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Abstract—This paper proposes an approach to querying a
relational database D and a graph G taken together in SQL. We
introduce a semantic extension of joins across D and G such that
if a tuple t in D and a vertex v in G refer to the same real-world
entity, then we join t and v to correlate their information and
complement tuple t with additional properties of vertex v from
the graph. Moreover, we extract hidden relationships between
t and other entities by exploring paths from v. To support
the semantic joins, we develop an extraction scheme based on
LSTM, path clustering and ranking, to fetch important properties
from graphs, and incrementally maintain the extracted data in
response to updates. We also provide methods for implementing
static joins when t is a tuple in D, dynamic joins when t comes
from the intermediate result of a sub-query, and heuristic joins to
strike a balance between the complexity and accuracy. Using real-
life data and queries, we experimentally verify the effectiveness,
scalability and efficiency of the methods.

I. INTRODUCTION

A question raised by our FinTech collaborators asks how
they can write queries across relations and graphs, in SQL?

Example 1: Below are three queries taken from a FinTech
company. The company maintains (1) a relational database
D of customer and financial products, and (2) a graph G of
(a) “knowledge” about products, brokers and customer, and
(b) transactions, for links between customers and products,
brokers and products. Such graphs are often used in product
recommendation [1]. The two datasets are maintained by dif-
ferent departments, as commonly practiced in big companies.
Fragments of D and G are shown in Figure 1.

(1) Complementing entities in relations (Q1). A customer
wants to find information (e.g., risk) about investment product
fd1 and its underlying securities (e.g., whether it is based on
a UK company). To answer Q1, we need both data in D and
data in G since while D has a record t5 for the basics of fd1,
we have to extract its relevant company information from G
to “enrich” tuple t5. This is nontrivial for SQL practitioners
since they may not know the exact structure and vocabulary
of graph G when G does not have a “schema”.

(2) Deducing hidden links between entities (Q2). To decide
whether to recommend a financial plan fd2 to customer Bob
(cid02), a broker checks whether (a) Bob has good credit,
and (b) whether Ada (cid04), a customer who has already
invested in fd2, has an investment pattern similar to Bob’s, e.g.,
whether Ada and Bob has bought stock of the same company.
To answer query Q2, one has to (a) inspect the information of
Bob in D, (b) enrich the records of Bob and Ada by extracting
companies in which they invested from the graph, and (c)

(a) customer relation

(b) product relation
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Fig. 1: Relational database D and graph G in Example 1

check whether the two invest in the same company.

(3) Extracting hidden links (Q3). The third query is to find
people with good credit and are within k hops of Bob (tuple
cid02) in a social network G′, to recommend them financial
products in which Bob has invested. To answer Q3, one has to
check customer tuples in D for their credits and detect links
between Bob and the customers by traversing paths in G′. 2

The need for querying relations D and graphs G taken
together has been increasingly evident in a variety of domains,
not limited to FinTech. While business data often resides in
relational database management systems (RDBMSs), graphs
have found prevalent use in practice, e.g., transaction graphs,
knowledge bases, social networks and road networks. Gartner
predicts that the practice of graph analytics will double annu-
ally (cf. [2]). With this comes the need for synthesizing data
across D and G. Moreover, practitioners often want to write
their queries in SQL after practicing SQL for decades.

To support SQL queries across D and G, we need to extract
data from graph G and convert the data to relations. This is
nontrivial. A common practice is to encode G as a “schema-
less” edge relation. This, however, ignores the semantics and
structure of G; it is hard for users to write sensible query, align
entities in D and G, and correlate their information. Moreover,
to access properties of a vertex v in G, one has to traverse a
path in contrast to “local” attributes of a relational tuple, and
path traversal requires costly joins in an RDBMS.



For instance, to sensibly answer query Q1 in Example 1, one
has to check whether fd1 in table product is pid1 in graph G.
This requires us to check properties (name, issuer and type) of
pid1 in G that may not be local, e.g., Funds for pid1; similarly
for checking whether cid02 in D and id3 in G are the same
Bob. Moreover, to find UK-based company behind fd1 for
Q1, one has to examine a path (pid1, pid2, company1, UK). It
is nontrivial to accurately extract properties without knowing
the structure and labels of G. To retrieve UK from G as the
country of company1, one need to select semantically close
regloc instead of country, since country is not a label in G

Several questions have to be answered. How can we “join” a
tuple t and a vertex v so that we can correlate their information
and write sensible queries across D and G in SQL? What
properties should we extract from graph G? How should we in-
crementally maintain the extracted data in response to updates?
How can we answer queries across D and G efficiently without
switching between RDBMS and graph systems at run time?

A semantic approach. To answer these questions, we propose
a method that “joins” tuples in D and vertices in G if they
semantically match, selectively extracts properties of vertices
in G only if they match tuples in D, and efficiently answer
queries across D and G without accessing G online.

(1) Semantic joins. We propose a simple semantic extension
to natural joins, referred to as semantic joins. Consider a tuple
t in D and a vertex v in G. If t and v refer to the same real-
world entity e, then we can “join” the two, extract relevant
properties of v and enrich t with the additional “attributes”.
Moreover, we can identify hidden links between e and another
entity represented by a tuple t′, by checking paths between v
and vertex v′ that “matches” t′. Several methods are already
in place for determining whether t and v match [3], [4], [5],
[6], referred to as HER (Heterogeneous Entity Resolution).

With semantic joins, one can query D and G in SQL
extended with only syntactic sugar; e.g., Q1 can be written as:

select risk, company
from product e-join G ⟨company, loc⟩ as T
where T .pid = fd1 and T .loc = UK

As will be seen in Section II, e-join denotes a semantic join.
It correlates financial-plan entities in D and G. The query can
be converted to an SQL query and is answered by RDBMS.

Graph property extraction. To support semantic joins, we pro-
pose RExt, a method for extracting relations from G. In
contrast to core dumping the entire graph G into, e.g., an edge
relation, RExt extracts properties of vertices that match rela-
tional tuples, and complement the tuples with the properties.

More specifically, given a set S of tuples of schema R, RExt
extracts a relation DG of schema RG from graph G such that
each tuple tG of DG contains graph properties (attributes) of
an entity encoded by a tuple t in S. The schema RG and
relation DG are decided for S by selecting paths in G that (a)
start from a vertex v that refers to the same entity as t, (b) lead
to properties that differ from existing attributes in S, and match
the interests of the users. RExt encodes paths of G via LSTM

(long short-term memory) embedding, extracts attributes from
paths via K-means clustering, and picks relevant ones with a
ranking function. Users may opt to provide a set of keywords
to specify their preference for attributes, and RExt extracts
properties that semantically match the users’ interest.

(3) Implementation. We implement semantic joins of a set S of
tuples with graph G on top of existing RDBMSs. With RExt,
we support (a) static joins, when S is a set of tuples in the
input D, (b) dynamic joins, when S is the intermediate result
of a sub-query, and (c) heuristic joins that do not call HER
and RExt online when graphs are “typed” and keywords are
pre-determined, to strike a balance between the accuracy and
efficiency. We also develop incremental methods to maintain
the extracted data in response to updates to D and G.

These can be plugged into existing RDBMSs so that practi-
tioners can query D and G in SQL, and hold on to the sophis-
ticated query planers and optimizers of RDBMSs. It also sheds
lights on data lakes [7] for (a) query-driven data discovery to
find relevant graphs with vertices matching tuples in Q(D) of
a query Q; (b) on-demand data integration to augment tuples
in Q(D) with properties of matching vertices; and (c) data ex-
traction to abstract schema/relations from raw data in graphs.

(4) Effectiveness. Using real-life data, we experimentally ver-
ify the following. (a) The extraction scheme (RExt) and
semantic joins enable SQL queries across relations and graphs,
which are difficult and costly if G is cast into vertex/edge
relations. (b) RExt is accurate, with average F-measure 0.95.
(c) RExt is efficient; it takes 230.4s on D with 3.4M tuples
and G with 10.2M edges. (d) Atop PostgreSQL, our imple-
mentation of semantic joins is efficient, taking at most 9.2s
across relations of 4.4M tuples and graphs of 31.1M edges
when the query can be reduced to static joins; it is on average
114.9X faster than baselines. (e) On average, the incremental
extraction method is 14.2X faster than RExt when updates
|∆G|=5%|G|; it is still faster when |∆G| is up to 45% of |G|.
Contributions & Organization. We deliver the following.

◦ A notion of semantic joins across D and G (Section II).
◦ Data and schema extraction methods (Section III).
◦ Implementation (static, dynamic and heuristic; Section IV).
◦ Evaluation for effectiveness and efficiency (Section V).

We discuss related and future work in Sections VI and VII.

II. QUERIES ACROSS RELATION AND GRAPH

In this section, we define semantic joins and extend SQL
accordingly for querying relations and graphs taken together.

A. Preliminary
We first review relational databases and graphs.

Relations. A database schema is R = (R1, . . . , Rn); each Ri

is a relation schema Ri(A1, . . . , Aki
), where Ai is an attribute.

A database D of R is (D1, . . . , Dn), where Di is a relation of
Ri. Following Codd [8], we consider relations in which each
tuple t refers to a real-world entity. To simplify the discussion,
we assume that t carries a tuple id (primary key).



Graphs. We consider w.l.o.g. directed labeled graphs G =
(V,E, L), where (a) V is a finite set of vertices, (b) E ⊆ V ×V
is a set of edges, and (c) L is a function such that for each
vertex v ∈ V (resp. edge e ∈ E), L(v) (resp. L(e)) is a vertex
(resp. edge) label. While edge labels typify predicates, vertex
labels may carry values. Graph G may be a transaction graph,
a social network, a knowledge base, etc.

A path ρ from a vertex v0 in graph G is a list ρ = (v0,
v1, . . . , vl) of vertices such that (vi−1, vi) is an edge in E for
i ∈ [1, l]. It is undirected if either (vi−1, vi) or (vi, vi−1) is
an edge in E for i ∈ [1, l], regardless of the orientation of
the edge. The length of ρ is l, i.e., the number of edges on ρ.
A path is simple if a vertex appears on ρ at most once. We
consider simple paths in the sequel, simply referred to as paths.

B. Semantic Joins
Semantic join is defined between a relational database D

and a graph G. It assumes the availability of the following.

Heterogeneous Entity Resolution (HER) provides a function f
that given a graph G and a set S of tuples, computes a set:

f(S,G) = {(t, v) | t ∈ S, v ∈ V in G, t⇒ v}.
Here t ⇒ v denotes that tuple t and vertex v make a match,
i.e., t and v refer to the same entity. We refer to f as the HER
function and f(S,G) as the match relation of S and G.

We denote by Rm(tid, vid) the schema of the match relation,
such that a tuple (t.id, v.id) of schema Rm denotes that (t, v) is
a match in f(S,G) for tuple t with t.id and vertex v with v.id.

Relation Extraction (RExt). Given a graph G and a relation
schema R, the relation extraction (RExt) scheme deduces a
schema RG and a population function h, such that

(1) RG = (vid, A1, . . . , Am), where vid denotes a vertex v that
matches tuples of R by HER, and Ai’s are features of v; and

(2) h is a function that given a set S of tuples of R, returns an
instance h(S,G) of schema RG by extracting corresponding
properties of the vertices in f(S,G) that match tuples in S.

As will be seen in Section III, RG is composed of attributes
A1, . . . , Am that (a) meet users’ interests (see below), and
(b) are absent from schema R, as additional and alternative
attributes to complement R. Function h populates h(S,G) by
traversing paths in G from matching vertices in f(S,G). We
refer to RG as the extracted schema for R from G, and to
h(S,G) as the extracted relation for S from G.

Remarks. There have been methods for HER: rule-based
JedAI [3], parametric simulation [5], and ML models Silk [9],
MAGNN [4] and EMBLOOKUP [6]. However, no prior method
is in place for RExt. We will develop RExt in Section III.

Below we define semantic joins w.r.t. given HER function f
and RExt scheme (i.e., schema RG and function h). Consider
a graph G and a configurable parameter k as for RExt above.

There are two types of semantic joins: enrichment and link.

(I) Enrichment join. An enrichment join has the form
S 1A G, where S denotes a set of tuples of schema R that
encode entities, and A is a set {A1, . . . , Am} of keywords

that specifies an extracted schema RG(vid, A1, . . . , Am). Then
S 1A G returns a relation of schema R′ that consists of
attributes of R and RG. A tuple t is in S 1A G if
(1) t[attr(R)] is a tuple in S, where attr(R) denotes the set

of attributes of R;
(2) t[vid] is the id of vertex v in G such that t⇒ v by HER f ;
(3) for each i ∈ [1,m], t[Ai] is the property of v correspond-

ing to Ai, extracted from G via RExt (see Section III).
Intuitively, for each tuple t in S, the join is to identify

matching vertices v in G via HER and extend t with additional
attributes A of v extracted from G via RExt. Here RExt takes
keywords A and path bound k as parameters. Essentially,
S 1A G is S ▷◁ f(S,G) ▷◁ h(S,G) via the SQL join operator.

In relational algebra, one can write an enrichment join as
either R 1A G for a relation schema R in R, i.e., when S
is the input relation D of R in D; or Q 1A G where Q is a
sub-query over D and G, and S is the result relation Q(D, G).

Example 2: We can write Q1 of Example 1 with an enrich-
ment join πrisk,companyσpid=fd1∧loc=UK product 1(company,loc)
G. Here A = (company, loc) specifies the attributes to extract,
and k=3. Assume that HER matches fd1 of the product table
and vertex pid1 of graph G in Fig. 1 (as their name (G&L ESG),
issuer (G&L) and type (Funds) match, among other things). We
will see in Section III that RExt extracts company1 and UK
from G. The enrichment join returns product tuple t5 extended
with company1 and UK; thus Q1 returns (medium, company1). 2

(II) Link join. A link join has the form S1 1G S2, where
S1 (resp. S2) is a set of tuples of schema R1 (resp. R2). It is
to check, for each tuple t ∈ S1 and t′ ∈ S2, whether vertices
that match t and t′ are within k hops of each other, and return
{t1} × {t2} if so. That is, it “joins” tuples in S1 and S2, and
returns a relation. The join condition is the k-hop connectivity
between vertices in G that match tuples of S1 and S2 via HER.

In relational algebra, one can write a link join as Q1 1G Q2

for two sub-queries Q1 and Q2 over D and G.

Example 3: Query Q3 of Example 1 can use a link join over
the customer relation and graph G′: σcid=cid02customer 1G′

σcredit=goodcustomer′, where customer′ renames customer. It
finds customers within k hops of Bob in a social network. 2

Remarks. (1) Unlike traditional joins, semantic joins operate
on relations and graphs. Enrichment joins generate relation
schemas with new attributes extracted from graph G, and link
joins connect tuples subject to their links embedded in G.

(2) Users may specify interest with attribute names and values
as A in an enrichment join S 1A G. RExt extracts graph
properties that semantically match A as additional attributes in
the extracted schema (see Section III). This serves individual
users’ need but needs to run RExt online with different
keywords A. Users may provide not only potential attribute
names but also values to exemplify the attributes of interest.

(3) Alternatively, users may opt to pick keywords A from
reference lists. As will be shown in Section IV, RExt profiles



symbols notations
D, G relational database, graph

S ▷◁A G, S1 ▷◁G S2 enrichment join, link join
f(S,G) HER match relation of schema Rm(tid, vid)

RG(vid, A1, . . . , Am), h(S,G) schema and relation extracted from G
Rτ , gτ (G) schema and instance for τ entities in G

TABLE I: Notations

graph G and extracts frequent keywords and reference relation
schemas in an offline preprocess, from query logs, user spec-
ifications, and selected vertex and edge labels in G, possibly
with the help of expert users. Users may select relevant A
from the reference lists, especially when they are not familiar
with the vocabulary and structure of G. Moreover, semantic
joins with such keywords do not need to run RExt on-the-fly.

C. Extending SQL

We present gSQL (graph SQL), SQL with syntactic sugar
for semantic joins. A gSQL query over database schema R =
(R1, . . . , Rn) and graph G is of the form:

select A1, . . . , Ah

from R1, . . . , Rn,
S1 e-join G1⟨A1⟩, . . . , Sm e-join Gm⟨Am⟩,
T1 l-join ⟨G1⟩T ′

1, . . . , Tm l-join ⟨Gm⟩T ′
m

where CONDITION-1 {and | or } . . .{and | or } CONDITION-P

Here (a) Gi is a renaming of the graph G, Si, Ti and T ′
i are

either relations in R or gSQL sub-queries over R and G; (b)
Ai is a set of attribute names in schema RG to be extracted
from G (recall Section II-B); (c) e-join and l-join refer to
enrichment join and link join, respectively; and (d) each
CONDITION in the where clause is an SQL condition over R
and the result relations of semantic joins in the from clause.

Like SQL, a gSQL query Q returns a relation, and its schema
can be statically deduced from R, Q and keywords A. As will
be seen in Section IV, Q can be rewritten into an SQL query,
and hence gSQL extends SQL just with syntactic sugar.

Example 4: The query given in Section I for Q1 is a gSQL
query. One can also write Q2 of Example 1 in gSQL, which
is a traditional join on the results of two enrichment joins:

select * from customer e-join G⟨stock, company⟩ as T1,
customer e-join G⟨stock, company⟩ as T2

where T1.cid = cid04 and T2.cid = cid02 and T2.credit = good
and T1.company = T2.company

It decides whether Ada(cid04) and Bob(cid02) can be joined
by an attribute (company) not in D but extracted from G.

One can write query Q3 in gSQL with a link join as:

select * from customer l-join ⟨G′⟩ customer as customer′

where customer.cid = cid02 and customer′.credit = good

Intuitively, Q3 “extends” a self-join of customer such that
the join condition requires to traverse G′ to find customers
who are connected to Bob (cid02) and have a good credit. 2

The notations of the paper are summarized in Table I.

III. EXTRACTING RELATIONS FROM GRAPHS

A key step in semantic joins is to extract properties from
graph G. We next present RExt for extracting data/schema
from G (Section III-A). We also develop IncExt, a method that
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Fig. 2: Clustering result of paths in G.

incrementally maintains the extracted relations (Section III-B).
We will use the following machine learning (ML) methods

(embedding and clustering) and a notion of path patterns.

Sequence Embedding in Graphs. Sequence embedding rep-
resents token sequences as vectors such that the learned
representations capture the sequential information. We adopt
Long Short-Term Memory (LSTM) network since LSTM has
verified effective and efficient in modeling the semantics of
labels on paths in knowledge graphs [10], [11], [12], while
others, such as BERT-based Transformer, suffer from heavier
computation cost with little performance improvement.

K-means Clustering (KMC). KMC [13] aims to partition data
points into clusters so that data points in the same cluster
are much closer and more semantically similar than those in
different ones. It can be efficiently parallelized [14] and often
achieves excellent quality in practice [15].

Path Pattern and Matching. The path pattern of path ρ = (v0,
v1, . . . , vl) is a list pρ = (L(v0, v1), . . . , L(vl−1, vl)) of edge
labels on ρ. Two paths ρ1 and ρ2 are of the same type if pρ1 =
pρ2 . Given a path ρ and a path pattern p, the pattern matching
M(ρ, p) between ρ and p returns true if pρ = p, and false
otherwise. Matching M(ρ, p) takes O(min(len(pρ), len(p)))
time, linear in the length of the shorter path pattern. We say
a path ρ conforms to pattern p if M(ρ, p) = true.

A. RExt: A Relation Extraction Scheme
Given a graph G, a set S of tuples of a relation schema

R, a set A of keywords, and a path length bound k, RExt is
to compute an extracted schema RG(vid, A1, . . . , Am) for S
from G, and an instance h(S,G) of RG. Here A includes
attribute names in RG and attribute values that exemplify
user interests. RExt serves the needs of individual users by
extracting RG and h(S,G) on-the-fly w.r.t. input S, A and k.

RExt computes these in two phases: (I) discover a set P =
{P1, . . . ,Pm} of clusters such that each Pi ∈ P contains path
patterns of similar semantic meanings, and extract the schema
RG from G; and (II) extract h(S,G) based on the discovered
P and RG via path pattern matching, as follows.

I. Path Pattern Discovery. RExt first discovers a set P of path
pattern clusters and a schema RG(vid, A1, . . . , Am), where
each Pi ∈ P (i ∈ [1,m]) corresponds to attribute Ai ∈ RG.
More specifically, guided by an LSTM language model, RExt
first selects paths bounded by length k starting from each
matching vertex vi of G in f(S,G), and stores the paths in a
set P . Then it takes four steps to find the path patterns P and
schema RG via clustering, as follows.

(1) Path Selection. Viewing graph G as undirected, given an
entity vi ∈ G, for each edge e = (vi, l, v

′) ∈ G, RExt
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initiates a path ρv′ = (vi, v
′), feeds the vertex label L(v′) to

a model Mρ and obtains a list L1 of edge labels along with
their possibility of following the “word” L(v′). HereMρ is a
typical language model that decides whether a sequence of ver-
tex/edge labels is “interpretable”, i.e., statistically reasonable.
Then among all outgoing edges from v′, it chooses an edge
(v′, l′, v′′) where l′ has the highest possibility in L1, appends
vertex v′′ to path ρv′ , and feeds vertex label L(v′′) toMρ for
getting the predicted list L2 in the next round. This iteration
proceeds until (a) Mρ returns a “stop signal”, i.e., the end of
sentence tag “<eos>”; (b) there is no outgoing edge to choose;
(c) the path length reaches limit k; or (d) the path forms a cycle
(abandoned). All the paths ρv′ are included in P and returned.

Note that paths in knowledge graphs often have semantic
meanings embedded in their labels, and LSTM has proven
effective in capturing the semantics [10], [11], [12]. By taking
LSTM asMρ, the vertex/edge labels carried by selected paths
from vi often form interpretable “sentences”. The method also
avoids enumerating (exponentially many) paths in G.

To train Mρ, we conduct random walk in G and collect
sequences of edge/vertex labels on random walk paths to build
a training corpus. Taking the labels as sentences of words, we
train Mρ on the corpus driven by the “perplexity” loss [16].
The corpus construction and model training are unsupervised.

(2) Path Clustering. Given P , RExt groups all its paths into
a set C of H clusters via vectorization and clustering, for a
configurable parameter H . For each path ρij ∈ P where vi
(resp. vij) is the start (resp. end) vertex in ρij , it employs a
word embedding model Me to extract a vector representation
xL(vij) of vertex label for each vij . Since most vertex labels
are common in natural languages, we use the mean of GloVe
embeddings [17] to represent L(vij), rather than training a new
Me from scratch. It also builds a vector representation xρij

for each path ρij via sequence embedding model Mρ, where
ρij is viewed as a sequence of edge labels. More specifically,
RExt feeds edge labels on path ρij in sequence to Mρ, and
takes the network embedding output in the last step as xρij ,
similar to [18]. By the sequence modeling capacity of LSTM,
the embedding xρij

can discern different orders of edge labels,
and benefit the downstream clustering task. Concatenating
xL(vij) and xρij as xij , each vertex-path pair (vij , ρij) is
encoded by one feature vector and is collected in a set X . For
meaningless labels, e.g., labels in Freebase, we use the mean
of character GloVe embeddings as a trade-off between quality
and efficiency. This is because (1) the clustering accuracy of
path patterns is mainly decided by path embedding quality
as different path patterns can be discerned by the sequential
information of edge labels; and (2) it is costly to train and
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Fig. 4: Workflow diagram of relation extraction.

apply BERT-based transformers to embed meaningless labels.
Then RExt performs KMC on the set X with limited

iterations to assign each vertex-path pair to one of H clusters.
Each cluster Cl ∈ C contains paths ρij (represented by xij)
from the set P of paths; paths put into the same cluster have
similar semantic meanings, since the embeddings capture the
semantics of vertex labels and path labels, and KMC groups
semantically similar embeddings together. The clustering is
unsupervised, without costly manual annotations.

Example 5: Continuing with Example 1, Figure 2 shows the
clustering C of paths starting from each product in G. After
path selection and embedding extraction, KMC groups paths of
similar semantic meanings together. Note that path (pid3, type,
Trust), which should be assigned to cluster C2, is misclassified
to C1 as it is similar to (pid1, based on, pid3, type, Trust). 2

(3) Path Pattern Refinement. RExt then extracts path patterns
from each Cl ∈ C, refines the patterns by “majority voting”,
and obtains a clustering P′ of path patterns. More specifically,
(1) for each cluster Cl ∈ C (l ∈ [1, H]), it extracts the path
pattern pρ of each path ρ in Cl and adds pρ to set P ′

l (initially
empty). RExt uses a counter for each path pattern p in P ′

l ,
which records the number of times that p is added to P ′

l .
After this, C is converted to a path pattern clustering P′ =
{P ′

1, . . . ,P ′
H}. (2) For each pattern p that appears in multiple

clusters of P′, RExt picks the cluster in which the counter for
p is the largest. That is, we preserve pattern p in the cluster
that contains the majority of paths conforming to p.

The refinement is needed since each path pattern carries a
specific semantic meaning and should be in only one cluster
that may correspond to an attribute in RG. After this step, RExt
obtains path pattern clustering P′ = {P ′

1, . . . ,P ′
m′}, where

each P ′
l is a candidate attribute for RG (see below). Note that

m′ ≤ H , since some clusters may vanish during refinement.

Example 6: Figure 3(a) shows path pattern clustering P′,
which abstracts paths in C as patterns. Then the “majority
voting” refinement removes pattern of misclassified path (pid3,
type, Trust) from P ′

1 based on counters of path pattern. 2

(4) Pattern/Attribute Selection. Given clustering P′, RExt
selects a set P = {P1, . . . ,Pm} of pattern clusters and builds
schema RG(vid, A1, . . . , Am) based on a ranking function. For
each cluster P ′

i ∈ P′, it first finds matching paths from P of
each pattern p ∈ P ′

i and saves each matching vertex vj along
with L(ρ.vl) (vl is the end vertex in a matching path ρ from vj)
in Wi. This establishes one-to-one correspondence between
P ′
i ∈ P′ and Wi ∈W (i ∈ [1,m′]). Such matching is efficient

since the paths have been precomputed (in P ) and each pattern



matching starts from vertex vj . This combines the matching
(vj , L(ρ.vl)), tuple tj ∈ f(S,G) and vector representations
(xL(vl) and xρ) in X . Then, it applies the score function below
to rank elements in both W and P′ in descending order:

r(Wi) =
|Wi|
|P | − max

φ∈[1,kR]

∑
(vj ,L(ρ.vl))∈Wi

cos(xL(ρ.vl), xtj .Aφ
)

|Wi|

+ max
ε∈[1,m]

∑
(vj ,L(ρ.vl))∈Wi

cos(xL(ρ.vl), xAε)

|Wi|
,

where P is the precomputed set of selected paths, cos(·, ·)
returns the cosine similarity of two vectors, xtj .Aφ

(resp. xAε
)

is the embedding of attribute tj .Aφ (resp. string Aε ∈ A)
in the same way as xL(vij), kR is the arity of relation S,
and m is the number of query-interest keywords in A. Each
P ′
i ∈ P′ is ranked by the score of Wi. For each Wi ∈ W

(resp. P ′
i ∈ P′), the ranking function also finds a keyword

Ai ∈ A that maximizes the third term as by-product, which
serves as the attribute name in RG for path pattern cluster Pi.

Intuitively, the function gives higher scores to clusters that
(1) match more paths in G (the first term), (2) are not
similar to existing attributes in S (the second term), and
(3) are semantically close to one of users interests in A
(the third term). Thus, the extracted schema RG tends to
reduce the number of null values, add versatile information
complementary to S, and meet the user’s interests.

After this, starting from high-score pattern clusters, RExt
may interact with the user by presenting matching result (vj ,
L(ρ.vl)) and pair (tj , vj) ∈ f(S,G). If the user is satisfied
with the presented matches inW ′

i , then P ′
i , renamed as Pi, will

be added to P, and an attribute Ai (keyword that maximizes the
third term in the ranking function forW ′

i) will be added to RG.

Example 7: The ranking function sort P′ as [P ′
3,P ′

6,P ′
5,P ′

4,
P ′
1,P ′

5]. Here P ′
1 and P ′

5 rank the lowest as the information
of their paths overlaps with type in product relation; and P ′

3

and P ′
6 rank top 2 since they match keywords in A = (loc,

company). After seeing the path matches of each pattern
cluster, P ′

3 and P ′
6 are renamed as P = {P1,P2}, which

yields schema RG(vid, loc, company), for user inspection. 2

Cost of Pattern Discovery. The model is trained offline. Path
selection and embedding extraction take O(Nekd) time, where
Ne is the number of entities in graph G, k is the path length
bound, and d is the average degree of each entity. The KMC
takes O(|X |H) time w.r.t. fixed vector length and iterations.
The attribute ranking and selection take O(kNρ(

∑m′

j=1 |P ′
j |)

+m′kRm|Wi|) time, where Nρ is the number of all paths in
P , and

∑m′

j=1 |P ′
j | is the number of patterns in P′.

II. Relation Extraction. We next present Algorithm 1 for
extracting a relation DG (i.e., h(S,G)) of schema RG from
G. It takes as input G, f(S,G), P, k, RG, Mρ and A, as
described in Algorithm 1. For each match (t, vi) in f(S,G),
it extracts a tuple to complement t via path pattern matching.

More specifically, for each matching entity vi, Algorithm 1
first finds paths starting from vi in G and saves them in Π ,
guided by model Mρ as in pattern discovery (SelectPath

Algorithm 1: Attribute extraction via pattern matching
Input: A set P = {P1, . . . ,Pm} of path pattern clusters, a path

length bound k, a graph G, a set of vertex-tuple matches
f(S,G), extracted schema RG(vid, A1, . . . , Am), the
model Mρ for pattern discovery, user keywords A.

Output: An extracted relation DG of schema RG.
1 DG ← ∅;
2 foreach (ti, vi) ∈ f(S,G) do
3 Π ← SelectPath (G, vi, k,Mρ,A);
4 (θ1, . . . , θm)← Extract (P, Π,A);
5 DG ← DG ∪ (vi, θ1, . . . , θm);

6 return DG;

Function Extract(P, Π,A):
1 foreach Pj ∈ P do
2 For each p ∈ Pj and each ρ ∈ Π , find the ρ that

(1) makes M(ρ, p) = true, and (2) maximizes the
value ranking function for Aj ∈ A.

3 θj ← L(ρ.vl);

4 return (θ1, . . . , θm)

line 3). Then for each pattern cluster Pj that corresponds to
attribute Aj in RG, it performs path pattern matching between
each path ρ in Π and each pattern p in Pj , and assigns the label
of the end vertices in the matching path, i.e., L(ρ.vl), to θj as
the attribute value (Extract line 4), where L(ρ.vl) maximizes
value ranking function cos(xL(ρ.vl), xAj ). If multiple paths
are mapped to the same pattern cluster, the ranking function
selects one that is semantically closest to keyword Aj . If
there is no match for all path patterns in Pj , a “null” value
is assigned to θj . Finally, the extracted tuple consists of the
vertex id of vi and the attribute values of each θj (line 5).

Example 8: Figure 3(b) shows the extracted relation DG by
matching path patterns of each cluster in P, for user’s interest
A. Note that the tuple of pid3 has “null” for location, as pat-
terns in P1 find no matching paths starting from vertex pid3. 2

Algorithm 1 takes O(kNρ(
∑m

j=1 |Pj |)) time, where k and
Nρ are as given above; N is the number of pairs in f(S,G);
and

∑m
j=1 |Pj | is the number of all path patterns in P. It caches

and reuses the paths found during pattern discovery.

Extraction without reference tuples. RExt can also work
without an input relation S as reference tuples, to extract re-
lations from G as preprocessing, providing reference schemas
of G for users to compose gSQL queries (recall Section II-B).

Consider graph G whose vertices can be classified as
different types based on their labels. RExt identifies, for each
type τ of vertices of G, a relation schema Rτ and an instance
gτ (G) of Rτ from G. It is a special case of attribute extraction
since it has no reference tuples S. RExt extracts the relations
in the same way as how it works when both G and a relation S
are provided as input, except the following. (1) With G as the
sole input, each time it only considers entity vertices of some
type τ . (2) The second term of the attribute ranking function
is empty since there is no S. It could also employ keywords
Aτ provided by users or extracted from query logs.

Figure 4 depicts the complete workflow of RExt.



B. IncExt: Incremental Relation Extraction
We next discuss how IncExt incrementally maintains rela-

tions extracted by RExt. There are two types of updates: (a)
data updates, i.e., updates to G and/or D; and (b) user updates,
i.e., users’ keywords A change when query interest shifts.

Data updates. For the lack of space, we focus on updates ∆G
to graph G. Updates to D can be handled similarly.

Updates ∆G may change (a) attribute values previously
extracted by RExt due to the change of paths in G; and (b)
the match relation f(S,G) computed by HER. For both cases,
IncExt works by identifying the “affected” vertices of G that
are in f(S,G), and extracting the updated relations for them.

The logic of IncExt is simple: it collects a set V∆ of vertices
in G affected by ∆ and relevant to f(S,G), re-extracts their
values (i.e., tuples of RG) via lines 3-4 of Algorithm 1, and
commits the extracted values to DG. IncExt collects V∆ as
follows: (a) for each new vertex v in f(S,G), i.e., vertices of
G that are matched by some tuple in S via HER because of
∆G, add v to V∆; (a) for each vertex u in ∆G, add all old
vertices v in f(S,G) that are within k hops from u to V∆.

Intuitively, step (a) covers those newly matched vertices
due to updates to f(S,G) and ensures that IncExt extracts
values for them. Step (b) assures that all entity vertices whose
extracted values are likely affected by ∆ will be re-examined
by IncExt. Here by looking into k hops from vertices in ∆G,
it covers all affected cases as RExt extracts values for each
entity vertex v via paths from v that are of length at most k.

When ∆G is small, IncEXT is efficient since (1) only ver-
tices that are within k hops of the graph updates are checked;
(2) there is no need to rediscover path patterns; and (3) the cost
for path pattern matching is small as described in the analysis
of Algorithm 1. Moreover, there exists no accuracy loss in
IncEXT compared with RExt starting from scratch, since
pattern matching results of RExt and IncEXT are the same.

Keywords updates. When users’ interest shifts and keywords
in A change, the extracted schema RG will likely change
accordingly. To this end, instead of re-computing the schema
RG starting from scratch for the updatedA, IncExt only redoes
the last phase (i.e., step (4)) of path pattern discovery, to
select attributes for RG by using the ranking function r() with
updated keywords A. After that, IncExt update the extracted
relation of the new RG for S. Without re-extracting the entire
relation of RG from scratch, IncExt only needs to extract val-
ues for those new attributes in RG via Extract of Algorithm 1.

IV. IMPLEMENTATION OF SEMANTIC JOINS

In this section we show how to implement semantic joins
atop RDBMSs. We first develop exact methods for computing
semantic joins, and identify gSQL that can be answered with-
out invoking HER and RExt online (Section IV-A). We then
present a heuristic method for generic queries (Section IV-B).

A. Exact Methods of Semantic Joins
We start with a conceptual-level exact semantic join method.

Baseline. The conceptual-level method computes semantic
joins online in response to individual user’s request (e.g.,

keywords A). It calls external HER and RExt at query time.
For enrichment join S 1A G, we first use HER to compute

the match relation M = f(S,G) between tuples of S and ver-
tices of G, with which we then extract relation h(S,G) from
G for S and A, by invoking RExt (Section III). Thus S 1A G
simply reduces to a three-way natural join S 1 M 1 h(S,G).

For link join S1 1G S2, we invoke HER to identify the
matching vertices to tuples of S1 and S2 in G, check their
pairwise distance via a bi-directional BFS search, and return
the join of any t1 ∈ S1 and t2 ∈ S2 if there exist matching
vertices to t1 and t2 within k hops for a pre-defined bound k.

HER and RExt can be encapsulated as SQL UDFs, stored
procedures, or a combination of SQL and external scripts [19].

An efficient method. The above implementation requires to
invoke HER and RExt at run time, which could be costly. To
this end, we identify a large class of gSQL queries which we
can answer without calling HER and RExt at query time.

The idea is to profile graph G and extract a collection DG

of relations from G for all entities (tuples) in database D
beforehand offline, by invoking RExt as offline preprocessing
with G (recall Section III-A). In doing so, gSQL queries that
are issued online can then be answered by using D and DG

only, without invoking HER and RExt on-the-fly.
More specifically, by taking G as the only input, RExt

pre-computes and maintains the following: (1) for each input
relation D, the set f(D,G) of HER matches; (2) for each
schema R in R, a set AR of frequent keywords; and (3) the
extracted schema RG and relation h(D,G) for D and AR.
The relations are materialized in RDBMS and incrementally
maintained by IncExt in response to updates (Section III-B).

To speed up link joins, we also pre-compute connectivity
relations gL for vertices of G that match selected tuples in D.
It is specified by two sets of predicates P and P ′ over D such
that if v and v′ match tuples t and t′ of D that satisfy some
predicates in P and P ′, respectively; then (v, v′) is in gL iff v
and v′ are connected in G within k hops. Here P and P ′ are
the selection conditions of sub-queries Q1 and Q2 in a link join
Q1 1G Q2. We keep those gL for recent queries as a cache.

Well-behaved queries. Given DG, we identify gSQL queries
that can be answered without external calls of HER and RExt.
We say that an enrichment join Q 1A G is well-behaved if
(1) A ⊆ AR, i.e., the keywords of A are covered by the pre-
selected AR; and (2) either (a) the output schema RQ of Q
contains one and only one tuple id of some base relation R of
D or (b) RQ contains attributes from only one base relation
R of D. Intuitively, condition (1) ensures that well-behaved
queries reference the pre-extracted schemas, and condition (2)
ensures that each answer to Q refers to an entity in some base
relation of D that can be deduced via RQ. A link join Q1 1G

Q2 is well-behaved if both Q1 and Q2 are well-behaved.

A gSQL query Q is well-behaved if every semantic join in Q
is well-behaved. It takes linear time to decide whether a gSQL
Q is well-behaved, via a bottom-up scan of the syntax tree of
Q, to check whether each of its semantic joins is well-behaved.



Example 9: Assume that Acustomer = {stock, company} and
Aproduct = {company, loc}. Then by definition, Q1, Q2 and
Q3 of Example 4 are all well-behaved gSQL queries. 2

With DG, well-behaved gSQL can be converted to SQL and
answered without calling HER and RExt online. We discuss
the implementation for two classes of semantic joins below.

(a) Static joins. A static enrichment join has the form Qe =
R 1A G where R is a schema in the input database schema
R. For a well-behaved Qe, i.e., when A ⊆ AR, We convert Qe

into a three-way natural join Q = R 1 f(D,G) 1 h(D,G)
and directly answer it via the underlying RDBMS without
invoking HER and RExt at runtime. One can readily verify
that Qe(D, G) = Q(D,DG), i.e., the answers to query Qe

computed in this way are exact. Similarly, a static link join
has the form Ql = R1 1G R2 for input schemas R1 and
R2 in R. We convert Ql simply to gL(D1, D2, G). Again Ql

can be exactly answered by the underlying RDBMS using the
pre-computed DG, without calling HER and RExt.

(b) Dynamic joins are of the form Q = Q1 1A G or Q = Q1

1G Q2, where Q1 and Q2 are queries instead of base relations.
When Q is well-behaved, we can convert Q to an SQL

query along the same lines as well-behaved static joins, and
computes its exact answers by using the underlying RDBMS.
For instance, if each tuple in Q1(D, G) refers to a tuple in
relation D of schema R and A ⊆ AR, then enrichment join
Q1 1A G can be rewritten into an equivalent SQL query Q1 1

R 1 f(D,G) 1 h(D,G), where Q1(D, G) identifies a subset
of D, and Q1 is inductively converted into an SQL query. We
can answer this query just like static joins, by RDBMS without
calling HER and RExt at query time; similarly for link joins.

B. From Exact Joins to Heuristic Joins
There are gSQL queries that are not well-behaved.

Example 10: Recall D and G from Example 1. Assume that
Bob (cid02) wants to invest in medium-risk stocks for at least
1000 shares. To do this, a broker uses an enrichment join Q4

= Q′ 1(company) G to find suitable companies for Bob, where
Q′ identifies all medium-risk stocks that Bob is able to buy
in 1000 shares, via a join σcid=cid02customer 1bal≥1000×price

σrisk=mediumproduct. Then Q4 is not well-behaved since Q′

fetches the id attributes of both customer and product. 2

We next propose a heuristic method to answer such queries
without calling HER and RExt, to strike a balance between the
cost of query evaluation and the accuracy of query answers.
The assumption is that graph G is “typed”, i.e., the types of its
entities can be determined by their labels, and that the default
bound k and reference keywords AR are decided as above.

Heuristic joins. Recall that RExt computes schema Rτ and
relation gτ (G) for entities of each type τ when taking G as
input alone (Section III-A), using default k and AR. With
these, we develop an approximate method for semantic joins.

Consider enrichment join Qe = Q 1A G. Denote the output
schema of Q by RQ, and Q(D, G) by S. We answer it in three
steps; the case for link joins is similar.

(1) We first identify what types τ of vertices in G may
match and enrich tuples in S. This is conducted by matching
attributes of RQ and Rτ via schema-level matching [20], [21].
We mark a relation gτ (G) as relevant to Q if Rτ and RQ share
the most common attributes among all the relations gτ ′(G) that
are extracted without reference tuples (recall Section III-A).
We approximate Q 1A G by joining Q with such gτ (G).

(2) We match S and gτ (G) by either (a) pairwise tuple
comparison based ER method or (b) end-to-end ER that takes
entire S and gτ (G) as input and computes the match relation
all at once. Here (a) can be implemented as a simple UDF
as the join condition between S and gτ (G) to check whether
t ∈ S and t′ ∈ gτ (G) make a match [22]. The implementation
of (b) requires to take S and gτ (G) as input and encapsulates
a complete ER solution, e.g., JedAI [23], in the UDF.

(3) We convert Qe to a join between S and gτ (G) with ER
matching as the join condition. This is conducted in RDBMS
via stored procedures or UDF, without calling HER and RExt.

Example 11: We can answer Q4 of Example 10 with heuristic
join. Assume that we have extracted a relation gproduct(pid,
company) for pid′s (products) from G. We can deduce that
gproduct matches RQ′ since they share the same pid attribute
and the extracted attribute company of Q4 is also in gproduct.
Hence, it links answer tuples to Q5 (e.g., {t2} 1 {t8} in D
of Fig. 1) with tuples of gproduct (e.g., (pid4, company2)), by
identifying pid4 and fd4 via ER (e.g., [23]). By using heuristic
joins, Q4 is answered without calling RExt and HER online. 2

V. EXPERIMENTAL STUDY

Using real-life and synthetic data, we conducted four sets of
experiments to evaluate (1) the need for semantic joins when
querying relations and graphs taken together, (2) the quality of
semantic join results, and the efficiency of (3) semantic join
implementations and (4) incremental relation extraction.

Experimental setting. We start with the experimental settings.

Datasets. We used 6 collections of real-life datasets (see
Table II); each is a pair of a graph and a relational dataset. (1)
Drugs includes drug relation [24] of drug products, interact re-
lation [25] of drug interactions, and knowledge graph drugKG
[26] about drugs with their efficacies and diseases with de-
scriptions about their symptoms. (2) FakeNews is composed
of relation fakenews [27] about news sources and topicKG
graph [28] for categories and themes of new reports, with
the domains of the keywords extracted from the headline. (3)
Movie collects movies, directors, actors, etc., in relations of
IMDB [29] and LinkedMDB graph [30]. (4) MovKB includes
IMDB relations and YAGO3 graph [31]. (5) Paper collects
publications and authors in relations from DBLP [32] and
a graph of RKBExplorer [33], [34]. (6) Celebrity collects
athletes and politicians in DBpedia relations [35], [36], [37]
and YAGO3 graph [31]. We linked entities across graphs
and their corresponding relations. The relations and graphs
of Movie, Paper and Celebrity are from closely related data
sources, and those of Drugs, FakeNews and MovKB are from



Data coll. Relations Graphs
Drugs drug/interact: 15K/192K tuples drugKG: 264K vertices, 445K edges
FakeNews fakenews: 2.1M tuples topicKG: 1.3M vertices, 4M edges
Movie IMDB: 39.2M tuples LinkedMDB: 2.3M vertices, 5.4M edges
MovKB IMDB: 39.2M tuples YAGO3: 3.4M vertices, 10.2M edges
Paper DBLP: 4.4M tuples RKBExplorer: 15.9M vertices, 31.1M edges
Celebrity DBpedia: 372K tuples YAGO3: 3.4M vertices, 10.2M edges

TABLE II: Dataset collections

independent data sources but share overlapped information.

Queries. We evaluated 36 queries across relations and graphs
of the six collections, 6 queries for each. Among them, 32
involve enrichment joins, 4 need link joins, 4 are dynamic, 10
contain more than one semantic joins, 17 have negation, and
4 have aggregation. All queries require to check both data in
relations and data in graphs. For each R 1A G in the queries,
keywords in A are the attribute types to be extracted from G.

Implementation. We implemented both RExt and IncExt in
Python and C (see Section III). We also implemented all the
semantic join methods in C++ (Section IV) and deployed them
atop PostgreSQL; we remark that our methods are database
agnostic and can be deployed over other RDBMS.

For RExt, we parallelized KMC [38] and attribute ranking.
We adopted pre-trained 100-dimensional GloVe word embed-
ding [17] and LSTM networks [16] for vectorizing vertex and
path labels, respectively. The LSTM model is trained with
default configurations in [16] on graph G of each dataset. We
performed L2 normalization before vector concatenation; each
vertex-path pair was represented by a 200-dimension vector.

As baselines, we also implemented (a) RExtBertEmb, RExt
using Bert as word embedding, (b) RExtShortEmb, RExt
using shorter 50-dimensional GloVe as word embedding, (c)
RExtBertSeq, RExt using Bert for sequence embedding, (d)
RExtShortSeq, RExt using narrower 50-wide hidden layer
LSTM for sequence embedding, and (e) RndPath, RExt taking
random paths pertaining to each entity for relation extraction.
We find no prior method that can do the job of RExt.

Configuration. We ran the experiments on a cluster of 10 linux
machines, each with 2 Intel Xeon 2.2 GHz CPUs and 64
GB memory. We used all 10 machines for RExt, and used
a PostgreSQL (v13.5) server powered by 3.2GHz CPU and
16 GB memory, which also served HER. When RExt profiles
graphs G for offline preprocessing, we configured RExt with
all the keywords and attribute names referenced by the gSQL
queries we tested. We used JedAI [3] as both HER for semantic
joins and the ER step of heuristic joins, with configurations
picked for each data collection based on its characteristics
following [3]. For heuristic joins, we extracted 2, 2, 2, 4, 1
and 1 relations for Movie, MovKB, Paper, Celebrity, Drugs
and FakeNews, respectively which account for 15.7%, 0.9%,
0.07%, 0.03%, 39.5% and 7.7% of the size of the raw graphs.
Each experiment was run 5 times; the average is reported here.

Experimental results. We next report our findings.

Exp-1: Case study. We first validated the need for semantic
joins. Recall query Q1 from Example 1. As shown in Example
4, Q1 requires both data in relations and data in graphs. With-
out RExt, the closest that an RDBMS can do is to import and

join type all non-well-behaved enrichment link
F-measure 0.88 0.81 0.89 0.81

data col. Drugs FakeNews Movie MovKB Paper Celebrity
F-measure 0.95 0.82 0.84 0.89 0.88 0.90

TABLE III: Relative accuracy of heuristic joins

encode the graph G in Example 1 as vertex and edge relations,
and then approximate Q1 in SQL over D and the cast relations.
However, this is neither accurate nor practical as one does not
know how many joins are required to retrieve attributes from
G, not to mention its prohibitive computational cost.

We further demonstrate its needs via public datasets with
two real-life tasks from biomedical and media applications.

Drug interactions (q1): “find drugs that are for the same
disease but in conflict with each other”. It is over Drugs with
(simplified) drug(CAS, name, class) and interact(CAS1, CAS2,
type) relations, and graph drugKG for drugs, efficacy, symp-
toms and diseases. Intuitively, q1 first retrieves disease data for
drug and then checks whether their type is −1 (in conflict).

This is done with semantic joins as: σT1.disease=T2.disease(T1

1T1.CAS=CAS1 σtype=−1interact 1T2.CAS=CAS2 T2), where T1 and
T2 are renamings of semantic join drug 1disease drugKG. It
retrieves typical targeted diseases and symptoms for drugs by
joining drug with graph drugKG, and checks interactions with
interact for drugs that may be used for the same disease.

This cannot be simply done in RDBMS by converting
drugKG to an edge relation and joining it with drug since
a drug may be connected to a disease via a path of related
symptoms and diseases, and relational joins are not able to
distinguish strongly relevant paths from irrelevant ones, even
when we know how many joins are needed. For instance,
while drug Spinosad is often used for disease Pediculosis as
confirmed by its connection to Pediculosis via a path pattern
(drug → efficacy → symptom ← disease), drug
Dimenhydrinate is not for Intestinal fluke infection
although they are also connected via the same path
pattern. Hence, RDMBS would not distinguish the case of
Spinosad for Pediculosis from Dimenhydrinate for
Intestinal fluke infection, while RExt can tell the
difference due to its ML-based path matching.

Fake news authors (q2): “find domain keywords used by
fake news authors”. It is over the FakeNews with rela-
tion fakenews(author, country, lanugage) and topicKG, a
knowledge graph of news category, with keywords extracted
from the headline. Similar to q1 above, q2 needs to thematize
each author in fakenews by extracting the best topic from
graph topicKG that covers keywords in the title’s of news
published by the author. By the model-guided path pattern dis-
covery and selection, RExt is able to extract the most suitable
topic that covers words from news titles for each author.

Exp-2: Quality of semantic joins. We next tested (a) the
effectiveness of RExt and (b) the accuracy of heuristic joins.

(I) Effectiveness of RExt. For each relation schema R, we first
picked and dropped m attributes (columns) from R, yielding
relation schema R′. We then tested the ability of RExt to
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Fig. 5: Performance of RExt and IncExt

recover the dropped values (columns) in R from graph G.
For instance, we dropped columns volume and affiliation

from the DBLP relation of Paper, yielding a relation DBLP′.
We then used RExt to “recover” the dropped columns by
extracting from graph RKBExplorer of Paper via semantic join
DBLP′

1A RKBExplorer, where A is a set of keywords that
include ‘volume’ and ‘affiliation’. When varying the size |A|
of A to evaluate the impact of keywords, we expanded A
with randomly picked volume and affiliation values from the
dropped columns (e.g., ‘vol. 41’ and ‘NASA’) as additional
keywords. We calculated the accuracy (F-measure) of join re-
sults by taking the original DBLP relation as the ground truth.

(a) Impact of parameters. Using this method, we evaluated the
F-measure of RExt with varying configurations. We varied
path length bound k, the number H of clusters, the number
|A| of keywords, and the number m of (dropped) attributes,
and tested the accuracy of RExt over all 6 data collections.
When varying a parameter, all other parameters are set to the
default (30, 3, 4 and 3 for H , m, |A| and k, respectively).
Key results are shown in Figures 5(a), 5(b) and 5(c).

(1) When varying H from 10 to 50, the F-measure of RExt
on all the datasets first increases and then remains the highest.
This is because KMC better discerns different vertex-path-
pairs with larger H . However, if H keeps growing, noisy and
small clusters are introduced. Such clusters can be removed by
path pattern refinement (Section III-A). This avoids false pat-
terns and thus the accuracy remains the highest with larger H .

(2) Varying m from 1 to 4, the accuracy of RExt decreases,
e.g., from 0.94 to 0.88 over Movie (Fig. 5(b)). This is because
with larger m, RExt has to extract more attributes, and with
this come larger uncertainty and slightly lower F-measure.

(3) Varying k from 1 to 4, the F-measure of RExt increases,
e.g., from 0.91 to 0.96 on MovKB, as longer paths can capture
more candidate attributes. However, the quality plateaus when
k keeps growing, e.g., k from 3 to 4, since attributes extracted
by longer paths have weaker associations and are less useful.

(4) Varying |A| from 3 to 6, the F-measure of RExt fluctuates
a bit but is consistently above 0.89. This shows that RExt is ro-
bust in accuracy, regardless of how users specify the keywords.

(b) Ablation study. We next study the contribution of each ML
component to the accuracy of RExt (recall Section III-A).

(1) LSTM forMρ. We first examined the impact of LSTM for
sequence embedding by comparing the accuracy of RExt with
RExtBertSeq and RExtShortSeq. The results with varying
parameters are shown in Figures 5(a)-5(c). RExt is robust with
varied Mρ: the accuracy of the relations extracted by RExt is
consistently better but rather close to that of RExtBertSeq in
all cases; the gap between RExt and RExtShortSeq is slightly
larger than RExtBertSeq since the accuracy of 50-wide LSTM
is much worse than Bert and LSTM. This also confirms the
choice of LSTM in RExt since Bert is computationally costly
and narrower LSTM is less competitive in accuracy.

(2) GloVe for Me. Similarly, we tested the robustness of
RExt w.r.t. the word embedding modelMe, by comparing the
accuracy of RExt with RExtBertEmb and RExtShortEmb. As
shown in Figures 5(a)-5(c), the accuracy of extracted relations
is relatively stable. Although RExt is consistently the best, its
gap with RExtBertEmb and RExtShortEmb is moderate.

(3)Mρ andMe taken together. Although RExt is robust with
different models for Mρ and Me, its accuracy dramatically
decreases if we drop bothMρ andMe. For instance, the accu-
racy of RExt is consistently 21% higher than that of RndPath,
which uses random paths instead of the ML guided method
in RExt (Figures 5(a)-5(c)). This validates the effectiveness of
the ML-based (Me and Mρ) path selection in RExt.

(4) Clustering. Finally, we randomly injected noisy labels
to the path clustering produced by KMC, and evaluated the
impact of KMC quality on the accuracy of RExt. As shown
in Fig. 5(f), the accuracy of RExt does not significantly drop
until 20% noisy labels are injected. This is because the pattern
refinement step is robust against clustering errors by picking
the majority of the patterns, making RExt robust with KMC.



(c) Impact of HER. We have evaluated the impact of the
accuracy of ML components in RExt on the extracted relations
in (b) above. Now we further examine the impact of cascading
error from HER, by testing the accuracy of RExt with HER
matches f(S,G) of varying accuracy. Specifically, we follow
the setting of Exp-2(a) but randomly injected mismatches.
Denote by η the percentage of mismatches in the HER match
relation. As shown in Fig. 5(g), the accuracy of RExt deterio-
rates, as expected, when η increases. However, the impact of
η is relatively stable as the accuracy of RExt decreases almost
proportionally to η. This is because mismatches only cause
RExt to extract properties for the “wrong” target tuple, without
affecting the extraction for other correctly matched tuples.

(II) Accuracy of heuristic joins. We also evaluated the
accuracy of heuristic joins over all 6 data collections, by
assuming that HER and RExt are accurate. We first examined
and found that 32 out of 36 of gSQL queries are well-behaved,
and hence can be exactly answered via the optimized semantic
join implementation instead of the conceptual-level baseline.

We then tested the accuracy of heuristic joins relative to
HER and RExt. We “enforced” heuristic joins on all the gSQL
queries, including well-behaved ones. By treating exact join
results as the ground truth, we tested the F-measure of heuristic
joins. As shown in Table III, on average the F-measure of
heuristic join results is 0.88 for all types of joins over all
datasets, and is 0.81 for non-well behaved joins. This shows
that heuristic join is accurate in approximating semantic joins.

Exp-3: Efficiency. We next evaluated the efficiency of (1)
semantic joins in answering gSQL queries and (2) RExt in
extracting data from graphs, over all 6 data collections. Using
the same setting of Exp-2 for parameters k, H and m, we
tested (a) the end-to-end evaluation time of all 36 queries; (b)
the efficiency of RExt and the baselines; and (c) the effective-
ness of heuristic joins for queries that are not well behaved.

(I) Offline preprocessing. We start with the offline preprocess-
ing involved, i.e., (a) model training cost for extraction and (b)
pre-computation used by well-behaved and link joins.

(a) Training. It takes 64s, 76s, 220s, 32s and 43s to train
the LTSM model for RExt over LinkedMDB, YAGO3,
RKBExplorer, drugKG and topicKG graphs, respectively. The
training time of baselines RExtBertEmb and RExtBertSeq
is much longer than that of RExt, e.g., 542s and 674s over
YAGO3, respectively, while baselines RExtShortEmb and
RExtShortSeq are comparable to RExt.

(b) Pre-computation. Recall that well-behaved and heuristic
joins use pre-computed relations. We report their costs below.

(1) For well-behaved enrichment joins, it takes RExt 130s,
254s, 677s, 230s, 17s and 68s to extract relations h(D,G)
for Movie, MovKB, Paper, Celebrity, Drugs and FakeNews,
respectively, taking 15.7%, 0.9%, 0.07%, 0.03%, 39.5% and
7.7% of the size of the raw data collection for materialization.
(2) For link joins, it takes 0.01% of the size of the graph on
average to cache all link joins in the queries via gL (k = 3).

This is due to the fact that the number of tuples participated
in the link joins is typically not large, leading to limited pairs
of vertices in the connectivity relation (cache, Section IV).

We next move on to online computations. We assume a cold
start for link joins, i.e., no connectivity cache gL by default.

(II) End-to-end performance. We evaluated the (online) eval-
uation time of gSQL queries by the conceptual-level baseline,
optimized method for well-behaved joins, and heuristic joins.
With the relations h(D,G) pre-computed in (I), we have 32
well-behaved gSQL queries out of the total 36 queries.

(1) Both well-behaved and heuristic joins scale well with big
relations and graphs. In particular, for well-behaved joins, with
pre-extracted relations that account for 10.7% of the size of
graphs, it returns query answers within 9.2s across relations of
up to 4.4 million tuples and graphs with 31.1 million edges.

(2) When using the optimized join implementation for well-
behaved queries and heuristic join for non-well-behaved ones,
on average it is 114.9X faster than the conceptual-level base-
line. This is because a large percentage (88.9%) of test queries
benefit from the processing of well-behaved queries, which is
substantially faster by avoiding invoking HER and RExt at
query time. This said, the conceptual-level baseline does not
take very long despite running HER and RExt online, e.g., it
takes 47.5s on average to answer a query.

(3) While heuristic join is slower than the optimized join
implementation, it is still 8.19X faster than the baseline on
average, up to 27.9X. This, together with Exp-2, shows that
heuristic joins are an effective approximation to semantic joins.

(4) In particular, for those well-behaved queries with link joins,
the optimized method is still effective with gL disabled, on
average 6.13X faster than the baseline. This is because even
without gL, well-behaved link joins could still benefit from
pre-extracted relations by RExt and HER. Furthermore, when
gL is enabled and link joins are a cache hit, the speedup goes
up to 23.8X because of no need for traversing G on-the-fly.

(III) Performance of RExt. We also tested the scalability of
RExt and its baselines for extracting relations h(S,G) from
graph G when S is an entire input relation. Varying H , m
and k as in Exp-2, we tested the time for extracting attributes.
Key results are reported in Figures 5(d)-5(e).
(1) RExt is faster than its Bert variants, e.g., on average 3.03X
and 1.78X faster than RExtBertEmb and RExtBertSeq over
MovKB, respectively. Unsurprisingly, RndPath is the fastest
of all methods due to its simpler design but lower accuracy.
(2) As expected, RExt take longer to extract attributes with
larger k, e.g., it takes RExt from 132.42s to 263.28s when k
is increased from 1 to 4 over MovKB. This is because with
larger k, RExt has to examine more paths when extracting
values. Similarly, KMC and attribute ranking take longer with
larger H . In contrast, the runtime of RExt is not very sensitive
to m and |A| since they only affect the final selection of the at-
tributes and values, and incur a much smaller cost compared to
the time for path exploration, clustering and attribute ranking.



We remark that that the extraction time here is much longer
than it takes to answer online gSQL queries (even via the
conceptual-level baseline). This is because when answering
gSQL queries, RExt only needs to extract data for the tuples
selected by the queries, which are often only a small fraction
of the full relations. Moreover, well-behaved queries reuse the
results extracted by the preprocessing and does not invoke
RExt at run time; hence query evaluation is even faster.

Exp-4: Incremental maintenance. We next evaluated the
performance of IncExt for handling updates, using the same
workload and configurations as in Exp-2 above. We focus on
updates to graphs G; the case for updating D is similar.

We generated random updates ∆G consisting of the same
number of insertions and deletions, so that the size of the
graph remains unchanged. We compared the runtime of IncExt
against RExt that re-computes HER matches and extracted data
in the updated G. We varied |∆G| from 5% to 45% of |G|.

As shown in Figure 5(h), when |∆G| = 5%|G|, IncEXT
beats RExt by 15.9X, 15.7X, 17.5X, 11.8X, 8.1X and 16.2X
on Celebrity, Paper, Movie, MovKB, Drugs and FakeNews
respectively. It is still faster than RExt when |∆G| is up to
45%, 35%, 40%, 45%, 35% and 35% of |G|, respectively.

Summary. We find the following. (1) Relation extraction and
semantic joins enable us to express real-life queries across
relations and graphs in SQL, which is not possible when G is
simply cast as vertex/edge relations. (2) By means of semantic
joins, RExt is able to extract high-quality relations from graphs
with average F-measure above 0.95. (3) RExt scales well
with large relations and graphs, e.g., it extracts attributes in
230.4s on relations with 3.4M tuples and graphs with 10.2M
edges. (4) Our implementation of semantic joins answers
online gSQL queries efficiently, taking at most 9.2s when
queries are well-behaved, 114.9X faster than the baseline. (5)
Heuristic joins speed up semantic joins that are not well-
behaved by 3.1X on average, with F-measure above 0.81.
(6) IncExt handles updates efficiently. It updates the extracted
relations 14.2X faster than RExt when |∆G| accounts for 5%
of |G|, and is still faster when |∆G| is up to 45% of |G|.

VI. RELATED WORK

We categorize the related work as follows.
Schema/data extraction. There has been research on summa-
rizing semistructured data in terms of tree and graph patterns
with descriptions [39], [40]. There has also been work on
relation-schema extraction by navigating extracted data [41],
querying nested key-value data [42], developing schema [43]
and integrating XML data with relations [44]. Related is also
feature selection in ML (see [45], [46], [47] for surveys). The
idea is to filter out attributes that are irrelevant to the tasks, by
ranking features using hand-crafted criteria [45], [48] or by
assessing the closeness to a manually labeled training set [46],
[47]. The ML models target images, texts and tableaux data.

RExt differs from the prior work in the following. (1) It
extracts relations from graphs to enrich an existing relation
schema, not to abstract the topological structure of the entire

graph. (2) It extracts attributes and their values based on users’
interest for queries, while no prior methods are query-driven.
(3) As opposed to feature selection techniques [45], [46] that
focus on relations, text or images, we tackle graphs that model
data in topological structures; moreover, different from feature
selection via supervised training [46], [47], we extract relations
from graphs by sequence embedding and clustering, which are
unsupervised and data-driven, reducing manual labeling cost.

Multi-model systems. A host of system designs have been stud-
ied to support datasets in multiple data models, often dubbed
as polyglot systems [49], [50], [51], [52], [53], [54], [55], [56],
multistores [57], [58], [59], or polystores [60], [61], [62].

Our work differs from these approaches in the following.

(1) Instead of developing new systems, this work aims to equip
existing RDBMSs with a convenient capacity of querying rela-
tions and graphs, retaining the ease and composability of SQL.

(2) While HER, RExt and semantic joins can be plugged
into polyglot systems and support queries across relations and
graphs. Currently polyglot systems consider neither linking en-
tities with heterogeneous structures nor graph property extrac-
tion. In particular, relation-based systems rely on costly SQL
joins as graphs are encoded as “schemaless” edge relations.

(3) Multistores and polystores do not yet support graphs
(storage and queries). Instead, semantic joins and relation
extraction are system agnostic and can be incorporated into
existing RDBMSs to support SQL across relations and graphs.

Entity linking in query processing. There has also been work
on entity-aware query processing (EQP) [63] and query-aware
entity resolution (QER) [64], [65], [66]. Both aim to embed
online entity linking into query processing, to clean data on-
the-fly. They target relational data and queries, not graphs.

In contrast, semantic joins and graph property extraction aim
to correlate entities in different models (relations and graphs),
synthesize the data and sensibly answer queries. We also pro-
vide a method to incrementally maintain extracted relations.

VII. CONCLUSION

The novelty of the work consists of (1) a notion of semantic
joins; (2) an ML-based method for extracting relations from
graphs; (3) an incremental method for maintaining extracted
graph properties in response to updates; and (4) efficient
implementations of semantic joins. These provide RDBMSs
with a capacity to querying relations and graphs in SQL. We
have experimentally verified that the approach is promising.

One topic for future work is to cope with D and G when
values are missing from their key attributes; one way to impute
missing values is via semantic joins with knowledge bases.
Another topic is to extend the extraction method with graph
embeddings and capture the vicinity of given graph nodes.
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