
Real-Time LSM-Trees for HTAPWorkloads
Hemant Saxena

SAP Labs, Waterloo, Canada
h.saxena@sap.com

Lukasz Golab
University of Waterloo
lgolab@uwaterloo.ca

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Ihab F. Ilyas
University of Waterloo
ilyas@uwaterloo.ca

ABSTRACT
Real-time analytics systems employ hybrid data layouts in which
data are stored in different formats throughout their lifecycle. Re-
cent data are stored in a row-oriented format to serve OLTP work-
loads and support high insert rates, while older data are trans-
formed to a column-oriented format for OLAP access patterns. We
observe that a Log-Structured Merge (LSM) Tree is a natural fit for a
lifecycle-aware storage engine due to its high write throughput and
level-oriented structure, in which records propagate from one level
to the next over time. To build a lifecycle-aware storage engine us-
ing an LSM-Tree, we make a crucial modification to allow different
data layouts in different levels, ranging from purely row-oriented
to purely column-oriented, leading to a Real-Time LSM-Tree. We
give a cost model and an algorithm to design a Real-Time LSM-Tree
that is suitable for a given workload, followed by an experimental
evaluation of LASER - a prototype implementation of our idea built
on top of the RocksDB key-value store.

1 INTRODUCTION
The need for real-time analytics or Hybrid Transactional-Analytical
Processing (HTAP) is ubiquitous in applications such as content rec-
ommendation, real-time pricing, high-frequency trading, blockchains,
and IoT [28]. These applications differ from traditional On-Line
Transactional Processing (OLTP) and On-Line Analytical Process-
ing (OLAP) applications in two aspects: 1) high data rates [28]; 2)
access patterns change over the lifecycle of the data [7, 15]. For ex-
ample, recent data may be accessed via OLTP style operations (point
queries and updates) as part of an alerting application, or to impute
a missing attribute value based on the values of other attributes [28].
Additionally, recent and historical data may be accessed via OLAP
style processes, perhaps to generate hourly, weekly and monthly re-
ports, where all values of one column (or a few columns, depending
on the time span of the report) are scanned [28].

Traditionally, row-oriented layout was used for OLTP-heavy
workloads and column-oriented layout for OLAP-heavy workloads.
Recent systems, such as SAP HANA [20], SingleStore [6], and IBM
Wildfire [14] support real-time analytics using hybrid layouts, in
which recent data are stored in a row-oriented format to serve
point queries (OLTP), and older data are transformed to a column-
oriented format suitable for OLAP. Such systems can be described
as having a lifecycle-aware data layout.

We observe that a Log-Structured Merge (LSM) Tree is a natural
fit for a lifecycle-aware storage engine. LSM-Trees are used in key-
value stores (Google’s BigTable and LevelDB, Cassandra, Facebook’s
RocksDB), RDBMSs (Facebook’s MyRocks, SQLite4), blockchains
(e.g., Hyperledger uses LevelDB), and data stream and time series

databases (e.g., InfluxDB). While Cassandra and RocksDB can simu-
late columnar storage via column families, we are not aware of any
lifecycle-aware key-value storage engines. We fill this gap in our
work, by designing a storage engine that can replace traditional
LSM trees in the above applications to support real-time analytics.

An LSM-Tree is a multi-level data structure with a main-memory
buffer and a number of secondary-storage levels with increasing
size (details in Section 2). Periodically, or when full, the buffer is
flushed to Level-0. When Level-0, which stores multiple flushed
buffers, is nearly full, its data are merged into the sorted runs resid-
ing in level one (via a compaction process), and so on. We observe
that LSM-Trees provide a natural framework for a lifecycle-aware
storage engine for real-time analytics due to the following reasons.
1 LSM-Trees are write optimized: Writes and data transfers
between levels are batched, allowing high write throughput.
2 LSM-Trees naturally propagate data through the levels
over time: At any point in time, the buffer stores the most re-
cent data that have not yet been flushed (perhaps data inserted
within the last hour), Level-0 may contain data between one hour
and 24 hours old, and levels one and beyond store even older data.
3 Different levels can store data in different layouts: Data
may be stored in row format in the buffer and in some of the levels,
and in column format in other levels. This suggests a flexible and
configurable storage engine that can be adapted to the workload.
4 Compaction can be used to change data layout: Transform-
ing the data from a row to a column format can be done during
compaction, when a level is merged into the next level.

We make the following contributions in this paper.

• We propose the Real-Time LSM-Tree, which extends the tradi-
tional LSM-Tree with the ability to store data in a row-oriented
or a column-oriented format in each level.

• We characterize the design space of possible Real-Time LSM-
Trees. To navigate this design space, we provide a cost model to
select good designs for a given workload.

• We develop and evaluate LASER, a Lifecycle-Aware Storage En-
gine for Real-time analytics based on Real-Time LSM-Trees. We
implement LASER using RocksDB, which is a popular open-
source key-value store based on LSM-Trees.

2 OVERVIEW OF LSM-TREES
2.1 Design
Compared to traditional read-optimized data structures such as
B-trees, LSM-Trees focus on high write throughput while allowing
indexed access to data [26]. LSM-Trees have two components: an
in-memory piece that buffers inserts and a secondary storage piece.

ar
X

iv
:2

10
1.

06
80

1v
2

 [
cs

.D
B

]
 1

5
Ju

l 2
02

2

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

The in-memory piece consists of trees or skiplists, whereas the
secondary storage piece consists of sorted runs.

Figure 1 shows the architecture of an LSM-Tree, with thememory
piece at the top, followed by multiple levels of sorted runs on
secondary storage (four levels, numbered zero to three, are shown
in the figure). The memory piece contains two or more skiplists of
user-configured size (two are shown in the figure). New records are
inserted into the most recent (mutable) skiplist and into a write-
ahead-log for durability. Once inserted, a record cannot be modified
or deleted directly. Instead, a new version of it must be inserted
and marked with a tombstone flag in case of deletions.

Once a skiplist is full, it becomes immutable and can be flushed
to secondary storage via a sequential write. Flushing is executed
by a background thread (or can be called explicitly) and does not
block new data from being inserted. During flushing, each skiplist
is sorted and serialized to a sorted run. Sorted runs are typically
range-partitioned into smaller chunks called Sorted Sequence Ta-
bles (SSTs), which consist of fixed-size blocks. In Figure 1, we show
sorted runs being range-partitioned by key into multiple SSTs. For
example, the sorted run in Level-1 has four SSTs; the first SST con-
tains values for the keys in the range 0-20, the second in the range
21-50, and so on. Each SST contains a list of data blocks and an
index block. A data block stores key-value pairs ordered by key,
and an index block stores the key ranges of the data blocks.

As sorted runs accumulate over time, query performance tends
to degrade since multiple sorted runs may have to be accessed to
find a record with a given key. To address this, sorted runs are
merged by a background process called compaction. The merging
process organizes the disk piece into 𝐿 logical levels of increasing
size with a size ratio of 𝑇 . For example, a size ratio of two means
that every level is twice the size of the previous one. In Figure 1,
we show four levels with increasing sizes. The parameters 𝐿 and
𝑇 are user-configurable and their value depends on the expected
number of entries in the database.

Two common merging strategies are leveling and tiering [18, 26].
Their trade-offs are well understood: leveling has higher write am-
plification but is more read-optimized than tiering. Furthermore, the
“wacky continuum" [19] provides tunable read/write performance
by adjusting the merging strategy and size ratios. Our Real-Time
LSM-Tree is independent of the merging strategy, but we use the
leveling strategy in LASER since this is also used by RocksDB.

In leveling, each level consists of one sorted run, so the run at
level 𝑖 is 𝑇 times larger than the run at level 𝑖 − 1. As a result, the
run at level 𝑖 will be merged up to 𝑇 times with runs from level
𝑖 − 1 until it fills up. If multiple versions of the same key exist, then
only the most recent version is kept, and any key with a tombstone
flag is deleted. In practice, merging is done at SST granularity, i.e.,
some SSTs from level 𝑖 − 1 are merged with overlapping SSTs in
level 𝑖 . Sorted runs in Level-0 are not partitioned into SSTs (or have
exactly one SST) because they are directly flushed from memory.
Some implementations, such as RocksDB, make an exception for
Level-0 and allow multiple sorted runs to absorb write bursts.

The merging process moves data from one level to the next over
time. This puts recent data in the upper levels and older data in the
lower levels, providing a natural framework for a lifecycle-aware
storage engine proposed in this paper. In Figure 2, we present the
results of an experiment using RocksDB with an LSM-Tree having

Figure 1: LSM-Tree with leveling merge strategy

five levels (zero through four), with Level-0 starting at 64MB and
𝑇 = 2. We inserted data at a steady rate until all the levels were full,
with background compaction enabled. We show the distribution
of keys in terms of their time-since-insertion for two compaction
policies commonly used in RocksDB: kByCompensatedSize (Figure
2(a)) prioritizes the largest SST, and kOldestSmallestSeqFirst (Figure
2(b)) prioritizes SSTs whose key range has not been compacted for
the longest time. For both compaction priorities, each level has a
high density of keys within a given time range. We will use time-
based compaction priority because it is better at distributing keys
based on time since insertion.

A point query starts from the most recent data and stops as soon
as the search key is found (there may be older versions of this
key deeper in the LSM-Tree, but the query only returns the latest
version). First, the in-memory skiplists are probed. If the search
key has not been found, then the sorted runs on disk are searched
starting from Level-0. Within a sorted run, binary search is used
to find the SST whose key range includes the key requested by
the query. Then, the index block of this SST is binary-searched to
identify the data block that may contain the key. Many LSM-Tree
implementations include a bloom filter with each SST, and an SST is
searched only if the bloom filter reports that the key may exist. We
assume that the ranges of SSTs, the index blocks of SSTs, and bloom
filters fit in main memory and are cached, as illustrated in Figure 1.
For range queries, all the skiplists and the sorted runs are scanned
to find keys within the desired range. In many implementations
(including RocksDB), range queries are implemented using multiple
iterators, which are opened in parallel over each sorted run and the
skiplists. Then, similar to a k-way merge, keys are emitted in sorted
order while discarding old versions.

2.2 Cost Analysis
We now explain the cost of LSM-Tree writes, point queries, range
queries, and space amplification [17, 18, 26]. We assume that lev-
eling is used for compaction, that sorted runs are not partitioned
into SSTs, and that the tree is in a steady state, with all levels full
and the volume of inserts equal to the volume of deletes.

Table 1 summarizes the symbols. Let 𝑁 be the number of records,
𝑇 be the size ratio between consecutive levels, and 𝐿 be the number
of levels. Let 𝐵 denote the number of records in each data page,
and let 𝑝𝑔 denote the number of pages in Level-0. For example,
with a 4kB page and 100 bytes per record, 𝐵 = 40; with Level-0
of size 64MB, 𝑝𝑔 = 16, 000. Level-0 contains at most 𝐵.𝑝𝑔 entries,

Real-Time LSM-Trees for HTAP Workloads

(a) Compaction prioritized by
size (kByCompensatedSize)

(b) Compaction prioritized by
time (kOldestSmallestSeqFirst)

Figure 2: Distribution of keys across levels based on time

and level 𝑖 (𝑖 ≥ 0) contains at most 𝑇 𝑖 .𝐵.𝑝𝑔 entries. The largest
level contains approximately 𝑁 .𝑇−1

𝑇
(≈ 𝑇𝐿 .𝐵.𝑝𝑔) entries. The total

number of levels is given by Equation 1.

𝐿 =

⌈
log𝑇

(
𝑁

𝐵.𝑝𝑔
.
𝑇 − 1
𝑇

)⌉
(1)

Write amplification: Inserted or updated keys are merged mul-
tiple times across levels over time, therefore the insert or update
I/O cost is measured in terms of write amplification. The worst-case
write amplification corresponds to the I/O required to merge an
entry all the way to the last level. An entry in level 𝑖 is copied and
merged every time level 𝑖 − 1 fills up and is merged with level 𝑖 .
This can happen up to 𝑇 times. Adding this up over 𝐿 levels, each
entry is merged 𝐿.𝑇 times. Since each page contains 𝐵 entries, the
write cost for each entry across all the levels is 𝑂 (𝑇 .𝐿

𝐵
).

Point queries: The worst-case lookup cost for an existing key
is 𝑂 (𝐿) without bloom filters because the entry may exist in the
last level, requiring access to one block (whose range overlaps with
the search key) in each level along the way. With bloom filters,
the average cost of fetching a block from the first 𝐿 − 1 levels is
(𝐿 − 1).𝑓 𝑝𝑟 , plus one I/O to fetch the entry from last level, where
𝑓 𝑝𝑟 is the false positive rate of the bloom filter. In practice, 𝑓 𝑝𝑟 is
roughly 1%, giving an I/O cost of 𝑂 (1).

Range queries: Let 𝑠 be the selectivity, which is the number of
unique entries across all the sorted runs that fall within the target
key range. If keys are uniformly spread across the levels, then in
each level 𝑖 , 𝑠/𝑇𝐿−𝑖 entries will be scanned. With 𝐵 entries per

block, the total number of I/Os is 𝑂 (𝑠
𝐵

𝐿∑
𝑖=0

1
𝑇𝐿−𝑖). Since the largest

level contributes most of the I/O, the cost simplifies to 𝑂 (𝑠
𝐵
).

Space amplification: This is defined as 𝑎𝑚𝑝 = 𝑁
𝑢𝑛𝑞 − 1, where

𝑢𝑛𝑞 is the number of unique entries (keys). The worst-case space
amplification occurs when all the entries in the first 𝐿 − 1 levels
correspond to updates to the entries in the largest level. The first
𝐿 − 1 levels contain 1

𝑇
of the data. Therefore, 1

𝑇
of the data in the

last level are obsolete, giving a space amplification of 𝑂 (1
𝑇
).

3 REAL-TIME LSM-TREE DESIGN
3.1 Definitions
Lifecycle-driven hybridworkloads:We target HTAPworkloads
with high data ingest rates, data volume that requires secondary

Table 1: Summary of terms used in this paper

𝑁 number of entries
𝐿 total number of levels
𝑇 size ratio between adjacent levels
𝐵 # of row style entries in a block
𝐵 𝑗𝑖 #entries in blocks at CG 𝑗 at level 𝑖
𝑝𝑔 number of blocks in Level-0
𝑐 number of columns
𝑠 range query selectivity (i.e., # entries selected)
Π set of projected columns
𝑔𝑖 #column groups at level 𝑖 , 1 ≤ 𝑔𝑖 ≤ 𝑐

𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 size of 𝑗𝑡ℎ CG at level 𝑖
CGi CGs at level 𝑖
𝐸
𝑔

𝑖
estimated number of CGs required by a projection

𝐸𝐺
𝑖

estimated sum of sizes of CGs required by a projection

storage, and access patterns that change with the lifecycle of the
data. These workloads include a mix of writes and reads, with
recent data accessed by OLTP-style queries (point queries, inserts,
updates), and both recent and older data accessed by OLAP-style
queries (range queries) [7]. From a storage engine’s viewpoint,
we represent these workloads as combinations of inserts, updates,
deletes, point reads, and scans. With 𝑘𝑒𝑦 as the row identifier, 𝑟𝑜𝑤
as the tuple with all the column values, and Π as the set of projected
columns (e.g., Π = {𝐴,𝐶} means that the query requires values for
columns A and C only), we consider the following operations:
• insert(𝑘𝑒𝑦, 𝑟𝑜𝑤): inserts a new entry.
• read(𝑘𝑒𝑦, Π): for the given 𝑘𝑒𝑦, reads the values of columns in Π.
• scan(𝑘𝑒𝑦𝑙𝑜𝑤 , 𝑘𝑒𝑦ℎ𝑖𝑔ℎ , Π): reads the values of the columns in Π
where the key is in the range 𝑘𝑒𝑦𝑙𝑜𝑤 , and 𝑘𝑒𝑦ℎ𝑖𝑔ℎ . Range queries
over non-key columns also use this operator by scanning all the
entries and filtering out the entries that are not within the range.

• update(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒Π): updates the values of the columns in Π for
the given 𝑘𝑒𝑦. 𝑣𝑎𝑙𝑢𝑒Π contains the column identifiers and their
new values. For example, 𝑣𝑎𝑙𝑢𝑒Π = {(𝐴,𝑛𝑣𝑎), (𝐵, 𝑛𝑣𝑏)} indicates
new values for columns A and B for the given key.

• delete(𝑘𝑒𝑦): deletes the entry identified by 𝑘𝑒𝑦.
We assume that read and update access recently inserted keys

with a wide Π (almost all the columns), while scan accesses a range
of keys spanning historical and recent data with a narrow Π (one
column or a few columns depending on the age of the data).

Column groups (CGs): A hybrid storage layout is defined by
column groups (CGs) that are stored together as rows [13]. Suppose
we have a table with four columns:𝐴, 𝐵,𝐶 , and𝐷 . In a row-oriented
layout, there is a single CG corresponding to all the columns. In a
column-oriented layout, each column corresponds to a separate CG.
Other hybrid layouts are possible, e.g., two CGs of <A,B,C> and
<D>, where the projection over columns 𝐴, 𝐵, and 𝐶 is stored in
row format, and the projection over 𝐷 is stored separately. Column
groups are advantageous when some columns are co-accessed often.

3.2 Design Overview
The insight that makes the Real-Time LSM-Tree a natural fit for
a lifecycle-aware storage engine is that different levels may store
data in different layouts. This creates a design space that can be
characterized by the column groups used in each level. In Figure 3,
we show three examples. On the left, we show an extreme design
point corresponding to a row-oriented format, which is used by

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

Figure 3: Design space of Real-Time LSM-Trees, with example column group (CG) configurations.

existing LSM-Tree storage engines. On the right, we show the other
extreme, corresponding to a pure columnar layout. In the middle,
we show a hybrid design, in which Level-0 is row-oriented, levels 1
and 2 use different combinations of CGs, and Level-3 switches to
a pure columnar layout. This design may be suitable for mixed or
HTAP workloads, with the column group configuration depending
on the access patterns during the data lifecycle.

In the Real-Time LSM-Tree, we keep the in-memory component
and Level-0 the same as in the original LSM-Tree, as described
in Section 2, to maintain high write throughput. However, the
secondary-storage levels beyond Level-0 are split into CGs, where
each CG stores its own sorted runs. As we will see in Section 4, each
such sorted run is associated with tail indices and bloom filters to
answer queries that access columns within the CG.

Since different levels may have different CG configurations, a
Real-Time LSM-Tree must be able to change the data layout as data
move from one level to another. As we will explain in Section 4.4,
this can naturally be done during compaction.

CG containment assumption: The space of Real-Time LSM-
Trees consists of all possible combinations of CGs in each level.
However, we make a simplifying assumption since access patterns
throughout the data lifecycle tend to change from row-friendly
OLTP to column-friendly OLAP. We assume that any CG in level 𝑖
is a subset of (i.e., contained in) a single CG in level 𝑖 − 1, for 𝑖 ≥ 1.
Returning to Figure 3, the design in the middle has two column
groups in Level-1: <A,B> and <C,D>. This means that, for example,
a CG of <A,B,C> or a CG of <B,C> is not a valid choice in Level-2.
This assumption is not critical to LASER, but it simplifies layout
changes during compaction, as we will see in Section 4.4.

No replication assumption: For some workloads, data in a
given level may be touched by both OLTP and OLAP style queries,
meaning that no single CG layout is suitable for that level. This may
be true especially in the last level, which stores the oldest and the
majority of the data. For these workloads, a level can be replicated in
two layouts, at the cost of storage and write amplification. However,
we expect such situations to be rare in practice because OLTP
patterns tend to be limited to recent data in real-time analytics
workloads [7, 28], which are expected to fit in the first few levels.

4 LASER STORAGE ENGINE
We now describe the design of LASER – our HTAP storage engine
based on Real-Time LSM-Trees. LASER borrows several concepts
from column-store systems [8]: a data model for storing column
groups (Section 4.1), column updates (Section 4.2), and “stitching”
individual column values to reconstruct tuples (Section 4.3). LASER

Figure 4: Simulated column-group representation

also requires a mechanism to change the data layout from one level
to the next in the Real-Time LSM-Tree (Section 4.4).

4.1 Column Group Representation
Since entries in an LSM-Tree are stored across multiple sorted runs
and levels, column scans do not access the data contiguously. To
fetch data in sorted order from different levels, we need to locate
entries by their keys. Therefore, we store the keys along with the
column group values, as shown in Figure 4. This is known as simu-
lated columnar storage [8], and incurs read and storage overhead
compared to storing only the column values in a contiguous data
block. However, in LSM-Trees, this overhead is reduced due to the
leveling merge strategy, and can be further reduced by compressing
the data blocks and delta-encoding the keys within each data block.
For example, we observed that naïvely storing keys with column
group values took 86GB, using Snappy compression took 51GB, and
delta-encoding the keys further reduced the space usage to 48GB.
Storing the same amount of data in a pure column-store (MonetDB
[22]), which stores only the column values, requires 43GB.

4.2 Write Operations
Inserts are performed in the same way as in original LSM-Trees,
where an entry is inserted in the in-memory skiplist, and is eventu-
ally moved to lower levels via flush and compaction jobs. Inserting
an existing key (and a corresponding value, containing the values
of the remaining attributes) acts as an update, whereas inserting
an existing key with a tombstone flag acts as a deletion.

Updates of individual columns may be implemented in two
ways. A straightforward way is to fetch the entire tuple that is to
be updated, modify the column being updated, and re-insert the
entire tuple. This is the standard approach in a row-oriented storage

Real-Time LSM-Trees for HTAP Workloads

Figure 5:ColumnMergingIterators and LevelMergingIterators

engine. Column-oriented storage engines [23, 31] and some HTAP
storage engines [11] allow updates of individual columns. Similarly,
in LASER, we allow insertion of partial rows that contain only the
updated column values. Partial rows are eventually merged with
complete rows, or other partial rows, at the time of compaction,
and any older column values are discarded. For example, suppose
we have four columns, <A,B,C,D>, and suppose we update columns
𝐵 and 𝐶 of the tuple with key 100. Here, we insert the following
key-value pair: 100 : −, 𝑏 ′, 𝑐 ′,− where 𝑏 ′, 𝑐 ′ are the updated values,
and − denotes an unchanged value. If, during compaction, we find
another entry for the same key, 100 : 𝑎, 𝑏, 𝑐, 𝑑 , then the two entries
are merged to give 100 : 𝑎, 𝑏 ′, 𝑐 ′, 𝑑 .

4.3 Read Operations
Point queries (with projections) are handled by searching for
the given key in the skiplist, and then down the levels until the
latest value is found. To support projections efficiently, in each level,
we only probe the CGs that overlap with the projected columns,
and the query result is returned as soon as the values for all of the
projected columns are found. Since we allow updates of individual
columns, (the latest version of) a given tuple may exist partially
in one level and partially in another. For example, in Figure 5, the
latest values of𝐴 and 𝐵 for tuple 108 exist in Level-0, but the values
of 𝐶 and 𝐷 exist in Level-2.

Range queries (with projections) are also handled by opening
iterators for each level and returning values in a sorted order, while

discarding older versions of the entries. We optimize range queries
with projections by opening iterators only for the overlapping
column-groups in each level. As was the case for point queries,
subsets of column values may be found across different levels. We
use LevelMergingIterators to merge values across levels, and to stitch
column values within a level we use ColumnMergingIterators. We
provide the details of these iterators in Section 4.4.

4.4 Real-Time LSM-Tree Compaction
In Section 2, we described the compaction process used by LSM-
Trees to improve query performance. In LASER, compaction addi-
tionally changes the data layout. A compaction job selects a level
that overflows the most, and merges its entries with the next level.
Using this approach in LASER would require merging entries from
all the CGs of an overflowing level with the next level. However,
since we allow individual column updates (Section 4.2), different
CGs can fill up at different rates. For example, some column groups
(bank balance, inventory) may be updated more frequently than
others (contact information, item description). Therefore, treating
all the CGs in the same way when scheduling a compaction job
might push certain CG values to deeper levels even when top levels
are not full, and therefore disrupt the distribution of entries across
levels based on time. We modify the compaction strategy to select
the most overflowing CG in the most overflowing level. To deter-
mine if a CG is overflowing, we define the capacity of a CG within
a level by proportionally dividing the level capacity across all the
CGs, and any CG that exceeds its capacity is an overflowing CG.

We call this strategy a CG local compaction strategy, in which
the span of a compaction job is limited to only one CG from level
𝑖 and the overlapping CGs at level 𝑖 + 1. We show two example
compaction jobs in Figure 6. Compaction job 1 merges entries
from CG <A, B> in level-1 to overlapping CGs (i.e., <A>;) in
level-2. Similarly, compaction job 2 is limited to only CG <C> in
level-2 and level-3. To perform CG local compaction, we require two
types of merging iterators: LevelMergingIterators that merge entries
from different levels, and ColumnMergingIterators that combine
column values from different CGs within the same level.

LevelMergingIterators support range queries and compaction
jobs by fetching and merging qualifying tuples from each level, and
discarding old attribute values when multiple versions are found
for the same key. Figure 5 shows LevelMergingIterators collecting
tuples from three levels to answer a range query for keys between
50 and 108. Only the latest versions of keys 107 and 108 are returned.

ColumnMergingIterators combine values from different col-
umn groups within the same level. For each LevelMergingIterator,
multiple ColumnMergingIterators are opened. Since there can be
only one version for each key and column value within a level, these
iterators do not discard old versions. Instead, they fetch all the re-
quired column values for each key, some of which may be empty
due to column updates. In Figure 5, we show ColumnMergingItera-
tors for each level. In level-0, the iterators return partial values for
108 because the corresponding entry corresponds to an update of
columns 𝐴 and 𝐵. Similarly, in level-1, key 107 has a partial value.

The above iterators are used by CG local compaction in the follow-
ing way: we first identify the most overflowing level, and the most
overflowing CG in that level. Then, we identify the overlapping

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

CGs in the next level, open LevelMergingIterators for both levels,
and open the required ColumnMergingIterators for the respective
LevelMergingIterators. Once the iterators are opened, entries are
emitted in sorted order and are written to the new sorted run be-
longing to the next level.

5 COST ANALYSIS
In this section, we analyze the cost of each operation supported by
LASER, and compare it with the cost of a purely row-oriented LSM-
Tree (Section 2) and a purely column-oriented LSM-Tree (a special
case of a Real-Time LSM-Tree with as many CGs as columns). Table
2 summarizes the operations and their costs.

We use the variables listed in Table 1. Let 1 ≤ 𝑔𝑖 ≤ 𝑐 be the
number of CGs at level 0 ≤ 𝑖 ≤ 𝐿, where 𝑐 is the number of
columns. The size of the 𝑗𝑡ℎ (1 ≤ 𝑗 ≤ 𝑔𝑖) CG at level 𝑖 is defined as
the number of columns in the CG and is represented by 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 .
𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 is 𝑐 for all column-groups at all levels for a row-style LSM-
Tree and 1 for all column-groups at all levels for a column-style
LSM-Tree. For each level 𝑖 , we have the following relation between
𝑐, 𝑔𝑖 , and 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 :

𝑐 =

𝑔𝑖∑︁
𝑗=1

𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 (2)

Let 𝐵 𝑗𝑖 be the number of entries in a data block of a 𝑗𝑡ℎ CG
at level 𝑖 . From Section 2, we know that a row-style LSM-Tree
contains 𝐵 entries in a block. The block size, in bytes, is fixed for an
LSM-Tree; for example in RocksDB, it is 4kB by default. If 𝐷 is the
block size in bytes, then we have 𝐷 = 𝐵.(𝑘𝑒𝑦-𝑠𝑖𝑧𝑒 + 𝑣𝑎𝑙𝑢𝑒-𝑠𝑖𝑧𝑒) =
𝐵.(1.𝑑𝑡_𝑠𝑖𝑧𝑒 +𝑐.𝑑𝑡_𝑠𝑖𝑧𝑒), where 𝑑𝑡_𝑠𝑖𝑧𝑒 is the average datatype size
of the columns, which includes the column value and the key. This
can be generalized for a Real-Time LSM-Tree, in which a block
contains 𝐵 𝑗𝑖 entries: 𝐷 = 𝐵 𝑗𝑖 .(1 + 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖).𝑑𝑡_𝑠𝑖𝑧𝑒 . For example,
in Figure 4, the relationship between the number of entries in a
block of CG <A,B>, and CG <C> is 𝐷 = 𝐵<𝐴,𝐵> .(1 + 2) .𝑑𝑡_𝑠𝑖𝑧𝑒 =

𝐵<𝐶> .(1 + 1).𝑑𝑡_𝑠𝑖𝑧𝑒 , or 𝐵<𝐴,𝐵> = 2.𝐵<𝐶>/3. The relationship
between 𝐵 and 𝐵 𝑗𝑖 is as follows.

𝐵 𝑗𝑖 = 𝐵.
(1 + 𝑐)

(1 + 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖)
(3)

This gives 𝐵 𝑗𝑖 = 𝐵.(1 + 𝑐)/2 for all column-groups at all levels for a
column-style LSM-Tree. As 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖 reduces, 𝐵 𝑗𝑖 increases because
we can pack more entries of smaller CG size in a block.

Write amplification: We start with the cost of write amplifi-
cation for insert(key, row) operations. For a row-style LSM-Tree,
the write amplification was described in Section 2, i.e.,𝑂 (𝑇 . 𝐿

𝐵
). For

a column-style LSM-Tree, each level has 𝑐 column-groups (each
with one column). Therefore, the write amplification is 𝑂 (𝑐.𝑇 . 𝐿

𝐵 𝑗𝑖
),

where 𝐵 𝑗𝑖 = 𝐵.(1 + 𝑐)/2 for all CGs. For a Real-Time LSM-Tree, the
write amplification is summed across all the CGs and all the levels.
For example, in level-2 of the Real-Time LSM-Tree shown in Figure
6, entries will be merged for CGs <A,B>; <C>; <D> where 𝐵02 =

𝐵(1 + 4)/(1 + 2) = 5𝐵/3 (i.e., for CG <A,B>) and 𝐵12 = 𝐵22 = 5𝐵/2.
For each CG, the merge cost is given by 𝑇 /𝐵 𝑗𝑖 (because entries
are merged 𝑇 times, as explained in Section 2). The total write am-

plification cost is: 𝑂 (
𝐿∑
𝑖=0

𝑔𝑖∑
𝑗=1

𝑇 /𝐵 𝑗𝑖). Using Equations 2 and 3, this

simplifies to 𝑂 (𝑇 .𝐿
𝐵

+ 𝑇
𝐵.𝑐

𝐿∑
𝑖=0

𝑔𝑖). The second term (i.e. 𝑇
𝐵.𝑐

𝐿∑
𝑖=0

𝑔𝑖)

represents the overhead of storing keys along with CG values due
to the simulated column group representation. This overhead is at
most 𝑇𝐿/𝐵 (because 1 ≤ 𝑔𝑖 ≤ 𝑐) in a column-style LSM-Tree.

𝑊 := 𝑂

(
𝑇 .𝐿

𝐵
+ 𝑇

𝐵.𝑐
.

𝐿∑︁
𝑖=0

𝑔𝑖

)
(4)

Point lookups: The cost for a row-style LSM-Tree is the same as
in Section 2, i.e. 𝑂 (1) (assuming the false positive rate of bloom fil-
ters is much smaller than 1). For a column-style LSM-Tree, the cost
is equal to the number of column groups containing the columns
projected by the query. For a Real-Time LSM-Tree, this cost is simi-
larly equal to the number column-groups containing the projected
columns, summed over all the levels. We use 𝐸𝑔

𝑖
(1 ≤ 𝐸

𝑔

𝑖
≤ 𝑔𝑖) to de-

fine the number of column-groups required at level 𝑖 . For example,
if there are two CGs, <A, B>; <C, D>, in level 𝑖 , then 𝐸

𝑔

𝑖
= 2 when

the projection is Π = {𝐴,𝐶} and 𝐸𝑔
𝑖
= 1 when Π = {𝐴, 𝐵}. The total

I/O cost is therefore:

𝑃 := 𝑂 (
𝐿∑︁
𝑖=0

𝐸
𝑔

𝑖
) (5)

Range queries: The I/O cost for a row-style LSM-Tree is the
same as in Section 2, i.e., 𝑂 (𝑠

𝐵
). For a column-style LSM-Tree, this

depends on the number of CGs containing the projected columns.
Therefore, the I/O cost is 𝑂 (|Π |. 𝑠

𝐵.𝑐
) (here, 𝐵 𝑗𝑖 = 𝐵.(1 + 𝑐)/2). For

a Real-Time LSM-Tree, different levels contribute different costs
depending on the CG configuration. Anytime a CG contains one or
more columns projected by the query, the entire block of that CG
must be fetched. Therefore, for each level, we have 𝑂 (∑

𝑗 ∈𝐺𝑖

𝑠𝑖/𝐵 𝑗𝑖),

where 𝑠𝑖 is the selectivity at level 𝑖 , and 𝐺𝑖 is the set of CGs con-
taining the projected columns. In Section 2, we defined 𝑠 to be the
selectivity of a range query for all the levels; selectivity 𝑠𝑖 for an in-
dividual level 𝑖 can be estimated by dividing 𝑠 by the capacity of that
level. Using Equation 3, we obtain the following cost for each level:
𝑂 (𝑠𝑖

𝑐.𝐵

∑
𝑗 ∈𝐺𝑖

(1 + 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖)). We define 𝐸𝐺
𝑖

:=
∑

𝑗 ∈𝐺𝑖

(1 + 𝑐𝑔_𝑠𝑖𝑧𝑒 𝑗𝑖),

i.e., the sum of the sizes of all the required CGs and corresponding
keys. For example, if there are CGs <A, B>; <C, D> in level 𝑖 , then
𝐸𝐺
𝑖

= 6 when the projected columns are Π = {𝐴,𝐶} and 𝐸𝐺
𝑖

= 3
when Π = {𝐴, 𝐵}. The overall cost of a range query is:

𝑄 := 𝑂 (
𝐿∑︁
𝑖=0

𝑠𝑖 .𝐸
𝐺
𝑖 /𝑐.𝐵) (6)

Update amplification: The update amplification for a row-
style LSM-Tree is the same as the insert amplification:𝑂 (𝐿.𝑇

𝐵
). For a

column-style LSM-Tree, the cost depends on the number of column
values that are updated due to our CG local compaction strategy
(Section 4.4). The amplification is given by 𝑂 (𝐿.𝑇 . |Π |

𝐵.𝑐
), where Π

is the set of updated columns. For a Real-Time LSM-Tree, update
amplification depends on the sum of the sizes of the required CGs.
This is estimated by 𝐸𝐺

𝑖
(see range query cost above). Therefore,

the amplification of an update operation is

𝑈 := 𝑂 (
𝐿∑︁
𝑖=0

𝑇 .𝐸𝐺𝑖 /𝑐.𝐵) (7)

Real-Time LSM-Trees for HTAP Workloads

Figure 6: Sorted runs of a Real-Time LSM-Tree with two highlighted compaction jobs.

Operation Row-style
LSM-Tree

Real-Time LSM-Tree Column-
style LSM-
Tree

Insert amplifica-
tion (W)

𝑂 (𝑇 .𝐿
𝐵

) 𝑂 (𝑇 .𝐿
𝐵

+
𝑇 .

𝐿∑
𝑖=0

𝑔𝑖

𝐵.𝑐
) 𝑂 (𝑇 .𝐿

𝐵
)

Existing key
lookup (P)

𝑂 (1) 𝑂 (
𝐿∑
𝑖=0

𝐸
𝑔

𝑖
) 𝑂 (|Π |)

Range query
(Q)

𝑂 (𝑠
𝐵
) 𝑂 (

𝐿∑
𝑖=0

𝑠𝑖 .𝐸
𝐺
𝑖

𝑐.𝐵
) 𝑂 (|Π |.𝑠

𝑐.𝐵
)

Update amplifi-
cation (U)

𝑂 (𝑇 .𝐿
𝐵

) 𝑂 (
𝐿∑
𝑖=0

𝑇 .𝐸𝐺
𝑖

𝑐.𝐵
) 𝑂 (𝑇 .𝐿.|Π |

𝑐.𝐵
)

Table 2: Summary of operations and their costs.

Space amplification:As explained in Section 2 for a row-oriented
LSM-Tree, the worst-case space amplification in a Real-Time LSM-
Tree happens when the first 𝐿 − 1 levels contain updates of entries
in the last level. The fraction of entries in the first 𝐿 − 1 levels is
still 1

𝑇
. Therefore, the space amplification is still 𝑂 (1

𝑇
).

6 DESIGN SELECTION
We now describe how to select a suitable Real-Time LSM-Tree
design for a given workload using the cost analysis from Section 5.
Our goal is to find an optimal CG configuration for each level to
minimize the total I/O cost for a given workload.

In the context of LSM-trees, this problem is critically different
due to the flexibility of assigning a different layout for each level
of the tree. That is, we are not searching for a single CG layout
across the whole data and tree, but rather we are searching for an
optimal layout for each level of the tree in a way that holistically
optimizes the overall performance. A critical invariant is the CG
containment constraint described in Section 3.2, (a CG at level 𝑖
must be a subset of some CG at level 𝑖 − 1). LASER makes a decision
per level regardless of whether the LSM-tree is based on leveling
(one run per level), tiering, or lazy leveling (where there may be
several runs per level). This is because in the latter case, runs overlap
in terms of the range of values stored, and so all runs will see the
same access patterns given a workload at this level.

In the remainder of this section, we define the optimization
problem in the context of Real-Time LSM-trees, and we describe
our search algorithm, which is inspired by Hyrise [21] and brings

novel design elements to allow different layouts in every level of
the tree and to ensure CG containment.

6.1 Input
Parameters: To find an optimal CG layout for a given workload,
LASER requires: 1) parameters defining the Real-Time LSM-Tree
structure, and 2) parameters defining the workload. As explained
in Section 5, the costs of the operations depend on the Real-Time
LSM-Tree structure, which is defined by the parameters 𝑇 , 𝐿, and
𝐵 (Section 2), and on the CG configuration CG. We represent the
workload by wl, which is a set of operations. Let𝑤 be the number
of insert operations, 𝑝 be the number of read operations for existing
keys, 𝑞 be the number of scan operations, and 𝑢 be the number of
update operations in wl. Since we are searching for an optimal CG
layout for each level independently, we additionally define level 𝑖’s
workload by wli, and similarly, 𝑝𝑖 , 𝑞𝑖 , and 𝑢𝑖 represent the number
of read, scan, and update operations, respectively, served at level 𝑖 .

Obtaining parameter values: We assume that the values of
the LSM-Tree parameters (𝑇 , 𝐿, 𝐵) are fixed based on the data size
(𝑁) and the operating system configuration (e.g., page size). Past re-
search showed how to tune T and L in an LSM-tree [17–19]. Further-
more, B is usually fixed based on a 4kB block size (as in RocksDB).
Overall, these parameter choices are orthogonal to LASER: they gov-
ern the high-level LSM-tree architecture while LASER optimizes the
architecture within each run. As for the workload, we assume that,
at the logical level, it consists of SQL statements. For the LASER
storage engine, we convert the workload to the operations defined
in Section 3.1. Profiling the workload wli at each level allows us
to determine the values for𝑤 , 𝑝𝑖 , 𝑞𝑖 , 𝑢𝑖 , and 𝑠𝑖 . Finally, the values
for 𝐸𝑔

𝑖
and 𝐸𝐺

𝑖
are determined by the workload trace and the CG

configuration under consideration, as discussed in Section 5.

6.2 Optimization Problem
Cost function: Let𝑊𝑘 be the cost of the 𝑘𝑡ℎ write operation in
the workload, obtained using Equation 4; we define 𝑃𝑘 , 𝑄𝑘 and
𝑈𝑘 similarly based on Equations 5 through 7. Following previous
work on LSM-Tree design [18], we compute the cost of a workload
for a given CG configuration CG by adding up the costs of each
operation, as shown in Equation 8.

𝑐𝑜𝑠𝑡 (CG) :=
𝑤∑︁
𝑘=1

𝑊𝑘 +
𝑝∑︁

𝑘=1
𝑃𝑘 +

𝑞∑︁
𝑘=1

𝑄𝑘 +
𝑢∑︁
𝑘=1

𝑈𝑘 (8)

Since we need to find an optimal CG configuration at each level
using per-level workload statistics, the cost function in Equation 8

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

can be split into per-level cost, given by the following equation:

𝑐𝑜𝑠𝑡 (CGi) :=
𝑤.𝑇 .𝑔𝑖

𝐵.𝑐
+

𝑝𝑖∑︁
𝑘=1

𝐸
𝑔

𝑖𝑘
+

𝑞𝑖∑︁
𝑘=1

𝑠𝑖𝑘 .𝐸
𝐺
𝑖𝑘

𝑐.𝐵
+

𝑢𝑖∑︁
𝑘=1

𝑇 .𝐸𝐺
𝑖𝑘

𝑐.𝐵
(9)

Here, CGi = {𝑐𝑔𝑖1, 𝑐𝑔𝑖2, ..., 𝑐𝑔𝑖𝑔} is the partitioning of columns into
𝑔 groups at level 𝑖 that satisfies the CG containment constraint.

Optimization problem: For each level 𝑖 , we want to find an
optimal CGi such that 𝑐𝑜𝑠𝑡 (CGi) is minimized for the workload
wli and the CG containment constraint is satisfied. This leads to
the following optimization problem:

∀𝑖 : 1 ≤ 𝑖 ≤ 𝐿 (10)
CG∗

i = argmin
CGi

𝑐𝑜𝑠𝑡 (CGi)

𝑠 .𝑡 .∀𝑐𝑔𝑖 𝑗 ∈ CGi ∃ 𝑐𝑔(𝑖−1)𝑘 ∈ CG(i−1) | 𝑐𝑔𝑖 𝑗 ⊆ 𝑐𝑔(𝑖−1)𝑘

Recall that we keep level-0 row-oriented, so the CG containment
constraint is trivially satisfied for level-1.

6.3 Our Solution
Previous work [21] takes the following three-step approach: 1)
pruning the space of candidate CGs, 2) merging candidate CGs to
avoid overfitting, and 3) selecting an optimal CG layout from the
candidate CGs. The CG containment constraint can be added to the
first step, further pruning the space of candidate CGs.

Let {𝑎1, 𝑎2, ..., 𝑎𝑐 } be the attributes in relation R, and let Π 𝑗 be
the projection of the 𝑗𝑡ℎ operation (point lookup, range query, or
update operation) at level 𝑖 . In the first step, we generate a CG
partitioning with the smallest subsets, where every subset contains
columns that are co-accessed by at least one operation. This is done
by recursively splitting the attributes of R using the projections Π 𝑗 .
For example, suppose R = {𝑎1, 𝑎2, 𝑎3, 𝑎4}, and let Π1 = {𝑎2, 𝑎3, 𝑎4},
Π2 = {𝑎1, 𝑎2}, and Π3 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. Then, splitting using Π1
gives subsets: {𝑎1}, {𝑎2, 𝑎3, 𝑎4}, and further splitting using Π2 gives
subsets: {𝑎1}, {𝑎2}, {𝑎3, 𝑎4} (Π3 does not split any subsets).

The next step is to merge the subsets from the previous step.
This is beneficial for point queries, which typically have wider
projections, while smaller subsets are beneficial for range scan
operations, which typically have narrow projections. This tension
between the access patterns of point queries and scan operations is
used to decide which subsets should be merged. We merge smaller
subsets only if the cost of running the workload with the larger
subsets is lower. To systematically evaluate all merging possibilities,
we start with the smallest subsets from the previous step, and
consider all possible permutations of them for merging.

Finally, in the third step, we generate all possible CG partitions
(covering all attributes of R) from the subsets generated in the
previous step, and output the least-cost solution (Equation 9).

To satisfy the CG containment constraint, when considering level
𝑖 , we change the initial set of attributes R to be the set of attributes
from one CG at level 𝑖−1, and we separately execute our solution for
each CG at level 𝑖 −1. For example, if level-2 has CGs: < 𝑎1, ..., 𝑎4 >;
< 𝑎5, ..., 𝑎8 >, then we solve two CG selection problems for level-3,
one with R = {𝑎1, ..., 𝑎4} and one with R = {𝑎5, ..., 𝑎8}. The design
selection algorithm starts with level-1, where the complete schema
R is split into CGs using the three steps described above. Then, this
process is repeated for level-2 onwards, where each CG at level 𝑖 −1
is split into optimal CGs for level 𝑖 . The worst case time complexity

of finding an optimal CG configuration at a single level is given by
[21], which is exponential in the number of partitions generated in
the first step. The overall worst case time complexity for all levels
equals the number of levels times the worst case complexity of
each level. Since the number of partitions is small in practice [21]
and the CGs get smaller from one level to the next, the actual time
taken by the design selection algorithm is expected to be small. For
example, in our evaluation (Section 7), design selection took only 3
seconds for 100 columns and 8 LSM-Tree levels.

7 EVALUATION
We now show that: 1) the empirical behaviour of LASER matches
the cost model from Section 5, 2) LASER outperforms pure row-
store, pure column-store, and other column-group hybrid designs,
and 3) LASER is robust to minor workload changes.

Setup: We deployed LASER on a Linux machine running 64-bit
Ubuntu 14.04.3 LTS. The machine has 12 CPUs across two NUMA
nodes (Intel Xeon E5-2603 v3 @ 1.60GHz), with 15MB of L3 cache,
16GB of RAM, and a 4TB hard drive (Seagate ST4000NM0033, Serial,
SATA Rev 3.0).

Implementation: We implemented LASER on top of RocksDB
5.14. We added the components described in Section 4: simulated
CG layout, CG updates, support for projections in queries, Lev-
elMergingIterators and ColumnMergingIterators, and the CG local
compaction strategy. We reused other necessary but orthogonal
components provided by RocksDB, such as in-memory skiplists,
index blocks for SSTs, bloom filters, snapshots, and concurrency.
To collect workload traces for design selection, we modified the
RocksDB profiling tools to collect per-level statistics about opera-
tions and their projections. We implemented the design selection
algorithm as an offline process that takes in the workload trace and
the LSM-Tree parameters as input.

Configuration:Unless specified otherwise, we use leveling com-
paction with kOldestLargestSeqFirst compaction priority, with up to
6 compaction threads. We use the RocksDB default values of other
parameters such as Level-0 size, SST size, and compression.

Compaction: While we use leveling, the results are orthogonal
to the compaction strategy: the number of entries in every level
remains constant given a fixed size ratio (T). For example, tiering,
thewrite optimizedmerging strategy, or lazy leveling and thewacky
continuum [19], which balance read and write costs, only affect the
number of runs within a level, not the number of entries in a level
(since runs will simply be smaller with those strategies compared
to leveling). In our experiments, we vary the size ratio (T), which
affects how entries spread across the levels and the number of levels.
This is critical as it affects the number of column-group layouts a
Real-Time LSM-tree can hold simultaneously.

Workload: We generate workloads using the benchmark pro-
posed by previous work on HTAP systems [11, 12]. The benchmark
consists of transactional and analytical queries common in HTAP
workloads: (𝑄1) inserts new tuples, (𝑄2) is a point query that selects
a specific row, (𝑄3) is an update query that updates a subset of
attributes of a specific row, (𝑄4) is an arithmetic query that sums a
subset of attributes over the selected tuples, and (𝑄5) is an aggregate
query that computes the maximum values of selected attributes
over selected tuples. These queries are written in SQL as follows:

Real-Time LSM-Trees for HTAP Workloads

Transactional:
𝑄1: INSERT INTO R VALUES (𝑎0, 𝑎1, ..., 𝑎𝑐)
𝑄2: SELECT 𝑎1, 𝑎2, ..., 𝑎𝑘 FROM R WHERE 𝑎0 = 𝑣

𝑄3: UPDATE R SET 𝑎1 = 𝑣1, ..., 𝑎𝑘 = 𝑣𝑘 WHERE 𝑎0 = 𝑣

Analytical:
𝑄4: SELECT 𝑎1 + 𝑎2 + ... + 𝑎𝑘 FROM R WHERE 𝑎0 ∈ [𝑣𝑠 , 𝑣𝑒)
𝑄5: SELECT𝑀𝐴𝑋 (𝑎1), ..., 𝑀𝐴𝑋 (𝑎𝑘) FROMRWHERE𝑎0 ∈ [𝑣𝑠 , 𝑣𝑒)

The parameters 𝑘 , 𝑣 , 𝑣𝑠 , and 𝑣𝑒 , control projectivity, selectivity,
overlap between queries, and access patterns throughout the data
lifecycle. The benchmark includes two types of tables: narrow (30
columns) and wide (100 columns). Each table contains tuples with
a 8-byte integer primary key 𝑎0 and a payload of 𝑐 4-byte integer
columns (𝑎1, 𝑎2, ..., 𝑎𝑐). Unless otherwise noted, we use the table
with 30 columns, with uniformly distributed integer values as keys.
In all experiments, we run an initial data load phase, followed by a
steady workload phase in which we record measurements.

Note that we do not use complex OLAP queries from benchmarks
such as TPC-H and TPC-DS since our focus is on the performance
of storage engine operations (inserts, updates, point lookups and
scans) rather than query optimizations. Furthermore, we do not test
queries with predicates on non-key columns since LASER converts
these to a sequential scan, as described in Section 3.1. Secondary
indices can speed up these types of queries, but this is orthogonal
to the data layout issues we study in LASER.

7.1 Validation of Cost Model
Goal: We begin by validating the costs of point reads, range scans,
and write amplification presented in Section 5.

Methodology: For a fixed schema and parameters (i.e., 𝑐 and
𝐵), the cost of these operations depends on the query projection
size and the CG configuration. We validate the cost model using
the narrow table and 𝑇 = 2, as well as the wide table with 𝑇 = 10.
For the narrow table, we consider six Real-Time LSM-Tree designs,
in which the CG sizes vary from 1 to 30, covering the pure row and
pure column layouts, and other designs in between. For each design,
we use 𝑔 = 30/𝑐𝑔_𝑠𝑖𝑧𝑒 equi-width column groups in each level, and
we set 𝑐𝑔_𝑠𝑖𝑧𝑒 to a value in {1, 2, 3, 6, 15, 30}. In each design, the
LSM-Tree has 8 levels with Level-0 in row-format. For thewide table,
we consider four Real-Time LSM-Tree designs, with 𝑐𝑔_𝑠𝑖𝑧𝑒 values
in {1, 4, 10, 100}, and five LSM-Tree levels. To generate read and
scan operations, we use𝑄2 and𝑄5, respectively, and we vary 𝑘 from
one to 30 to control the projection size. Queries are executed after
the load phase (400 million entries loaded into the narrow table, and
200 million entries into the wide table) with the OS cache cleared,
and we measure the average latency. The write amplification cost
is reflected in the background compaction process. To measure
compaction time, we load all the entries in Level-0, with compaction
disabled, and then schedule compaction manually and measure
its runtime. Compaction ends when no level exceeds its capacity.
Compaction size is measured as the total bytes written.

Results: Figures 7(a) and 7(b) show the latency of read opera-
tions w.r.t. the projection size and the number of CGs, respectively.
The top figures correspond to the narrow table and the bottom
figures correspond to the wide table. In Figure 7(a), when the CGs
are small (similar to a column-oriented layout), latency increases

linearly with the projection size because more CGs are fetched from
disk. When the CGs are large (similar to a row-oriented layout),
latency stays unchanged with the projection size because for any
projection size, all the columns are fetched. This is also implied by
the point query cost in Equation 5, which is plotted in black dotted
lines for cg_size=1 (top line) and for cg_size=30/100 (bottom line).
The empirical data in Figure 7(a) thus agree with the cost equation.

In Figure 7(b), we vary the number of CGs while keeping the
projection sizes fixed. For wide projections (i.e., fetching complete
rows), the cost increases linearly with the number of CGs, because
each CG is fetched in a separate disk I/O. However, for narrow
projections (i.e., fetching a single column value), the I/O cost stays
unchanged because a single disk I/O is enough to fetch the required
column value. This is consistent with the point query cost given
by Equation 5, which is plotted in black dotted lines for projection
size 30/100 (top line) and 1 (bottom line) in Figure 7(b).

In Figures 7(c) and 7(d), we measure the latency of scan opera-
tions w.r.t. the projection size and CG size, respectively. Again, the
top figures correspond to the narrow table and the bottom figures
correspond to the wide table. Similar to Figure 7(a), we vary projec-
tion size in Figure 7(c). For small CGs (similar to a column-oriented
layout), latency increases linearly with the projection size because
more disk I/O is required to fetch more CGs. However, for large
CGs (similar to a row-oriented layout), latency stays almost con-
stant with projection size, because many columns are fetched in a
single disk I/O. This is consistent with the range query cost given
by Equation 6, which is plotted in black dotted lines for CG size 1
(top line) and 30/100 (bottom line) in Figure 7(c).

In Figure 7(d), we vary the CG size while keeping the projection
sizes fixed. For wider projections, latency should stay constant with
CG size, because almost all the columns are fetched irrespective
of the CG layout. However, latency decreases as CG size increases
because of the simulated CG layout used in LASER. For large CGs,
we fetch the key only once, whereas for smaller CGs, the key is
fetched along with each CG, which increases latency. The change
in latency for wider projections is proportional to 𝑐𝑜𝑛𝑠𝑡1/𝑐𝑔_𝑠𝑖𝑧𝑒 +
𝑐𝑜𝑛𝑠𝑡2 (Equation 6), as shown by the top black dotted line in the
Figure 7(d). For smaller projections, we expect latency to increase
with CG size because of the overhead of fetching unnecessary
columns. This is reflected in Figure 7(d) and matches the cost in
Equation 6. Similar observations were made in prior work on HTAP
systems that allow configurable column groups [9, 11].

In Figure 7(e), we show that the time and size of compaction
jobs for different CG sizes matches our write amplification cost
(Equation 4), shown using a black dotted line for reference.

7.2 Performance of LASER
Goal: We show that LASER can speed up mixed workloads that
change with the data lifecycle. We compare LASER with a pure
row-oriented layout, a pure column-oriented layout, a simple HTAP
layout, and various fixed column-group layouts. We also compare
LASER with some popular DBMSs from the following categories:
row-store DBMSs such as Postgres, MySQL and MyRocks [3], a
column-store DBMS: MonetDB [22], and an HTAP DBMS: Hyper
[1]. Unlike these complete DBMSs, LASER is only a storage engine

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20 25 30

la
te

nc
y

(m
s)

projection size

1
2

3
6

15
30

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20 25 30

la
te

nc
y

(m
s)

CGs

1 10 20 30

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 5 10 15 20 25 30

la
te

nc
y

(s
ec

)

projection size

1
2

3
6

15
30

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 5 10 15 20 25 30

la
te

nc
y

(s
ec

)

cg-size

1 10 20 30

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30
 0

 20

 40

 60

 80

 100

co
m

pa
ct

io
n

tim
e

(m
in

s)

C
om

pa
ct

io
n

si
ze

 (G
B

)

CGs

time size

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(m
s)

projection size

1 4 10 100

(a) Read: average latency
w.r.t. projection size for
different CG sizes

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(m
s)

CGs

1 25 50 100

(b) Read: average latency
w.r.t. #CGs for different
projection sizes

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(s
ec

)

projection size

1 4 10 100

(c) Scan: average latency
w.r.t. projection size
for different CG sizes

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(s
ec

)

cg-size

1 25 50 100

(d) Scan: average latency
w.r.t. CG sizes for
different projection sizes

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

co
m

pa
ct

io
n

tim
e

(m
in

s)

C
om

pa
ct

io
n

si
ze

 (G
B

)

CGs

time size

(e)Write amplification: com-
paction time and size w.r.t. #
CGs

Figure 7: The cost of operations in LASER matches the cost model in Section 5. The top row corresponds to the narrow table
with T=2, and the bottom row corresponds to the wide table with T=10.

without an SQL query engine. Nevertheless, we include this exper-
iment for a reference comparison against some well-understood
DBMSs. We omit a comparison with main-memory-only HTAP sys-
tems such as Hyrise [21], and SAP HANA [20], and with disk-based
systems that are not open-source such as SingleStore [6].

Methodology: We generate an HTAP workload (HW) using
queries𝑄1 −𝑄5. To emulate a data lifecycle, we continuously insert
new data (𝑄1) at a steady rate of 10,000 insert operations per second.
This ensures that entries continuously move from one level to the
next. Along with the inserts, we issue 100 updates per second, i.e.,
one percent of the insert rate, via 𝑄3, where a randomly chosen
column value is updated for a recently inserted key. This update
pattern mimics updates and corrections frequently taking place in
mixed analytical and transactional processing [12]. Furthermore,
we control the access patterns throughout the data lifecycle by
selecting 𝑘 , 𝑣 , 𝑣𝑠 , and 𝑣𝑒 for queries 𝑄2 − 𝑄5 such that the upper
levels of the LSM-Tree are mostly accessed by point read operations
and wider projections, whereas lower levels are accessed by scan
operations and narrower projections. This allows us to generate a
lifecycle-driven hybrid workload, as described in Section 3.1.

We use two variants of 𝑄2 for point access of recent data: HW-
𝑄2𝑎 and HW-𝑄2𝑏 . The 𝑣 value in each variant is determined by
a normal distribution over the time-since-insertion values of the
keys. In Figure 9(a), we show the two distributions from which
𝑣 is selected. The mean of the first distribution is 0.98 (typically
accessing data from in-memory skiplists, Level-0, or Level-1), and
0.85 for the second distribution (typically accessing data from Level-
2 or Level-3); each distribution has a standard deviation of 0.02.𝑄2𝑎
queries fetch all 30 attributes, whereas 𝑄2𝑏 fetches columns 16-30.

For analytical operations, we use 𝑄4, which accesses columns
21-30 for 5% of the keys, and 𝑄5, which accesses columns 28-30 for
50% of the keys. Since our keys are uniformly distributed integer
values, these queries access data from all levels, i.e., both recent
and historical data. However, the amount of data scanned at level

𝑖 + 1 is a factor 𝑇 = 2 more than that scanned at level 𝑖 . Table 3
summarizes the properties of these operations.

We first load 400 million entries, and then execute the work-
load until another 20 million entries are inserted. Queries HW-𝑄2𝑎
and HW-𝑄2𝑏 are spread uniformly, whereas 𝑄4 and 𝑄5 are exe-
cuted towards the end. Queries 𝑄2, 𝑄4, and 𝑄5 are issued using
four concurrent client threads, whereas a separate client thread is
responsible for write operations (𝑄1 and 𝑄3).

The CG configuration used by LASER for this workload is la-
belled D-opt (Figure 9(b)), and was computed as described in Sec-
tion 6.3. For comparison, we select five other designs with vary-
ing CG sizes. The design with cg_size=30 corresponds to a pure
row-oriented layout (default RocksDB) and the design rocksdb-col
corresponds to a simulated pure column-oriented layout inside
LASER. Since column stores such as MonetDB benefit from con-
tiguous storage of column values, we simulate this in rocksdb-col by
restricting the LSM-Tree to 2 levels and we set cg_size=1 (Level-0
absorbs flushed skiplists, and Level-1 stores all the sorted runs with
cg_size=1). The remaining three designs correspond to CG sizes
that match the projections of the operations in the workload HW.
The design with cg_size=15 matches𝑄2𝑏 , the design with cg_size=3
matches 𝑄5, and the design with cg_size=6 is partly suitable for 𝑄4
and𝑄5. We also consider a design we call HTAP-simple, in which 25
percent of the most recent data are stored in a row-oriented layout,
and the remaining 75 percent are stored in a pure column-oriented
layout. To test various CG layouts within reasonable time, we opted
to have deeper LSM-Trees, therefore, we set the level size ratio (T)
to 2. For all the designs (except rocksdb-col), the LSM-Trees have
8 levels with Level-0 in row-format. To isolate the impact of the
storage layout, we simulate these seven designs within LASER. For
the HTAP-simple design, we set cg_size=30 for the first 6 levels and
cg_size=1 for the last 2 levels (which contain 75 percent of the data).

Additionally, we execute this workload in the following row-
store DBMSs: Postgres-9.3, MySQL 5.6 with the MySQL storage
engine and MyRocks [3] storage engine, a column-store DBMSs:

Real-Time LSM-Trees for HTAP Workloads

 0
 200
 400
 600
 800

 1000
 1200
 1400

rocksdb

cg-size-15
cg-size-6

cg-size-3
cg-size-2

rocksdb-col

HTAP-simple
Postgres

MySQL
MyRocks

MonetDB
Hyper

LASER

To
tal

 w
or

klo
ad

 tim
e (

mi
ns

)

>24hr
>24hr

>24hr
>24hr

>24hr

(a) Workload runtime of different designs

 0

 10000

 20000

 30000

 40000

 50000

rocksdb

cg-size-15
cg-size-6

cg-size-3
cg-size-2

rocksdb-col

HTAP-simple
LASER

Th
ro

ug
hp

ut
(in

se
rts

/se
c)

(b) Insert throughput during load phase

100
101
102
103
104
105
106
107
108
109

Q1 Q2a/b Q3

La
ten

cy
 (u

s)

(c) Latency of inserts (Q1), point queries (Q2a, Q2b), and updates (Q3).

100

101

102

103

104

105

Q4 Q5

La
ten

cy
 (s

ec
)

rocksdb
cg-size-15
cg-size-6
cg-size-3
cg-size-2
rocksdb-col
HTAP-simple

Postgres
MySQL
MyRocks
MonetDB
Hyper
LASER

(d) Latency of range queries (Q4, Q5).

Figure 8: LASER performs the best on the HTAP workload (HW).

MonetDB 5 server v11.33.3 [22], and an HTAPDBMS: Hyper [1] (via Hyper API v0.0.14946 [2]). Hyper API does not allow multiple client

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

(a)𝑄2𝑎 : mean=0.98,
𝑄2𝑏 : mean=0.85

𝐿0 :< 1-30 >
𝐿1 :< 1-30 >

𝐿2 :< 1-15 >< 16-30 >
𝐿3 :< 1-15 >< 16-30 >

𝐿4 :< 1-15 >< 16-20 >< 21-30 >
𝐿5 :< 1-15 >< 16-20 >< 21-30 >

𝐿6 :< 1-15 >< 16-20 >< 21-27 >< 28-30 >
𝐿7 :< 1-15 >< 16-20 >< 21-27 >< 28-30 >

(b) Design D-opt used by LASER

Figure 9: Read patterns and optimal design used in Sec. 7.2

Query Projection (𝑘) Key (𝑣) distribution Count
𝑄1 1-30 uniform 10,000/sec
𝑄2𝑎 1-30 normal,0.98,0.02 500,000
𝑄2𝑏 16-30 normal, 0.85,0.02 500,000
𝑄3 any 1 of 30 uniform, 1% of data 100/sec
𝑄4 21-30 uniform, 5% of data 12
𝑄5 28-30 uniform, 50% of data 12
Table 3: Summary of the HTAP workload HW

threads to simultaneous connect to the same database, therefore
we executed the workload via a single client thread.

Results: Figure 8 shows that LASER’s optimal design outper-
forms the other storage layouts when executing themixedworkload
described in Table 3. Figure 8(a) shows that LASER took the least
total time to execute the complete workload, i.e., queries 𝑄1 to 𝑄5.
Designs with cg_size=2, MySQL, MyRocks, MonetDB, and Hyper
did not finish within our time-limit-exceeded (TLE) window of 24
hours. Therefore, we instead report their average latencies in Figure
8(c) and 8(d).

Figure 8(b) compares the insert throughput during the load phase.
LSM-Trees are known to stall inserts as compaction tasks queue up
because compaction involves slow disk IOs whereas inserts hap-
pen in memory [25]. Thus, the insert throughput of each design
is dependent on the amount of compaction. From Equation 4, the
amount of compaction (i.e., write amplification) depends on the
number of CGs and the number of levels, 𝐿. Design rocksdb-col
has the smallest compaction size since it has only two levels, and
thus the highest throughput. However, rocksdb-col simulates a pure
column-oriented layout with only 2 levels, whereas in practice LSM-
Trees have 8 or more levels [5]. Amongst the other designs (with
8 levels), rocksdb has the highest throughput because it has the
fewest column groups. LASER’s throughput is 25 percent slower
than rocksdb’s since it has multiple column groups. LASER’s design
selection (Section 6.3) trades off the insert throughput to achieve

better query latency, as we will see in Figure 8(c) and 8(d), opti-
mizing for the overall workload time. If high insert throughput is
more critical than query performance then the cost of inserts in
Equation 8 can be multiplied by some weight, which would force
LASER to select a more write-optimized design. Postgres, MySQL,
MyRocks, MonetDB, and Hyper performed significantly worse, to
the extent that loading data via a stream of INSERT statements
was impractical. To finish the data load within reasonable time, we
loaded directly from the files, and we exclude these systems from
the throughput comparison.

In Figure 8(c), LASER’s design has either the lowest latency or is
close to the lowest latency across different designs. MySQL, a row
oriented DBMS, has 𝑄2 latency very close to LASER. MonetDB has
the highest latency, orders of magnitude slower than LASER. Insert
and update latencies across all the LSM-Tree designs (including
LASER’s) are the same because they all append the data to an
in-memory skiplist, which is not impacted by the layout of the
disk levels. Hyper, which supports HTAP workloads, like LASER,
performs significantly worse for 𝑄2 and 𝑄3. This is because it does
not consider the data lifecycle while deciding the storage layout.
Instead, Hyper stores all the data in columnar layout and only varies
the compression scheme for hot and cold data [24]. In Figure 8(d),
LASER’s latency is close to the latency of the design best suitable
for the query (e.g., cg_size=3 is suitable for 𝑄5 and cg_size=15 is
suitable for𝑄4). For𝑄5, MonetDB andHyper perform 5x better than
LASER because they store all the data in contiguous columns, which
is suitable for aggregation queries. However, MonetDB performs
20x worse than LASER for𝑄4. Hyper performs the best for𝑄4 partly
due to the columnar layout and partly because of a single client
workload. We suspect Hyper’s latency for 𝑄4 will increase with
multiple parallel clients due to disk throttling. Postgres was the
best performing row-store DBMS, with similar latency as LASER
for 𝑄4, but it was 2x slower for 𝑄5.

7.3 Robustness to Workload Shifts
Goal:We now measure the performance impact when the tested
workload deviates from the representative workload.

Methodology:We consider two types of shifts from the work-
load HW used in Section 7.2: 1) vertical shift in read access patterns,
and 2) horizontal shift in scan projections. For the vertical shift, we
offset the mean of the normal distribution used to generate keys for
𝑄2𝑎 and 𝑄2𝑏 inHW. For example, an offset of 0.1 results in a mean
of 0.88 for the distribution generating keys for 𝑄2𝑎 and a mean of
0.75 for 𝑄2𝑏 . For the horizontal shift, we offset the projection of
𝑄5 in HW to the left by some amount. For example, offsetting the
projection by 2 results in projecting columns 26-28, and a shift of 4
results in columns 24-26, and so on.

Results: Figure 10(a) shows the results of vertical shifts in the
read pattern. The latency of read operations initially increases with
the shift but then stays constant. This is because top levels are small,
so the CG layout changes with the offset, but eventually when the
offset fetches keys from the last few levels (which are larger), the
CG layout does not change with the offset.

In Figure 10(b), we examine horizontal shifts in the scan pro-
jection. Scan latency gets up to 2x worse if the projections are
misaligned and fetch data from a few wide CGs. For example, when
the offset is 14, the projection is 14-16, which spans two large CGs,

Real-Time LSM-Trees for HTAP Workloads

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 0.1 0.2 0.3 0.4 0.5 0.6re
ad

 la
te

nc
y (

m
icr

o
se

c)

normal mean offset

(a) Change in read latency
with shifting read pattern

 0
 100
 200
 300
 400
 500
 600

 0 5 10 15 20 25

sc
an

 la
te

nc
y (

se
c)

projection offset

(b) Change in scan latency
with shifting projections

Figure 10: LASER is robust to minor workload shifts

<1-15> and <16-20>, in levels 6 and 7. However, if the CGs are
small, or only a single CG is required by the projection, the impact
of misalignment is smaller. As expected, from Figures 10(a) and
10(b), we conclude that the performance of read and scan opera-
tions deteriorates if the mismatch between the actual workload and
the representative workload is significant. In these cases, LASER
should be re-configured. We consider a self-configuring Real-Time
LSM-Tree as a direction for future work as part of online tuning of
physical design [16].

8 RELATEDWORK
Adoption of LSM-Trees: LSM-Trees are used in many RDBMSs,
key-value stores and NoSQL systems [29]. Other applications in-
clude the log-structured history access method (LHAM) [27], which
supports temporal workloads by attaching timestamp ranges to
sorted runs and pruning irrelevant sorted runs at query time. Fur-
thermore, LSM-trie [32] is a hash index for key-value pairs where
the metadata, such as index pages, cannot be fully cached. Finally,
the LSM-based tuple compaction framework in AsterixDB [10]
leverages LSM lifecycle events (flushing and compaction) to extract
and infer schemas for semi-structured data. Similarly, in LASER, we
exploited LSM-Tree properties, such as data propagation through
the levels over time and compaction.

Improvements of LSM-Trees: Recent works have optimized
various components of LSM-Trees such as allocating space for
Bloom filters [17], tuning the compaction strategy [18], and com-
paction scheduling to mitigate write stalls [25]. Many of these
recent improvements are orthogonal to the design of LASER.

HTAP systems and storage engines: An early approach, frac-
tured mirrors, maintained one copy of the data in row-major lay-
out and another copy in column-major layout [30]. This has been
adopted by Oracle and IBM to support columnar layout as an add-
on. Although these systems achieve better OLAP performance than
a pure row-store, the cost of synchronizing the two replicas is high.
HYRISE [21] partitions tables into column groups based on how
columns are co-accessed by queries. Systems such as SAP HANA
[20], SingleStore [6], and IBM Wildfire [14] split the storage into
OLTP friendly and OLAP friendly components. Data are ingested
by the OLTP friendly component, which is write-optimized and
uses a row-major layout, and are eventually moved to the OLAP
friendly component, which is read-optimized and uses a column-
major layout. Peloton (now NoisePage) [4, 11] generalizes this idea
by partitioning the data into multiple components called tiles, with
different column group layouts. In this work, we described these

systems as having a lifecycle-aware data layout, and we showed that
LSM-Trees are a natural fit for a lifecycle-aware key-value storage
engine.

9 CONCLUSIONS
We showed that Log-Structured Merge Trees (LSMs) can be used to
design a lifecycle-aware storage engine for HTAP systems. To do so,
we proposed the idea of a Real-Time LSM-Tree, in which different
levels can store the data in different formats, ranging from purely
row-oriented to purely column-oriented. We presented a design
advisor to select an appropriate Real-Time LSM-Tree design given
a representative workload, and we implemented a proof-of-concept
prototype, called LASER, on top of the RocksDB key-value store.

10 ACKNOWLEDGMENTS
We would like to thank Andy Yu for providing the experimental
results for Hyper DBMS.

REFERENCES
[1] [n.d.]. HyPer. https://hyper-db.de/.
[2] [n.d.]. HyPer API. https://help.tableau.com/current/api/hyper_api/en-us/docs/

hyper_api_whatsnew.html.
[3] [n.d.]. MyRocks. https://myrocks.io/.
[4] [n.d.]. NoisePage. https://noise.page/.
[5] [n.d.]. RocksDB Tuning. https://github.com/facebook/rocksdb/wiki/RocksDB-

Tuning-Guide.
[6] [n.d.]. SingleStore. https://www.singlestore.com/.
[7] 2014. Hybrid Transaction/Analytical Processing Will Foster Opportunities

for Dramatic Business Innovation. https://www.gartner.com/en/documents/
2657815.

[8] Daniel Abadi, Peter Boncz, and Stavros Harizopoulos. 2013. The Design and
Implementation of Modern Column-Oriented Database Systems. Now Publishers
Inc., Hanover, MA, USA.

[9] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: A
Hands-Free Adaptive Store. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). Association for Computing Machinery, New York, NY, USA, 1103–1114.
https://doi.org/10.1145/2588555.2610502

[10] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-based
Tuple Compaction Framework for Apache AsterixDB. Proc. VLDB Endow. 13, 9
(2020), 1388–1400. http://www.vldb.org/pvldb/vol13/p1388-alkowaileet.pdf

[11] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD Confer-
ence 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Geor-
gia Koutrika, and Sam Madden (Eds.). ACM, 583–598. https://doi.org/10.1145/
2882903.2915231

[12] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. 2019. Optimal Column
Layout for Hybrid Workloads. Proc. VLDB Endow. 12, 13 (Sept. 2019), 2393–2407.
https://doi.org/10.14778/3358701.3358707

[13] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho, Namik
Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, Tianchao Tim
Li, Guy M. Lohman, Konstantinos Morfonios, René Müller, Keshava Murthy,
Ippokratis Pandis, Lin Qiao, Vijayshankar Raman, Richard Sidle, Knut Stolze, and
Sandor Szabo. 2012. Business Analytics in (a) Blink. IEEE Data Eng. Bull. 35, 1
(2012), 9–14. http://sites.computer.org/debull/A12mar/blink.pdf

[14] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, René Müller, Vi-
jayshankar Raman, Richard Sidle, Matt Spilchen, Adam J. Storm, Yuanyuan Tian,
Pinar Tözün, Daniel C. Zilio, Matt Huras, Guy M. Lohman, Chandrasekaran Mo-
han, Fatma Özcan, and Hamid Pirahesh. 2017. Evolving Databases for New-Gen
Big Data Applications. In CIDR.

[15] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. 2010.
Finding a Needle in Haystack: Facebook’s Photo Storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (Vancouver,
BC, Canada) (OSDI’10). USENIX Association, USA, 47–60.

[16] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physical
Design Tuning. In Proc. International Conference on Data Engineering (ICDE’07).
826–835.

https://hyper-db.de/
https://help.tableau.com/current/api/hyper_api/en-us/docs/hyper_api_whatsnew.html
https://help.tableau.com/current/api/hyper_api/en-us/docs/hyper_api_whatsnew.html
https://myrocks.io/
https://noise.page/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://www.singlestore.com/
https://www.gartner.com/en/documents/2657815
https://www.gartner.com/en/documents/2657815
https://doi.org/10.1145/2588555.2610502
http://www.vldb.org/pvldb/vol13/p1388-alkowaileet.pdf
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.14778/3358701.3358707
http://sites.computer.org/debull/A12mar/blink.pdf

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association
for Computing Machinery, New York, NY, USA, 79–94. https://doi.org/10.1145/
3035918.3064054

[18] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-
Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging. In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery,
New York, NY, USA, 505–520. https://doi.org/10.1145/3183713.3196927

[19] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the
Wacky Continuum. In ACM SIGMOD International Conference on Management of
Data.

[20] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA database - An architecture
overview. IEEE Data Eng. Bull. 35 (03 2012), 28–33.

[21] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. 2010. HYRISE: A Main Memory Hybrid Storage
Engine. Proc. VLDB Endow. 4, 2 (Nov. 2010), 105–116. https://doi.org/10.14778/
1921071.1921077

[22] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,
and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Engineering Bulletin 35, 1 (2012),
40–45.

[23] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1790–1801. https://doi.org/10.
14778/2367502.2367518

[24] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage Using Both Vectorization and Compilation. In Proceedings

of the 2016 International Conference on Management of Data (San Francisco, Cali-
fornia, USA) (SIGMOD ’16). Association for Computing Machinery, New York,
NY, USA, 311–326. https://doi.org/10.1145/2882903.2882925

[25] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-based
Storage Systems. Proc. VLDB Endow. 13, 4 (2019), 449–462. http://www.vldb.org/
pvldb/vol13/p449-luo.pdf

[26] Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey.
VLDB J. 29, 1 (2020), 393–418. https://doi.org/10.1007/s00778-019-00555-y

[27] Peter Muth, Patrick Neil, Achim Pick, and Gerhard Weikum. 2000. The LHAM
log-structured history data access method. The VLDB Journal, v.8, 199-221 (2000)
8 (02 2000). https://doi.org/10.1007/s007780050004

[28] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transac-
tional/Analytical Processing: A Survey. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1771–1775.
https://doi.org/10.1145/3035918.3054784

[29] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (June 1996), 351–385.
https://doi.org/10.1007/s002360050048

[30] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. 2002. A Case for Fractured
Mirrors. In Proceedings of the 28th International Conference on Very Large Data
Bases (Hong Kong, China) (VLDB ’02). VLDB Endowment, 430–441.

[31] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment, 553–564.

[32] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-Trie: An LSM-
Tree-Based Ultra-Large Key-Value Store for Small Data. In Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference (Santa Clara, CA)
(USENIX ATC ’15). USENIX Association, USA, 71–82.

https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.1145/2882903.2882925
http://www.vldb.org/pvldb/vol13/p449-luo.pdf
http://www.vldb.org/pvldb/vol13/p449-luo.pdf
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s007780050004
https://doi.org/10.1145/3035918.3054784
https://doi.org/10.1007/s002360050048

	Abstract
	1 Introduction
	2 Overview of LSM-Trees
	2.1 Design
	2.2 Cost Analysis

	3 Real-Time LSM-Tree Design
	3.1 Definitions
	3.2 Design Overview

	4 LASER Storage Engine
	4.1 Column Group Representation
	4.2 Write Operations
	4.3 Read Operations
	4.4 Real-Time LSM-Tree Compaction

	5 Cost Analysis
	6 Design Selection
	6.1 Input
	6.2 Optimization Problem
	6.3 Our Solution

	7 Evaluation
	7.1 Validation of Cost Model
	7.2 Performance of LASER
	7.3 Robustness to Workload Shifts

	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

