
Toward a Unified Framework for Unsupervised
Complex Tabular Reasoning

Zhenyu Li∗, Xiuxing Li†‡§, Zhichao Duan∗, Bowen Dong∗, Ning Liu††, Jianyong Wang∗§
∗Department of Computer Science and Technology, Tsinghua University, Beijing, China
Email: {zy-li21,dzc20,dbw22}@mails.tsinghua.edu.cn, jianyong@mail.tsinghua.edu.cn

†Key Laboratory of Intelligent Information Processing Institute of Computing Technology,
Chinese Academy of Sciences (ICT/CAS)

‡University of Chinese Academy of Sciences Email: lixiuxing@ict.ac.cn
††School of Software, Shandong University, Jinan, China Email: victorliucs@gmail.com

Abstract—Structured tabular data exist across nearly all fields.
Reasoning task over these data aims to answer questions or deter-
mine the truthiness of hypothesis sentences by understanding the
semantic meaning of a table. While previous works have devoted
significant efforts to the tabular reasoning task, they always
assume there are sufficient labeled data. However, constructing
reasoning samples over tables (and related text) is labor-intensive,
especially when the reasoning process is complex. When labeled
data is insufficient, the performance of models will suffer an
unendurable decline. In this paper, we propose a unified frame-
work for unsupervised complex tabular reasoning (UCTR), which
generates sufficient and diverse synthetic data with complex logic
for tabular reasoning tasks, assuming no human-annotated data
at all. Specifically, we first utilize a random sampling strategy
to collect diverse programs of different types and execute them
on tables based on a “Program-Executor” module. To bridge the
gap between the programs and natural language sentences, we
design a powerful “NL-Generator” module to generate natural
language sentences with complex logic from these programs.
Since a table often occurs with its surrounding texts, we further
propose novel “Table-to-Text” and “Text-to-Table” operators to
handle joint table-text reasoning scenarios. This way, we can
adequately exploit the unlabeled table resources to obtain a
well-performed reasoning model under an unsupervised setting.
Our experiments cover different tasks (question answering and
fact verification) and different domains (general and specific),
showing that our unsupervised methods can achieve at most 93%
performance compared to supervised models. The impressive
performance demonstrates that UCTR can significantly reduce
the dependence on manual annotation. Moreover, we also find
that it can substantially boost the supervised performance in low-
resourced domains as a data augmentation technique. Our code
is available at https://github.com/leezythu/UCTR.

Index Terms—Unsupervised Data Generation, Tabular Rea-
soning

I. INTRODUCTION

Structured tabular data is quite pervasive in the real world.
It is often used for presenting information briefly and con-
cisely. For example, an infobox in Wikipedia is a fixed-
format table, which is a summary of information sharing
the same properties. Also, tables are ubiquitous in various
specific domains, such as scientific documents [50], financial
reports [58], education [25], and industry [28]. Recent years
have witnessed increasing attention on tabular reasoning tasks

§ Corresponding author.

Fig. 1. The previous study [4] shows performance of models degrades
dramatically on topics not seen during the training stage.

due to their importance. Fact verification task [5], [20] and
question answering [57], [39] task are two common reasoning
tasks to test a model’s capability of understanding tables.
Table fact verification is actually a natural language inference
task [3] with evidence in structured forms. Given a table as
evidence, the model is required to determine whether a textual
hypothesis is “supported”, “refuted”, or “unknown”. For table
question answering, the model takes a table with a table-
related natural language question as its input and returns the
corresponding answer. Moreover, table-text reasoning tasks are
proposed to better meet the needs of the real world. The model
must consider both the table and the related text jointly to give
a correct judgment or answer. In summary, tabular reasoning
is an important topic to be investigated since it can help us
better utilize the structured table resources on the web or in
databases.

The essential challenges of tabular reasoning are how to
understand table structure accurately and how to capture the
relationships between table cells or between table cells and
the related sentences. Although pre-trained language models
(PLMs) have been demonstrated to excel in textual reasoning
tasks (e.g., textual entailment [9], and question answering
[42]), they mainly use free-form textual data as pretraining
resources, and there is still a significant gap in format between
free-form texts and structured tables. To further alleviate the
challenges of tabular reasoning, a new generation of methods

ar
X

iv
:2

21
2.

10
09

7v
1

 [
cs

.C
L

]
 2

0
D

ec
 2

02
2

https://github.com/leezythu/UCTR

Fig. 2. The comparison of simple claims and complex claims. A simple claim
only involves a specific table cell, but a complex claim requires the annotator
to consider the relationship among multiple cells.

for adapting pre-trained models to tables has emerged [51],
[22], [36], [55]. They explore diverse table-oriented model
architectures [2], [10], [14] and pre-training objectives [56],
[34], [53] to leverage the particular properties of the table
better. Moreover, they investigate distinct serialization methods
[24], [18] to linearize tables to sequences, attempting to
eliminate the gap. These methods have achieved significant
improvements over previous approaches [8], [49], [23].

However, the above methods are based on the assump-
tion that sufficient training data is available, which is not
always true. In the absence of human-annotated data, these
methods will be significantly restricted and suffer intolerable
performance degradation. Additionally, Chemmengath et al.
[4] find that the model’s performance drops dramatically
when samples are from topics not seen in the training stage.
Their results are shown in Figure 1. To emancipate the
limitations of the above assumptions and make the setting of
tabular reasoning more in conformity with the actual scenarios,
the unsupervised complex tabular reasoning setting has been
proposed, which means reasoning on tables or a hybrid of
tables and related text using complex logic with no manually
annotated data available. These methods can be generally
divided into two optimization directions: (1) Methods based
on pre-training process reconstruction. These methods are
designed as data-augmentation techniques with limited un-
supervised performance. In addition, they always require a
large pre-training corpus. Yu et al. [56] pre-train the model
on a large amount of question-SQL pairs, and Liu et al. [34]
show that synthetic SQL queries can provide a better model
initialization. (2) Methods based on synthesizing human-like
data through heuristics or data-to-text. Eisenschlos et al. [15]
generate claims using context-free grammar (CFG) templates
and counterfactual heuristics. Recently, Pan et al. [38] propose
an unsupervised learning framework named MQA-QG. MQA-
QG generates multi-hop questions for both the tabular and
textual data, which is the most relevant work to us.

Nevertheless, some critical problems remain unsolved in
unsupervised complex tabular reasoning: (1) Existing methods

for data generation mainly use heuristics or shallow data-to-
text methods (e.g., converting a row to a sentence). Thus,
they can only generate relatively simple instances shown
in Figure 2, limiting the model’s effectiveness on complex
reasoning samples, which require a deep understanding of the
semantics and logic relationships between multiple table cells.
(2) Previous works only focus on a single scenario but cannot
be expanded to other tabular reasoning tasks. This is because
they design heuristics based on specific data characteristics or
the form of the task, and the method cannot be adapted to
other tasks flexibly. Therefore, it is difficult for them to deal
with complex and diverse real-world scenarios.

To cope with these problems, we propose UCTR, a novel
and unified framework for Unsupervised Complex Tabular
Reasoning. Specifically, UCTR primarily leverages a random
sampling strategy to collect different types of programs. These
programs are sequences of symbols that can be executed on
tables, such as SQL queries, logical forms and arithmetic
expressions, covering most reasoning types. Then we design
a “Program-Executor” module that generates program-answer
pairs based on a large number of tables in the domain. To
bridge the gap between the programs and natural language sen-
tences, we develop a powerful “NL-Generator” module based
on generative language models that turns the programs into
human-like natural questions or claims with complex logic.
Since a table often occurs with its surrounding texts, UCTR
also defines two basic operators: Table-To-Text and Text-To-
Table, to fuse information from table and text sources. Based
on the combination of these components, UCTR can handle
question answering and fact verification tasks under both
the homogeneous (table only) setting and the heterogeneous
(hybrid table and text) setting, aiming for a unified framework.
Figure 3 illustrates the progress that UCTR generates a joint
table-text reasoning sample via a SQL query based on our
basic modules and operators. Experiment results show that
UCTR can generate diverse and human-like training samples
with complex logic, which leads to surprising unsupervised
performance. Furthermore, the model with a pre-training on
our synthetic dataset outperforms the supervised model by
a large margin under the few-shot setting. Moreover, we
also find that UCTR can substantially boost fully-supervised
performance in low-resourced domains.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first study ex-
ploring a unified unsupervised complex tabular reasoning
framework.

• We propose a novel and effective framework by leverag-
ing program generation and conversion modules to cope
with unsupervised complex reasoning.

• We further design novel “Table-to-Text” and “Text-to-
Table” operators in UCTR to handle joint table-text
reasoning scenarios.

• Comprehensive experiments show that UCTR can signif-
icantly benefit tabular reasoning systems under unsuper-
vised, few-shot, and even supervised settings.

II. PRELIMINARY

In this section, we start with introducing the background
knowledge of the tabular reasoning task. In particular, we first
present related basic concepts and then formalize the tabular
reasoning task. Afterwards, since this paper aims to tackle
the unsupervised scenario, we give a brief overview of the
primary unsupervised data generation approaches. Notations
and definitions are listed in Table I.

TABLE I
NOTATIONS AND DEFINITIONS.

Notation Definition

T, ti
A table. And ti is the table of the i th
instance.

r1, ..., rn N rows of a table.

P, pi
A paragraph containing several sentences as
a table’s context.

L, li A natural language claim or question.
O, oi The label of a sample.

l
′

i, o
′

i
A synthetic natural language claim or ques-
tion and its corresponding label.

Prog A program.
S A sentence generated by Table-To-Text.

A. Tabular Reasoning.

We first define some basic concepts related to the tabular
reasoning task.

Table. The structure of a table can be very flexible, and
we can divide tables into various categories according to their
different formats [12]. Among them, relational tables are the
most commonly used. For a relational table T with n rows
{r1, ..., rn}, each row can be seen as a record, with columns
as the corresponding attributes.

Context. In most cases, there are related paragraphs P
surrounding a table as its context. These texts always describe
the table’s contents or contain supplementary information.
Some tabular reasoning tasks require the model to consider not
only the evidence from tables, but also the evidence in textual
form. Reasoning on heterogeneous data is more realistic and
challenging.

Tabular Reasoning. In this paper, we define tabular rea-
soning as reasoning tasks on tabular evidence or joint table-
text evidence. Specifically, we use two tasks: tabular fact
verification and tabular question answering, to evaluate a
model’s reasoning ability. We can formalize the task as a
mapping from the evidence and a natural language sentence
L to an output O. The basic mapping can be written as:

f(T, L)→ O (1)

If the evidence consists of both a table and its related text, the
mapping can be extended as:

f(T, P, L)→ O (2)

We present detailed explanations of the equation for each
specific task below.

Tabular Fact Verification. Given a table as evidence,
tabular fact verification requires the model to judge whether
the evidence supports, refutes a natural language claim, or it’s
unknown. That is, O ∈ {Supported,Refuted, Unknown} in
Equation 1 and 2. It is similar to traditional fact verification
task on textual data [47], except the evidence format.

Tabular Question Answering. Similarly, tabular question
answering is a migration of the traditional question answering
task from textual data to tabular data. Unlike the fact verifica-
tion task, question answering is not a classification problem. Its
output is always a specific answer inferred from the evidence.

Complex tabular reasoning. We define complex tabular
reasoning as the reasoning process of considering multiple
table cells and understanding their logical relationships to infer
the correct answer. In contrast, simple tabular reasoning only
involves a single table cell, as depicted in Figure 2. Simple
reasoning tasks are easier to solve, since models are good at
learning associations between surface texts.

Program. A program is an executable sequence of symbols
[40], such as a SQL query. Unlike natural language texts,
programs have strict grammar rules with no ambiguity and
have definite execution results. As a related concept, “program
context” refers to an environment where a program is applied.
The variables used in the program are also sampled from the
context. For example, tables are the corresponding context for
SQL queries. Besides, we refer to a “program executor” as
an automated tool that executes a program within the context,
such as a SQL executor. We can use the program executor as
a black box, whose input is a program and program context,
and output is the execution result. Section II-C elaborates on
the types of programs we used in this paper.

B. Unsupervised Data Generation.

Supervised models tend to show powerful results in an
ideal environment where sufficient high-quality data is avail-
able. Unfortunately, we often face situations with a limited
amount of labeled data or no labeled data in the real world,
under which the model’s performance suffers a severe decline
inevitably. This dilemma leads to the research direction of
unsupervised data generation, aiming to synthesize human-like
training instances [26].

Formally, for tabular reasoning tasks, supervised
models assume labeled training data X =
{(t1, p1, l1, o1), · · · , (ti, pi, li, oi), · · · , (tn, pn, ln, on)},
where n is the number of training instances.
But under unsupervised settings, we only have
X = {(t1, p1), · · · , (ti, pi), · · · , (tn, pn)} as available
information, where ti, pi, li, and oi are an unlabeled table,
the related text, a natural language question/claim, and the
corresponding golden label, respectively. The data generation
method tries to reconstruct a synthetic training dataset
X

′
= {(t1, p1, l

′

1, o
′

1), · · · , (ti, pi, l
′

i, o
′

i), · · · , (tn, pn, l
′

n, o
′

n)}
using these raw tables and texts. Based on this synthetic
dataset, supervised models can be applied successfully.

C. Program Design.

In this paper, we adopt three types of programs: logical
forms, SQL queries and arithmetic expressions. We depict
examples of their forms and execution results on a table in
Figure 4. Among them, logical forms are used for fact veri-
fication tasks, while SQL queries and arithmetic expressions
are used for question answering tasks. Due to the variety of
logic operators and flexible structure, the programs can cover
most types of logic used in tabular scenarios. We give more
detailed explanation of each program type below:

SQL Queries. SQL is standard language for manag-
ing data, which is widely used in relational databases.
SQL supports many manipulations like query, insert, up-
date, and delete, but we only need SQL queries for our
reasoning setting. In most cases, you can query any con-
tent you want to know from the table through one or
more SQL queries. Specifically, the SQL queries support
the following reasoning types (conditions): equivalence (=),
comparison (>,<, order by,max,min), counting (count),
sum (+), diff (−) and conjunction (and).

Logical Forms. Though SQL queries are powerful, they
cannot be directly used on tabular fact verification tasks. So
in our framework, we generate factual claims based on logical
forms specifically. A Logical form is a symbolic formulation
that can be executed on database tables to judge the truth-
fulness of the inner logic. Logical Forms can also support
most common reasoning types such as: count, superlative,
comparative, aggregation, majority, unique, and ordinal.
For example, in the logical form depicted in Figure 4, argmax
returns the row with the max value under the specified column,
and hop extracts the value under a specified column for an
input row. Finally, eq judges whether the two arguments are
equal. Due to the space limitation, we refer readers to [7] for
a complete list of the operations. Due to the limited space, we
refer readers to [7] for the full list of operators.

Arithmetic Expressions. Arithmetic expressions can be
used to express complex arithmetic operations. As shown in
Figure 4, an arithmetic expression consists of a sequence
of operations. Arithmetic expressions support 6 mathematical
operations: add, subtract, multiply, divide, greater, exp
and 4 table aggregation operations table max, table min,
table sum, table average. We refer readers to [6] for more
detailed illustrations.

III. FRAMEWORK

In this section, we present our proposed unified frame-
work UCTR (for Unsupervised Complex Tabular Reasoning).
UCTR has two essential modules: NL-Generator, Program-
Executor, and two novel operators: Table-To-Text and Text-
To-Table. With these carefully designed components, UCTR
can generate human-like data for various tabular reasoning
scenarios. Figure 3 shows how UCTR generates joint table-
text reasoning instances using SQL queries on a table from
the TAT-QA dataset. UCTR mainly has two different data
generation pipelines, depending on whether the Table-To-Text
operator or the Text-To-Table operator is used.

A. Table Splitting.

As shown in the upper part of Figure 3, given a raw
table, the table splitting generation method first executes a
program based on the Program-Executor and gets an answer.
Note that not all table cells affect the final output, and we
define the cells involving the reasoning process as “highlighted
cells.” Then the Table-To-Text operator selects one highlighted
cell, and transforms the row where the cell is located into a
natural language text, keeping the rest of the rows as a sub-
table. Additionally, the NL-Generator turns the program into a
question with the same meaning. In this way, we successfully
synthesize a training instance (t, p, l)→ o requiring evidence
from both a table and its related text.

B. Table Expansion.

Table expansion can be regarded as an inverse process of
table splitting. The table splitting method synthesizes joint
table-text reasoning instances from only tables, while the
table expansion method tries to integrate information from
the original texts surrounding the table. Specifically, the table
expansion method first finds the relevant sentences and then
uses the Text-To-Table operator to transform essential infor-
mation of the sentences into tabular form. If the generated
table shares the same row name or the same column name
with the original table, they can be integrated into a new
expanded table. Afterwards, UCTR can apply the Program-
Executor and NL-Generator on this expanded table as in the
table splitting method. Finally, we synthesize a joint table-text
reasoning instance with evidence from the original table and
text.

Table-To-Text and Text-To-Table operators are designed
for joint reasoning on heterogeneous data. For table-only
scenarios, we can follow the same procedure but just use the
NL-Generator and Program Executor modules. Thus, UCTR
can become a unified framework that can cope with both
homogeneous and heterogeneous scenarios.

IV. METHODOLOGY

As mentioned above, our primary aim is generating human-
like training instances i) with complex reasoning logic; ii)
for various tabular reasoning scenarios. To present how to
achieve this aim, we give more detailed information about
each component and the workflow of UCTR in this section. We
first illustrate the function of each component, and then show
how to collect and apply programs to get program-answer
pairs. Finally, we give a brief introduction to the training of
our NL-Generator and basic tabular reasoning models on fact
verification task and question answering task.

A. Basic Components.

NL-Generator. The advantage of programs compared to
natural language is that there is no ambiguity and they can
give definite execution results according to the grammar rules
so that we can get concise program-answer pairs. However,
different types of programs follow different grammar rules,
and there is a huge gap in the surface form between a program

Fig. 3. Illustration of our framework. The upper part (i.e., the Table Splitting method) focuses on splitting the original table into a sub-table and a generated
sentence and then building a joint table-text reasoning sample based on the basic modules. The lower part (i.e., the Table Expansion method) adopts a similar
procedure but aggregates information from the original table and text to form an expanded table.

and a natural language sentence. Therefore, we design a NL-
Generator for mapping different programs of different types
into a unified natural language format. Formally, it can be
regarded as a mapping function as follow:

f(P)→ L (3)

where P is a program and L is the corresponding natural
language sentence with the same meaning.

Program-Executor. The function of our Program-Executor
is the same as stated in the preliminary. Given a table and a
program as input, the executor returns the execution result:

f(T, Prog)→ O (4)

Programs in each type rely on a specific executor. We give a
more detailed explanation for these programs in section IV-B
and section V-B.

Table-To-Text. This operator converts a table into a sub-
table and a generated sentence. Formally, the function is
defined as:

f(T)→ Tsub, S (5)

Specifically, we follow the implementation of “DescribeEnt”
operator in [38] to transform a row into a natural language
sentence, and more advanced models [27], [46] can also be
used here. Additionally, we add a filtering step. That is,
if important information in the table is missing from the
generated sentence, we will discard it.

Text-To-Table. As an inverse process of Table-To-Text, the

function of Text-To-Table can be written as:

f(T, P)→ Texpand (6)

Actually, text-to-table is a recently proposed task for infor-
mation extraction [52]. But current techniques do not support
integrating text information into existing tables. So a filtering
step is also needed here. We first use row names to filter
possible useful sentences, and then apply a text-to-table model
proposed in [52] to get a generated table with only one record.
Finally, we integrate this record into the original table to form
an expanded table.

B. Program Templates Collection.

As mentioned above, the three types of programs (SQL
queries, logical forms, and arithmetic expressions) are essen-
tial parts of UCTR. In this section, we explain the necessity of
each type of program and show how we collect templates and
apply them on tables to get program-answer pairs. We depict
examples of each type of program in Figure 4.

SQL Queries. For SQL query templates collection, we fol-
low the implementation in [34], using templates extracted from
SQUALL[45]. SQUALL is a dataset consisting of question-
SQL pairs with manual alignments. One example template
from SQUALL is as follows:

select c1 from w order by c2 number desc limit 1

where w represents the table, and c1 and c2 correspond to
the first and the second column. number indicates that the
data of this column is numerical. These placeholders allow the
template to migrate to other tables conveniently.

Fig. 4. Examples of three types of programs we used in this work: logical forms, SQL queries, and arithmetic expressions. The NL-Generator transforms a
logical form into a claim and transforms the other two types of programs into questions.

Logical Forms. The LOGIC2TEXT dataset proposed by
Chen et al. [7] plays an important role in this process.
LOGIC2TEXT consists of a large number of claim-program
pairs, covering most common logic types such as count,
comparative, aggregation etc. We directly sample program
templates from it. Here is an example of the template:

eq { hop { filter eq { all rows ; c1 ; val1 } ; c2}; val2}

where val1 and val2 are cell values from the first and sec-
ond columns. eq, hop, and filter eq are defined operations.
Specifically, filter eq returns rows that satisfy the constraints.

Arithmetic Expressions. Arithmetic operations are very
common in some specific tabular reasoning scenarios (like
financial and scientific). Although SQL can implement most
types of operations, expressing arithmetic operations using
SQL always results in very long sequences. Thus, we adopt
arithmetic expressions for tabular reasoning tasks involving
arithmetic operations as our programs. Specifically, we collect
templates of arithmetic expressions from the Finqa dataset
proposed in [6]. The original form of a template is as follows:

subtract(val1, val2), divide(#0, val2)

where #0 denotes the result from the first subtract step.
But the original form doesn’t contain the information of the
row’s name or column’s name, so we further replace vali with
col name of row name, where col name and row name
are the column’s name and row’s name corresponding to vali.
For more details about the arithmetic operations please refer
to [6].

When collecting program templates, the SQUALL has
already provided the column index (e.g., c1 and val1) in
templates of SQL queries, as in the example shown above.
While for logical forms and arithmetic expressions. We add
an additional step to replace the specific values/column names

with their column indexes. Notably, different questions or
claims may have the same underlying logic structure, resulting
in the sample program template. So we add a filtration
procedure in the end, dropping redundant program templates.

C. Program Sampling and Execution.

We call the column names, and cell values involved in
the program template as column-placeholders and value-
placeholders, respectively. To apply these programs to a new
table, we need to fill these placeholders with variables from
the table. Here we adopt the random sampling strategy for
program sampling. Specifically, we first populate the column-
placeholders by randomly sampling from the columns of the
new table. Afterwards, for each column, we randomly sample
the values in it to populate the value-placeholders. Besides,
if the column-placeholder specifies a data type (e.g., number,
string), we only sample from columns that match that type.

Take the logical form above as an example. The original
program template is:

eq { hop { filter eq { all rows ; c1 ; val1 } ; c2}; val2}

For a new table T , we first fill in the column-placeholders:

{c1, c2} ← Random Sample(T.columns)

Then we fill in each value-placeholders:

val1← Random Sample(c1.values)
val2← Random Sample(c2.values)

In practice, for logical form templates with a format
func { arg1 ; arg2 }, in which func is the root operator,
arg1 is a complex sub-template, and arg2 is a single value.
We first apply sampling on arg1 and execute it. Then we can
determine the value of arg2 based on the execution result and
the root operator to obtain a true/false claim. In summary,

this mapping strategy keeps the internal relationship of the
variables in the original program. Moreover, this strategy is
naturally suitable for evidence-based reasoning tasks since the
values sampled during the process are exactly the evidence
associated with the synthetic instance. Notably, if the execution
result is empty, we discard this program.

D. Model Training.

In this section, we briefly introduce the training procedure
of tabular reasoning models used in experiments. Then we
demonstrate how to train a NL-Generator.

Tabular Reasoning Models. Although researchers have
designed different model structures for various tasks, the
mainstream methods share the same paradigm as follows:

ei = Encoder(ti, pi, li)

θmodel = argmin
φ

L(Classifier(ei), oi)
(7)

where ti, pi , and li represent the table, paragraph and natural
language sentence in a sample. oi is the golden label of the
sample. L is the loss function, and θ is the model parame-
ters. We first get a joint representation based on an encoder
like BERT [11], then a designed classifier is applied to the
representation to get predicting results. Finally, we optimize
the model’s parameters using gradient descent techniques. In
experiments, we use the representative model on each task as
the supervised baseline.

NL-Generator Training. We can use mature software or
tools in existing works for the other three components. While
for the NL-Generator, there are few works on converting a
program to a natural language sentence. This paper tackles
this problem based on generative language models. For logical
forms, we directly use the fine-tuned GPT-2 [41] model on
the Logic2Text [7] dataset. For SQL queries and arithmetic
expressions, we fine-tune a BART [29] model ourselves on
SQUALL [45] and Finqa [6], respectively. These three datasets
contain program-NL training pairs for each type of program.
Here we also briefly introduce generative models (e.g., GPT-2
and BART). They are transformer-based models pre-trained on
a large corpus of text in an unsupervised manner and have been
demonstrated to be very effective on machine translation tasks.
For more details please refer to [41], [29]. In our work, we
recognize converting a program to a natural language sentence
as a translation task, that is, translating a program into a
sentence. Specifically, we fine-tune BART in an end-to-end
manner:

L = BART (Prog) (8)

In summary, we first collect a set of diverse program
templates and then apply them to new tables by random
sampling variables from the new context to get valid programs.
Finally, we convert these programs into human-like reasoning
instances using four basic components.

We depict the overall data synthesizing procedure using
both table splitting method and table expansion method in
Algorithm 1.

Algorithm 1 Data Generation Procedure
Require: Table-text dataset Dt, program template dataset Dm

Ensure: Target dataset D consists of (L, T , P , O) pairs
1: D ← []

2: for table, paragraph in Dt do
// integrate the information to get a expanded table

3: tableexp ← TextToTable(table, paragraph)

// sample a program template
4: for tem in Dm do

// fill the template using random sampling
5: prog ← Sampling(table, tem)

6: progexp ← Sampling(tableexp, tem)

// execute the program
7: ans← ProgramExecutor(table, prog)

8: ansexp ← ProgramExecutor(tableexp, progexp)

// filter out invalid program
9: if ans or ansexp is empty then

10: continue
11: end if

// split the table and convert one row to text
12: tablesub, sentence← TableToText(table)

// convert the program to text
13: NL← ProgramToText(prog)

14: NLexp ← ProgramToText(progexp)

// add samples into the target dataset
15: Dt.append((NL, table

sub, sentence, ans))

16: Dt.append((NL
exp, table, paragraph, ansexp))

17: end for
18: end for

V. PERFORMANCE EVALUATION

A. Dataset and Evaluation.

Datasets. To test the effectiveness of our UCTR frame-
work, we apply it in various settings. We conduct extensive
experiments on four representative benchmarks: FEVEROUS
[1], TAT-QA [58], WiKiSQL [57], and SEM-TAB-FACTS
[50]. The four datasets cover fact verification and question
answering tasks under table-only and table-text reasoning
scenarios, in general and specific domains. Here we give a
brief introduction to each dataset. FEVEROUS is a dataset
for fact verification over evidence from sentences and tables
within Wikipedia. TAT-QA is also built on hybrid data but
aims for question answering task. Additionally, its evidence is
extracted from real-world financial reports. WiKiSQL consists
of examples of questions and SQL queries over tables from
Wikipedia. SEM-TAB-FACTS is a fact verification dataset
with evidence in tabular form, and the tables are from scientific

articles. Statistics of these datasets are shown in Table II.
Evaluation protocol. There are different evaluation metrics

for different benchmarks. Typically, the pipeline of a model on
FEVEROUS consist of retrieving stage and reasoning stage. In
the first stage, the model retrieves sentences and table cells re-
lated to a claim from Wikipedia. Then in the second stage, the
model judges whether the claim is supported, refuted, or there
is not enough information (NEI) based on the evidence. So for
FEVEROUS, the metrics are label accuracy and FEVEROUS
score. Label accuracy measures the proportion of the number
of correct labels predicted by the model to the total number.
FEVEROUS score is a more strict metric that considers both
the retrieving stage and the reasoning stage. For a sample,
only when both the retrieved evidence set and the predicted
label are correct is the prediction considered correct. Since
the retrieving stage is not the focus in our paper, we directly
use the retriever proposed in [1] as our first-stage model and
only experiment with the reasoning stage. Notably, we train
the reasoning model on the golden evidence set rather than the
retrieved evidence set, as the latter contains much noise. The
metrics to measure performance on TAT-QA are Exact Match
(EM) and numeracy-focused F1 score [30]. For WiKiSQL, the
evaluation metric is denotation accuracy, which measures how
many predicted answers are equal to the ground-truth answers.
For SEM-TAB-FACTS, we adopt the standard 3-way micro F1
from the original paper. This metric evaluates whether claims
are classified as Supported, Refuted, or Unknown.

B. Implementation Details.

We can choose the appropriate program type according to
the setting of a task and the reasoning ability it requires.
Specifically, we apply logical forms on FEVEROUS and SEM-
TAB-FACTS tasks during the data generation procedure to
generate claims with complex logic, and apply SQL queries
on WiKiSQL. For TAT-QA, we apply both SQL queries
and arithmetic expressions. As shown in Table II, there are
various reasoning types in TAT-QA. We use SQL queries to
handle the Span/Spans type and use arithmetic expressions
for the Counting and Arithmetic type. The tables we use to
generate synthetic data are from the original datasets. Finally,
we get 79,856, 23,933, 27,365, 4,071 synthetic samples for
FEVEROUS, TAT-QA, WiKiSQL and SEM-TAB-FACTS, re-
spectively.

As for model training, we adopt the models in the original
papers of FEVEROUS [1] and TAT-QA [58]. Since they
achieve good results with reproducible codes. For WiKiSQL,
we use the current state-of-the-art model TAPEX [34]. For
SEM-TAB-FACTS, we use a representative model, TAPAS
[22]. Section V-C shows more details of the models used on
each benchmark. In experiments, we follow the implementa-
tion in [35] on FEVEROUS, only predicting the “Supported”
or “Refuted” label, since the “NEI” label occupies a tiny
proportion of the dataset. Besides, we also evaluate models
under a few-shot setting, where we assume only 50 human-
labeled samples are available. The 50 samples are randomly
selected from the original training set.

The executor for SQL queries is sqlite3 1. For logical forms
and arithmetic expressions, we utilize the executor proposed
in [7] and [6], respectively. Experiments are conducted with 4
GeForce RTX 3090 graphics cards.

C. Results Analysis.

Table III, IV, and VI summarize the unsupervised and few-
shot results on three benchmarks. In this section, we analyze
the effectiveness of our unsupervised complex tabular rea-
soning framework (UCTR) compared to supervised baselines.
We first give illustrations of the supervised and unsupervised
models we use. Representative supervised models are as
follows:

(1) TAGOP is a strong supervised model designed for TAT-
QA. It first tags relevant table cells and text spans and then
reasons over these elements using a set of predefined operators.
Text-Span only and Table-Cell only are two weak supervised
baselines that adopt the same architecture as TAGOP, but they
focus on textual evidence or tabular evidence only.

(2) Full baseline is the baseline model proposed in [1] that
consists of a retriever module that retrieves relevant table cells
and sentences from Wikipedia and a verdict predictor that
predicts a label. As mentioned above, since we only focus on
the reasoning stage, we assume golden evidence is available
when testing label accuracy. When testing the FEVEROUS
score, we use the trained retriever in the original paper for a
fair comparison. The Sentence-only baseline and Table-only
baseline are two weak supervised models trained only on
sentences or tables.

(3) TAPAS is a popular tabular reasoning model, using
joint pre-training of textual and tabular data. It uses special
positional embeddings to encode table structures and shows
promising performance on fact verification and question an-
swering tasks. We apply TAPAS on both TAT-QA and SEM-
TAB-FACTS. The result on TAT-QA is from [58]. For SEM-
TAB-FACTS, we follow the method in [16] to fine-tune
TAPAS.

(4) TAPEX is a generative pre-trained model that is pre-
trained on a large SQL query-answer corpus to imitate a neural
SQL executor, and it produces state-of-the-art results on the
WiKiSQL dataset. We also use it as an unsupervised model to
see how much the synthetic corpus can help the model cope
with real questions. We evaluate the officially released tapex-
base models and get the corresponding results on development
and test sets.

We compare our UCTR framework with the following
unsupervised models:

(1) Random is a naive baseline used for FEVEROUS and
SEM-TAB-FACTS, selecting a label randomly. Since these
two tasks are essentially multi-classification tasks, this baseline
shows how much performance a model should at least achieve.
Notably, the “NEI” label in FEVEROUS only occupies a tiny
proportion, so we only predict the “Supported” or “Refuted”
label in practice.

1https://docs.python.org/3/library/sqlite3.html

TABLE II
DATASET STATISTICS OF FEVEROUS, TAT-QA, WIKISQL AND SEM-TAB-FACTS.

Dataset Domain Total Samples Evidence Type Label/Question Types

FEVEROUS Wikipedia 87,026 34,963 sentences, 28,760 tables 49,115 Supported, 33,669 Refuted
24,667 combined 4,242 NEI

TAT-QA Finance 16,552 7,431 tables, 3,902 sentences 9,211 Span/Spans, 377 Counting
5,219 combined 6,964 Arithmetic

WIKISQL Wikipedia 80,654 24,241 tables 43,447 What, 5,991 How many
5,829 Who, ...

SEM-TAB-FACTS Science 5,715 1,085 tables 3,342 Supported, 2,149 Refuted
224 Unknown

(2) MQA-QG is also an unsupervised data generation
method, which is the most relevant work to ours. Though it is
initially designed for multi-hop question generation, we make
some modifications to fit it on these benchmarks. Specifically,
MQA-QG finds a bridge entity that connects the table and
related text, then turns the row containing the bridge entity into
a describing sentence using a DescribeEnt operator. Finally,
it aggregates the information from the describing sentence and
the related text to form a question or a claim. MQA-QG can
generate data from tables or a hybrid of tables and texts. But
the main deficiency is that it cannot integrate the information
from multiple rows using complex underlying logic, so the
generated questions/claims are relatively simple.

(3) UCTR −w/o T2T is an ablation model of UCTR. It
represents the UCTR framework without the Table-To-Text
and Text-To-Table operators, so it cannot generate samples
containing both tabular and textual information as evidence.

(4) TAPAS-Transfer is a transfer learning model from
TABFACT [5]. TABFACT is a large dataset focusing on fact
verification on Wikipedia tables. It consists of 117,854 human-
annotated claims on 16,573 tables. This model is trained on
TABFACT and then directly applied on SEM-TAB-FACTS.

According to the results shown in Table III, IV, and VI, we
have the following observations:

(1) Our proposed framework UCTR achieves promising
unsupervised performance on the three datasets. Compared
to supervised benchmarks, it reaches 67%, 70%, 87%, 93%
of F1 score or label accuracy on the TAT-QA, WiKiSQL,
FEVEROUS and SEM-TAB-FACTS, respectively, without us-
ing any human-labeled data. Moreover, UCTR outperforms
other unsupervised models by large margins. In particular, the
F1 score of MQA-QG on TAT-QA is only 27.7, while UCTR
achieves 42.4. We suppose the reason is that the data generated
by MQA-QG can only cover a small fraction of reasoning
types compared to the original dataset, so the trained model
cannot handle questions with more complex logical structures.
Contrastively, UCTR can take advantage of program templates
with various underlying reasoning structures to match the
distribution of the original dataset as much as possible.

(2) Under the few-shot setting, where only 50 labeled
instances are available, supervised models perform poorly.

In contrast, UCTR gains much better performance with the
assistance of a large amount of synthetic data. The results
reveal that our method can significantly reduce the labor cost
of manual annotation. Additionally, we notice that for FEVER-
OUS and TAT-QA, models trained on the synthetic dataset
can gain further improvements by fine-tuning on the 50 high-
quality samples. But for SEM-TAB-FACTS and WiKiSQL,
the 50 human-labeled samples don’t enhance the model as
expected. We suppose it is because the amount of annotated
samples is too small to provide additional valuable information
on these datasets.

(3) TAPAS-Transfer performs well without fine-tuning on
any synthetic samples generated from SEM-TAB-FACTS,
which reveals that sufficient training data from the general
domain (i.e., the TABFACT dataset) can give a good model ini-
tialization for specialized domains. However, TAPAS-Transfer
still underperforms our unsupervised framework UCTR. We
suppose there are two main reasons. Firstly, the samples
of SEM-TAB-FACTS contain lots of scientific terms and
numbers. In addition, SEM-TAB-FACTS has one more label–
“Unknown” compared to TABFACT, limiting the effectiveness
of transfer learning from TABFACT.

D. Data Augmentation.

In this section, we investigate the effectiveness of using our
data generation method as a data augmentation technique. We
first fine-tune the model on our generated data and then fine-
tune it on the high-quality human-labeled data. The perfor-
mances are shown in Table VII. For TAT-QA, the evaluation
metric is the EM and F1 score. For WiKiSQL, the evaluation
metric is the denotation accuracy. For FEVEROUS and SEM-
TAB-FACTS, the evaluation metric is the label accuracy.
Experimental results show that the effectiveness of UCTR
varies across different benchmarks. We surprisingly find that
UCTR can substantially boost the supervised performance,
with a 6.3 absolute gain of F1 score on the test set of TAT-
QA and 3.1 gain of label accuracy on the development set of
SEM-TAB-FACTS. But similar phenomena are not observed
for the FEVEROUS and WiKiSQL.

We suppose the main underlying reason is that UCTR can
alleviate the problem of data sparsity. Both TAT-QA and SEM-

TABLE III
RESULTS ON THE DEVELOPMENT SET OF TAT-QA

Model Table Table-Text Text Total

EM F1 EM F1 EM F1 EM F1

Supervised

Text-Span only 1.3 1.6 7.7 9.7 47.3 73.5 14.0 20.9
Table-Cell only 12.0 16.8 20.5 29.2 0.3 1.0 11.9 16.9
TAPAS [22] - - - - - - 18.9 26.5
TAGOP [58] 52.6 54.9 65.1 66.9 48.8 73.8 55.5 62.9

Unsupervised
MQA-QG [38] 9.7 12.4 23.7 30.1 33.2 55.1 19.4 27.7
UCTR −w/o T2T 28.1 30.0 41.8 47.1 30.6 52.9 32.8 40.5
UCTR (ours) 30.7 32.4 42.8 47.3 33.2 55.9 34.9 42.4

Few-Shot TAGOP [58] 10.4 13.4 11.2 18.6 0.3 0.9 8.3 12.1
TAGOP+UCTR 45.7 48.3 60.6 63.9 34.7 58.5 47.7 55.4

TABLE IV
RESULTS ON FEVEROUS

Model Dev Test

Accuracy FEVEROUS Score FEVEROUS Score

Supervised
Sentence-only baseline 81.1 19.0 18.5
Table-only baseline 81.6 19.1 17.9
Full baseline [1] 86.0 20.2 19.2

Unsupervised
Random 47.0 14.1 13.2
MQA-QG [38] 71.1 17.6 16.4
UCTR (ours) 74.8 18.3 17.0

Few-Shot Full baseline [1] 67.3 14.2 13.3
Full baseline+UCTR 75.5 17.4 16.4

TABLE V
RESULTS ON SEM-TAB-FACTS

Model 3-way micro F1
Dev Test

Supervised TAPAS [16] 66.7 62.4

Unsupervised

Random 33.3 33.3
MQA-QG [38] 53.2 50.4
TAPAS-Tranfer [16] 59.0 58.7
UCTR (ours) 62.6 60.3

Few-Shot TAPAS [16] 48.6 46.5
TAPAS+UCTR 62.4 60.1

TAB-FACTS are datasets collected from specialized domains.
And the labeled training samples of them are relatively in-
sufficient. Specifically, the number of tables in TAT-QA and
SEM-TAB-FACTS are 2,757, 1,085, respectively, compared to
over ten thousand tables for FEVEROUS and WiKiSQL. As
a result, the data generated by UCTR can make the model get
familiar with the tables and provide a good initialization for
supervised training.

In summary, our proposed unified framework UCTR can
generate high-quality human-like data for various tabular

TABLE VI
RESULTS ON WIKISQL

Model Denotation Accuracy
Dev Test

Supervised TAPAS [22] 85.1 83.6
TAPEX [34] 88.1 87.0

Unsupervised
TAPEX [34] 21.4 21.8
MQA-QG [38] 57.8 57.2
UCTR (ours) 62.2 61.6

Few-Shot TAPEX [34] 53.8 52.9
TAPEX+UCTR 62.3 61.6

reasoning tasks on homogenous or heterogeneous data. The
synthetic data can significantly boost the model’s performance
under an unsupervised or a few-shot setting and even enhance
the supervised performance further.

E. Ablation Study.

To evaluate the effectiveness of each component of UCTR,
we present the model’s performances on the development
set of TAT-QA under different ablation settings. The results
are depicted in Table VIII. “Table↔ Text” under the “Data

TABLE VII
RESULTS OF DATA AUGMENTATION ON TAT-QA, FEVEROUS AND SEM-TAB-FACTS

Model TAT-QA SEM-TAB-FACTS WiKiSQL FEVEROUS
Dev Test Dev Test Dev Test Dev

Supervised Baseline 55.5/62.9 50.1/58.0 66.7 62.4 88.1 87.0 86.0

Baseline+UCTR 59.7/67.7 56.1/64.3 69.8 63.9 87.9 87.0 85.9

TABLE VIII
ABLATIONS ON THE DEVELOPMENT SET OF TAT-QA

Setting
Data Source Program Type Performance

Table Text Table↔Text SQL Arithmetic Table Table-Text Text Total
EM / F1 EM / F1 EM / F1 EM / F1

A1 X X 6.1 / 8.6 17.2 / 21.6 0.8 / 1.5 8.2 / 10.9
A2 X 1.8 / 2.2 5.3 / 8.2 32.1 / 55.8 10.0 / 16.5
A3 X X X 6.3 / 8.4 17.8 / 23.4 31.4 / 54.1 15.7 / 23.6
A4 X X X 30.6 / 31.7 35.9 / 38.8 31.8 / 53.0 32.5 / 38.8
A5 X X X X 28.1 / 30.0 41.8 / 47.1 30.6 / 52.9 32.8 / 40.5
A6 X X X X X 30.7 / 32.4 42.8 / 47.3 33.2 / 55.9 34.9 / 42.4

TABLE IX
EXAMPLES EXHIBITING GENERATED TEXT FROM DIFFERENT TYPES OF PROGRAMS. THE RED SPANS ARE THE KEY INFORMATION SHARED BY THE

GENERATED TEXT AND GOLDEN TEXT, WHILE THE SPANS COLORED BY BLUE ARE THE INFORMATION MISMATCHED.

Type Program Generated Text Golden Text

SQL Query select [department] from table order
by [total deputies] desc limit 1

Which department has the
most total deputies?

What is the department with
the most amount of total

deputies?

Logical Form
eq { count { filter all { all rows ;
Basic Printer Settings Material } } ;
3 }

There are 3 basic printer
settings that can be used with

a Basic Printer

There are 3 Material used for
Basic Printer Settings.

Arithmetic Expression

subtract (the Stockholders’ equity
of 2019, the Stockholders’ equity of
2018) , divide (#0, the Stockholders’
equity of 2018)

By what percentage did
stockholders’ equity decrease

from 2018 to 2019?

What was the percentage
change in stockholders’ equity

between 2018 and 2019?

Source” column means we generate joint table-text reasoning
samples using the Table-To-Text operator and Text-To-Table
operator. Based on the results, we have the following obser-
vations:

From the perspective of data sources, models trained only
on tables or texts achieve low performances. In contrast, the
model trained on both tabular and textual data obtains the ca-
pability of reasoning across modalities and gains considerable
improvement. Additionally, the “Table↔ Text” source brings
further enhancement, highlighting the ability to reason on a
hybrid of tabular and textual data.

From the perspective of program types, arithmetic expres-
sions are more valuable than SQL queries since most samples
in TAT-QA require arithmetic operations. The model using all
these two types of programs reaches the highest performance.

F. Analysis of Generated Text.

In this section, we present some example sentences gen-
erated by the NL-Generator from different types of pro-
grams. The red text spans are important information shared
by generated and golden text, while the blue spans are the
information mismatched. We can observe that NL-Generator
can understand the underlying logic and generate appropriate
questions or claims. For example, the original arithmetic
expression only contains a “subtract” operation followed by
a “divide” operation, but the model can identify the meaning
of “percentage change” correctly. However, in some cases,
the generated text loses some critical information or contains
inaccurate information.

G. Synthetic Data vs. Labeled Data.

In section V-C, we show the few-shot performance of
models using only 50 samples. In this section, we conduct a

more detailed analysis of the synthetic data and labeled data by
changing the number of available labeled samples. Since the
synthetic data shows significant effects on TAT-QA according
to previous results, we still take the result on the development
set of TAT-QA as an example. As shown in Figure 5, the
orange line depicts the F1 score of the model first trained
on our synthetic data, then further fine-tuned on the available
labeled data. In contrast, the blue line shows the performance
of the model directly trained on the labeled data.

As the number of samples increases, the model pre-trained
on our synthetic data always performs better. In addition,
we have several interesting findings: i) The F1 score of the
model trained on 23,933 synthetic samples is around 42,
comparable to a model trained on 1000 labeled data. (2) When
we fine-tune the model trained on 23,933 synthetic samples
with additional 1000 human-labeled samples, it can achieve
comparable performance to a model trained on 13,217 labeled
data. Therefore, we conclude that our unsupervised learning
framework provides a good initialization so that the model can
gain a considerable improvement using only a small amount
of labeled samples. Our framework can be very beneficial in
an online learning setting when applying a model to a new
domain, where labeled data is limited.

Fig. 5. Effectiveness of the synthetic data. The orange line corresponds to
the model first trained on the synthetic data and then fine-tuned on the varied
number of labeled samples. The blue line corresponds to the model directly
trained on labeled samples.

VI. RELATED WORK

In this section, we briefly summarize the related works
from these two aspects: the development of tabular reasoning
models and unsupervised data generation methods.

A. Tabular Reasoning Models.

Many tabular reasoning models tackle the question answer-
ing and fact verification tasks in a semantic parsing manner
[21], [33], converting a natural language sentence into a
program. Zhong et al. [57] translate users’ questions to corre-
sponding SQL queries, and Yang et al. [54] generate semantic
consistent logical forms with tree structures and execute them
to judge the claims. However, the search space for programs
is very large, and the model may generate spurious programs

which have wrong structures but return the correct answers.
Recent works demonstrate that pre-trained language models
achieve better reasoning performances on various tasks by pre-
training or leveraging auxiliary knowledge [55], [31], [17],
[13]. Specifically, for the tabular reasoning task, TAPAS [22]
is a BERT-extended model pre-trained on a large corpus of
texts and tables from Wikipedia. It answers questions by
applying operations on predicted table cells in an end-to-end
way. Neeraja et al. [37] boost the reasoning ability of pre-
trained models on the tabular NLI task by introducing external
knowledge. And it is a promising direction to explore how to
obtain better representations of tables. GraPPa [56] introduces
a text-schema linking objective to make the model better
understand the grammatical role of table elements. However,
the main drawback of these methods is that they require a
large amount of training data, limiting their performance when
transferring to a new domain.

B. Unsupervised Data Generation Methods.

Unsupervised data generation has been extensively studied
on various tasks like question answering and natural language
inference, and has shown surprising performances [48], [44],
[32]. Recently, methods for synthesizing human-like tabular
reasoning samples have also been proposed [19], [43]. Chem-
mengath et al. [4] sample complex SQL queries and generate
natural language questions in a seq2seq manner. Eisenschlos
et al. [15] generate factual claims leveraging context-free
grammar (CFG) and counterfactual heuristics. Unfortunately,
these methods focus on a specific task or scenario. Based
on the modules and predefined operators, our approach can
convert different types of programs into natural language
questions or claims with tabular evidence or a hybrid of tabular
and textual evidence.

VII. CONCLUSION AND FUTURE WORKS

We explore the unsupervised complex tabular reasoning
task and propose a novel unified framework UCTR. UCTR
can synthesize high-quality human-like questions and claims
with underlying complex logic without any labeled data based
on four essential components and diverse program templates.
Comprehensive experiments for different tasks and domains
demonstrate that models trained on our synthetic data achieve
surprising performances under unsupervised and few-shot set-
tings, which can significantly ease the burden of human anno-
tation. Moreover, UCTR can boost supervised performances
in specialized domains with insufficient data. In future work,
we will broaden the reasoning types of programs and explore
an auto program-generation method based on the existing data
distributions to make the framework more flexible.

ACKNOWLEDGMENT

This work was supported in part by National Key Re-
search and Development Program of China under Grant No.
2020YFA0804503, National Natural Science Foundation of
China under Grant No. 62272264, and Beijing Academy of
Artificial Intelligence (BAAI).

REFERENCES

[1] R. Aly, Z. Guo, M. Schlichtkrull, J. Thorne, A. Vlachos,
C. Christodoulopoulos, O. Cocarascu, and A. Mittal. Feverous: Fact
extraction and verification over unstructured and structured information.
arXiv preprint arXiv:2106.05707, 2021.

[2] S. Ö. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6679–6687, 2021.

[3] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large
annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326, 2015.

[4] S. A. Chemmengath, V. Kumar, S. Bharadwaj, J. Sen, M. Canim,
S. Chakrabarti, A. Gliozzo, and K. Sankaranarayanan. Topic transferable
table question answering. arXiv preprint arXiv:2109.07377, 2021.

[5] W. Chen, H. Wang, J. Chen, Y. Zhang, H. Wang, S. Li, X. Zhou,
and W. Y. Wang. Tabfact: A large-scale dataset for table-based fact
verification. arXiv preprint arXiv:1909.02164, 2019.

[6] Z. Chen, W. Chen, C. Smiley, S. Shah, I. Borova, D. Langdon,
R. Moussa, M. Beane, T.-H. Huang, B. Routledge, et al. Finqa: A
dataset of numerical reasoning over financial data. arXiv preprint
arXiv:2109.00122, 2021.

[7] Z. Chen, W. Chen, H. Zha, X. Zhou, Y. Zhang, S. Sundaresan, and
W. Y. Wang. Logic2text: High-fidelity natural language generation from
logical forms. arXiv preprint arXiv:2004.14579, 2020.

[8] D. Choi, M. C. Shin, E. Kim, and D. R. Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-
domain databases. Computational Linguistics, 47(2):309–332, 2021.

[9] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual
entailment challenge. In Machine learning challenges workshop, pages
177–190. Springer, 2005.

[10] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu. Turl: Table understanding
through representation learning. ACM SIGMOD Record, 51(1):33–40,
2022.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[12] H. Dong, Z. Cheng, X. He, M. Zhou, A. Zhou, F. Zhou, A. Liu,
S. Han, and D. Zhang. Table pretraining: A survey on model archi-
tectures, pretraining objectives, and downstream tasks. arXiv preprint
arXiv:2201.09745, 2022.

[13] Z. Duan, X. Li, Z. Li, Z. Wang, and J. Wang. Not just plain text! fuel
document-level relation extraction with explicit syntax refinement and
subsentence modeling. arXiv preprint arXiv:2211.05343, 2022.

[14] J. M. Eisenschlos, M. Gor, T. Müller, and W. W. Cohen. Mate:
Multi-view attention for table transformer efficiency. arXiv preprint
arXiv:2109.04312, 2021.

[15] J. M. Eisenschlos, S. Krichene, and T. Müller. Understanding tables
with intermediate pre-training. arXiv preprint arXiv:2010.00571, 2020.

[16] D. Gautam, K. Gupta, and M. Shrivastava. Volta at semeval-2021 task
9: Statement verification and evidence finding with tables using tapas
and transfer learning. arXiv preprint arXiv:2106.00248, 2021.

[17] M. Glass, M. Canim, A. Gliozzo, S. Chemmengath, V. Kumar,
R. Chakravarti, A. Sil, F. Pan, S. Bharadwaj, and N. R. Fauceglia.
Capturing row and column semantics in transformer based question
answering over tables. arXiv preprint arXiv:2104.08303, 2021.

[18] H. Gong, Y. Sun, X. Feng, B. Qin, W. Bi, X. Liu, and T. Liu. Tablegpt:
Few-shot table-to-text generation with table structure reconstruction and
content matching. In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1978–1988, 2020.

[19] D. Guo, Y. Sun, D. Tang, N. Duan, J. Yin, H. Chi, J. Cao, P. Chen,
and M. Zhou. Question generation from sql queries improves neural
semantic parsing. arXiv preprint arXiv:1808.06304, 2018.

[20] V. Gupta, M. Mehta, P. Nokhiz, and V. Srikumar. Infotabs: Inference on
tables as semi-structured data. arXiv preprint arXiv:2005.06117, 2020.

[21] K. Guu, P. Pasupat, E. Z. Liu, and P. Liang. From language to programs:
Bridging reinforcement learning and maximum marginal likelihood.
arXiv preprint arXiv:1704.07926, 2017.

[22] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos.
Tapas: Weakly supervised table parsing via pre-training. arXiv preprint
arXiv:2004.02349, 2020.

[23] W. Hwang, J. Yim, S. Park, and M. Seo. A comprehensive exploration
on wikisql with table-aware word contextualization. arXiv preprint
arXiv:1902.01069, 2019.

[24] H. Iida, D. Thai, V. Manjunatha, and M. Iyyer. Tabbie: Pretrained
representations of tabular data. arXiv preprint arXiv:2105.02584, 2021.

[25] S. K. Jauhar, P. Turney, and E. Hovy. Tabmcq: A dataset of gen-
eral knowledge tables and multiple-choice questions. arXiv preprint
arXiv:1602.03960, 2016.

[26] A. Judea, H. Schütze, and S. Brügmann. Unsupervised training set
generation for automatic acquisition of technical terminology in patents.
In Proceedings of COLING 2014, the 25th international conference on
computational linguistics: Technical Papers, pages 290–300, 2014.

[27] M. Kale and A. Rastogi. Text-to-text pre-training for data-to-text tasks.
arXiv preprint arXiv:2005.10433, 2020.

[28] Y. Katsis, S. Chemmengath, V. Kumar, S. Bharadwaj, M. Canim,
M. Glass, A. Gliozzo, F. Pan, J. Sen, K. Sankaranarayanan, et al. Ait-qa:
Question answering dataset over complex tables in the airline industry.
arXiv preprint arXiv:2106.12944, 2021.

[29] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and compre-
hension. arXiv preprint arXiv:1910.13461, 2019.

[30] P. Li, W. Li, Z. He, X. Wang, Y. Cao, J. Zhou, and W. Xu. Dataset
and neural recurrent sequence labeling model for open-domain factoid
question answering. arXiv preprint arXiv:1607.06275, 2016.

[31] X. Li, Z. Li, Z. Duan, J. Xu, N. Liu, and J. Wang. Jointly modeling
fact triples and text information for knowledge base completion. In
2021 IEEE International Conference on Big Knowledge (ICBK), pages
214–221. IEEE, 2021.

[32] X. Li, Z. Li, Z. Zhang, N. Liu, H. Yuan, W. Zhang, Z. Liu, and J. Wang.
Effective few-shot named entity linking by meta-learning. In 2022 IEEE
38th International Conference on Data Engineering (ICDE), pages 178–
191. IEEE Computer Society, 2022.

[33] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision.
arXiv preprint arXiv:1611.00020, 2016.

[34] Q. Liu, B. Chen, J. Guo, Z. Lin, and J.-g. Lou. Tapex: Table pre-training
via learning a neural sql executor. arXiv preprint arXiv:2107.07653,
2021.

[35] C. Malon. Team papelo at feverous: Multi-hop evidence pursuit. In Pro-
ceedings of the Fourth Workshop on Fact Extraction and VERification
(FEVER), pages 40–49, 2021.

[36] A. Nassar, N. Livathinos, M. Lysak, and P. Staar. Tableformer: Table
structure understanding with transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4614–4623, 2022.

[37] J. Neeraja, V. Gupta, and V. Srikumar. Incorporating external knowledge
to enhance tabular reasoning. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 2799–2809, 2021.

[38] L. Pan, W. Chen, W. Xiong, M.-Y. Kan, and W. Y. Wang. Unsupervised
multi-hop question answering by question generation. arXiv preprint
arXiv:2010.12623, 2020.

[39] P. Pasupat and P. Liang. Compositional semantic parsing on semi-
structured tables. arXiv preprint arXiv:1508.00305, 2015.

[40] X. Pi, Q. Liu, B. Chen, M. Ziyadi, Z. Lin, Y. Gao, Q. Fu, J.-G.
Lou, and W. Chen. Reasoning like program executors. arXiv preprint
arXiv:2201.11473, 2022.

[41] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[42] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[43] I. V. Serban, A. Garcı́a-Durán, C. Gulcehre, S. Ahn, S. Chandar,
A. Courville, and Y. Bengio. Generating factoid questions with recurrent
neural networks: The 30m factoid question-answer corpus. arXiv
preprint arXiv:1603.06807, 2016.

[44] S. Shakeri, C. N. d. Santos, H. Zhu, P. Ng, F. Nan, Z. Wang, R. Nallapati,
and B. Xiang. End-to-end synthetic data generation for domain adapta-
tion of question answering systems. arXiv preprint arXiv:2010.06028,
2020.

[45] T. Shi, C. Zhao, J. Boyd-Graber, H. Daumé III, and L. Lee. On the
potential of lexico-logical alignments for semantic parsing to sql queries.
arXiv preprint arXiv:2010.11246, 2020.

[46] Y. Su, D. Vandyke, S. Wang, Y. Fang, and N. Collier. Plan-then-
generate: Controlled data-to-text generation via planning. arXiv preprint
arXiv:2108.13740, 2021.

[47] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal. Fever: a
large-scale dataset for fact extraction and verification. arXiv preprint
arXiv:1803.05355, 2018.

[48] N. Varshney, P. Banerjee, T. Gokhale, and C. Baral. Unsupervised
natural language inference using phl triplet generation. arXiv preprint
arXiv:2110.08438, 2021.

[49] B. Wang, I. Titov, and M. Lapata. Learning semantic parsers from
denotations with latent structured alignments and abstract programs.
arXiv preprint arXiv:1909.04165, 2019.

[50] N. X. Wang, D. Mahajan, M. Danilevsky, and S. Rosenthal. Semeval-
2021 task 9: Fact verification and evidence finding for tabular data in
scientific documents (sem-tab-facts). arXiv preprint arXiv:2105.13995,
2021.

[51] Z. Wang, H. Dong, R. Jia, J. Li, Z. Fu, S. Han, and D. Zhang. Tuta:
tree-based transformers for generally structured table pre-training. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 1780–1790, 2021.

[52] X. Wu, J. Zhang, and H. Li. Text-to-table: A new way of information
extraction. arXiv preprint arXiv:2109.02707, 2021.

[53] T. Xie, C. H. Wu, P. Shi, R. Zhong, T. Scholak, M. Yasunaga, C.-
S. Wu, M. Zhong, P. Yin, S. I. Wang, et al. Unifiedskg: Unifying and
multi-tasking structured knowledge grounding with text-to-text language
models. arXiv preprint arXiv:2201.05966, 2022.

[54] X. Yang, F. Nie, Y. Feng, Q. Liu, Z. Chen, and X. Zhu. Program en-
hanced fact verification with verbalization and graph attention network.
arXiv preprint arXiv:2010.03084, 2020.

[55] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel. Tabert: Pretraining
for joint understanding of textual and tabular data. arXiv preprint
arXiv:2005.08314, 2020.

[56] T. Yu, C.-S. Wu, X. V. Lin, B. Wang, Y. C. Tan, X. Yang, D. Radev,
R. Socher, and C. Xiong. Grappa: grammar-augmented pre-training for
table semantic parsing. arXiv preprint arXiv:2009.13845, 2020.

[57] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103, 2017.

[58] F. Zhu, W. Lei, Y. Huang, C. Wang, S. Zhang, J. Lv, F. Feng, and T.-S.
Chua. Tat-qa: A question answering benchmark on a hybrid of tabular
and textual content in finance. arXiv preprint arXiv:2105.07624, 2021.

