreover, we also
collect the results of the average time of updating the reservoir
when an edge event occurs. The average processing time of
each edge is around 3.2µs.
(3) Impact of the ordering of the stream. We follow [16]
to generate different orderings of the stream. The default
setting is the natural ordering of a graph. We also consider
the uniform-at-random (UAR) ordering and the random BFS
(RBFS) ordering. The UAR ordering is to add edges in the

https://github.com/wangkaixin219/WSD/

Natural UAR RBFS
0.00

0.05

0.10

0.15

0.20

AR
E

(%
)

WSD-L
WSD-H

GPS-A
WRS

ThinkD
Triest

(a) Ordering of the stream (cit-PT)

1 2 3 4 5
M (%|E|)

0.00

0.05

0.10

0.15

AR
E

(%
)

WSD-L
WSD-H
GPS-A
WRS
ThinkD
Triest

(b) Max. reservoir size M (cit-PT)

0.5 1.0 2.0 4.0 8.0
n (M)

5

10

15

20

25

30

35

40

Ti
m
e
(h
)

0

1

2

3

4

5

6

7

AR
E
(%

)

Train Time
ARE

(c) Training size (synthetic) (d) Relationship (cit-PT)

Fig. 2. Results of counting triangles under massive deletion scenario: (a) the ARE under different orderings of the stream; (b) the ARE under different M ’s;
(c) the training time and ARE under different sizes of training graphs; (d) the relationship between the weights and numbers of triangles.

order of a permutation of the natural order while the RBFS
ordering is to start from a random vertex and add edges in the
order of a BFS exploration of the graph. For example, in a
social network, when a celebrity registers an account in a new
platform, his/her followers would likely create connections
(i.e., edge insertions) to him/her in a very short time, as BFS
does. Figure 2(a) shows the ARE results of counting triangles
on cit-PT under massive deletion scenario. We observe that
WSD-L algorithm provides estimations with the smallest errors
across different settings of ordering. These results show the
robustness of our WSD-L algorithm which is due to its data-
driven nature and adaptability to various underlying dynamics.

(4) Effects of M . We change the maximum reservoir size from
1%×|E| to 5%×|E|. Figure 2(b) shows the results of counting
triangles on cit-PT under the massive deletion scenario. The
MARE results and the results of counting triangles on other
datasets show the similar trends, thus omitted. Under both
scenarios, we set the probability parameters same as those
used in previous experiments. Our proposed algorithms con-
sistently outperform other existing algorithms. Our algorithm
can provide an accurate estimation (< 0.01% error) when we
sample only 4% edges.

TABLE IV
TRAINING TIME (HOURS) OF COUNTING TRIANGLES (4) AND WEDGES
(∧) ON FOUR REAL DATASETS UNDER MASSIVE DELETION SCENARIO.

Graph cit-HE com-DB soc-TX web-SF

Pattern H 4 ∧ 4 ∧ 4 ∧ 4 ∧

Time (h) 16.7 15.9 8.2 7.6 10.6 9.3 13.5 12.1

(5) Training. We first report the training time of counting
triangles and wedges on four datasets under massive deletion
scenarios in Table IV. We note that it normally takes several
hours to train a satisfactory model. Then we study how the
size of training graphs affects the model performance. We
generate different graphs G(n, p = 0.5) by FF model with
n ∈ {0.5M, 1M, 2M, 4M, 8M} for training. We then generate
a graph G(n = 10M, p = 0.5) by FF model, which contains
around 50M edges, for testing. The results of counting trian-
gles under massive deletion scenario are shown in Figure 2(c).
We observe that as the the size of graph used for training grows
exponentially, the training time also increases exponentially,
but the effectiveness improves slightly only. Therefore, we
learn the weight function on the graphs with size around 10%-

20% of those of the testing graphs to balance the effectiveness
and the training costs.

(6) Relationship between an edge’s weight in WSD-L and
its associated subgraph counts. We reveal the relationship by
collecting the statistics of (1) each edge’s weight and (2) the
number of triangles, which contain the edge and are formed by
the end of the stream. Since an edge’s weight depends on those
edges that have been sampled in the reservoir when it appears,
this value corresponds to a random variable. Therefore, we run
WSD-L 100 times, and for an edge, we report the mean of its
weights. Figure 2(d) shows the results of counting triangles on
cit-PT under massive deletion scenario. We observe the trend
that the larger an edge’s weight is, the more triangles the edge
is involved in, which is well aligned with the intuition behind
Eq. (21).

TABLE V
RESULTS ON TRANSFERABILITY OF WSD-L UNDER MASSIVE SCENARIO.

(Training) cit-HE com-DB soc-TX web-SF synthetic WSD-H

cit-PT 0.076 0.080 0.077 0.078 0.081 0.083
com-YT 0.049 0.048 0.053 0.052 0.050 0.053
soc-TW 0.653 0.567 0.451 0.510 0.687 0.711
web-GL 0.033 0.036 0.035 0.032 0.034 0.037

(7) Transferability of WSD-L. We test the transferability of
WSD-L by applying the policy (i.e., the weight function),
which has been trained on a graph under a certain category,
to a graph under another category. To ensure fairness of
comparison, we use the first 1M edges of the training graph
in each dataset to train the model. Table V shows the ARE
results of counting triangles. As expected, the model works
the best on a graph under the same category as the training
dataset and has its performance degraded to some extent when
being used on a graph under a different category. In addition,
the model, when used on a graph under a different category
from the one of the training dataset, still works better than
the heuristic-based method, which verifies the transferability
of our method.

(8) Evaluation on insertion-only scenario. We evaluate a
special case of the fully dynamic graph streams, in which it
only consists of edge insertion events. Under the insertion-
only scenario, WSD-H and GPS-A would be equivalent to
GPS. We also compare Triest, ThinkD and WRS under this
setting. The results are presented in Table VI. Consider the ef-
fectiveness. Two weight-sensitive sampling schemes (WSD-L
and GPS) outperform other algorithms. Due to the data-

TABLE VI
EXPERIMENTAL RESULTS OF COUNTING TRIANGLES ON CIT-PT UNDER

INSERTION-ONLY SCENARIO.

WSD-L GPS Triest ThinkD WRS

ARE (%) 0.30 0.34 0.85 0.41 0.36
MARE (%) 0.14 0.20 0.66 0.24 0.22

Time (s) 49.6 48.5 39.3 40.2 41.1

driven fashion of WSD-L, it further improves the performance.
Consider the efficiency. For WSD-L and GPS, it would cost
O(logM) (worst case) to maintain the min-priority queue
when an edge is inserted while for the other three algorithms,
it would cost O(1) to update the reservoir. Therefore, WSD-L
and GPS run slightly slower.

VI. RELATED WORK

Subgraph Counting. Subgraph counting (e.g., triangle count-
ing) in a streaming graph is a fundamental problem in graph
analysis and has been extensively studied. For example, many
studies [16], [27], [14], [28], [19], [3], [29], [17], [30], [2],
[31], [32], [33], [34], [35] propose algorithms to estimate
triangle counts in a streaming graph. Among these studies,
some studies [16], [27], [14], [28], [19], [3], [29], [17] assume
some space constraint for sampled edges while others [30],
[2], [31], [32], [33], [34], [35] assume no constraint on the
number of sampled edges. Our work follows the settings in
[16], [17], [3], [18], [19], which target fully dynamic graph
steams and assume a constraint on the number of sampled
edges. These existing methods all adopt the random pairing
technique [36], which extends the standard reservoir sampling
method to support deletions, where each deletion from the
stream is “paired with” (or compensated by) a subsequent
insertion. Specifically, Triest [16] is the first method to
estimate the triangle count in fully graph streams with random
pairing, where the estimation is only updated when an edge
is sampled. Later, [3], [19] extend [16] and propose ThinkD.
Instead of simply discarding the unsampled edges as Triest
does, ThinkD first updates the estimation and then updates
the sampled graph, which results in a smaller variance. More
recently, WRS [17], [18] is proposed to further exploit the
temporal locality information. It divides the storage budget
into two parts, namely waiting room and reservoir, and stores
the most recent edges in the waiting room unconditionally
and the sampled edges in the reservoir. As explained in
Section I, these existing studies [16], [3], [17], [19], [18] all
sample the edges with uniform probabilities, e.g., each edge is
treated equally for sampling, which would likely result in sub-
optimal samples. In addition, there are some other studies on
the problem of counting subgraphs in a static graph [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], which is different from the setting targeted
in our work. It is worth noting that there are several recent
studies, which develop learning-based algorithms for subgraph
counting problem [53], [54], [55], [56], [57]. They differ
from our study in (1) all these studies target static graphs;
(2) [55], [56], [54] target the problem of counting subgraph

isomorphism matches, where each vertex has a label. Some
other studies [58], [59] target the subgraph counting problem
on online social networks. Interested readers are referred to
two surveys [60], [61] for more details of subgraph counting
algorithms.

Reservoir Sampling. Reservoir sampling was first studied in
[62], which samples items in a stream with equal probabilities.
[63] implements the simple reservoir sampling via min-wise
sampling, which provides the same effect as [62] but consumes
more memory. To handle fully dynamic streams with deletions,
[36] proposes a framework, namely random pairing, where
each deletion from the stream is mapped to a subsequent
insertion. Random pairing guarantees uniformity, and thus it
is widely used for sampling fully dynamic streams in which
items have the same weight. To sample weighted items, [21],
[64] both propose a rank-based sampling scheme. They differ
in their priority functions and are used in different applications.
However, these two methods can only handle insertion-only
streams while our weighted sampling method can handle fully
dynamic streams.

Reinforcement Learning. Given a specific environment,
which is generally formulated as a Markov Decision Process
(MDP) [20], reinforcement learning helps an agent in the
environment learn how to map the situations to actions so as
to maximize the accumulative rewards [65]. In this paper, we
model the process of deciding the weights of edges in a stream
sequentially as an MDP and use a popular policy gradient
method DDPG [22] for solving the problem. To the best of
knowledge, this is the first deep reinforcement learning based
solution applied to the subgraph counting in graph streams.

VII. CONCLUSION

In this paper, we study the subgraph counting problem in
fully dynamic graph streams. We propose a weighted sampling
algorithm WSD, which samples edges non-uniformly based on
their weights, and construct an unbiased estimator based on
the sampled edges by WSD. Furthermore, we develop a rein-
forcement learning based method for setting weights of edges
in a data-driven fashion. Compared with existing algorithms,
our algorithms can produce estimations with smaller errors and
often run faster. One interesting direction for future research
is to extend the reinforcement learning enhanced WSD method
to other problems on fully dynamic graphs.

Acknowledgments. This research is supported by the Ministry
of Education, Singapore, under its Academic Research Fund
(Tier 2 Award MOE-T2EP20221-0013 and Tier 1 Award
(RG77/21)). Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not reflect the views of the Ministry of Education,
Singapore. This work was also partially supported by the
A*STAR Cyber-Physical Production System (CPPS) – To-
wards Contextual and Intelligent Response Research Program,
under the RIE2020 IAF-PP Grant A19C1a0018, and Model
Factory@SIMTech.

REFERENCES

[1] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proceedings of the national
academy of sciences, vol. 99, no. 9, pp. 5825–5829, 2002.

[2] Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling
for counting local triangles in graph streams,” in Proceedings of the
21th ACM SIGKDD international conference on knowledge discovery
and data mining, 2015, pp. 685–694.

[3] K. Shin, S. Oh, J. Kim, B. Hooi, and C. Faloutsos, “Fast, accurate
and provable triangle counting in fully dynamic graph streams,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 2,
pp. 1–39, 2020.

[4] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1,
pp. 5–es, 2007.

[5] P. Zhao, C. Aggarwal, and G. He, “Link prediction in graph streams,” in
2016 IEEE 32nd international conference on data engineering (ICDE).
IEEE, 2016, pp. 553–564.

[6] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, pp. 415–
444, 2001.

[7] L. M. Aiello, A. Barrat, R. Schifanella, C. Cattuto, B. Markines, and
F. Menczer, “Friendship prediction and homophily in social media,”
ACM Transactions on the Web (TWEB), vol. 6, no. 2, pp. 1–33, 2012.

[8] S. Wasserman, K. Faust et al., “Social network analysis: Methods and
applications,” 1994.

[9] M. Jamali and M. Ester, “A transitivity aware matrix factorization model
for recommendation in social networks,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

[10] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler, “Counting triangles in data streams,” in Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, 2006, pp. 253–262.

[11] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algo-
rithm for triangle counting using the birthday paradox,” in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2013, pp. 589–597.

[12] U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis for billion-
scale graphs: Discoveries and implementation,” in Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. Springer, 2011, pp.
13–25.

[13] U. Kang, B. Meeder, E. E. Papalexakis, and C. Faloutsos, “Heigen: Spec-
tral analysis for billion-scale graphs,” IEEE Transactions on knowledge
and data engineering, vol. 26, no. 2, pp. 350–362, 2012.

[14] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi, “On sampling
from massive graph streams,” Proceedings of the VLDB Endowment,
vol. 10, no. 11, pp. 1430–1441, 2017.

[15] L. Zhang, H. Jiang, F. Wang, D. Feng, and Y. Xie, “T-sample: A dual
reservoir-based sampling method for characterizing large graph streams,”
in 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 2019, pp. 1674–1677.

[16] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal, “Triest: Counting
local and global triangles in fully dynamic streams with fixed memory
size,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 11, no. 4, pp. 1–50, 2017.

[17] D. Lee, K. Shin, and C. Faloutsos, “Temporal locality-aware sampling
for accurate triangle counting in real graph streams,” The VLDB Journal,
vol. 29, no. 6, pp. 1501–1525, 2020.

[18] K. Shin, “Wrs: Waiting room sampling for accurate triangle counting
in real graph streams,” in 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 2017, pp. 1087–1092.

[19] K. Shin, J. Kim, B. Hooi, and C. Faloutsos, “Think before you discard:
Accurate triangle counting in graph streams with deletions,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2018, pp. 141–157.

[20] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[21] N. Duffield, C. Lund, and M. Thorup, “Priority sampling for estimation
of arbitrary subset sums,” Journal of the ACM (JACM), vol. 54, no. 6,
pp. 32–es, 2007.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.” in ICLR (Poster), 2016.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[24] R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[25] R. A. Rossi and N. K. Ahmed, “An interactive data repository with visual
analytics,” ACM SIGKDD Explorations Newsletter, vol. 17, no. 2, pp.
37–41, 2016.

[26] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, pp. 2–es, 2007.

[27] P. Wang, Y. Qi, Y. Sun, X. Zhang, J. Tao, and X. Guan, “Approximately
counting triangles in large graph streams including edge duplicates with
a fixed memory usage,” Proceedings of the VLDB Endowment, vol. 11,
no. 2, pp. 162–175, 2017.

[28] M. Jung, Y. Lim, S. Lee, and U. Kang, “Furl: Fixed-memory and
uncertainty reducing local triangle counting for multigraph streams,”
Data Mining and Knowledge Discovery, vol. 33, no. 5, pp. 1225–1253,
2019.

[29] L. Zhang, H. Jiang, F. Wang, D. Feng, and Y. Xie, “Reservoir-based
sampling over large graph streams to estimate triangle counts and node
degrees,” Future Generation Computer Systems, vol. 108, pp. 244–255,
2020.

[30] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
counting triangles in massive graphs with a coin,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2009, pp. 837–846.

[31] P. Wang, P. Jia, Y. Qi, Y. Sun, J. Tao, and X. Guan, “Rept: A streaming
algorithm of approximating global and local triangle counts in parallel,”
in 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 2019, pp. 758–769.

[32] R. Etemadi and J. Lu, “Pes: Priority edge sampling in streaming triangle
estimation,” IEEE Transactions on Big Data, 2019.

[33] Y. Lim, M. Jung, and U. Kang, “Memory-efficient and accurate sam-
pling for counting local triangles in graph streams: from simple to
multigraphs,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 12, no. 1, pp. 1–28, 2018.

[34] M. Yu, C. Song, J. Gu, and M. Liu, “Distributed triangle counting
algorithms in simple graph stream,” in 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2019,
pp. 294–301.

[35] G. Han and H. Sethu, “On counting triangles through edge sampling
in large dynamic graphs,” in IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. Springer, 2017, pp.
133–157.

[36] R. Gemulla, W. Lehner, and P. J. Haas, “A dip in the reservoir:
Maintaining sample synopses of evolving datasets,” in Proceedings of
the 32nd international conference on Very large data bases, 2006, pp.
595–606.

[37] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[38] S. Arifuzzaman, M. Khan, and M. Marathe, “Distributed-memory par-
allel algorithms for counting and listing triangles in big graphs,” arXiv
preprint arXiv:1706.05151, 2017.

[39] ——, “Fast parallel algorithms for counting and listing triangles in
big graphs,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 14, no. 1, pp. 1–34, 2019.

[40] Z. Ouyang, S. Wu, T. Zhao, D. Yue, and T. Zhang, “Memory-efficient
gpu-based exact and parallel triangle counting in large graphs,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2019, pp. 2195–2199.

[41] V. S. Dave, N. K. Ahmed, and M. Al Hasan, “E-clog: Counting edge-
centric local graphlets,” in 2017 IEEE International Conference on Big
Data (Big Data). IEEE, 2017, pp. 586–595.

[42] P. Wang, J. C. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan, “Effi-
ciently estimating motif statistics of large networks,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 9, no. 2, pp. 1–27,
2014.

[43] G. Han and H. Sethu, “Waddling random walk: Fast and accurate mining
of motif statistics in large graphs,” in 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 2016, pp. 181–190.

[44] C. Yang, M. Lyu, Y. Li, Q. Zhao, and Y. Xu, “Ssrw: A scalable algorithm
for estimating graphlet statistics based on random walk,” in International
Conference on Database Systems for Advanced Applications. Springer,
2018, pp. 272–288.

[45] X. Chen, Y. Li, P. Wang, and J. C. Lui, “A general framework for
estimating graphlet statistics via random walk,” Proceedings of the
VLDB Endowment, vol. 10, no. 3, 2016.

[46] T. K. Saha and M. Al Hasan, “Finding network motifs using mcmc
sampling,” in Complex Networks VI. Springer, 2015, pp. 13–24.

[47] S. Huang, Y. Li, Z. Bao, and Z. Li, “Towards efficient motif-based graph
partitioning: An adaptive sampling approach.”

[48] N. K. Ahmed, T. L. Willke, and R. A. Rossi, “Estimation of local
subgraph counts,” in 2016 IEEE International Conference on Big Data
(Big Data). IEEE, 2016, pp. 586–595.

[49] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi,
“Counting graphlets: Space vs time,” in Proceedings of the tenth ACM
international conference on web search and data mining, 2017, pp. 557–
566.

[50] ——, “Motif counting beyond five nodes,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 12, no. 4, pp. 1–25, 2018.

[51] M. Bressan, S. Leucci, and A. Panconesi, “Motivo: fast motif counting
via succinct color coding and adaptive sampling,” Proceedings of the
VLDB Endowment, vol. 12, no. 11, pp. 1651–1663, 2019.

[52] J. M. Klusowski and Y. Wu, “Counting motifs with graph sampling,” in
Conference On Learning Theory. PMLR, 2018, pp. 1966–2011.

[53] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural networks
count substructures?” Advances in neural information processing sys-
tems, vol. 33, pp. 10 383–10 395, 2020.

[54] X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang, “Neural
subgraph isomorphism counting,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1959–1969.

[55] K. Zhao, J. X. Yu, H. Zhang, Q. Li, and Y. Rong, “A learned sketch
for subgraph counting,” in Proceedings of the 2021 International Con-
ference on Management of Data, 2021, pp. 2142–2155.

[56] H. Wang, R. Hu, Y. Zhang, L. Qin, W. Wang, and W. Zhang, “Neural
subgraph counting with wasserstein estimator,” in Proceedings of the
2022 International Conference on Management of Data, 2022, pp. 160–
175.

[57] I. Roy, V. S. B. R. Velugoti, S. Chakrabarti, and A. De, “Interpretable
neural subgraph matching for graph retrieval,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp.
8115–8123.

[58] Y. Wu, C. Long, A. W.-C. Fu, and Z. Chen, “Counting edges and
triangles in online social networks via random walk,” in Asia-Pacific
Web (APWeb) and Web-Age Information Management (WAIM) Joint
Conference on Web and Big Data. Springer, 2017, pp. 346–361.

[59] Y. Wu, C. Long, A. W. Fu, and Z. Chen, “Counting edges with target
labels in online social networks via random walk,” in EDBT/ICDT 2018
Joint Conference. EDBT Association, 2018.

[60] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a
review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 2, p. e1226, 2018.

[61] P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva, “A survey
on subgraph counting: concepts, algorithms, and applications to network
motifs and graphlets,” ACM Computing Surveys (CSUR), vol. 54, no. 2,
pp. 1–36, 2021.

[62] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[63] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion
for robust aggregation in sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 2, pp. 1–40, 2004.

[64] P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with a
reservoir,” Information Processing Letters, vol. 97, no. 5, pp. 181–185,
2006.

[65] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

APPENDIX

A. Proof of Theorem 2
Proof. Since the sampling process of GPS-A is exactly the
same as that of GPS and we simply attach a “DEL” tag to
the corresponding edge when a deletion event happens, the
probability that a set of edges is included in the reservoir
would be equal to that of GPS, i.e., Eq. (2). We then prove
the following two statements.

E[XJ
GPS-A] = 1, E[Y J

GPS-A] = 1. (31)

Note that XJ
GPS-A is positive only when all edges e ∈ J \ei|H|

are in the reservoir R at the end of ta(J) − 1. Then at the
beginning of ta(J), by applying Eq. (2), we have

P[(J \ ei|H|) ⊂ R] =
∏

e∈J\ei|H|

P[r(e) > rM+1]. (32)

Thus, E[XJ
GPS-A] = 1 holds. The other statement can be

verified similarly. Finally, based on the linearity of expectation
and Eq. (31), we have the following deductions.

E[c(t)GPS-A] =
∑

J∈A(t)

E[XJ
GPS-A]−

∑
J∈D(t)

E[Y J
GPS-A]

=
∑

J∈A(t)

1−
∑

J∈D(t)

1 = |A(t)| − |D(t)| = |J (t)|,
(33)

which completes the proof.

B. Proof of Theorem 4
Proof. We first prove by deduction that at the end of time t, the
probability that a set of edges E = {e1, · · · , e|E|} (|E| ≤M)

is included in the reservoir R(t) is as follows.

P[E ⊂ R(t)] =
∏
e∈E

P[e ∈ R(t)] =
∏
e∈E

P[r(e) > τq], (34)

where τq is observed at time t. When t ≤M , since (1) the set
of the edges would be in the reservoir for sure, and (2) τq is
always 0, we know that Eq. (34) holds. Assume that Eq. (34)
holds for t = k (k ≥M). Consider t = k+ 1. We have three
cases (as defined before).
• Case 1 and Case 3. Eq. (34) holds since the probabilities

that edges in E are included are not changed.
• Case 2. E would be in the reservoir R(k+1) only if

all edges in E are not dropped after the insertion, the
probability of which is∏

e∈E
P[e ∈ R(k+1) | e ∈ R(k)] =

∏
e∈E

P[e ∈ R(k+1)]

P[e ∈ R(k)]

(35)
Then, we deduce that the probability that E is in the
reservoir R(k+1) is as follows.

P[E ⊂ R(k+1)]

= P[E ⊂ R(k)] · P[E ⊂ R(k+1) | E ⊂ R(k)]

=
∏
e∈E

P[e ∈ R(k)] ·
∏
e∈E

P[e ∈ R(k+1)]

P[e ∈ R(k)]

=
∏
e∈E

P[e ∈ R(k+1)] =
∏
e∈E

P[r(e) > τ (k+1)
q]

(36)

So far we have assumed that ek+1 /∈ E. Next, we consider
the case that ek+1 is in E. In this case, we define E′ = E \
ek+1. we have the following deductions.

P[E ⊂ R(k+1)] = P[(E′ ∪ ek+1) ⊂ R(k+1)]

= P[(E′ ⊂ R(k+1) ∧ ek+1 ∈ R(k+1)]

= P[ek+1 ∈ R(k+1)] · P[(E′ ⊂ R(k+1) | ek+1 ∈ R(k+1)]

= P[ek+1 ∈ R(k+1)] · P[E′ ⊂ R(k)]

· P[E′ ⊂ R(k+1) | E′ ⊂ R(k), ek+1 ∈ R(k+1)]

= P[r(ek+1) > τ (k+1)
q] ·

∏
e∈E′

P[r(e) > τ (k)q]

· P[E′ ⊂ R(k+1) | E′ ⊂ R(k), ek+1 ∈ R(k+1)]
(37)

The first equation is derived from the definition of E. The
third and forth equations are based on conditional probability.
The fifth equation applies Lemma 1 and the assumption
that Eq. (34) holds when t = k to the forth equation. We
consider the conditional probability P[E′ ⊂ R(k+1) | E′ ⊂
R(k), ek+1 ∈ R(k+1)] in the following cases.

For Case 1, we have τ (k+1)
q = τ (k)q . Since the reservoir is

not full, the conditional probability would be equal to 1. Thus,
Eq. (34) holds when t = k + 1.

For Case 2, since the reservoir is full before the insertion
of ek+1, then ek+1 ∈ R(k+1) means that the edge with the
minimum rank in R(k) is dropped, and τ (k+1)

q is updated.
Thus, the conditional probability is equal to

P[E′ ⊂ R(k+1) | E′ ⊂ R(k), ek+1 ∈ R(k+1)]

=
∏
e∈E′

P[e ∈ R(k+1)]

P[e ∈ R(k)]
=

∏
e∈E′

P[r(e) > τ
(k+1)
q]

P[r(e) > τ
(k)
q]

(38)

By applying Eq. (38) to Eq. (37), we know Eq. (34) holds
when t = k + 1. Therefore, Eq. (34) holds ∀t.

Next, we prove the following two statements.

E[XJ
WSD] = 1, E[Y J

WSD] = 1. (39)

Note that XJ
WSD is positive only when all edges e ∈ J \ ei|H|

are in the reservoir R at the end of ta(J) − 1. Then at the
beginning of ta(J), by applying Eq. (34), we have

P[(J \ ei|H|) ⊂ R] =
∏

e∈J\ei|H|

P[r(e) > τq]. (40)

Thus, E[XJ
WSD] = 1 holds. The other statement can be verified

similarly.
Finally, based on the linearity of expectation and Eq. (39),

we have the following deductions.

E[c(t)WSD] =
∑

J∈A(t)

E[XJ
WSD]−

∑
J∈D(t)

E[Y J
WSD]

=
∑

J∈A(t)

1−
∑

J∈D(t)

1 = |A(t)| − |D(t)| = |J (t)|,
(41)

which completes the proof.

TABLE VII
RESULTS OF COUNTING 4-CLIQUES UNDER THE MASSIVE DELETION

SCENARIO, WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000, α = 3, 000, 000−1 AND βm = 0.8.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 0.771 0.880 0.962 1.365 1.114 0.947
com-YT 0.481 0.551 0.684 1.330 1.046 0.822
web-GL 0.582 0.666 0.747 1.229 1.099 0.847

synthetic 2.843 3.207 3.582 3.913 3.764 3.368

Mean Absolute Relative Error (%)

cit-PT 0.811 0.915 0.941 1.361 1.040 0.922
com-YT 0.833 0.894 0.976 1.858 1.407 1.027
web-GL 0.391 0.466 0.644 1.093 0.893 0.729

synthetic 3.064 3.291 3.563 4.470 4.115 3.764

Running Time (s)

cit-PT 73.5 69.1 76.3 270.8 273.5 277.4
com-YT 16.8 16.3 19.2 14.8 15.1 15.7
web-GL 25.9 21.1 30.4 65.1 67.7 70.6

synthetic 64.3 61.5 67.4 328.4 339.5 351.5

TABLE VIII
RESULTS OF COUNTING WEDGES UNDER THE LIGHT DELETION SCENARIO,

WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000 AND βl = 0.2.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 0.009 0.010 0.025 0.062 0.053 0.035
com-YT 0.006 0.008 0.058 0.289 0.277 0.158
soc-TW 0.343 0.421 0.509 0.657 0.654 0.603
web-GL 0.042 0.046 0.077 0.429 0.347 0.128
synthetic 0.014 0.021 0.028 0.103 0.038 0.022

Mean Absolute Relative Error (%)

cit-PT 0.007 0.008 0.024 0.057 0.046 0.033
com-YT 0.005 0.006 0.043 0.101 0.097 0.053
soc-TW 0.391 0.482 0.744 1.139 1.057 0.950
web-GL 0.014 0.026 0.053 0.344 0.211 0.075
synthetic 0.017 0.030 0.042 0.111 0.054 0.034

Running Time (s)

cit-PT 57.8 53.6 60.7 229.4 235.4 233.3
com-YT 14.2 13.1 15.9 41.6 42.5 42.7
soc-TW 1025.5 1014.2 2078.3 3367.3 3389.1 3466.8
web-GL 24.7 22.1 25.6 79.8 81.6 82.6
synthetic 50.0 49.1 53.2 133.1 133.3 135.2

C. Additional Experimental Results

(1) Evaluation on real and synthetic datasets. The results of
counting 4-cliques under massive deletion scenario are shown
in Table VII. The results of counting wedges, triangles and 4-
cliques under light deletion scenario are shown in Table VIII,
Table IX and Table X, respectively.

0.01 0.05 0.1 0.5 1 5
Stream size |S| (billion)

10−2

10−1

AR
E
(%

)

WSD-L
WSD-H

(a) ARE (light deletion scenario)

0.01 0.05 0.1 0.5 1 5
Stream size |S| (billion)

102

103

104

Ti
m
e
(s
)

WSD-L
WSD-H

(b) Time (light deletion scenario)

Fig. 3. Results on scalability test of counting triangles, reporting the ARE and
running time of WSD-L and WSD-H on different size of streams (synthetic).

(2) Scalability. The results of the scalability test of WSD under

TABLE IX
RESULTS OF COUNTING TRIANGLES UNDER THE LIGHT DELETION

SCENARIO, WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000 AND βl = 0.2.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 0.171 0.221 0.257 0.834 0.293 0.224
com-YT 0.051 0.059 0.104 0.941 0.797 0.471
soc-TW 0.564 0.762 1.109 1.484 1.333 1.279
web-GL 0.061 0.069 0.153 0.591 0.270 0.301
synthetic 0.049 0.067 0.114 0.652 0.441 0.233

Mean Absolute Relative Error (%)

cit-PT 0.183 0.236 0.286 1.048 0.336 0.254
com-YT 0.049 0.053 0.133 0.552 0.475 0.367
soc-TW 0.651 0.793 1.164 1.748 1.523 1.404
web-GL 0.039 0.049 0.153 0.328 0.195 0.266
synthetic 0.040 0.053 0.082 0.361 0.182 0.122

Running Time (s)

cit-PT 61.5 58.0 63.7 236.1 238.9 240.4
com-YT 17.0 16.1 19.1 54.7 55.5 56.2
soc-TW 1314.5 1267.4 2833.9 4317.8 4320.3 4411.7
web-GL 21.1 19.5 23.3 68.8 70.3 72.8
synthetic 36.1 35.6 38.2 134.7 137.6 139.3

TABLE X
RESULTS OF COUNTING 4-CLIQUES UNDER THE LIGHT DELETION

SCENARIO, WHERE WE USE THE DEFAULT VALUES OF THE PARAMETERS,
M = 200, 000 AND βl = 0.2.

Graph WSD-L WSD-H GPS-A Triest ThinkD WRS

Absolute Relative Error (%)

cit-PT 1.156 1.320 1.572 2.593 1.782 1.420
com-YT 1.300 1.563 1.728 2.856 2.653 2.295
web-GL 0.814 1.198 1.302 1.966 1.538 1.439
synthetic 0.834 0.891 1.043 1.419 1.247 1.162

Mean Absolute Relative Error (%)

cit-PT 1.135 1.372 1.521 2.177 1.768 1.475
com-YT 1.166 1.788 2.439 2.675 2.892 2.854
web-GL 0.742 0.932 1.124 2.186 1.607 1.020
synthetic 1.154 1.243 1.388 1.761 1.679 1.564

Running Time (s)

cit-PT 76.0 73.5 80.4 224.9 232.5 273.8
com-YT 17.8 16.6 19.2 217.2 230.1 251.7
web-GL 31.0 25.3 35.9 78.1 81.24 84.7
synthetic 60.4 58.9 63.4 180.3 192.1 197.7

light deletion scenario are shown in Figure 3.
(3) Impact of the ordering of the stream. Figure 4(a) shows
the ARE results of counting triangles on cit-PT under light
deletion scenario.
(4) Effects of M . Figure 4(b) shows the results of counting
triangles on cit-PT under the light deletion scenario.

TABLE XI
TRAINING TIME (HOURS) OF COUNTING TRIANGLES (4) AND WEDGES

(∧) ON FOUR REAL DATASETS UNDER LIGHT DELETION SCENARIO.

Graph cit-HE com-DB soc-TX web-SF

Pattern H 4 ∧ 4 ∧ 4 ∧ 4 ∧

Time (h) 15.6 15.1 7.2 6.4 8.5 7.2 11.7 10.9

(5) Training. We report the training time of counting triangles
and wedges on four datasets under light deletion scenarios in
Table XI. The results of how the size of training graphs affects
the model performance under light deletion scenario are shown
in Figure 4(c).

Natural UAR RBFS
0.0

0.2

0.4

0.6

0.8

1.0
AR

E
(%

)

WSD-L
WSD-H

GPS-A
WRS

ThinkD
Triest

(a) Ordering of the stream (cit-PT)

1 2 3 4 5
M (% E)

10−2

10−1

100

AR
E

(%
)

WSD-L
WSD-H
GPS-A
WRS
ThinkD
Triest

(b) Max. reservoir size M (cit-PT)

0.5 1.0 2.0 4.0 8.0
n (M)

5

10

15

20

25

30

Ti
m
e
(h
)

0.02

0.04

0.06

0.08

0.10

0.12

AR
E
(%

)

Train Time
ARE

(c) Training size (synthetic) (d) Relationship (cit-PT)

Fig. 4. Results of counting triangles under light deletion scenario: (a) the ARE under different orderings of the stream; (b) the ARE under different M ’s; (c)
the training time and ARE under different size of training graphs; (d) the relationship between the weights and the number of triangles.

(6) Relationship between an edge’s weight in WSD-L and
its associated subgraph counts. Figure 4(d) shows the
relationship results of counting triangles under light deletion
scenario.

TABLE XII
RESULTS ON TRANSFERABILITY OF WSD-L UNDER LIGHT SCENARIOS.

(Training) cit-HE com-DB soc-TX web-SF synthetic WSD-H

cit-PT 0.171 0.213 0.192 0.188 0.204 0.221
com-YT 0.055 0.051 0.059 0.056 0.058 0.059
soc-TW 0.681 0.702 0.576 0.631 0.732 0.762
web-GL 0.063 0.068 0.065 0.061 0.067 0.069

(7) Transferability of WSD-L. Table XII shows the ARE
results on transferability test of counting triangles under light
deletion scenario.

TABLE XIII
ARE (%) ON ABLATION STUDY OF WSD-L OF COUNTING TRIANGLES ON

FOUR REAL DATASETS.

(Massive) WSD-L (Max) WSD-L (Avg) WSD-H

cit-PT 0.075 0.081 0.083
com-YT 0.048 0.050 0.053
soc-TW 0.400 0.540 0.710
web-GL 0.031 0.033 0.037

(Light) WSD-L (Max) WSD-L (Avg) WSD-H

cit-PT 0.171 0.189 0.221
com-YT 0.051 0.052 0.059
soc-TW 0.564 0.649 0.762
web-GL 0.063 0.067 0.069

(8) Ablation study. We conduct ablation study on the def-
initions of vj and svk (Eqs. (20) and (21)) as follows. We
change the max function in Eq. (20) to the average function,
i.e., vj = Avg{ij | eij ∈ J, J ∈ Hk}, and concatenate these
values together to form svk. We denote the algorithm using
the definition in Eq. (20) by WSD-L (Max) and the algorithm
using the above definition by WSD-L (Avg). The results of
the comparison are shown in Table XIII. WSD-L (Max) is
more effective than WSD-L (Avg). One possible reason is
that WSD-L (Max) can extract the temporal information of
the recent edges directly.

(9) Effects of βm and βl. We study the effects of βm (resp.
βl), which indicates the probability of a deletion event or
the potion of deletion events, by varying its value from the
range {0, 0.2, 0.4, 0.6,0.8} (resp. {0,0.2, 0.4, 0.6, 0.8}). For
each parameter, we retrain the policy following the steps that
are introduced in Section V-A. Figure 5 shows the results
of counting triangles on cit-PT. We observe that the ARE

0.0 0.2 0.4 0.6 0.8
βm

0.00

0.05

0.10

0.15

0.20

AR
E
(%

)

WSD-L
WSD-H
GPS-A
WRS
ThinkD
Triest

(a) ARE (massive deletion scenario)

0.0 0.2 0.4 0.6 0.8
βl

0.0

0.1

0.2

0.3

AR
E
(%

)

WSD-L
WSD-H
GPS-A
WRS
ThinkD
Triest

(b) ARE (light deletion scenario)

Fig. 5. Results on varying βm and βl on cit-PT, reporting the ARE.

increases as βm and βl increase. There can be two possible
reasons. First, as the number of deletion events increases, the
size of the stream becomes larger. Thus, the estimation results
on a stream with more edge events would be less accurate.
Second, there are fewer triangles at the end of the stream
when there are more deletions. Therefore, the ARE (which is a
relative error measurement) tends to be larger even the absolute
error is not changed. Under different scenarios and with
different values of βm and βl, WSD-L and WSD-H outperform
other algorithms due to their weight-sensitive nature.

	I Introduction
	II Preliminaries and Problem Definition
	III Weighted Sampling Frameworks and Subgraph Count Estimators
	III-A GPS Framework
	III-B GPS-A Framework
	III-C WSD Framework

	IV Reinforcement Learning based Weight Function
	IV-A Weight Function Modeled as an MDP
	IV-B Policy learning

	V Experiments
	V-A Experimental Setup
	V-B Experimental Results

	VI Related Work
	VII Conclusion
	References
	Appendix
	A Proof of Theorem 2
	B Proof of Theorem 4
	C Additional Experimental Results

