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Abstract—Real-life tools for decision-making in many critical
domains are based on ranking results. With the increasing
awareness of algorithmic fairness, recent works have presented
measures for fairness in ranking. Many of those definitions
consider the representation of different “protected groups”, in
the top-k ranked items, for any reasonable k. Given the protected
groups, confirming algorithmic fairness is a simple task. However,
the groups’ definitions may be unknown in advance.

In this paper, we study the problem of detecting groups with
biased representation in the top-k ranked items, eliminating
the need to pre-define protected groups. The number of such
groups possible can be exponential, making the problem hard.
We propose efficient search algorithms for two different fair-
ness measures: global representation bounds, and proportional
representation. Then we propose a method to explain the bias
in the representations of groups utilizing the notion of Shapley
values. We conclude with an experimental study, showing the
scalability of our approach and demonstrating the usefulness of
the proposed algorithms.

Index Terms—representation, ranking, fairness, bias

I. INTRODUCTION

Ranking is a commonly used operation in a wide range of
application domains, for example, in presenting results on a
web search engine [8], establishing credit scores [7], school
admission [29] and hiring [17]. While convenient and useful,
these tools can be biased. As a result, they may affect decision-
making in undesirable ways and can even impact human
life [2], [6], [11]. This problem has drawn much attention
from the research community, and a line of recent works has
focused on measuring and mitigating bias and unfairness in
ranking [3], [10], [17], [22], [34], [36], [39].

The notion of algorithmic fairness was studied extensively
for a broad class of models [25], [30]. Fairness measures
typically refer to a given “protected group” in the data, which
is defined based on the values of some sensitive attributes (e.g.,
gender, race, age, or combinations thereof), usually based on
the societal history of discrimination. Analyzing the fairness
measure of a system with respect to the given group is a simple
task. However, “non-standard” protected groups cannot always
be specified in advance, and such groups may be overlooked
when examining the performance of a system.

For example, a model developed to assign grades to students
(in place of exams that were canceled due to the COVID-
19 pandemic) was shown to be biased against high-achieving

students from poor school districts1. For instance, students
from low-income families were predicted to fail the Spanish
exam, even when they were native Spanish speakers. In this
case, the model was discriminating against Hispanic students
from poor school districts. A primary source of bias was the
use of historical exam results of each school to predict student
performance. However, using the school (identified by school
ID) to define the protected group is not an intuitive choice,
and so may not have been considered. Moreover, even if we
consider the group of Hispanic students as a protected group,
we may not find any fairness issues, since this subgroup of
students is only a small fraction of all Hispanic students.

In this paper we study the problem of detecting groups that
are treated unfairly by a ranking algorithm. In other words, we
want to let the data speak to (potential) unfairness, without
requiring a human modeler to identify protected attributes
ahead of time. Following fairness definitions presented in the
literature on fairness in ranking (see e.g., [10], [30], [36]), we
consider group representation in the top-k ranked items for
any k in a reasonable range as a measure of fairness.

Recent works have studied the problem of automatically
detecting “problematic” or biased subgroups in the data with-
out the need to specify the protected attributes a priori [9],
[12], [21], [23], [28]. However, these works considered only
classification models. In [27] the authors of [28] extend their
framework to consider ranking as well. In contrast to our work,
which builds on fairness measures for ranking from the litera-
ture, they use the notion of divergence to measure performance
differences among data subgroups. This difference leads to
differences in the result sets returned by each method (see
Section VI-D for more details).

We next outline our main contributions.
Problem formulation: We formally define the problem

of detecting groups with biased representation in the top-k
ranked items for a given ranking algorithm R, a dataset D,
and a range of possible k’s. Groups are defined using value
assignments to a set of attributes we denote as patterns (see
Section II). To provide concise and meaningful results we use a
threshold on the returned groups’ size and report only groups
that are not subsumed by any other group in the result set
(referred to as the most general patterns, see Section III). We

1https://www.nytimes.com/2020/09/08/opinion/
international-baccalaureate-algorithm-grades.html
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start with the fundamental definition of [10], which uses upper
and lower bounds to restrict the number of tuples in the top-k
from different groups in the data. The goal is to report groups
such that their representation (i.e., number of tuples) in the
top-k does not lie within the given bounds for a given range
of possible k’s. We refer to this problem as the global bounds
representation bias problem. We then consider the prominent
class of fairness measures utilizing proportional representation
(see, e.g., [36]). Intuitively, the representation of each group
in the top-k should be proportional to its size in the data.
Using this notion we define the proportional representation
bias problem. We show that no polynomial algorithm exists
to solve either problem.

Detection of groups with biased representation: We
present algorithms for the problem of finding the set of all
substantial groups (in terms of their size in the data, and their
subsumption in other groups) with biased representation in the
top-k ranked items. We first present a simple baseline solution
that utilizes the notion of pattern graph presented in [5]. We
show how to traverse the graph in a top-down fashion in order
to find groups with biased representation. This search is then
applied repeatedly for each k in the given range. Bearing in
mind the complexity of the problem, we focus on optimizing
the search. Our optimized solutions rely on the fact that the set
of top-k and top-(k + 1) tuples differ by a single tuple. As a
result, the search spaces for succeeding k values are typically
very similar. The optimized solutions utilize this observation
to avoid parts of the search tree.

Result analysis: Given a group with biased representation
in the top-k ranked items, an analyst may wish to understand
the cause of bias. To this end, we propose a method that
harnesses the notion of Shapley values to identify attributes
that significantly affect the ranking of the detected group.
To analyze the difference between the detected group and
top-k ranked tuples, we visualize the value distribution of
such attributes. Shapley values have been used to provide
similar explanations for regression and classification models.
Our novelty is in developing a corresponding method for the
ranking problem.

Experimental study: We complement our algorithmic
development with an extensive experimental study. We eval-
uate the performance and properties of the algorithms, i.e.,
the scalability and parameter setting effect. We examine the
effect of the number of attributes, groups’ size threshold,
and range of k, using three real-world datasets. Our results
show the applicability of our solution in practice, despite the
theoretical complexity of the problems, and the usefulness of
the optimized algorithms compared to the baseline solution.
We then experimentally demonstrate the usefulness of our
approach for results analysis. Finally, we compare the result
of our algorithms to the results of the method proposed in [27]
through a case study.

Paper organization: The rest of the paper is organized
as follows. We present the necessary preliminaries for our
problem definition in Section II. Then in Section III we
formally define the problems of detecting groups with bi-

ased representation in the data and prove their hardness.
Our solutions is presented in Section IV. In Section V we
introduce a method for analyzing and explaining the results
of our algorithms. We describe our experimental evaluation
in Section VI, overview related work in Section VII, and
conclude in Section VIII.

II. PRELIMINARIES

We next provide the necessary background on the notion of
patterns to represent data groups and the concept of fairness
in ranking. We will use the following example as our running
example to demonstrate the ideas presented in the paper.

Example 2.1: The Student Performance Data Set [13] con-
tains information from two Portuguese secondary schools in
the Alentejo region of Portugal, Gabriel Pereira (GP) and
Mousinho da Silveira (MS). The data was collected during
the 2005-2006 school year and it contains the performance
of 1044 students in the Math and the Portuguese language
exams, along with demographic, social, and school-related
information. Figure 1 depicts a sample from the data with the
attributes: gender, school, address (urban or rural), and failures
(number of past class failures). The grade attribute depicts the
students’ grades on a scale of 0− 20. Consider an excellence
student program committee that wishes to select students for
a scholarship based on their academic achievements. To this
end, they use a ranking algorithm R to rank students by
their grades. In the case of similar grades, students with
fewer failures are ranked higher. The scholars’ list is publicly
announced, and should be diverse and inclusive.

A. Data Groups

We assume the data is represented using a single relational
database, and that the relation’s attribute values used for
group definitions are categorical. To include attribute values
drawn from a continuous domain in the group definition,
we render them categorical by bucketizing them into ranges:
very commonly done in practice to present aggregate results.
We use the notion of patterns, value assignments to a set of
attributes, to define groups in the data [5].

Definition 2.2 (Patterns): Let D be a database with cate-
gorical attributes A = {A1, . . . , An} and let Dom(Ai) be the
active domain of Ai for i ∈ [1..n]. A pattern p over D is the
set of {Ai1 = a1, . . . , Aik = ak} where {Ai1 , . . . , Aik} ⊆ A
and aj ∈ Dom(Aij ) for each Aij in p. We use Attr(p) to
denote the set of attributes in p.

We say that a tuple t ∈ D satisfies a pattern p if t.Ai = ai
for each Ai ∈ Attr(p). The size sD(p) of a pattern p is then
the number of tuples in D that satisfy p. Given a ranking
algorithm R we use Rk(D) to denote the top-k ranked items in
D. Finally, we use sRk(D)(p) to denote the size of p in Rk(D).

Example 2.3: Consider the dataset given in Figure 1. p =
{School = GP}, is an example of a pattern. Tuples 3, 4, 7,
8, 12, 13, 15, and 16 satisfy p and thus sD(p) = 8. For the
ranking algorithm R whose results are depicted in the Rank
column, we have sR5(D)(p) = 1, since only one tuple in the
top-5 ranked items satisfies p.



# Gender School Address Failures Grade Rank
1 F MS R 1 11 8
2 M MS R 1 15 3
3 M GP U 1 8 10
4 M GP U 2 4 16
5 M MS R 0 19 2
6 F MS U 1 4 15
7 F GP R 1 7 11
8 M GP R 1 6 13
9 F MS R 0 14 4
10 F MS R 2 7 12
11 M MS R 2 13 6
12 F GP U 0 20 1
13 F GP U 2 12 7
14 M MS U 1 13 5
15 F GP U 1 5 14
16 M GP U 0 9 9

Fig. 1: Students’ data. The Rank column depicts their ranking
based on the grade and number of past failures. The top-5
ranked students are highlighted

B. Fairness measure

The problem of fairness in ranking was studied in a line
of works (see [30] for a survey). A fundamental definition,
presented in [10], uses constraints over the representations
of different groups in the top-k ranked items. They use an
upper bound Ukl and a lower bound Lkl over the number of
items with the property l (i.e., a protected group) in the top-k
positions of the ranking. Then a ranking algorithm is fair by
the definition of [10], if the number of selected items from the
protected group in the top-k lies within the given boundaries.

Example 2.4: Consider again the dataset given in Figure 1
and the ranker whose result is presented in the Rank column.
Consider a lower bound of 2 over the number of students from
each school for k = 5 (i.e., L5,school=MS = L5,school=GP =
2). In this case, among the top-5 students, only one is from
the GP school, thus the ranker does not satisfy the constraints.

Another prominent class of fairness measure in ranking
considers the proportional representation of different groups
in the top-k ranked items (see, e.g [36]). Intuitively, these
definitions can be seen as variants of the definition of [10]
such that for each group g, and each k, the bounds on the
number of occurrences of items from g in the top-k ranked
items are defined with respect to the size of g in the dataset.

Example 2.5: Continuing Example 2.4, the total number of
students from each school (MS and GP) is 8. The total dataset
size is 16, thus a proportionate representation of each school
in the top-5 items should be roughly 5 · 8

16 ≈ 2.

III. PROBLEM DEFINITION

Our goal is to detect groups with biased representation
in the top-k ranked items for a given ranking algorithm R,
dataset D, and a range of k’s. We define our problem by
harnessing fairness measures for ranking algorithms from the
literature. In particular, we present two problem definitions
utilizing prominent fairness measures, both considering the
representation of different groups in the top-k ranked items
for different values of k. Intuitively, accounting for a range
of k’s ensures that the ranking is fair for any position in the

ranking. For instance, if the top-10 items consist of 5 students
with an urban address and 5 students with a rural address, but
the students with urban addresses are in the 1-5 positions of the
ranking, the output may seem “fair” if we are only interested
in selecting the top-10 students, but if the positions within the
top-10 are also important (e.g., position in the ranking affects
an award amount), then clearly this ranking is unfair.

The first definition simply utilizes the definition of [10]. The
fairness definition of [10] restricts the count of different groups
(i.e., patterns) in the top-k using upper and lower bounds.
According to this definition, the result is biased either when
the size of a pattern l exceeds the upper bound Ukl or falls
below the lower bound Lkl among the top-k tuples for some
k. We eliminate the requirement to define l in advance and use
Uk and Lk to denote the upper and lower bound respectively,
on every pattern in the top-k ranked tuples of a given ranking
algorithm.

We say that a group has a biased representation in the output
of a ranking algorithm R, if its size in the top-k ranked items
by R does not lie within the given bounds for any k in a given
range of possible k’s. Intuitively, we wish to avoid reporting
“very specific” descriptions of groups and provide the user
with a concise set of properties that characterize meaningful
groups (in terms of their size) that have biased representation.
To this end, we present the notion of most general patterns.
Given the bounds over the group’s representation in the top-
k ranked items, we say that a pattern p is the most general
pattern with biased representation, if p is used to represent
a group with inadequate representation by the given bounds,
and ∀p′ ⊊ p, the count of p′ in Rk(D) lies within the given
boundaries. We are now ready to formally define our problem.

Problem 3.1 (Global Bounds Representation Bias): Given
a database D, a ranking algorithm R, a size threshold τs

2, a
range [kmin, kmax], and lower bounds Lk and upper bounds
Uk for each kmin ⩽ k ⩽ kmax, find for each kmin ⩽ k ⩽
kmax, all most general patterns p with size ⩾ τs such that
sRk(D)(p) < Lk or sRk(D)(p) > Uk.

Note that the ranking algorithm is treated as a black box,
making the problem to be model agnostic. Following the line
of work on proportional representation, we consider another
problem definition by refining the above definition to account
for the groups’ sizes in the dataset. Intuitively, the number of
items from each group in the top-k ranked items should be
proportionate to the group’s representation in the data.

Problem 3.2 (Proportional Representation Bias): Given a
database D, a ranking algorithm R, a size threshold τs and
a range [kmin, kmax], find for each kmin ⩽ k ⩽ kmax, all
most general patterns p with size ⩾ τs such that sRk(D)(p) <

α · sD(p) k
|D| or sRk(D)(p) > β · sD(p) k

|D| for α < β ∈ R.
Proportional representation gives the user an intuitive

bounds definition. However, the definition of global represen-
tation allows the user to actively control the bounds over the
representation of different groups in the top-k ranked items,

2We use an absolute value as the size threshold. Equivalently it may be
defined as a fraction of the dataset size.



A1 A2 · · · An−1 An Rank
t1 1 0 · · · 0 0 1
t2 0 1 · · · 0 0 2
...

...
...

. . .
...

...
...

tn 0 0 · · · 0 1 n
tn+1 0 0 · · · 0 0 n+ 1

Fig. 2: Dataset D in the proof of Theorem 3.3

even if their representation in the overall data is low/high. For
instance, consider a ranking algorithm for job applicants in
fields that are dominated by men (e.g., tech companies). If
the company wishes to increase the representation of women
they hire but their application number is low and only the
top-k ranked applicants are invited for an interview, by using
proportional representation, their number in the top-k, and as
a result, the number of women invited to an interview, would
be low as well. The fundamental definition of [10] allows the
user to define bounds over the representation of the protected
groups in the data for different values of k. Following this
definition, we defined the global bounds representation prob-
lem, which assumes no prior information regarding the identity
of the protected groups and aims to identify all groups with
biased representation. Note that our goal is to report only the
most general patterns (groups), providing a concise description
of these groups.

While there are typically far fewer most general patterns
with biased representation than the set of all patterns with
biased representation, in the worst case, their numbers can be
exponential. This is true even if we consider only the lower
bounds (e.g., if Uk = |D|).

Theorem 3.3: Given a dataset D and a ranking algorithm R,
no polynomial time algorithm can guarantee the enumeration
of the set of all most general patterns with biased representa-
tion in the result of R on D.

Proof 3.4: We prove the theorem by construction. Consider
a dataset D with n (assuming n ≥ 2) binary attributes
{A1 . . . , An} and n + 1 tuples t1, . . . , tn, tn+1 as shown in
Figure 2. I.e., ∀i ∈ [1, n], ti[Ai] = 1, and ∀j ̸= i, ti[Aj ] = 0.
All the attributes of tn+1 are zero. Let R be a ranking
algorithm such that the top-k tuples in D are the tuples
t1, . . . , tk in Figure 2. Let kmin = kmax = n, Lk = n

2 +1 for
Problem 3.1 (global representation bounds), and α = n+3

n+4 for
Problem 3.2 (proportional representation), for some n ≥ 2.

Consider a pattern p with m ≤ n attributes Ai with the
value assignment Ai = 0. Let I be the set of indices of
those attributes. Among t1, · · · , tn, the size of p is n − m,
since ∀i ∈ I, ti[i] = 1, ti does not satisfy p, and all the other
tuples satisfy p. Let m = n

2 , thus the size of p in the top-k
ranked items is sRk(D)(p) =

n
2 < Lk = n

2 + 1 in the case of
global representation bounds. For proportional representation,
we have sD(p) = n

2 + 1 since tn+1 also satisfies p. And we
get sRk(D)(p) = n

2 < α · sD(p) · k
|D| = n+3

n+4 (
n
2 + 1) n

n+1 =
n
2
(n+3)(n+2)
(n+4)(n+1) . To show p is a most general pattern to report,

we examine the parents of p, p′ which has m − 1 attribute

with the value assignment 0. For global representation bounds,
we have sRk(D)(p

′) = n − m + 1 = n
2 + 1 = Lk. For

proportional representation, we have sRk(D)(p
′) = n

2 + 1 >

α · sD(p′) · k
|D| = n+3

n+4 (
n
2 + 2) n

n+1 = n+2
2

(n+3)n
(n+1)(n+2) . As a

result, every pattern with n
2 attribute assigned to 0 should be in

the result set. The number of such patterns is
(

n
n/2

)
>

√
2
n

,
which is exponential. Therefore, any algorithm enumerating
these patterns is exponential.

Upper bounds: The notion of the most general patterns is
motivated by the utility of the information they provide. For
example, in the case of global representation bounds, if the
number of females in the top-k is less than the lower bound,
then clearly the number of black females is below the bound.
Unlike the most general patterns for the lower bound, in the
case of the upper bound, the most specific patterns are more
informative. For instance, if the number of black females is
above the upper bound, then so is the number of blacks and
the number of females. A plausible problem definition may
account for the most specific substantial patterns. Analogously
to the definition of the most general patterns, a pattern p is
a most specific substantial pattern if the size of p is above a
given threshold τs and for every pattern p′ such that p ⊊ p′,
the size of p′ is below the threshold τs. The goal is then to
find the most general patterns that do not satisfy the lower
bound and the most specific substantial patterns that exceed
the upper bound. For ease of presentation, in the rest of the
paper, we will focus on the solution for Problems 3.1 and 3.2
considering only the lower bounds. We note that our solutions
can be adjusted to support such problem definition (and other
definitions such as most general for upper bound, and the most
specific for lower bound).

While Theorem 3.3 indicates that the number of most
general groups with biased representation may be exponential,
our experimental evaluation shows that, in practice, their
number is significantly lower. In 97.58% of the times, the
number of the reported groups was less than 100. We note that
presenting a large number of results may be overwhelming to
the user. A user-friendly interface would organize the output
by k value and rank the groups by their overall size in the data
or by the bias in their representation (the difference between
the required representation and the actual representation).

IV. DETECTING GROUPS WITH BIASED REPRESENTATION

We next present our algorithms for detecting groups with
biased representation as defined in Problems 3.1 and 3.2. We
start with a simple solution that can be used to detect groups
based on both of the problem definitions. We then present two
optimized algorithms, designed to optimize the search for each
of the problems.

A. Iterative Top-Down Search (Baseline Solution)

The first, simple solution, utilizes the algorithm presented
in [5] to traverse the set of possible patterns, starting with the
most general ones, and compute the representation of each
group in the top-k ranked items in the data (for each k in
the given range). This is done using the notion of pattern



{}

{G=F} {S=GP}{S=MS} {G=M}. . .

{G=F, S=GP}{G=F, S=MS} {G=M, S=GP}{G=M, S=MS}

Fig. 3: Part of the pattern graph for the running example. Edges
of the search tree are marked with solid lines.

graph [5]. Briefly, the nodes in the graph are the set of all
possible patterns, and there is an edge between a pair of
patterns p and p′ if p ⊂ p′ and p′ can be obtained from p by
adding a single attribute value pair. In this case, we say that p
(p′) is a parent (child) of p′ (p). As shown in [5], the pattern
graph can be traversed in a top-down fashion, while visiting
each pattern at most once. Namely, traversing a spanning tree
of the pattern graph, which we denote as the search tree, and
formally define as follows.

Definition 4.1: Let D be a dataset with categorical attributes
A = {A1, . . . , An}. We assume attributes are ordered, and for
a given set of attributes S ⊆ A we use idx(S) to denote the
maximal index value of all attributes in S. Let p be a node
in the pattern graph of D. The children of p in the search
tree T are p′ such that p′ is a child of p in the pattern graph,
and idx(Attr(p′) \ Attr(p)) > idx(Attr(p)). Namely, p′ is
obtained from p by adding a single attribute value pair such
that the index of the newly added attribute is larger than the
maximal index value of attributes in p.

Example 4.2: A part of the pattern graph for the dataset of
the running example is shown in Figure 3, where G and S are
used as shorthands for Gender and School respectively. The
pattern {G=F, S=GP} is a child node of the patterns {G=F}
and {S=GP} in the pattern graph, however, in the search tree
it is only a child of {G=F}. This is because idx({G}) =
1 < 2 = idx({G, S}) \ {G}) whereas idx({S}) = 2 > 1 =
idx({G, S} \ {S}).

Algorithm 1: Top-down search
input : A dataset D, a ranking algorithm R, a size threshold τs, k

and lower bound Lk

output: Res = {p1, . . . , pn} where ∀pi ∈ Res sD(pi) ≥ τs and
pi is a most general pattern with sRk(D)(p) < Lk

/* For proportional bounds α is given as input
and Lk = α · sD(p) k

|D| */

1 Res← ∅
2 S ← {generateChildren({})}
3 while S is not empty do
4 p = S.pop()
5 if patternSize (p,D) > τs then
6 top-k c← patternSize (p,Rk(D))

/* For proportional bounds use
top-k_c < α · sD(p) k

|D| */

7 if top-k c < Lk then
8 update (Res, p)

9 else
10 S.push(generateChildren(p))

11 return Res

Algorithm 1 detects patterns with adequate size in the data
(namely above a given threshold τs) and low representation
(less than Lk), in the top-k ranked items for a given dataset D,
a ranking algorithm R and a given k. It traverses the search
tree of the pattern graph (top-down), using a queue S, and
maintains the set of identified patterns with sRk(D) < Lk.
First it initializes the result set Res to ∅ (line 1) and sets S
to contain the children of the most general (empty) pattern
(line 2). While the queue S is not empty (lines 3 – 10), the
algorithm extracts the first pattern in the queue p (line 4),
and computes its size in D. If it is greater than τs (line 5),
the size of p in Rk(D), sRk(D), is computed (line 6). If
sRk(D) is bellow the lower bound Lk (line 7), Res is updated
using the procedure update (line 8), that checks whether any
ancestor of p in the pattern graph is already in Res (this is
possible since the algorithm traverses the search tree and not
the patterns graph). Otherwise (line 9), sRk(D) exceeds the
lower bound Lk, and the children of p are added to the queue
using the procedure generateChildren (line 10), which
generates the children of a node as defined in Definition 4.1.
Finally, Res is returned (line 11).

ITERTD algorithm (baseline): Given a dataset D and a
ranking algorithm R, a size threshold τs, a range [kmin, kmax]
and lower bounds Lk for each kmin ⩽ k ⩽ kmax, a
simple solution for detecting groups with biased represen-
tation based on the global representation bounds definition
utilizes Algorithm 1, to apply a top-down search for each
kmin ≤ k ≤ kmax. Then, in each iteration report the patterns
with low representation in the top-k ranked items. Similarly,
Algorithm 1 can be used for the case of proportional repre-
sentation, with some slight modifications (shown as comments
in Algorithm 1). The objective is to report the patterns p
with adequate size but insufficient representation in the top-
k tuples Rk(D), where the representation in Rk(D) should
be proportional to the representation in D. In this case, the
bounds Lk are not given as input, instead, a bound for each
pattern is computed based on its size in the data and a value
α. Note that the pattern’s size is computed in line 5, and given
α we can replace the condition in line 7 with the condition
top-k c < α · sD(p) k

|D| .
We next propose more efficient algorithms for the problems.

B. Global Representation Bounds

The key observation is that when the lower bound remains
the same for k and k+13, the search spaces for patterns with
biased representation in the ranking result of R for k and k+1
are typically very similar. This is because the set of top-k and
top-(k+1) tuples differ by a single tuple. Namely, increasing
k implies only local modifications to the search space. Let Tk

be the search tree generated to find the set of unfairly treated
patterns in the top-k tuples, and R(D)[k + 1], the (k + 1)
element in the result of ranking D using R. We can bound the
number of nodes in Tk whose size is affected by increasing k.

3We assume Lk ⩽ Lk+1∀k kmin ⩽ k < kmax. This is a reasonable
assumption since as k increases, so is the number of tuples in the top-k, thus
it is only logical the bounds increase as well.



Proposition 4.3: R(D)[k + 1] can satisfy at most |Tk|
2

patterns (nodes) in Tk, where |Tk| denotes the number of nodes
in Tk.

Proof 4.4: (Sketch) The basic idea of the proof is that when-
ever a pattern p is generated during the search, at least one
pattern p′ with the same set of attributes (Attr(p) = Attr(p′))
that differs from p in the value assignment of a single attribute
is generated as well. This is true under the assumption that
every attribute has at least 2 values. For instance, the patterns
{Gender = M, School = MS} and {Gender = M, School = GP}
are both children of the pattern {Gender = M} and are gen-
erated when the procedure generateChilder({Gender =
M}) is invoked. Let Ai be the attribute such that Ai ∈ Attr(p)
and {Ai = ai} ⊆ p while {Ai = a′i} ⊆ p′. R(D)[k + 1]
can satisfy at most one of the patterns, as the value of Ai

in R(D)[k + 1] is either ai or a′i (or possibly other value, if
|Dom(Ai)| > 2). Since this is true for every node generated
during the search, R(D)[k + 1] can satisfy at most |(Tk)|

2
patterns (nodes) in Tk.

In that case, by starting the search for k + 1 from the
endpoint of the search for k, we significantly reduce the search
space (and as a result, the runtime, see Section VI-B).

Algorithm 2: GLOBALBOUNDS. Detecting groups
with biased representation based on global bounds

input : A dataset D, a ranking algorithm R, a size threshold τs, a
range [kmin, kmax] and lower bounds Lk for each
kmin ⩽ k ⩽ kmax

output: Res s.t. for each kmin ⩽ k ⩽ kmax

Res[k] = {p1, . . . , pn} where ∀pi ∈ Res[k] sD(pi) ≥ τs
and pi is a most general pattern with sRk(D)(p) < Lk

1 Res← ∅
2 Res[kmin], DRes←

TopDownSearch(D,R, τs, kmin, Lkmin
)

3 for k = kmin + 1 to kmax do
4 if Lk−1 < Lk then
5 Res[k], DRes←

TopDownSearch(D,Rk(D), τs, Lk)

6 else
7 Res[k]← Res[k − 1]
8 foreach

b ∈ {p ∈ Res[k− 1] | R(D)[k] satisfies p} ∪DRes do
9 Res[k], DRes←

searchFromNode (b, Res[k], DRes)

10 return Res

GLOBALBOUNDS algorithm: Our optimized algorithm
for the problem of detecting groups with global represen-
tation bias in the top-k, GLOBALBOUNDS, is depicted in
Algorithm 2. GLOBALBOUNDS starts by initializing the result
set map Res (line 1). It then performs a top-down search
for the case where k = kmin (line 2). This is done using
the procedure TopDownSearch, similar to the algorithm
depicted in Algorithm 1, with a minor addition. It maintains
a set DRes of patterns p reached during the search with
size below the lower bound in top-k, that are not part of
the result set since it already contains an ancestor of p.
TopDownSearch returns both, the result set of the search

Res, and the set DRes. When k increases (and Lk is kept
intact), the algorithm will utilize this set to initiate a local
search in the pattern graph.

Next, the algorithm preforms the search for each k from
k = kmin + 1 through k = kmax (lines 3–9). For each k,
if the bound increases, TopDownSearch is used to perform
a new top-down search. Otherwise, The algorithm considers
only patterns from DRes and patterns from Res[k − 1] that
the newly inserted tuple R(D)[k] satisfies (line 8). This is
because only their sizes in the top-k are affected by the new
tuple (at most half of the tree, based on Proposition 4.3).
For each such pattern, the algorithm applies the procedure
searchFromNode (line 9) to resume the search in the
relevant parts of the graph. This search updates Res[k] and
DRes. Finally, Res is returned (line 10).

Proposition 4.5: GLOBALBOUNDS returns the set of all
most general patterns p with bias representation using global
bounds in the top-k for each k in the given range.

The proof is by induction on k with a base case of k =
kmin. Details are omitted due to space constraints.

Example 4.6: Consider again D and R from the running
example. Assume we are given the size threshold τs =
4, kmin = 4, kmax = 5, and the lower bounds L4 = L5 = 2.
At the end of the top-down search for k = 4, the result
set Res[4] contains (among others) the patterns {Address =
U} and {Failures = 1}, that appears only once in the top-4
tuples (namely, below the lower bound). DRes contains, for
instance, the patterns {Gender = F, Address = U}, {Gender =
M, Address = U}, {Gender = F, Failures = 1} and {Address
= R, Failures = 1}. These patterns were generated during the
top-down search and have ancestors in Res[4] ({Address =
U} and {Failures = 1}). Next, the algorithm turns to compute
patterns with biased representation for k = 5. The new tuple
in the top-5 is tuple 14. It matches the patterns {Address =
U} and {Failures = 1} in Res[4]. Thus the algorithm performs
the search starting from those nodes. Their sizes in the top-
5 exceed the lower bound. In this search, these two patterns
are extracted from the result set and the pattern {Address =
U, Failures = 1} is added. From the set DRes, the patterns
{Gender = F, Address = U}, {Gender = M, Address = U},
{Gender = F, Failures = 1} and {Address = R, Failures = 1}
are added to the result set Res[5], as their sizes in the top-
5 tuples are still below the threshold L5 and their respective
ancestors are removed from the result set.

C. Proportional Representation

We next consider the problem of detecting groups with
biased proportional representation as depicted in Problem 3.2.
The inputs are a dataset D, a ranking algorithm R, a range
[kmin, kmax], a size threshold τs and α ∈ R. The objective
is to report the patterns p with adequate size in D, but
insufficient representation in the top-k tuples Rk(D), where
the representation in Rk(D) should be proportional to the
representation of p in D.

First, note that the optimized solution presented for the case
of global representation bounds depicted in Section IV-B is not



applicable in this case. Recall that GLOBALBOUNDS (Algo-
rithm 2) aims at reducing the search space by avoiding search-
ing areas in the pattern graph that were not changed between
consecutive iterations. When the bound remains unchanged
(Lk = Lk+1), patterns that the (k + 1) tuple in the ranking
does not satisfy, are not affected, and can be eliminated from
the search. This is not the case for proportional representation,
as the bound for each pattern depends on k as well.

Recall that the goal is to find patterns p such that
sRk(D)(p) < α ·sD(p) · k

|D| , and note that α and sD(p) do not
change during the computations. Thus, the inequality holds
depending on the value of k. Given R, D, α, a pattern p, and
a value k such that sRk(D)(p) ⩾ α · sD(p) · k

|D| , we denote by
k̃ the minimal value for k such that the inequality does not
hold when fixing the value of sRk(D)(p). Namely, the minimal
value such that sRk(D)(p) < α · sD(p) · k̃

|D| .
Example 4.7: Let α = 0.9. For D and R from our running

example, p ={Gender = F} satisfies the inequality for k = 4
since sRk(D)(p) = 2 > 1.8 = 0.9 · 8 · 4

16 . k̃ = 5 in this case
since 0.9 · 8 · 5

16 = 2.25.
Intuitively, if k is increased up to k̃ but the number of

tuples satisfying p remains the same, then the representation
of p is biased in the ranking result. If there is no ancestor
of p in the result set, then p should be added to it. To this
end, our optimized algorithm, PROPBOUNDS, computes for
each pattern in the search tree its corresponding k̃ value. It
maintains a set K which indicates patterns that potentially, if
they do not satisfy the k̃ element in the ranking, should be
added to the result set. K contains patterns in a branch of
the search tree whose k̃ values are monotonically decreasing.
A pattern p in K with the corresponding k̃ value should
be extracted from K and added to the result set when the
computation reaches k = k̃ if sRk(D)(p) = sRk−1(D)(p) (i.e.,
p does not satisfy R(D)[k]).

Algorithm 3: PROPBOUNDS. Detecting groups with
biased proportional representation

input : A dataset D, a ranking algorithm R, a size
threshold τs, a range [kmin, kmax] and α ∈ R

output: Res s.t. for each kmin ⩽ k ⩽ kmax

Res[k] = {p1, . . . , pn} where ∀pi ∈ Res[k]
sD(pi) ≥ τs and pi is a most general pattern with
sRk(D)(p) < α · sD(p) k

|D|

1 Res← ∅
2 Res[kmin],K, DRes←

TopDownSearch(D,R, τs, kmin, α)
3 for k = kmin + 1 to kmax do
4 Res[k]← Res[k − 1]
5 Res[k],K, DRes←

selectiveTD (D,R, τs, k, α,R(D)[k],K, DRes)
6 foreach p ∈ DRes

⋃
K[p′]=k{p

′} such that R(D)[k]

doesn’t satisfy p do
7 update (Res, p)

8 return Res

PROPBOUNDS algorithm: PROPBOUNDS (Algorithm 3)
operates as follows. Similarly to GLOBALBOUNDS, it starts
by initializing the result set map Res (line 1) and applying
a top-down search for kmin (line 2), as depicted in proce-
dure TopDownSearch (with the required modification for
proportional bounds), but in addition to sets Res,DRes, it
also maintains the set K. Then, the algorithm iterates over
the values of k from kmin + 1 to kmax (lines 3 – 7). In
each iteration, it first initializes Res[k] with the result from
the previous iteration Res[k− 1] (line 4). Then the algorithm
applies a (partial) search from the root using the procedure
selectiveTD (line 5). This search ignores the areas in
the tree that are not affected by R(D)[k]. The result of the
procedure is used to update the result set, K, and DRes. The
algorithm then iterates over the patterns in DRes (patterns
reached during the search that has an ancestor in the result)
and all patterns in K with k̃ = k that are not affected by
R(D)[k], to determine the changes to the result set (lines 6 –
7). Finally, Res is returned (line 8).

Proposition 4.8: PROPBOUNDS returns the set of all most
general patterns p with bias proportional representation in the
top-k for each k in the given range.
Similarly to Proposition 4.5, the proof is by induction on k
with a base case of k = kmin. Due to space constraints, the
details are omitted.

Example 4.9: Consider again D and R from the running
example. Assume we are given the size threshold τs =
5, kmin = 4, kmax = 5, and α = 0.9. At the end of the
top-down search for k = 4, the result set Res[4] consists of
the patterns {School = GP}, {Address = U} and {Failures =
1}. For each one of them, sD(p) = 8, and thus the bound on
sRk(D)(p) is α · sD(p) · k

|D| = 0.9 ·8 · 4
16 = 1.8, but sRk(D)(p)

is only 1. The set K consists of {Gender = M} and {Gender
= F}, both with k̃ of 5, and {School = MS} and {Address =
R} with k̃ = 7. Note that the pattern {School = MS, Address
= R} was generated in the first top-down search, but was not
added to K since its k̃ value is 9, higher than its parent in the
search tree {School = MS}.

When k is increased to 5, the algorithm reexamines only
the patterns {Gender = M}, {School = MS}, {Address = U}
and {Failures = 1} that are affected by the R(D)[5] (tuple
14). The patterns {Address = U} and {Failures = 1} remain
in the result set for k = 5 even though their size in the top-5
is larger, since the bound for k = 5 increases as well. Finally,
the pattern {Gender = F} is added to Res[5] based on the
information from K (it is stored in K with k̃ = 5).

V. RESULT ANALYSIS

With the results of our algorithm in hand, an analyst may
wish to understand the cause of the bias in the representation
of the detected groups. We propose a method to provide
such explanations utilizing the notion of Shapley values [33].
Shapley value is a concept adopted from game theory to
explain the effect of different attributes on the output of
a model for a given input. The use of Shapley values has
recently gained popularity in the field of interpretability and



explainability of ML models [24], [35]. Given a regression
model (or a classifier with probabilities) M , Shapley values
are used to evaluate the contribution of each attribute on the
output of M for a given input t. This is done by computing the
weighted marginal contribution of each attribute value using
all possible subsets of attribute values.

Intuitively, an explanation for the bias may be the values
that affected the ranking of tuples in the given group. To this
end, we propose a method for explanations that consists of two
parts: the first identifies the attributes with the highest effect
on the ranking of tuples in the given group (using Shapley
values), and then we compare the values distribution of these
attributes in the top-k and the biased represented group. In
order to adopt the use of Shapley values, we need to tackle
two challenges. The first is to adjust our problem’s setting,
where we are given a ranking algorithm R (as a black box)
rather than a regression model. Second, Shapley values are
used to explain the contribution of the attribute values of
a single tuple, whereas we are interested in explaining the
(inadequate) representation of a group of tuples (in the top-k).

To address the first challenge we compute a regression
model MR that simulates the process of R and can be used
to approximate the effect of attribute values of a given tuple
t on t’s ranking by computing the Shapley values of MR(t).
To this end we define DR = {(t, R(D)[t]) | t ∈ D}, where
R(D)[t] is the ranking of t in R(D), and use it to train a
regression model MR. Then, given a pattern p such that p
was returned by one of our algorithms for detecting groups
with biased representation for a given k, to explain the result,
we compute the Shapley values (st1, . . . , s

t
m) for each tuple t

such that t satisfies p, namely, for each tuple in the detected
group. We then aggregate the results into a single Shapley
value vector (s1, . . . , sm) for the pattern p such that

si =

∑
t s.t. t satisfies p s

t
i

sD(p)

To show the differences between the pattern p and the top-
k patterns, we visualize the value distribution of attributes
with large Shapley values of tuples that satisfy the pattern
p compared to their distribution among the tuples in the top-
k. In Section VI-C we show that using our method we are
able to disclose the attributes that were used for ranking (and
thus affect the representation of groups in the top-k) when the
ranking model is given as a black box. Moreover, we show
that the value distribution in the attribute identified as most
significant in the ranking is different for groups detected by
our algorithms than for the top-k tuples, which indicates the
identified attributes values explain the results.

VI. EXPERIMENTS

We experimentally examine the proposed solutions using
three real-life datasets. We start with our setup and then present
a quantitative experimental study whose goal is to assess
the scalability of our algorithms. In particular, we examine
our algorithms’ performance for each fairness definition as a
function of the number of attributes, pattern’s size threshold,

and range of k. We then demonstrate our proposed method for
the analysis of the results presented in Section V. We conclude
with a comparison to the framework presented in [27], showing
the differences in the results between our algorithms and the
algorithm of [27] through a case study.

A. Experiment Setup

a) Datasets: We used three real datasets with different
numbers of tuples and attributes as follows.
• The COMPAS Dataset4 was collected and published by

ProPublica as part of their investigation into racial bias
in criminal risk assessment software. It contains the de-
mographics, recidivism scores produced by the COMPAS
software, and criminal offense information for 6,889 indi-
viduals. We used up to 16 attributes eliminating attributes
such as names, ids, dates, etc.

• Student Performance Dataset (Student dataset)5 shows
the performance of students in secondary education of two
Portuguese schools as described in Example 2.1. We consid-
ered in the experiment the data fragment with information
regarding the Math exam (395 tuples and 33 attributes).

• German Credit Dataset6 with financial and demographic
information about 1,000 loan applicants with 20 attributes.
It was originally used in the context of classification, where
each application is classified as a good or bad credit risk.

Compared algorithms: We evaluate the performance, in
terms of the running time of our proposed algorithms.
• IterTD (baseline). The simple solution for detection of

groups with biased representation, which iteratively applies
a top-down search as depicted in Section IV-A.

• GLOBALBOUNDS (Algorithm 2). The algorithm for de-
tecting groups with biased representation based on global
bounds as described in Section IV-B.

• PROPBOUNDS (Algorithm 3). The algorithm for detecting
groups with biased representation based on proportional
representation bounds as described in Section IV-C.

Parameters setting: For space constraints, unless stated
otherwise, we report the result for the following set of default
parameters: τs = 50, kmin = 10, kmax = 49, and the lower
bounds are 10 for 10 ≤ k < 20, 20 for 20 ≤ k < 30, 30 for
30 ≤ k < 40 and 40 for 40 ≤ k < 50 for global bounds,
and α = 0.8 for proportional representation. The reported
results reflect the algorithm’s performance under expected and
typical usage scenarios. Following the goals of fairness in
ranking (ensuring fairness for any position), we set gradually
increasing bounds on group representation in the top-k ranked
items as k increases. Since we aim at reporting the detected
groups to the user, we set the parameters such that the number
of reported groups in most cases is between 1 to 100. The
number of attributes was set to be the maximal number the
baseline solution could handle and continuous attributes, e.g.,

4https://www.propublica.org/datastore/dataset/
compas-recidivism-risk-score-data-and-analysis

5https://archive.ics.uci.edu/ml/datasets/student+performance
6https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://archive.ics.uci.edu/ml/datasets/student+performance
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)


age, were bucketized equally into 3 − 4 bins, based on their
domain and values. We note that the selection of bucketization
affects the patterns graph size and may also affects the possible
group definitions and their representation in the top-k, which
could also affect the running time. However, in this work, we
assume that the attribute values used for group definitions are
categorical (i.e., the bucketization is given). We experimentally
evaluated the algorithms using different parameter settings and
observed similar trends.

Ranking Algorithms: The Student dataset was ranked
based on the value of the attribute G3 showing the stu-
dent’s math final grades. For the COMPAS dataset, we per-
formed a similar ranking method as in [4]: We normalized
attribute values c days from compas, juv other count,
days b screening arrest, start, end, age, and pri-
ors count as scoring attributes. Values are normalized as
(val − min)/(max − min). Higher values correspond to
higher scores, except for age. Tuples are ranked descendingly
according to their scores. For the German Credit dataset, we
used the ranking presented in [36] based on creditworthiness.

All experiments were performed on a macOS machine with
a 2.8 GHz Quad-Core Intel Core i7 CPU and 8GB memory.
The algorithms were implemented using Python3.7.

B. Experimental results

Both GLOBALBOUNDS and PROPBOUNDS run much faster
than the baseline, particularly as the number of attributes
increases and the baseline becomes exponentially more ex-
pensive. Details below.

Number of attributes: The first set of experiments aims
to study the effect of the number of attributes on the running
time. To this end, we varied the number of attributes in the
datasets from 3 to |A| where A is the set of all attributes
in the dataset. The number of attributes (along with their
cardinality) determines the number of possible patterns, and
as a result, the size of the search space. Thus, as the number
of attributes increases, we expect to see a steep growth in
the running time. The results (using a 10-minute timeout) are
presented in Figures 4–5. Indeed, in all cases, we observed
a rapid increase in the running time, while GLOBALBOUNDS
and PROPBOUNDS outperform ITERTD.

Size threshold: In the next set of experiments, we as-
sessed the effect of the size threshold τs on the running time.
To this end, we varied the size threshold from 10 to 100
while using the default values for the rest of the parameters.
The results are presented in Figures 6 and 7. We observed
a decrease in the running times of the algorithms. This is
because the number of patterns satisfying the size threshold
decreases as the threshold increases, and as a result, the search
space is decreased as well. In all cases, GLOBALBOUNDS and
PROPBOUNDS outperform ITERTD.

Range of k: We examine the scalability with respect to
the range of k considered by the algorithm. We varied the
range from 40 (40) to 990 (340) by setting kmin to be 10, and
increasing kmax from 50 (50) to 1000 (350) for COMPAS
(Student and German Credit) dataset and observed the effect

on the running time. We set different maximum ranges of k
due to the different sizes of the datasets (6889 for COMPAS,
395 for Student, and 1000 for the German Credit). The results
are presented in Figure 8 and 9. In all cases, the optimized
algorithms outperform ITERTD, which illustrates the efficient
reduction in the search space.

Recall that GLOBALBOUNDS and PROPBOUNDS optimize
the search space compared to ITERTD by utilizing the search
result of the iteration for k in order to compute the result set
for k+1. Thus, as the range of k increases, we expect to see
a greater improvement in the performance of the optimized
algorithm compared to the baseline solution. This trend is
shown in Figure 8 and 9. To further demonstrate the useful-
ness of the approach, we compared the number of patterns
examined during the search for each one of the algorithms.
The observed gain was up to 39.35% in the COMPAS dataset,
56.87% in the student dataset and 29.27% in the credit card
dataset for detecting groups with biased representation using
global bounds, and 39.60%, 20.49% and 56.83% respectively
for proportional representation.

C. Result Analysis using Shapley values

We next demonstrate the usefulness of our proposed method
for results analysis using Shapley values presented in Sec-
tion V. The goal of the experiment is twofold. First, we
show that our Shapley values based method for evaluating the
effects of attributes on the ranking can indeed reveal useful
information on the actual attributes used for ranking when the
ranking algorithm is given as a black box. Then we show
that the value distribution for those attributes can be used to
explain the representation bias, by comparing the distributions
for the values in the top-k with those in the detected groups
and focusing on the differences.

We trained a regression model using the ranked data for each
dataset and examined the Shapley values for groups detected
by our algorithms. We present the results for the patterns
(groups) p1 = {mother’s education = primary education
(4th grade)} in the Student dataset, p2 = {age = younger
than 35} in COMPAS and p3 = {status of existing account
= (0 ⩽ · · · < 200) DM7} from the German Credit dataset,
which was detected by the GLOBALBOUNDS algorithm for
k = 49 and Lk = 40. We observed similar results for
other groups detected by the algorithms and other parameters.
Figures 10a, 10b and 10c show the resulting aggregated
Shapley values for each group, as explained in Section V. We
show the Shapley values for the six attributes with the larges
values for each group, as the rest had significantly lower values
(lower than 5.79%, 3.31%, and 9.54% of the largest aggregated
Shapley values for p1, p2 and p3 respectively).

For the group of students whose mother’s education level
is primary education, which was detected by our algorithm
as a group with biased representation in the Student dataset,

7A Debit Memo (DM) on a company’s bank statement refers to a deduction
by the bank from the company’s bank account. In other words, a bank debit
memo reduces the bank account balance similar to a check drawn on the bank
account.



(a) COMPAS dataset (b) Students dataset (c) German Credit

Fig. 4: Running time as a function of number of attributes - Ranking with global bounds

(a) COMPAS dataset (b) Student dataset (c) German Credit

Fig. 5: Running time as a function of the number of attributes - Ranking with proportional representation

(a) COMPAS dataset (b) Students dataset (c) German Credit

Fig. 6: Running time as a function of the size threshold τs - Ranking with global bounds

(a) COMPAS dataset (b) Students dataset (c) German Credit

Fig. 7: Running time as a function of the size threshold τs - Ranking with proportional representation

the final grade has the largest aggregated Shapley value on
the ranking (Figure 10a). This result agrees with the fact that
the value of the final grade is indeed used for ranking by the
ranking algorithm (and it is in fact the only attribute used).
Other than the final grade, the first and second period grades
have a notable aggregated Shapley (although significantly
lower aggregated Shapley value than the final grade). This
is due to the high correlation between those attributes and
the final grade [13]. We also noticed the mother’s education
attribute in the result. This may indicate some correlation
between the mother’s education and the final grade. However,
we also note that the aggregation of the Shapley values for
other attributes, e.g., father’s education, show no clear pattern:
some values have a positive effect and some negative, and
different tuples in the group have different values. In contrast,
all the tuples in the group have the same value (primary
education) for the mother’s education attribute (since it is

used to define the group). Therefore the Shapley values of
the attribute for the different tuples in the groups are similar.
This may also increase the aggregated value compared to other
attributes. We observed this phenomenon, where the attributes
used to define the detected group are slightly higher, for other
groups detected by our algorithms also.

For the COMPAS dataset, tuples are ranked by a combined
score based on seven attributes: days from compas, the number
of other juvenile convictions, days before screening arrest,
start date, end date, age, and the number of priors crimes
committed. In Figure 10b, showing the aggregated Shapley
values of people younger than 35, six out of the above seven
attributes are the six attributes with the largest Shapley values.
In this case, the attribute end date and the number of priors
crimes committed are identified as the most significant factor
affecting the detected group.

For the German Credit dataset, tuples are ranked according
to their ranking in [36], however, the actual ranking algorithm



(a) COMPAS dataset (b) Students dataset (c) German Credit

Fig. 8: Running time as a function of the range of k- Ranking with global bounds

(a) COMPAS dataset (b) Students dataset (c) German Credit

Fig. 9: Running time as a function of the range of k - Ranking with proportional representation

(a) Aggregated Shapley value of group
p1 ={mother’s education = primary ed-
ucation} in the Student datase

(b) Aggregated Shapley value of group
p2 ={age = younger than 35} in the
COMPAS dataset

(c) Aggregated Shapley value of group
p3 ={status of existing account = (0 ⩽
· · · < 200DM)} in the German Credit
dataset

(d) Value distribution of the final grade
attribute in the Student dataset

(e) Value distribution of the end date at-
tribute in the COMPAS dataset

(f) Value distribution of residence length
in the German Credit dataset,

Fig. 10: Result analysis using Shapley values

is unknown. Namely, we do not have the ground truth and
cannot verify the attribute detected as significant for explaining
the bias in the representation of the detected group in the top-
k are actually used by the ranking algorithm. The attributes
residence length, duration in month, credit amount, and in-
stallment rate have the largest Shapley values as shown in
Figure 10c. All of these attributes represent reasonable features
to decide one’s creditworthiness.

The Shapley value represents the effect of different at-
tributes on the ranking of groups. To analyze the differences
between the detected groups and top-k tuples (with respect
to these attributes), we visualize the value distribution of
attributes with the largest Shapley values in Figures 10d, 10e,
and 10f. Since the number of tuples in the top-k and the
detected group differ, the y-axis represents the proportion of
tuples (rather than their count) with the values shown on the
x-axis (the set of possible values for the attribute).

For all three datasets, we observed vast differences in the

distributions of the values of the attribute with the largest
Shapley value between the tuples in the top-k and the tuples in
the group detected with biased representation. For the student
dataset (Figure 10d), the final grades of tuples in the top-k all
fall in the range of 15− 20, while most tuples in the detected
group have a final grade lower than 15. In the COMPAS
dataset (Figure 10e), the value of the end date for all top-k
tuples is 0 while only half of the tuples in the detected group
have the same value, and almost 30% of them have the value
of 2. Similar results were observed in the value distribution of
the residence length attribute as shown in Figure 10f.

D. Comparison with Existing Solution

The problem of identifying subgroups in the data that
behave differently compared to the overall dataset was studied
in [27]. Different from our problem definition, which relies
on fairness measures for ranking to define groups with biased
representation in the top-k ranked items, the work of [27] uses



the notion of divergence to measure performance differences
among data subgroups. Each data item in the data t ∈ D is
associated with an outcome o(t) where the outcome function is
defined based on the ranking of t by the ranking algorithm. The
outcome of a group o(G), is then the average of the outcome
of every item t ∈ G. The divergence of a subgroup G in
the data D is the difference between the outcome of G and
the entire data, i.e., o(G)− o(D). Given a threshold s on the
subgroup size, the solution of [27] computes the divergence
of all subgroups with sizes larger than s.

To better demonstrate the differences between the defini-
tions and the resulting groups identified by each algorithm,
we conducted an experiment using the Student dataset. We
used the default size threshold of τs = 50 (support in [27] of
0.13, i.e., 13% of the data). Since [27] does not consider a
range of k’s, we fixed kmin = kmax = 10 (namely, compare
the results when k = 10). To allow for easy comparison, we
used only the first 4 attributes of the data: school, sex, age,
and address. We used the outcome function o(t) that assigns
the value 1 for tuples t in the top-k, and 0 for the rest (as
presented in [27]). Finally, for our algorithms, we used the
default parameters of lower bound 10 for ranking with global
bounds and α = 0.8 for proportional representation.

PROPBOUNDS outputs 2 patterns: {sex=F} and
{address=R}, both returned by GLOBALBOUNDS as
well. Additionally, GLOBALBOUNDS returned the patterns
{school=GP}, {sex=M} and {address=U}, which had less
than 10 instances in the top-10 ranked items (9, 7, and 9
respectively), but considering their overall size (349, 208 and
307 respectively), their representation in the top-k is adequate
and thus are not returned by PROPBOUNDS. The algorithm
of [27] returned 28 groups including the groups detected by
our solution. Since the number of reported groups may be
extremely large, the algorithm of [27] ranks the groups by
their divergence. The 5 patterns with the highest divergence
contain 3 − 5 attributes, with the value assignment sex=M,
i.e., they are descendents of the pattern {sex=M} (in the
pattern graph) returned by GLOBALBOUNDS. The pattern
{sex=M} was ranked at 17 according to its divergence value.

Our algorithms differ from the solution of [27] mainly in
how they define the target groups. The two solutions deal
with a similar problem, however, ours prefers concise groups
(most general pattern) while the solution of [27] is designed to
identify all groups with sufficient representation in the overall
data and high divergence (a measure of “unfairness”). Con-
sequently, the output of [27] is typically larger and contains
subgroups that are consumed by each other. Finally, the work
of [27] considers a single k while we consider a range of k’s,
aligning with fairness definitions in the literature, making the
solution fair for any position in the top-k.

VII. RELATED WORK

The notion of fairness in ranking algorithms was studied in
a line of works, introducing different fairness definitions [10],
[20], [30], [34], [36], [38]. These definitions typically focus
on top-k positions, as those are usually the most important

positions. In this paper, we consider two such definitions: the
fundamental definition of [10], which measures fairness by
bounding the representation of different groups in the data,
and a refined definition that considers proportional groups
representation. These definitions, as customary in the context
of algorithmic fairness, refer to some given protected groups.
We harness these definitions to define the problem of detecting
groups with biased representation, eliminating the need to
pre-define protected groups. The problem of generating fair
ranking results was studied in [4], [38]. These works consider a
wide range of definitions for fairness in ranking, which rely on
the notion of protected groups. This line of work is orthogonal
to the problem we defined in this paper, and our proposed
method can be used to identify such protected groups, when
they are unknown in advance.

Recent works have studied the problem of automatically
detecting “problematic” or biased subgroups in the data,
without the need to specify the protected attributes a priori, in
the context of classification [9], [12], [27], [28]. In [28], the
authors introduced the notion of divergence to measure the
difference in the behavior of a classifier on data subgroups.
The goal is then to report subgroups with sizes above a
given threshold and high divergence. In [27] they extend
their framework to ranking, where they consider the average
outcome value, which is defined based on the ranking of the
instances in each group, as a measure of the group’s outcome.
In contrast to [27], our problem definitions rely on groups’
representation in the top-k ranked items as fairness measures
for ranking. We demonstrate the differences in the resulting
groups identified by each definition in Secetion VI-D. The
interactive system MithraCoverage [21] investigates popula-
tion bias in intersectional groups. The notion of coverage is
introduced to identify intersectional subgroups with inadequate
representation in the dataset. Differently, in our work, we only
report patterns with adequate representation in the data, but
inadequate representation in the output of a ranking algorithm.

The use of Shapley values to provide explanations for
ML models was studied in a line of works (see e.g., [24],
[35]). In these works, the Shapley values are computed for
an individual input instance to a classification or regression
model. The Shapley value of a feature is then interpreted as
the contribution of the feature to the output of the given input.
Differently, we are aiming at providing explanations for the
representation of a group of tuples in the output of a ranking
algorithm. In [28] the authors presented a method to measure
the contribution of items to the divergence of groups utilizing
Shapley values. However, it considers only the contribution of
attributes that are used to define the group. In contrast, our
solution considers all attributes as possible explanations. This
requires an additional aggregation step in the computation of
the Shapley values. As demonstrated in VI-C, the explanation
is typically buried in the values of attributes used for ranking.
Moreover, our adjustment of Shapley values to explain a
ranking algorithm is novel.

Our baseline solution, utilizing a top-town search presented
in Section IV-A is built on the algorithm presented in [5]



(for a simpler problem), which in turn shares similar ideas
to the Apriori algorithm [1], the Set-Enumeration Tree for
enumerating sets in a best-first fashion [32], discovering
functional dependencies (FDs) [19], [26] and frequent item-
sets and association rule mining [1], [37]. Similarly to [5], the
key difference from our work lies in the structure of the graph
traversed in the solution: the pattern graph (in our case) com-
pared to the powerset lattice in the other works. Conditional
functional dependencies (CFDs) [15] extend the notion of FDs
by considering patterns to describe dependencies that hold
only on subgroups in the data. Similar to the top-down search
applied by the baseline solution, algorithms for discovering
CFDs [14], [16], [18], [31] also utilize the notion of pattern
and lattice of patterns. However, the difference in the end
goal (discovering CFDs versus identifying groups with biased
representation) leads to differences in the pruning techniques
in the baseline solution. We then present two novel optimized
algorithms designed for each one of the problems we defined.
These algorithms reduce the search space as explained in
Section IV and significantly outperform the baseline solution
as shown in the experimental evaluation.

VIII. CONCLUSION

In this paper, we have studied the problem of detecting
groups with biased representation in the result of a ranking
algorithm. We build on fairness measures previously defined
in the literature, considering the representation of protected
groups in the top-k ranked items, for any reasonable range
of k. Our problem definitions eliminate the need to pre-define
the protected groups. We consider two variants of the problem.
The first is based on global bounds over the representation of
different groups in the top-k ranked items, and the second
restricts the representation of each group in the top-k, based
on its overall representation in the data.

We theoretically analyse the complexity of the problem,
showing that in the worst case, the number of groups can be
exponential in the number of the dataset attributes. We present
a baseline algorithm that can handle both definitions and two
optimized algorithms designed to improve the performance for
each fairness measure. Furthermore, we present a method to
explain the output of our algorithms. There are many intriguing
directions for future research, including the extension of the
framework to support other fairness measures and further
investigation of the automatic suggestion for thresholds.
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