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Abstract—Automated Feature Engineering (AFE) refers to
automatically generate and select optimal feature sets for down-
stream tasks, which has achieved great success in real-world
applications. Current AFE methods mainly focus on improving
the effectiveness of the produced features, but ignoring the low-
efficiency issue for large-scale deployment. Therefore, in this
work, we propose a generic framework to improve the efficiency
of AFE. Specifically, we construct the AFE pipeline based on
reinforcement learning setting, where each feature is assigned
an agent to perform feature transformation and selection, and
the evaluation score of the produced features in downstream
tasks serve as the reward to update the policy. We improve
the efficiency of AFE in two perspectives. On the one hand,
we develop a Feature Pre-Evaluation (FPE) Model to reduce
the sample size and feature size that are two main factors on
undermining the efficiency of feature evaluation. On the other
hand, we devise a two-stage policy training strategy by running
FPE on the pre-evaluation task as the initialization of the policy to
avoid training policy from scratch. We conduct comprehensive
experiments on 36 datasets in terms of both classification and
regression tasks. The results show 2.9% higher performance in
average and 2x higher computational efficiency comparing to
state-of-the-art AFE methods.

Index Terms—approximate hashing, automated feature engi-
neering, MinHash, off-policy, reinforcement learning

I. INTRODUCTION

Feature engineering refers to the process of feature genera-
tion and selection to convert raw data into effective features for
machine learning tasks. Due to the lack of domain knowledge,
traditional manual feature engineering is labor-intensive and
time-consuming [1]. To overcome the limitation, Automated
Feature Engineering (AFE) is proposed to automatically gen-
erate and select optimal feature sets [2], [3]. On the one hand,
AFE can significantly reduce human efforts and benefit the
deployment in large-scale big data systems; on the other hand,
AFE can also discover new knowledge from the data that is
hardly achieved by traditional manual data engineering.

Current studies in AFE focus on leveraging the Reinforce-
ment Learning paradigm to explore possible feature candidates
and exploit generated features to downstream machine learning
tasks for selecting optimal feature sets. For example, Nargesian
et al. proposed Learning Feature Engineering (LFE) with
focusing on extracts useful transformations from past feature
engineering experiences [4]; Khurana et al. developed a new
transformation graph with Directed Acyclic Graph (DAG) to
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Fig. 1: Sample size vs. performance and computation Time.

represent relationships between different transformed versions
of the data, and Q-learning was used to learn a performance-
guided strategy for effective feature transformation from his-
torical instances [5]. In order to resolve the feature space
explosion problem on high-order transformations, Chen et al.
proposed Neural Feature Search (NFS) that utilized Recurrent
Neural Network (RNN)-based controller to transform each raw
feature through a series of transformation functions, and policy
gradient was used to train this controller [6].

While promising feature sets produced, these state-of-the-
art AFE methods suffer from low-efficiency issue, especially
in terms of time consumption for complex machine learning
tasks. Taking NFS as an example. We investigate the time
consumption of NFS on four datasets with different sizes, and
present the empirical results in Table I. The results show that
for each dataset, only about 0.1% of the time is spent on
feature generation, but about 90% of the time is consumed
on evaluating new features. The observation indicates that
the efficiency of AFE is largely impeded by the feature
evaluation step. Moreover, with the sample size increasing,
the feature evaluation would take much more time, which even
exacerbates the low-efficiency issue. Unfortunately, few efforts
are put on improving the efficiency of AFE methods.

Therefore, in this work, we aim to study how to accelerate
AFE. As the feature evaluation step takes the most of time,
we propose to improve the efficiency of AFE by optimizing
the feature evaluation process. Specifically, we optimize the
feature evaluation process from two perspectives: (1) reducing
the sample size for evaluation; (2) reducing the size of
candidate features for evaluation. Next, we introduce the two
perspectives as follows:
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Dataset Instances\Features New Features Generation Time Eval. New Features Time Total Time
PimaIndian 768\8 1195 354ms 205s 225s

credit-a 690\6 890 192ms 139s 155s
diabetes 768\8 1174 334ms 203s 223s

german credit 1001\24 3730 1291ms 654s 732s
TABLE I: One epoch of NFS time consuming on four datasets.

(1) Reducing the sample size for evaluation. In traditional
pipeline of AFE, the feature evaluation is conducted over
the whole dataset. However, not all samples are necessary
for determining the quality of the generated features. We
empirically investigate the contribution of the sample size on
the feature performance. Specifically, we randomly sample
different percentage of four datasets, and calculate the perfor-
mance of the selected features and the corresponding running
time. We conduct the operation for ten times, and present the
average results in Figure 1. The results show that ignoring
when the sample size achieves a certain scale, the performance
of the selected features remains relatively stable. With more
samples getting involved in, it barely enhances the quality
of the selected features, but raises unacceptable surge in
time consumption. The observation suggests that reducing the
sample size is a promising direction for accelerating the feature
evaluation process without sacrificing the feature quality.
(2) reducing the size of candidate features for evaluation.
In addition to sample size, the size of candidate features
is another important factor to affect the running time of
evaluation. Intuitively, more features lead to larger candidate
space for evaluation in feature selection, resulting in larger
running time. Moreover, traditional AFE methods directly
evaluate the features on the downstream tasks. However, the
downstream tasks are usually complex and time-consuming,
which even significantly retards the feature evaluation process.
Therefore, reducing the size of candidate features prior to the
formal evaluation (downstream tasks) is a potential solution.

Nevertheless, it is challenging to achieve the goal. The
reasons are as follows: First, since AFE aims to provide
a generic feature-refinement pipeline for different datasets
with various sizes, the reducing process demands to work for
arbitrary sample sizes. Second, different datasets have features
with diverse semantic meanings, thus, how to determine a
feature as a candidate for evaluation across datasets in a unified
manner is non-trivial. Third, it is even more challenging to
combine reducing the size of samples and candidate features
without violating each requirement. Therefore, to tackle the
above challenges, we propose to develop a simple and fast
yet reasonable auxiliary evaluation task to pre-evaluate the
validness of features to filter the candidate features prior to
the formal evaluation. The proposed auxiliary evaluation task,
namely Feature-Validness Task, is a binary classification task
that justifies whether one feature is selected as a candidate
for the formal evaluation. The Feature-Validness Task takes
features as input, where one feature is denoted by respective
values in samples. We pre-train a binary classification model,
namely Feature Pre-Evaluation (FPE) Model, for the Feature-
Validness Task using a group of public datasets as prior knowl-
edge, and apply the well-trained model for pre-evaluation of
the candidate features. In this case, all the features are required
to be represented as a fixed size of samples. To achieve the

goal, we further propose a Hashing-based method to project
arbitrary sample sizes into a fixed number, which naturally
fulfill the requirement for reducing sample sizes.

Along this line, we propose an efficient AFE framework
with accelerating AFE via reducing the size of samples and
candidate features simultaneously. Specifically, we formulate
AFE as an off-policy reinforcement learning problem fol-
lowing the convention of AFE. Different from existing AFE
methods, generated features from agents would be first pre-
evaluated by the pre-trained FPE model to reduce the feature
size with compressing samples to improve the efficiency.
Then, to further reduce the costs on exploring promising
feature transformation actions, we develop a two-stage training
strategy: (1) quick initialization with FPE model, and (2)
formal training. In stage 1, we only use FPE model as the eval-
uation to quickly discover promising feature transformation
actions. During stage 1, the policy is initialized by borrowing
knowledge from the pre-trained FPE model, and one replay
buffer is constructed to record potentially good actions. After
several epochs of training in stage 1, we formally convert the
evaluation to the downstream tasks in stage 2. Trough this way,
the proposed framework can improve the training efficiency by
avoiding learning the policy from scratch. Our contributions
can be listed as follows:
• To the best of our knowledge, we are the first to study

how to improve the efficiency of AFE.
• Through empirical studies, we identify the core reason of

the low-efficiency issue of AFE as the inefficient feature
evaluation process.

• We propose an efficient AFE framework by reducing the
size of samples and candidate features simultaneously
through a faster auxiliary feature evaluation task with
sample hashing.

• We develop a two-stage training strategy to improve the
efficiency of policy learning.

• We conduct comprehensive experiments on 36 datasets
in terms of both classification and regression tasks. The
results show 2.9% higher performance in average and
2x higher computational efficiency comparing to state-
of-the-art methods.

II. PROBLEM FORMULATION

In this section, we introduce the formulation of AFE. For
tabular datasets, the general pipeline of AFE can be abstracted
into two steps: feature generation and selection. As shown
in Figure 2(1), the original features are first transformed
into generated features through a series of combinatorial
transformation functions. Then the selection method selects
effective features from the generated features based on the
evaluation results in downstream tasks. Then, the evaluation
results will be further used as the feedback to improve the
selection method and transformation functions to continue
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Fig. 2: From traditional AFE to RL-based AFE.

generating and selecting features until the selected features
satisfy the evaluation requirement for the downstream tasks.
Formally, given a dataset D〈F,y〉 with N original features
F = {f [1], f [2], ..., f [N ]} with label y, we use AT (F,y)
to represent the evaluation score of the downstream task T
on dataset D. The original feature set F is transformed into
F̌ through a set of transformation functions (e.g., addition,
multiplication, logarithm, etc). The AFE is to find the optimal
transformed feature set F∗ where AT (F∗,y) is maximized,
such that F∗ = argmax

F̌

AT (F̌,y).

In this work, we formulate AFE in a reinforcement learning
setting, as shown in Figure 2(2). We outline the definitions for
the key elements as follows:
• Environment. In our design, the environment is the

feature subspace of generated feature space. Whenever a
feature agent issues an action to generate a new feature,
the state of the feature subspace (environment) changes.

• Agents. Suppose there are N original features in the
dataset, we define N agents to generate features. Specif-
ically, each agent will generate new features based on
the given original feature. In other words, considering
one original feature and the respective newly generated
features as a subgroup of the state space, there are N
feature subgroups. Each agent will be responsible for one
feature subgroup.

• State Space. We define the state s as the selected features.
The dimension (size) of the state space is the size of the
selected feature. The selected features include the original
features and the newly generated features. Once a newly
generated feature is discriminated as a good feature,
the feature will be included into the state. Therefore,
with more newly generated features added into the state,
the state space will keep expanding until the feature
engineering process finishes.

• Action. We define the action a as the feature
transformation. Each agent will take actions (fea-
ture transformation) over the respective feature sub-
group. The feature transformation is in the format of
OPERATOR(feature1, feature2), where OPERATOR is a
feature transformation operator that takes two features
as input and outputs a new feature, and feature1 and
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Fig. 3: The transition process.

feature2 are two features from one feature subgroup.
We consider two types of feature transformation oper-
ators: (i) unary operator (including logarithm, min-max-
normalization, square root, and reciprocal), in this case,
feature1 and feature2 are the same feature; (ii) binary
operator (including addition, subtraction, multiplication,
division, and modulo operation), in this case, feature1 and
feature2 are two different features.

• Transition. We illustrate the transition process in Fig-
ure 3. For simplicity, we take the transition from st
to st+1 as an example. The agent first sample two
features from the respective feature subgroup in st with
replacement. Then, the agent takes actions according to
the policy to generate new features. The newly generated
features will be discriminated as qualified or unqualified.
Once confirmed as qualified, the newly generated feature
will be selected and added to the respective feature
subgroup to construct new state st+1.

• Evaluation Task. The evaluation task aims to examine
the effectiveness of the generated and selected features.
There are two types of evaluation tasks: (1) pre-evaluation
task, that is to reduce the feature size through quick
binary classification; and (2) downstream task, that is
the formal evaluation task to evaluate and select the
generated features. Following the convention of AFE [6],
we utilize Random Forest as the model for downstream
tasks. Details will be introduced in Section III-B.

• Reward. We define the performance gain on the evalua-
tion task as the reward r.

Based on the above definition, we take one agent as example
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Fig. 4: An illustration of feature generation using RNN-based
agent. An RNN implements an agent of the raw feature. st
is state, at is action, ht is action probability distribution, ft
is generated features, rt is the reward of new features. The
initial state is the original feature. The evaluation task returns
the reward rt to the ht through backpropagation on the loss
function Equ. 1 and updates ht.

to show how the proposed RL-based AFE generates features.
For each feature, we exploit a RNN as the agent to take
actions. Specifically, we maintain the hidden state of RNN
as the probability distribution to sample an action (feature
transformation function) to perform. For the first round gen-
eration, we set the action probability distribution as uniform
distribution, and the original feature set as the input. For the t-
th round generation, we take the probability distribution ht−1

updated from the (t − 1)-th round generation, and current
state (feature set) st of RL as the input to RNN. RNN would
output the updated probability distribution ht. We sample an
action at based on the updated probability distribution ht.
Then, we generate new features ft by applying the action at
on the feature set st. The updated state (feature set) st+1 is
the combination of the input feature set st and the generated
feature set ft. Moreover, the generated features ft will be
evaluated on the evaluation tasks and obtain the reward rt. The
action probability distribution ht will be further updated based
on the reward rt by Equ. 1. Finally, the updated distribution
ht will be taken as the hidden state of RNN to perform the
next round feature generation.

The loss function of our RNN is as Equ. 1. Agent loss
function is constructed by three parts. r is the reward, h is the
action probability distribution, and θ is the weight of RNN.

L(θ, h, r) = log(argmax(h)) ∗ r + log(h) ∗ h+ ||θ||2 (1)

The notations used in this paper are summarized in Table II.

III. E-AFE

In this section, we introduce our proposed framework in
detail. We start with overall framework of our proposed E-
AFE. Then, we present FPE model for reducing sample and
feature size. Moreover, we introduce the two-stage training
strategy for enhancing the learning efficiency. Finally, we
provide a theoretical analysis of the algorithm complexity.

A. Framework Overview

Figure 5 shows an overview of the proposed framework. The
core elements of E-AFE includes two parts: (1) FPE model,
which is to reduce the sample size and candidate feature size

TABLE II: Notations for E-AFE
Notations Meaning
D〈F,y〉 Dataset D with feature F and label y
T Downstream task (classification or regression)
AT (F,y) Score of a downstream task T on (F,y)
F̌ A set of generated feature
Di The i-th taining set
Di

j The i-th residual dataset (drawed j-th feature)
V Validation set
Ai

0 The score of i-th original training set
Ai

j The score of residual dataset Di
j

d MinHash signature output dimension
H Approximate hashing features
L Labels of negative/positive feature (0 or 1)
thre Threshold of score gain for feature labels (0 or 1)
Rec, Prec Recall, Precision
CD The FPE model
N The number of features on a target dataset
T Sample of an episode
st State at time t for one agent
at Action at time t of one agent
rt Reward at time t of one agent
γ Discount factor in range [0,1]
ht Action probability distribution at time t of one agent

for improving the evaluation efficiency; (2) two-stage policy-
training strategy, which is to boost the learning efficiency by
avoiding training from scratch. Specifically, for each original
feature, the agent will first generate features following the
pipeline as shown in Figure 4. Then, the generated features
are fed into the FPE model to reduce sample size with the
hashing module, and reduce the candidate feature size with a
binary classifier pre-trained by the pre-evaluation task. During
the policy training procedure, we will initialize the policy with
taking the pre-evaluation task as the evaluation task to train
for several epochs. Meanwhile, we construct a replay buffer
to record promising actions. Then, we continue to train the
policy with real downstream tasks. The proposed framework
continue to be trained until the optimal features are achieved.

B. Feature Pre-Evaluation (FPE) Model

As discussed in Section I, sample size and feature size
are two vital factors to compromise the efficiency of AFE.
Therefore, we develop FPE model to help reduce the sample
and feature size to accelerate AFE. Specifically, FPE model
consists of two modules: (1) sample compressor, which is to
reduce sample size with hashing operations; and (2) feature
pre-selector, which is to reduce candidate feature size for
evaluation tasks with pre-trained binary classifier.
Sample Compressor. Figure 1 indicates that not all samples
are necessary for feature evaluation. Therefore, a method for
reducing the sample size is highly desired. Moreover, different
datasets have various sizes. To be generalized across datasets,
the compression method also expects to compress arbitrary
input sizes into the fix one. Therefore, in this work, we adopt
hashing techniques as the sample compressor to reduce sample
size. Specifically, we take MinHash as the hashing function
family. The basic idea of MinHash is to assign the target
dimension hashing values, and select d instances with the
minimum hashing values as the compressed results [7].

In our sample compressor case, given a dataset (tabular data)
D ∈ RM×N with N features (column) and M samples (row).
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We take samples (row) as the target dimension, and input
into MinHash. Suppose the expected sample size is d, we
expect the compressed dataset with selected d samples should
also preserve the sample similarities in the original M -sample
dataset. Then the compression process can be represented as

D̃ = MinHash(D, d),

s.t. |sim(D1,D2)− sim(D̃1, D̃2)| < ε
(2)

where D ∈ RM×N and D̃ ∈ Rd×N denote the orignal
dataset and compressed dataset, respectively, and ε denotes
a very small constant. D1 and D2 are the two datasets whose
similarity is to be calculated.
Feature Pre-Selector. Since evaluating features directly on
downstream tasks is time-consuming, we develop a fast yet
effective pre-evaluation task to pre-select candidate features.
Specifically, we pre-train a binary classifier on public datasets
to distinguish the effective features from the generated feature
set. Formally, given n public datasets, and each dataset is
Di = [ki,mi], i ∈ [1, n], which include mi original features
and ki instances. The downstream task T calculates the
original performance score as A0. Then, we leave out the j-
th feature from i-th original dataset to construct the residual
dataset Dij . We continue to calculate the performance score Aij
for Dij . We compare the performance score between A0 and
Aij to determine whether the j-th feature is effective. Then, the
labeling process of feature effectiveness can be represented as

Ai
0 = T (Di), i ∈ [1, n]

Dij ← Di − Fij

Ai
j = T (Dij), j ∈ [1,mi], i ∈ [1, n]

Lij = sgn(Ai
0 −Ai

j + thre)

(3)

where thre is the threshold of score gain; sgn(z) = 1 if z >
0 and sgn(z) = 0 (or equivalently -1) otherwise; L is the
label vector. Consequently, the effective feature is labeled as
1, otherwise 0. thre is set a small value, such as 0.01. This
value is to set the boundary of the binary classification, which
is larger than 0, so that better features can be found. If set
to 0, many features that are not significantly improved for
downstream tasks may be retained. The size of this threshold
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is also set according to the recall effect. For example, as shown
in Figure 6.

Once the label vector is obtained, we pre-train a binary
classifier CD paramterized by φ through taking the sample-
compressed features as input. We select effective features
(labeled as 1) as the candidate as the input to evaluation tasks
in RL-based AFE. Although the pre-evaluation task is still
based on real downstream tasks, once well-trained, the binary
classifier can infer the effectiveness of given features quickly.
Model Optimization. We exploit cross-entropy as the loss
function and take maximizing recall as the optimization target.
The objective is to find the optimal sample compressor with
the optimal compression size d complying with best feature-
effectiveness classifier. Therefore, we consider the sample
compressor as the hyperparameter by fine-tuning the hashing
function options and compression size d to train the feature-
effectiveness classifier. Formally, the predicted label vector L̃
can be represented as

H = MinHash(D, d)

L̃ = sgn(CD(H))
(4)

Then, according to the ground-truth L and prediction L̃, we
calculate the precision Prec and recall Rec as

Prec = Precision(L, L̃)

Rec = Recall(L, L̃)
(5)

Then, the objective can be represented as

C∗D,MinHash∗, d∗ ← argmax
CD,MinHash,d

Rec,

s.t. Prec > 0 and Rec < 1,
(6)



Algorithm 1 Feature Pre-Evaluation (FPE) Model
Input: n public dataset D for training, every dataset has
ki, i ∈ [1, n] samples and mi, i ∈ [1, n] features. V is the
validation set. T is the downstream task. d is the vector
of MinHash signature output dimension for an approximate
feature. thre is the threshold of score gain for feature labels
(0 or 1). MinHash is hash function set.
Output: Trained FPE model CD, MinHash function and Min-
Hash output dimension d.

1: while Select d ∈ d or MinHash Function do
2: Let A = [],L = [], Rec = [].
3: /*Training model with cross-entropy*/
4: for i = 1→ n do
5: Get Ai

0 by Equ. (3) on Di.
6: for j = 1→ mi do
7: Draw sub dataset Dij ← Di − Fij .
8: Get Ai

j by Equ. (3) on Dij .
9: if Ai

0 −Ai
j > thre then

10: Lij ← 1
11: else
12: Lij ← 0
13: end if
14: Hi

j ← MinHash(Fij , d) as Equ. (4)
15: end for
16: end for
17: /*Validating model for recall*/
18: L̃ = sgn(CD(H)) as Equ. (4)
19: Rec = Recall(L, L̃) as Equ. (5)
20: end while
21: /*Train and fine-tune the FPE model*/
22: C∗D,MinHash∗, d∗ ← argmax

CD,MinHash,d
(Rec) as Equ. (6)

23: return C∗D,MinHash∗, d∗

where C∗D, MinHash∗ and d∗ are optimal classifier, and the
corresponding hashing function and compressed sample size,
respectively. We perform stochastic gradient descent (SGD)
to train and fine-tune the FPE model. Algorithm 1 shows the
calculation details of FPE model.
C. Two-Stage Training Strategy

We integrate the well-trained FPE model into the RL-based
AFE framework to construct E-AFE , as shown in Figure 5.
The conventional training process of RL-based AFE methods
suffer from exhaustively exploring the action-state space,
which wastes a lot of running time to reach the optimum.
Therefore, to solve the problem, we propose the two-stage
training strategy by borrowing external knowledge from pre-
trained FPE model to avoid learning policy from scratch. The
two-stage training strategy includes: (1) quick initialization
with FPE model, and (2) formal training.
Stage 1: Quick Initialization with FPE Model The benefits
of FPE model lie in two aspect. On the one hand, FPE model is
trained on various public datasets, which contain rich external
knowledge of feature characteristics; On the other hand, the
well-trained FPE can directly infer the effectiveness of the

Algorithm 2 Two-Stage Policy Training Strategy
Input: Trained FPE model CD. Features F of the target dataset.
MinHash function. MinHash output dimension d.
Output: Maximize score of downstream task

1: /*Stage 1: Quick Initialization with FPE Model*/
2: while Choose agent one by one do
3: Agent sample action with equal rate
4: Action generates new feature f̌ ∈ F̌
5: Evaluate f̌ by Equ. (7)
6: if f̌ is positive feature then
7: Store this feature to replay buffer
8: else
9: Dropout this feature

10: end if
11: Get Aht by Equ. (8)
12: Get return Uht by Equ. (9) for every agent
13: end while
14: Agents initialization complete
15: /*Stage 2: Formal Training*/
16: while Get feature from replay buffer do
17: Sample feature transformation with action prob.
18: Generate new features by transformation
19: Save score of the downstream task
20: Get return Uλt by Equ. (10).
21: end while
22: Trained agents
23: return Maximize score of downstream task

generated features, which saves substantial time comparing to
the downstream task evaluation. Therefore, at the initialization
stage, we omit the downstream task evaluation, but directly
take the results from FPE model as the reward to update the
policy of E-AFE . Formally, we compute the reward of each
action as follows: for taking action at, the improvement rt
is the score At of state st minus At−1 of state st−1 , which
means the gain of performing at intuitively. Then, we utilize
the λ − return Uλt that combines all k − step returns Ut as
the final reward signal for action at. We define AO and Ah as
the performance score of the original dataset and compressed
dataset by FPE model, respectively. ∆Amax and ∆Amin are
the maximize and minimize score gain of input space. Then,
the accumulated reward can be computed as

p = CD(MinHash(f̌ , d)) (7)

Aht =


AO +

0.5− p
0.5

(∆Amax − thre), p ∈ [0, 0.5)

AO +
0.5− p

0.5
(thre−∆Amin), p ∈ [0.5, 1]

(8)

where, thre is the threshold of score gain for feature labels
(0 or 1). f̌ is a new feature from the test set. p is the output
probability of the binary classifier.



rht = Aht −Aht−1

Uht = rht + γrht+1 + ...+ γkrht+k =

t∑
k=0

γ(t−k)rhk
(9)

Stage 2: Formal Training After several epochs of training
in stage 1, we then change the evaluation task to the real
downstream task. We take the output of FPE model (pre-
selected feature with reduced sample and feature size) as the
candidate features to formally train the policy, where the re-
ward is computed as the performance gain on the downstream
tasks. To be consistent with the stage 1, we represent the
accumulated rewards for stage 2 as:

rt = At −At−1

Ut = rt + γrt+1 + ...+ γkrt+k =

t∑
k=0

γ(t−k)rk

Uλt = (1− λ)
N×T∑
k=1

λk−1Ut,

(10)

where At and At−1 are evaluation scores of two successive
feature sets on the downstream tasks, respectively.
Policy Learning. To explore the optimal actions (feature
transformations), we train agents to maximize their expected
return, represented by J(θ[1], ..., θ[j], θ[N ]), where the j-th
agent is parameterized by θ[j]. Then, the expected return can
be represented as

J(θ[1], ..., θ[N ]) = EP (a1:N×T ; θ[1],...,θ[N])

[
N×T∑
t=1

Uλt

]
(11)

To achieve an empirical approximation, we utilize the REIN-
FORCE [8] rule and Monte Carlo simulation [9] to update the
parameters:

∇θ[1],...,θ[N]J(θ[1], ..., θ[N ]) ≈

1

m

m∑
k=1

N×T∑
t=1

∇θ[1],...,θ[N] logP(at|a1,t−1; θ[1], ..., θ[N ])Uλt,[k]

(12)

where m is the number of batch size that the agent samples
per epoch and Uλt,[k] is the cross-validation score that the k−th
sample achieves. Algorithm 2 shows the calculation details of
the two-stage training strategy.

D. Theoretical Analysis

We first analyze the complexity of the proposed FPE model
on reducing sample and feature sizes. The training complexity
of FPE is related to the size of search space and datasets.
Suppose there are h hash functions in search space, the α
candidate options of the sample size d. In the training process,
given n public datasets Di = [ki,mi], i ∈ [1, n], and v
validation set Vγ = [jγ , tγ ], γ ∈ [1, v], the training complexity
of FPE model in stage 1 is O((h ·α ·d) · (n ·k ·m) · (v · j · t)).

When we integrate FPE model in RL-based AFE, the FPE
model serves as a sample compressor and feature pre-selector
via quick inference. With the two-stage training strategy, E-
AFE evaluates the generated feature with the binary classifier
first and then with the downstream tasks. Formally, given N
agents (original features) with k samples, each agent performs
T times of feature transformations to get m generated features.
The complexity in the first training stage is O(d · k ·m ·N ·
T ). After initialization from stage 1, we continue to train the
policy with cross-validation downstream tasks. Suppose the
downstream task of RF cross-validation complexity is O(c),
the policy update epoch, the dropout rate is ratio, and the
complexity of the stage 2 is O(c ·N · T · epoch · ratio).

Then, the two-stage policy training complexity of E-AFE is
O((h ·α ·d) · (n ·k ·m) · (v · j · t))+O(c ·N ·T ·epoch ·ratio).
Stage 1 runs the inference process of the FPE model, which
is far less than the cross-validation time of RF and can be
excluded. If you consider deploying to multiple target datasets,
the FPE model can be reused, and the training time of the FPE
model is much shorter than the deployment time. Therefore
O(c · N · T · epoch · ratio) >> O((h · α · d) · (n · k · m) ·
(v · j · t)), the finally complexity is O(c · N · T · epoch ·
ratio) . Compared to the state-of-the-art AFE method NFS,
its complexity is O(c ·N ·T · epoch · ratio). Our method drop
rate is more than 0.5. Our algorithm guarantees 2x faster than
NFS when running the same epoch without early stopping. As
the drop rate increases, our algorithm is faster. The drop rate
increase positively correlates with the FPE model’s ability to
recall good new features on the current dataset.

IV. RESULTS AND DISCUSSION

In this section, we conduct extensive experiments to answer
the following research questions: Q1: How is the performance
of our E-AFE in online AFE tasks as compared to state-of-
the-art methods? Q2: How is the performance of E-AFE vari-
ants with different combinations of key components in the RL
framework? Q3: How is the performance of E-AFE with
a different RL framework? Q4: Is deep learning better than
feature engineering for the tabular dataset? Q5: How do the
key hyperparameter settings impact E-AFE ’s performance?
Q6: Why MinHash is chosen? Q7: Are the results robust to
other downstream tasks? Q8: Is the performance improvement
robust? Q9: How the method is performing with increasing
numbers of features and larger datasets? In the following
subsections, we first present the experimental settings and then
answer the above research questions in turn.

A. Experimental Settings

1) Data Description: We collect 239 public datasets for
pre-training FPE, and 36 datasets for downstream task eval-
uations. Specifically, the collected public datasets are from
OpenML 1 with 141 classification datasets and 98 regression
datasets. And the datasets for downstream tasks include 26
classification datsets and 10 regression datasets. Detials about
the datasets can be found in Table III.

1http://www.openml.org

http://www.openml.org


TABLE III: Comparison results on 36 target datasets. C\R is the downstream type. C is classification. R is regression. RTDLN

(DLN) is ResNet with RF from RTDL [10]. AutoFSR (FSR) [11], [12] is feature selection from randomly generated features.
NFS [6] is feature generation and evaluation. The FE|DL method is to put the features selected by feature engineering into
the deep learning process. The DL|FE method puts the original features into the deep learning training and then puts the
output features into the feature engineering method for feature selection. E-AFED is the ablation study of E-AFE , replacing
the approximate hashing model with a random dropout method. E-AFER is the ablation study of E-AFE , replacing the RL
framework with policy gradient method like NFS [6] used. E-AFEP is E-AFE with PCWS [13]. E-AFEI is E-AFE with ICWS
[14]. E-AFEL is E-AFE with LICWS [15]. E-AFE use CCWS [16]

Dataset C\
R

Samples\
Features FSR DLN NFS FE|DL DL|FE E-AFER E-AFED E-AFEL E-AFEP E-AFEI E-AFE

Higgs Boson C 50000\28 0.723 0.756 0.731 0.779 0.836 0.725 0.802 0.821 0.833 0.816 0.836
A. Employee C 32769\9 0.948 0.484 0.950 0.677 0.532 0.943 0.950 0.950 0.951 0.950 0.951
PimaIndian C 768\8 0.779 0.743 0.790 0.787 0.797 0.783 0.792 0.793 0.797 0.795 0.798
SpectF C 267\44 0.871 0.639 0.876 0.760 0.684 0.862 0.900 0.903 0.900 0.892 0.903
SVMGuide3 C 1243\21 0.842 0.728 0.846 0.741 0.793 0.843 0.875 0.872 0.879 0.881 0.881
German Credit C 1001\24 0.775 0.681 0.780 0.692 0.712 0.773 0.810 0.796 0.816 0.813 0.816
Bikeshare DC R 10886\11 0.978 0.945 0.990 0.973 0.993 0.983 0.992 0.991 0.993 0.993 0.993
Housing Boston R 506\13 0.709 0.648 0.710 0.670 0.720 0.693 0.798 0.813 0.819 0.817 0.821
Airfoil R 1503\5 0.784 0.697 0.796 0.723 0.741 0.781 0.790 0.795 0.810 0.807 0.810
AP. ovary C 275\10936 0.852 0.659 0.864 0.684 0.671 0.858 0.879 0.880 0.876 0.879 0.884
Lymphography C 148\18 0.895 0.000 0.922 0.000 0.000 0.921 0.960 0.958 0.960 0.961 0.964
Ionosphere C 351\34 0.934 0.883 0.957 0.906 0.913 0.944 0.973 0.977 0.964 0.970 0.977
Openml 618 R 1000\50 0.619 0.072 0.640 0.678 0.143 0.635 0.728 0.729 0.731 0.737 0.737
Openml 589 R 1000\25 0.737 0.578 0.754 0.765 0.647 0.748 0.757 0.754 0.762 0.762 0.764
Openml 616 R 500\50 0.609 0.000 0.673 0.510 0.000 0.653 0.675 0.676 0.689 0.680 0.689
Openml 607 R 1000\50 0.634 0.025 0.688 0.603 0.027 0.678 0.728 0.729 0.727 0.733 0.734
Openml 620 R 1000\25 0.705 0.047 0.732 0.741 0.078 0.727 0.736 0.734 0.747 0.741 0.748
Openml 637 R 500\50 0.608 0.016 0.634 0.539 0.039 0.633 0.624 0.635 0.642 0.636 0.646
Openml 586 R 1000\25 0.749 0.521 0.780 0.612 0.542 0.780 0.790 0.793 0.781 0.784 0.793
Credit Default C 30000\25 0.782 0.678 0.815 0.738 0.693 0.812 0.819 0.821 0.821 0.816 0.822
Messidor features C 1150\19 0.743 0.731 0.757 0.765 0.793 0.756 0.781 0.783 0.790 0.784 0.793
Wine Q. Red C 999\12 0.671 0.387 0.692 0.514 0.421 0.691 0.716 0.717 0.720 0.723 0.723
Wine Q. White C 4900\12 0.652 0.371 0.687 0.403 0.469 0.671 0.708 0.708 0.705 0.708 0.708
SpamBase C 4601\57 0.934 0.939 0.938 0.949 0.949 0.935 0.949 0.949 0.949 0.944 0.949
AP. lung C 203\10936 0.962 0.944 0.966 0.955 0.985 0.964 0.983 0.985 0.979 0.985 0.985
credit-a C 690\6 0.782 0.798 0.793 0.802 0.815 0.789 0.810 0.814 0.893 0.815 0.815
diabetes C 768\8 0.778 0.695 0.784 0.714 0.748 0.782 0.798 0.798 0.781 0.784 0.798
fertility C 100\9 0.896 0.474 0.900 0.513 0.486 0.900 0.916 0.911 0.919 0.913 0.920
gisette C 2100\5000 0.951 0.950 0.952 0.960 0.978 0.950 0.971 0.973 0.969 0.978 0.978
hepatitis C 155\6 0.877 0.162 0.884 0.253 0.195 0.873 0.910 0.894 0.910 0.887 0.910
labor C 57\8 0.876 0.862 0.930 0.899 0.964 0.930 0.964 0.957 0.960 0.960 0.964
lymph C 138\10936 0.961 1.000 0.964 1.000 1.000 0.964 0.992 1.000 0.990 0.994 1.000
madelon C 780\500 0.742 0.564 0.751 0.681 0.638 0.740 0.860 0.860 0.864 0.864 0.867
megawatt1 C 253\37 0.899 0.620 0.913 0.743 0.693 0.904 0.943 0.941 0.937 0.942 0.945
secom C 470\590 0.922 0.030 0.929 0.092 0.092 0.927 0.930 0.929 0.932 0.932 0.932
sonar C 208\60 0.740 0.699 0.770 0.769 0.840 0.768 0.840 0.842 0.833 0.837 0.842

2) Evaluation Protocols and Metrics: The following
metrics are used for evaluating our proposed method.
TP, TN,FP, FN are true positive, true negative, false pos-
itive and false negative for all classes. Precision is given by
TP

TP+FP . Recall is given by TP
TP+FN . F1-score is the harmonic

mean of precision and recall, given by 2×Precision×Recall
Precision+Recall .

1-relative absolute error (1-rae) is given by 1 − rae =
1 −

∑
|y̌−y|∑
|ȳ−y| , where y is the actual target, ȳ is the mean of

y, and y̌ is prediction results by model. We use F1-score for
the classification problem, and use 1-rae for the regression
problem.

3) Baseline Methods: We compare the performance of our
method (namely E-AFE ) against the following baseline
algorithms.

(1)NFS. Neural Feature Search (NFS) [6] is the most
accurate method at present. It uses RF as the downstream
task. For a fair comparison, we use RF in other comparison
methods.

(2)RTDLN . RTDL [10] concludes that ResNet-like archi-

tecture is effective for tabular deep learning. Our ResNet [17]
method is derived from RTDL. First, we divide each target
dataset into train, validation, and test sets for RTDL. After
training and validating the ResNet in the framework of RTDL,
we change the downstream task of ResNet, softmax, into RF,
then test the modified ResNet model.

(3)AutoFSR. The RL framework of AutoFS [11], [12]
can’t consider feature generation. So we generated features
randomly and selected features by AutoFS.

4) Reproducibility and Parameter Settings: We imple-
mented our RL framework based on TensorFlow and chose
Adam [18] as our optimizer to learn the model parameters.
The learning rate is 0.01. The batch size is 32. We use four
unary operations, such as logarithm, min-max-normalization,
square root, and reciprocal, and five binary operations, such
as addition, subtraction, multiplication, division, and modulo
operation. Our default MinHash signature output dimension
is 48, and the MinHash function is CCWS. The maximum
order is 5. Threshold thre is 0.01. The training epoch of the



two-stage policy training strategy is 200, respectively.

B. Performance Comparison (Q1)

We evaluated the performance of all compared algorithms
on 26 classification and 10 regression datasets and reported the
evaluation results in Table III, IV, and Figure 7. To reduce the
feature space, E-AFE first conducts feature selection of less
than maximum features according to the feature importance
via RF on the 36 raw target datasets. Then, In the learning
curve, we sample score results when the training epoch is 0,
10, 30, 60, 90, 120, 150, or 200. From the evaluation results,
we summarize several key observations as follows:

We can observe that the learning speed of E-AFE is more
than 2x that of NFS [6] when the learning curve is saturated.
The evaluated features of E-AFE are less than 50% of other
methods. In the two-stage training strategy, by dropping some
bad generated features, E-AFE can significantly improve the
learning speed of AFE. Comparing time with the same score,
E-AFE is 10x faster than NFS in some datasets. E-AFEL,
E-AFEP and E-AFEI are all variants of E-AFE , just using
different MinHash functions.

AutoFSR [11] has not had enough generated features for
feature selection, and the final score is less than E-AFE .
AutoFS [11], [12] with random feature generation does not
fully mine the knowledge of feature generation. The randomly
generated feature set does not have enough good features to
give AutoFS for feature selection.

The score of RTDLN [10] is the lowest. The ResNet feature
extractor is not suitable for tabular datasets at any time. We
believe that the convolution kernel of the CNN network is
specially designed for data types such as images, and it is not
ideal for tabular data processing.

C. Model Ablation Study of E-AFE (Q2)

In addition to comparing E-AFE with state-of-the-art
techniques, we aim to understand the proposed framework
better and evaluate the critical components of the FPE model.
Mainly, we aim to answer the following question: How is the
performance of E-AFE variants with different combinations
of critical components in the RL framework? Hence, in our
evaluation, we consider the random drop feature method
E-AFED for the ablation study:

In Table III, IV, and Figure 7, the score of comparison
between E-AFE and E-AFED, our FPE model gets a higher
score. According to evaluated generated features by down-
stream task, our method is mostly evaluated less than other
methods. The results of E-AFED prove that the new features
have redundancy for AFE. The above ablation study results
also demonstrate that our method does learn more effective
knowledge of discarding redundant features than dropping new
features randomly.

D. Effect of RL in E-AFE Framework (Q3)

To show the effect of the RL framework in our developed
E-AFE , we replaced our designed RL framework with the
policy gradient method E-AFER for the ablation study:

TABLE IV: Comparison of feature evaluation numbers of one
epoch in the target dataset. AutoFSR (FSR) [11], [12] is
feature selection from randomly generated features. NFS [6]
is feature generation and evaluation. E-AFED is the ablation
study of E-AFE , replacing the approximate hashing model
with a random dropout method.

Dataset FSR NFS E-AFED E-AFE
Higgs Boson 4640 4585 2273 2182
A. Employee 1440 1322 667 603
PimaIndian 1280 1230 585 474

SpectF 7040 6964 3372 3116
SVMGuide3 3360 3269 1577 1573

German Credit 3840 3748 1634 1473
Bikeshare DC 1600 1537 743 327

Housing Boston 1920 1826 898 559
Airfoil 800 698 333 161

AP. ovary 8000 7905 3937 4008
Lymphography 2880 2809 1339 1160

Ionosphere 5440 5364 2600 2139
Openml 618 8000 7905 3903 1572
Openml 589 4000 3889 1934 975
Openml 616 8000 7917 3967 2009
Openml 607 8000 7900 3960 1671
Openml 620 4000 3883 1924 929
Openml 637 8000 7894 4040 2038
Openml 586 4000 3891 1996 932

Credit Default 3680 3593 1823 1608
Messidor features 3040 2958 1470 1448

Wine Q. Red 1760 1665 867 806
Wine Q. White 1760 1646 849 596

SpamBase 9120 9016 4347 4015
AP. lung 8000 7905 3954 3966
credit-a 960 898 415 483
diabetes 1280 1208 589 489
fertility 1440 1361 670 552
gisette 8000 7875 3954 3667

hepatitis 960 836 407 363
labor 1280 1202 596 695

lymph 8000 7891 4042 4033
madelon 8000 7923 3549 3549

megawatt1 5760 5695 2845 2319
secom 3200 3087 1559 1647
sonar 9600 9501 4747 4762

Table III shows that our RL framework method E-AFE is
better than E-AFER. Figure 5 shows that our RL framework
explores knowledge from offline public datasets and exploits
new knowledge online from a target dataset. Especially our
method not only use the final result of the downstream task
but also cache the intermediate result of the downstream task
in the process of training agents. This RL framework is also the
source of improving the score of our method compared with
the NFS [6] method, which uses the policy gradient to train
the controller and get a result at the final test. However, NFS
omitted the cross-validation results in the training process,
resulting in time-consuming and poor results.

E. Comparison with DNN method (Q4)

To compare the feature engineering method with the deep
learning method, we invite the RTDL [10] method for baseline.

In Table III, we can see that feature engineering-related
methods are more robust than ResNet from RTDL. The results
of ResNet have 0.0 or near 0.0. We consider that ResNet
is less useful in mini datasets, such as Lymphography and
hepatitis. In the mini dataset, NFS [6] and E-AFE have
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Fig. 7: Performance comparison. We show the converging curve of four methods on target datasets. E-AFE is our method.
AutoFSR [11], [12] is feature selection from randomly generated features. NFS [6] is feature generation and evaluation.
E-AFED is the ablation study of E-AFE , replacing the approximate hashing model with a random dropout method.

significant advantages to ResNet. However, if the dataset is
large, ResNet performs similarly to NFS [6] and E-AFE ,
such as Higgs Boson, SpamBase, AP. lung, and gisette. The
robustness loss of DNN results comes from its pre-division
of data sets into training, validation, and test sets. Especially
for small data sets, this partition is a fatal disadvantage. The

robust result comes from the cross-validation downstream task
of the feature engineering-related method, though this cross-
validation is very time-consuming. We also mix deep learning
and feature engineering methods in Table III, and DL|FE and
FE|DL also support the above analysis results.



F. Hyperparameter Sensitivity Studies (Q5)

E-AFE involves several parameters (e.g., Threshold thre,
MinHash signature output dimension and Maximum Order).
To investigate the robustness of our method, we examine how
the different choices of parameters affect the performance of
E-AFE . Except for the parameter being tested, we set other
parameters at the default values.

We use auto-sklearn for training and validation the FPE
model. thre divides the features into positive and negative
ones. The FPE model is trained on the approximate hashing
features from the original public training set and validated on
the approximate hashing features from the validation set.

Figure 8 shows the evaluation results on data as a function of
one selected parameter when fixing others. Overall, we observe
that E-AFE is not strictly sensitive to these parameters,
demonstrating our proposed framework’s robustness. In par-
ticular, we can observe that score achieves better performance
with the decrease of the threshold. The reason is that a
smaller threshold has a larger recall for the validation set. The
MinHash output length have something with the score. The
reason is that the approximate features generated by the hash
function can affect training results. This paper uses a variety
of hash functions and different compressed feature lengths
to generate approximate features. If the MinHash signature
output dimension set is too small, it will extract too little
information from the original feature and is not conducive
to hash model training. Some datasets may get a better score
with the maximum order increase, but the evaluated features
and training time will increase significantly. Our experiments
set the maximum order as 5 due to the effectiveness and
computational cost trade-offs.
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Fig. 8: Hyperparameter sensitivity studies of E-AFE .

G. MinHash Explanations and Signature Sensitivity (Q6)

On the one hand, MinHash can map arbirtary size samples
into the fixed size (like other Hash functions do), which is
necessary for across datasets data engineering; on the other
hand, one unique property of MinhHash is to quickly estimate
the similarity between two samples with hashing signature,
which can capture and preserve the relationships between
samples during hashing, leading to limited information loss
caused by compression [7]. Table III shows little difference in
the effect obtained by different MinHash functions.

H. Replace downstream task (Q7)

We add one more experiment to verify that the features
generated by our AFE are also robust to other downstream

TABLE V: Comparison results on 36 datasets. C is clas-
sification, R is regression. AutoFSR [11], [12] is feature
selection from randomly generated features. NFS [6] is feature
generation and evaluation. SVM is support vector machines,
NB is gaussian naive bayes for classification, GP is gaussian
processes for regression, MLP is multi-layer perceptron.

Dataset C\R AutoFSR NFS E-AFE
SVM NB|GP MLP SVM NB|GP MLP SVM NB|GP MLP

fertility C 0.880 0.670 0.760 0.870 0.140 0.300 0.880 0.880 0.900
hepatitis C 0.794 0.819 0.561 0.774 0.316 0.329 0.813 0.826 0.813

labor C 0.648 0.839 0.482 0.582 0.667 0.333 0.876 0.911 0.808
PimaIndian C 0.762 0.749 0.569 0.638 0.352 0.469 0.779 0.772 0.626

credit-a C 0.655 0.657 0.536 0.545 0.555 0.445 0.733 0.748 0.713
diabetes C 0.762 0.757 0.509 0.642 0.352 0.397 0.770 0.768 0.638

german credit C 0.713 0.727 0.663 0.688 0.302 0.390 0.734 0.754 0.731
ionosphere C 0.937 0.869 0.539 0.632 0.442 0.388 0.952 0.906 0.821

sonar C 0.558 0.590 0.518 0.447 0.441 0.335 0.683 0.667 0.721
spambase C 0.606 0.826 0.899 0.568 0.388 0.399 0.810 0.847 0.914

SPECTF267 C 0.790 0.670 0.701 0.775 0.513 0.323 0.839 0.794 0.798
AP. lung C 0.695 0.936 0.626 0.586 0.404 0.339 0.936 0.946 0.867
lymph C 0.899 0.935 0.682 0.499 0.456 0.363 0.928 0.950 0.884

lymphography C 0.810 0.713 0.570 0.563 0.465 0.352 0.852 0.838 0.768
madelon C 0.664 0.504 0.535 0.469 0.468 0.435 0.751 0.621 0.578

megawatt1 C 0.893 0.806 0.565 0.873 0.166 0.222 0.897 0.893 0.893
messidor features C 0.693 0.611 0.517 0.513 0.467 0.476 0.709 0.643 0.673

AP. ovary C 0.804 0.789 0.636 0.695 0.284 0.280 0.822 0.829 0.775
secom C 0.934 0.720 0.906 0.925 0.262 0.712 0.934 0.919 0.931

A. Employee C 0.942 0.912 0.890 0.942 0.746 0.683 0.942 0.942 0.942
svmguide3 C 0.762 0.817 0.763 0.749 0.240 0.314 0.817 0.825 0.778

Wine Q. Red C 0.511 0.528 0.475 0.425 0.459 0.334 0.537 0.553 0.527
Wine Q. White C 0.458 0.436 0.374 0.441 0.159 0.337 0.477 0.479 0.476
credit default C 0.779 0.380 0.660 0.778 0.222 0.492 0.808 0.780 0.777

gisette C 0.580 0.555 0.880 0.498 0.486 0.506 0.962 0.900 0.920
higgs boson C 0.704 0.685 0.695 0.669 0.331 0.432 0.735 0.701 0.720

Bikeshare DC R 0.977 0.773 0.998 0.976 0.773 0.998 0.977 0.773 0.999
boston housing R 0.614 0.468 0.509 0.612 0.467 0.476 0.614 0.468 0.525

Airfoil R 0.680 0.311 0.323 0.670 0.311 0.323 0.680 0.314 0.341
openml 618 R 0.631 0.523 0.218 0.630 0.523 0.438 0.633 0.523 0.671
openml 589 R 0.638 0.548 0.543 0.637 0.548 0.249 0.641 0.548 0.605
openml 616 R 0.552 0.486 0.324 0.549 0.486 0.459 0.558 0.486 0.636
openml 607 R 0.623 0.485 0.369 0.620 0.485 0.497 0.624 0.485 0.606
openml 620 R 0.619 0.521 0.340 0.618 0.518 0.488 0.622 0.521 0.265
openml 637 R 0.519 0.468 0.404 0.517 0.468 0.409 0.523 0.473 0.575
openml 586 R 0.647 0.523 0.756 0.646 0.523 0.726 0.649 0.523 0.759

tasks. Specifically, we cache the features generated by different
AFEs and replace Random Forest with other models (i.e.,
taking widely-used SVM as an exmaple) to evaluate the quality
of these features. We also list the results in Table V for
your reference. The results indicate that with our proposed
framework, the features obtained from random forest can
consistently outperform baselines using SVM, which indicates
the features selected by our method are robust to other models.

I. Improvement analysis (Q8)

TABLE VI: P-value of E-AFE with other baseline methods

P-value AutoFSR| E-AFE RTDLN | E-AFE NFS | E-AFE
Performance 5.08× 10−2 9.87× 10−7 1.83× 10−1

Time 1.97× 10−6 2.75× 10−11 3.75× 10−6

Specifically, we calculate the p−value of the improvement
over each baseline method in terms of both effectiveness
(accuracy) and efficiency (running time) to check the signif-
icance. The results in Table VI indicate that for efficiency,
p−value of improvement over baselines NFS, AutoFSR, and
RTDLN are 3.75 × 10−6, 1.97 × 10−11, and 2.75 × 10−11,
respectively, which shows that the improvement on efficiency
is statistically significant; for effectiveness, the improvement
over RTDLN is statistically significant with p − value as
9.87 × 10−7, and the improvement over AutoFSR is statis-
tically near-significant with p − value as 5.08 × 10−2. But
the effectiveness improvement over NFS is not statistically
significant with the p − value as 1.83 × 10−1. The reason
is that the difference of our method over NFS is mainly



on developing the two-stage training strategy with reduced
sample/feature size to improve the efficiency, while both of
the two methods exploits reinforcement learning-based cross-
validation for feature evaluation. Thus, the improvement on
efficiency is statistically significant, while the effectiveness
improvement is incremental.

J. Scalability analysis (Q9)
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Fig. 9: Time or performance improvement vs. feature or
sample size.

Figure 9 results show the relationship between running time
and performance improvement with data size. The perfor-
mance improvement of E-AFE on larger datasets are better
on smaller dataset, which demonstrate scalability ability of
our proposed method.

V. RELATED WORK

A. Automated Feature Engineering

AFE method can be divided into three types: (1)The
downstream task has no feedback to the feature generator.
ExploreKit [19] performs all transformation functions on the
dataset. AutoLearn [2] preprocesses raw features and dis-
cards features with low information gain. Learning Feature
Engineering (LFE) [4] uses feature-class representation and
a set of Multi-Layer Perception (MLP) classifiers to predict
whether the transformation result is better than the original
feature. (2)The downstream task gives feedback to the feature
generator with RL. Transformation Graph [5] builds DAG and
uses Q-learning to exploit high-order features. Neural Feature
Search (NFS) [6] predicts the most appropriate transforma-
tion for each feature by policy gradient for better feature
generation. Group-wise Reinforcement Feature Generation
(GRFG) [20] proposes a principled framework to address
the automation, explicitness, optimal issues in representation
space reconstruction. (3)Feature selection with RL ignores fea-
ture generation. Multi-Agent Reinforcement Learning Feature
Selection (MARLFS), Interactive Reinforced Feature Selec-
tion (IRFS), Single-Agent Reinforcement Learning Framework
(SADRLFS), Monte Carlo based reinforced feature selec-
tion (MCRFS), Group-based Interactive Reinforced Feature
Selection (GIRFS) and Combinatorial Multi-Armed Bandit
(CMAB) on feature selection [11], [12], [21]–[26] use RL
in feature selection. However, those RL frameworks can’t
consider feature generation.

B. Approximate Feature

To speed up feature engineering, many methods to obtain
an approximate dataset from the original dataset are proposed.
We summarize four classes of approximate feature methods.

(1)Meta-Feature. Previous approaches used hand-crafted meta-
features, including information-theoretic and statistical meta-
features, to represent datasets [19], [27]–[29]. Meta-Feature
Extractor (MFE) [30], [31] extracts meta-features from the
dataset to improve the reproducibility of machine learning.
Automatic generation of meta-features [32] presents a frame-
work to generate meta-features in the context of meta-learning
systematically. ExploreKit [19] generates two types of meta-
features: dataset-based and candidate features-based. (2)Low-
rank matrix approximation [33], [34] finds a smaller rank
matrix similar to the original matrix. (3)Quantile Data Sketch
was used in LFE [4] to represent feature values. (4)Hashing
method. Feature Hashing [35] introduces specialized hash
functions with unbiased inner products that are directly appli-
cable to a large variety of kernel methods. Hash kennel [36],
[37] computes the kernel matrix for data streams and sparse
feature spaces.

VI. CONCLUSION REMARKS

In this paper, we studied how to improve the efficiency
of AFE. Based on the empirical studies, we identified that
the time-consuming feature evaluation procedure is the core
reason of interfering with AFE’s running efficiency. We further
validated that smaller sample size and feature size would ac-
celerate feature evaluation. Therefore, we proposed to improve
the efficiency of AFE by reducing the sample and feature
size. Specifically, we develop FPE model, including a sample
compressor with MinHash to reduce sample size , and a feature
pre-selector with a pre-trained binary classifier to distinguish
the effectiveness of the generated features. Moreover, we
devised a two-stage training strategy to first initialize the
policy using the binary feature-effectiveness classification as
the evaluation task to borrow external knowledge from the pre-
trained FPE. The enhanced initialization provideed the AFE
policy with a good starting point for exploring the optimal
actions, which further significantly save the running time.
Finally, we conduct extensive experiments on 36 datasets on
both the classification and regression tasks. When compared
to state-of-the-art AFE methods, the results show 2.9 percent
higher average performance and 2x higher computational
efficiency. The improvements over both the effectiveness and
efficiency proved that FPE model can remove the redundancy
in candidate features.
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