
Community Search: A Meta-Learning Approach
Shuheng Fang∗, Kangfei Zhao†, Guanghua Li‡, Jeffrey Xu Yu∗

∗The Chinese University of Hong Kong, †Beijing Institute of Technology
‡The Hong Kong University of Science and Technology (Guangzhou)

∗{shfang,yu}@se.cuhk.edu.hk, †zkf1105@gmail.com, ‡gli945@connect.hkust-gz.edu.cn

Abstract—Community Search (CS) is one of the fundamental
graph analysis tasks, which is a building block of various real
applications. Given any query nodes, CS aims to find cohesive
subgraphs that query nodes belong to. Recently, a large number
of CS algorithms are designed. These algorithms adopt pre-
defined subgraph patterns to model the communities, which
cannot find ground-truth communities that do not have such
pre-defined patterns in real-world graphs. Thereby, machine
learning (ML) and deep learning (DL) based approaches are
proposed to capture flexible community structures by learning
from ground-truth communities in a data-driven fashion. These
approaches rely on sufficient training data to provide enough
generalization for ML models, however, the ground-truth cannot
be comprehensively collected beforehand.

In this paper, we study ML/DL-based approaches for CS,
under the circumstance of small training data. Instead of directly
fitting the small data, we extract prior knowledge which is shared
across multiple CS tasks via learning a meta model. Each CS
task is a graph with several queries that possess corresponding
partial ground-truth. The meta model can be swiftly adapted to
a task to be predicted by feeding a few task-specific training
data. We find that trivially applying multiple classical meta-
learning algorithms to CS suffers from problems regarding
prediction effectiveness, generalization capability and efficiency.
To address such problems, we propose a novel meta-learning
based framework, Conditional Graph Neural Process (CGNP),
to fulfill the prior extraction and adaptation procedure. A meta
CGNP model is a task-common node embedding function for
clustering, learned by metric-based graph learning, which fully
exploits the characteristics of CS. We compare CGNP with CS
algorithms and ML baselines on real graphs with ground-truth
communities. Our experiments verify that CGNP outperforms
the other native graph algorithms and ML/DL baselines 0.33
and 0.26 on F1 score by average. The source code has been
made available at https://github.com/FangShuheng/CGNP.

Index Terms—Community search, Meta-learning, Neural pro-
cess

I. INTRODUCTION

Community is a cohesive subgraph that is densely intra-
connected and loosely inter-connected in a graph. Given any
query nodes, community search (CS) aims at finding commu-
nities covering the query nodes, i.e., local query-dependent
communities, which has a wide range of real applications,
e.g., friend recommendation, advertisement in e-commence
and protein complex identification [1], [2]. In the literature,
to model structural cohesiveness, various community models
are adopted, including k-core [3]–[5], k-truss [6], [7], k-
clique [8], [9] and k-edge connected component [10], [11].
Such models can be computed efficiently by CS algorithms.
But such models are designed based on some pre-defined

† Corresponding author.

MichaelaGoetz

JureLeskovec

XiaolinShi

DanielA.McFarland
RaviKumar

AndrewTomkins

JohnShawe-taylor

DeepayanChakrabarti

CarlosGuestrin

JulianMcAuley

DanielP.Huttenlocher

JonM.Kleinberg
SethA.Myers

MichaelW.Mahoney

CarolineSuen

ChantatEksombatchai

RokSosic

CristianDanescu-Niculescu-Mizil

RobertWest

ChristopherPotts

JaewonYang
DanielJurafsky

StephenGuo

MengqiuWang

JanezBrank

MyunghwanKim

LarsBackstrom

JustinCheng

JonKleinberg

ManuelGomez-Rodriguez

BernhardSchölkopfAshtonAnderson

DanielHuttenlocher

Jr.JoséF.Rodrigues

HanghangTong

AgmaJ.M.Traina
U.Kang

MatthewHurst

SusanDumais

EricHorvitz

HimabinduLakkaraju

JureFerlez

MarkoGrobelnik

MariaCecíliaCalaniBaranauskas

PhilippeA.Palanque

JulioAbascal

SimoneDinizJunqueiraBarbosa

ManuelGomezRodriguez

JohnM.Vlissides

DouglasC.Schmidt

LadaA.Adamic

PaeaLePendu

NigamShah

SanjayRamKairam

DanJ.Wang

JeffJacobs

HeidiWang

EldarSadikov

MontserratMedina

HectorGarcia-Molina

YusukeOta

YoshihikoInagaki

KanYoneda

ShigeoHirose

NatasaMilic-Frayling

ChristinaBrandt

NadineHussami

SatishBabuKorada

RüdigerL.Urbanke

PaulBennett

LeeGiles

AlonHalevy

MartiHearst

AshwinParanjape

RobertWest0001

LeilaZia

DavidHallac

ChristopherWong

StephenBoyd

MitulTiwari

FrodeEikaSandnes

SrijanKumar

ElleryWulczyn
TimAlthoff

AustinR.Benson

BrandonNoia

ChristianReuter

JoCalder

Fig. 1: An Example on DBLP: Query ‘Jure Leskovec’

community patterns which are too rigid to be used to find
ground-truth communities in real applications. We show a
DBLP example in Fig. 1 in which nodes represent researchers
and edges represent their collaboration. The ground-truth com-
munity of ’Jure Leskovec’, i.e., the orange and white nodes
in Fig. 1 are with the researchers who have collaborations
and share the common interest of ’social networks’. Such
a community cannot be accurately found with any k-related
subgraph patterns. For example, in the community, some nodes
(e.g., Michael W. M.) have one neighbor, which can only be
found by 1-core that may result in accommodating the whole
graph.

To tackle the structural inflexibility of CS algorithms,
ML/DL-based solutions [12], [13] are arising as an attractive
research direction. They build ML/DL models from given
ground-truth communities and expect the models to generalize
to unknown community-member relationships. Such ML/DL-
based approaches have achieved success in finding high-
quality solutions due to two reasons. For one thing, these data-
driven approaches get rid of the inflexible constraints and adapt
to implicit structural patterns from data. For another thing,
the models can learn via error feedback from its predictions
on the query nodes in the ground-truth communities. But,
effective error feedback heavily relies on sufficient ground-
truth communities to train, which are hard to collect and label.
On the one hand, they are labor-intensive, on the other hand,
such ground-truth communities for different query nodes can
be very different.

To deal with this problem, an effective solution is to inject
prior knowledge extracted from multiple CS tasks into the
ML model, where one CS task is a subgraph with a small
number of query nodes with partial ground-truth community
membership. The implicit prior knowledge of the CS tasks is
rather intuitive, i.e., for any query node of an arbitrary graph,

ar
X

iv
:2

20
1.

00
28

8v
3

 [
cs

.D
B

]
 8

 O
ct

 2
02

3

its communities are the nearby densely connected nodes that
share similar attributes with the query node. Such prior is
shared by different CS tasks for different query nodes in any
real-world graphs. And the prior knowledge is capable of
synthesizing similar or complementary inductive bias across
different CS tasks to compensate the insufficient knowledge
from small training data, thus can be swiftly adapted to a new
task to test. In this paper, we concentrate ourselves on learning
a meta model to capture this prior by meta-learning.

There are existing meta-learning algorithms, e.g., simple
feature transfer and model-agnostic meta-learning. However,
trivial adaptations to CS tasks fail to achieve high performance
since they do not exploit the intrinsic characteristic of the
CS tasks. For CS, what a model needs to justify for each
node in a graph is whether or not it has its community
membership with any given query node. To facilitate such
binary justification, we propose a novel model, Conditional
Graph Neural Process (CGNP), to generate node embeddings
conditioned on the small training data, where the distance
between a node embedding to that of the query node explicitly
indicates their community membership. Furthermore, as a
graph specification of Conditional Neural Process (CNP) [14],
CGNP inherits the main ideas of CNP that implicitly learns
a kernel function between a training query node and a query
node to be predicted. In a nutshell, the learned CGNP is
not only a common embedding function but also a common
kernel function, shared across different graphs. The embedding
function transforms the nodes of each graph into a distance-
aware hidden space, while the kernel function memorizes the
small training data of each task as a hidden representation.
Compared with optimization-based meta-learning approaches
whose parameters are easy to overfit, the metric learning and
memorization mechanisms are more suitable for classification
tasks with small training data, especially for imbalanced labels.

The contributions of this paper are summarized as follows:
① We formulate the problem of learning a meta model to
answer CS queries, where the meta model is to absorb the
prior knowledge from multiple CS tasks and adapt to a specific
task with only a few training data. We generalize three CS task
scenarios that represent comprehensive query cases. To the
best of our knowledge, our study is the first attempt at meta
model/algorithm for CS. ② We explore three Graph Neural
Network based solutions, i.e., feature transfer, model-agnostic
meta-learning and Graph Prototypical Network, which are triv-
ial adaptations of existing transfer/meta-learning algorithms to
CS. We identify their individual limitations regarding predic-
tion effectiveness, generalization capability and efficiency. ③
We propose a novel framework, Conditional Graph Neural
Process (CGNP) on the basis of conceptual CNP and learn the
meta model in an efficient, metric-based learning perspective.
We design and explore model variants with different model
complexities and different options for the core components. To
the best of our knowledge, we made the first effort to explore
how to solve CS problem by meta-learning. ④ We conduct
extensive experiments on 6 real-world datasets with ground-
truth communities for performance evaluation. Compared with

3 CS algorithms, 4 naive approaches, and 3 supervised learning
validates our CGNP outperforms the others with small training
and prediction cost.

Roadmap: The rest of the paper is organized as follows.
section II reviews the relative work. In section III, we give
the problem statement followed by three naive solutions in-
troduced in section IV. We introduce the core idea of our
approach, CGNP in section V. We elaborate on its architecture
design and present the learning algorithms of CGNP in sec-
tion VI. We present our comprehensive experimental studies
in section VII and conclude the paper in section VIII.

II. RELATED WORK

Community Search. A comprehensive survey of CS problems
and approaches can be found in [1], [2]. In a nutshell,
CS problem can be divided into two categories. One is
non-attributed community search which only concerns the
structural cohesiveness over simple graphs and the other is
attributed community search (ACS) which concerns both the
structural cohesiveness and content overlapping or similarities
over attributed graphs. Regarding capturing the structural
cohesiveness, various community metrics have been proposed,
including k-core [3]–[5], k-truss [6], [7], k-clique [8], [9]
and k-edge connected component [10], [11]. These metrics
are inflexible to adapt to complex real-world graphs and
applications.

In addition to only exploiting the structural information,
ACS leverages both the structural constraint and attributes such
as keywords [15], [16], location [17], temporal [18], etc. As
two representative approaches for ACS, ATC [16] finds k-truss
community with the maximum pre-defined attribute score. And
ACQ [15] finds k-core communities whose nodes share the
maximum attributes with the query attributes. Both ATC and
ACQ adopt a two-stage process. First, they find the candidate
communities based on the structural constraints. Then, the
candidates are verified based on the computed attribute score
or the appearance of attribute set. However, the quality of the
found communities of the two approaches are unpromising
since the independent two stages fail to capture the correlations
between structures and attributes in a joint fashion.

With the development of ML/DL, recently, GNN has been
adopted for CS [12]. By recasting the community membership
determination to a classification task, a model can learn via
its prediction error feedback given the training samples and
can adapt to a specific graph in an end-to-end way. Recently,
Gao et al. proposed ICS-GNN [12] for interactive CS, which
allows users to provide ground-truth for online incremental
learning. The model is a query-specific model that fails to
generalize to new query nodes. [13] proposes a graph neural
network based model that is trained by a collection of query
nodes with their ground-truth, and makes predictions for
unseen query nodes in a single graph.

ML/DL for Graph Analytics. Apart from CS, ML/DL
techniques are widely used in various graph analytical tasks,
including classical combinatorial optimization problems [19],

[20], graph similarity search [21]–[23], subgraph match-
ing [24]–[26], subgraph counting [27]–[29], shortest path
query [30], community collapsing [31] and community detec-
tion [32]. In brief, the main ideas of these approaches contain
learning a model-based algorithm heuristics [19], [20], [23],
[25] to replace the traditional predefined heuristics, where
Reinforcement Learning algorithms can be used; learning a
workload-specific estimator for approximate query process-
ing [21], [27], [28]; constructing a model-based database index
for filtering or searching [22], [24], [26], [30], [31], which is
node or graph embedding preserving task-related semantics.
Our approach is in the first category regarding learning a meta
heuristic for CS while the subtle difference is that we leverage
metric learning to evaluate the community membership.

Meta-Learning on Graph. Meta-learning is a learning
paradigm that learns the prior knowledge from multiple tasks,
which can be swiftly transferred to a new task with only a
few observed data. In general, the meta-learning approaches
fall into three categories, i.e., black-box adaptation [33]–
[36], optimization-based [37]–[39], and metric-based [40]–
[42] approaches. Meta-learning has been adopted over graph
data to deal with various graph learning tasks, including
node classification [43], [44], link prediction [44], [45], graph
classification [46], [47] and graph alignment [48], [49]. A brief
survey that summarizes the applications and methods can be
found in [50]. Here, GNN is widely used as the base model
or core component of these approaches. The optimization-
based, metric-based, or hybrid of optimization and metric-
based [44] are used as the meta-learning strategies. However,
all the existing approaches are oriented to graph learning tasks
and cannot be directly applied to our CS task, where the
input is specified by a personalized query node. Our approach
CGNP can be regarded as metric-based since the predictive
probability of CGNP is derived from inner-product similarity
in a hidden embedding space.

III. PROBLEM STATEMENT

We consider an undirected simple graph G = (V,E), where
V (G) is the node set and E(G) is the edge set. Let n =
|V (G)| and m = |E(G)| denote the number of nodes and
edges, respectively. The neighborhood of node v is denoted
as N (v) = {u|(u, v) ∈ E(G)}. The nodes may possess d
attributes A = {A1, · · · ,Ad}. For each node v, a one-hot
d-dimensional vector A(v) ∈ {0, 1}d encodes whether v is
associated with the d attributes in A. In the following, we use
G to represent a large data graph. A community in G is a
cohesive subgraph G = (V,E) induced by its node set V (G),
such that the nodes V (G) are intensively connected within
G whereas are sparsely connected with other nodes in the
graph, i.e., |E(G)| ≫ |{(u, v)|u ∈ V (G), v ∈ V (G)\V (G)}|.
Below, we denote a community as an induced subgraph in a
graph G by C(G).

Problem Statement (Community Search): The community
search problem is to find the query-dependent community Cq ,
for a user-given query node q in a graph G, such that q ∈

Cq(G). Distinguished from prior algorithmic approaches [15],
[16], [51], the community Cq(G) in this paper is not restricted
in any k-related subgraph, instead it is learned from given
community membership ground-truth.

We construct a meta modelM to support community search
queries in a data graph G by multiple tasks. The modelM is
trained on a set of training tasks D = {Ti}Ni=1. Here, a training
task, Ti, is a triplet T = (G,Q,L), where G is a subgraph of
G, Q = {q1, · · · , qj |qi ∈ V (G)} is a set of j query nodes in
G, and L = {lq1 , · · · , lqj} is the ground-truth of the j query
nodes, respectively. Specifically, lq is a nonempty set of nodes
in G w.r.t. the query node q, that contains a set of positive
samples, l+q ⊂ Cq(G), and a set of negative samples, l−q ⊂
(V (G) \ Cq(G)). For a new test task T ∗ = (G∗, Q∗, L∗), the
meta model M will exploit the query node set Q∗ associated
with the ground-truth L∗ to adapt to task T ∗, and can make
community search prediction for nodes in V (G∗) \Q∗. Note
that for test task, the number of query nodes in Q∗, named
shots, is rather limited, i.e., |Q∗| ≪ |V (G∗)|.

It is important to mention that the main idea behind multiple
tasks is that it is difficult to obtain all required ground-truth to
train. There are many possible scenarios with different ways
that the training task set D and new test tasks are constructed.
In this paper, we construct tasks from two dimensions: Sin-
gle/Multiple graphs and Shared/Disjoint communities.
• Single Graph Shared Communities. The graphs in any train-

ing task, G, and test task, G∗, are subgraphs of a single
large graph G. The query nodes in training/test tasks are
different but are from the same communities in G.

• Single Graph Disjoint Communities. The graphs in any
training task, G, and test task G∗, are subgraphs of a single
large graph G. The query nodes in training/test task are from
different communities in G, such that Cq(G)∩Cq∗(G∗) = ∅,
for all q ∈ Q and q∗ ∈ Q∗.

• Multiple Graphs Disjoint Communities. The graphs in any
training task, G, and test task, G∗, are from different large
data graphs. The query nodes in training/test tasks are from
different communities. Here, all the subgraphs G in the
training tasks are from the same domain, whereas a subgraph
G∗ in a test task can be in the same or a different domain.
Example 1: Assume that the DBLP graph in Fig. 1 is a

single graph G. A graph G in a training task T = (G,Q,L)
and a graph G∗ in a test task T ∗ = (G∗, Q∗, L∗) are subgraphs
of G. Suppose a subgraph G in a training task contains a
part of the community that ‘Jure’ belongs to (i.e., the orange
nodes) in Fig. 1. In the scenario of shared communities, some
nodes in Q∗ in a test task T ∗ may contain some ground-truth
(e.g., orange nodes) that do not appear in any training tasks.
The model M trained is to find the community for any query
node in Q∗ in the same test task T ∗ without any ground-truth
associated with. In the scenario of disjoint communities, the
ground-truth given in a test task may have nothing to do with
the community that ’Jure’ belongs to. The model M trained
is to find the community for any query node in Q∗ in the test
task T ∗ without any ground-truth associated with. Note that

the community to be found is a different community that ’Jure’
belongs to. For the scenario of multiple graphs, a subgraph
G in a training task T is from a data graph, G, whereas a
subgraph G∗ in a test task is from a different data graph G′.

IV. NAIVE APPROACHES

To construct a meta model, a naive approach is to pre-train
a Graph Neural Network (GNN) model over D and finetune
the model for a new task T ∗. Below, we first introduce multi-
label classification by GNN, which serves as the basis of the
naive approaches and our meta-learning approach.

Given a graph G, a K-layer GNN follows a neighborhood
aggregation paradigm to generate a new representation for
each node by aggregating the representations of its neighbors
in K iterations. Let h(k)

v denote the representation of a node v
generated in the k-th iteration, which is a d(k) dimensional
vector. In the GNN k-th iteration (layer), for each node
v ∈ V (G), an aggregate function f

(k)
A aggregates the represen-

tations of the neighbors of v that are generated in the (k-1)-th
iteration as Eq. (1). Then, a combine function f

(k)
C updates

the representation of v by the aggregated representation a
(k)
v

and previous representation h
(k−1)
v as Eq. (2).

a(k)v = f
(k)
A ({h(k−1)

u |u ∈ N (v)}) (1)

h(k)
v = f

(k)
C (h(k−1)

v , a(k)v) (2)

The functions f
(k)
A and f

(k)
C are neural networks, e.g., linear

transformation with non-linearities and optional Dropout for
preventing overfitting. The neural network parameters from
f
(k)
A and f

(k)
C are shared by all the nodes.

For a given task T = (G,Q,L), a GNN can be built by
training over Q and L, then is deployed to make predictions
for any query node q ∈ V (G) \ Q as a query. Concretely, a
binary query identifier Iq(v) ∈ {0, 1} is concatenated with
the attribute feature vector A(v) to form the initial node
representation h

(0)
v , where Iq(v) = 1 if v is the query node

q otherwise Iq(v) = 0. Through transformation of K layers,
the 1-dimensional node representation h

(K)
v is activated by a

sigmoid function, i.e., ŷ(v) = sigmoid(h
(K)
v), which is the

likelihood that v is in the same community with query node
q. The given Q and the ground-truth L provide the training
data for the GNN model. For a known node q ∈ Q with its
ground-truth lq = (l+q , l

−
q), where l+q and l−q are the positive

and negative samples respectively, w.r.t. q, the binary cross
entropy (BCE) loss in Eq. (3) evaluates the divergence between
the predictive probability of the nodes from the positive and
negative samples, under the GNN with parameter θ.

L(q; θ) = −
∑

v+∈l+q

log ŷ(v+)−
∑

v−∈l−q

log
(
1− ŷ(v−)

)
(3)

Based on the simple GNN approach, we review three naive
approaches which are simple combinations of GNN and meta/-
transfer learning algorithms.

Feature Transfer. The learned parameters of shallow layers
in neural network can be transferred to new tasks, instead of

learning from scratch. The intuition is that the pre-trained low-
level feature transformation can be shared with a new task.
Thereby, we can train a GNN by the union of all the Q and L
of every training task T in the training set D. When a new task
T ∗ arrives, the parameters of f (K)

A and f
(K)
C will be updated

by minimizing the BCE loss in Eq. (3) over Q∗ and L∗ by
several gradient steps. However, the effectiveness of simple
feature transfer is limited. For one thing, this approach is
originally proposed for convolutional neural network (CNN) to
process image data, which has an explicit feature hierarchy to
be transferred. However, whether the same transfer mechanism
well suits GNN over graph data still needs exploration. For the
other thing, it is hard to control the gradient steps in the fine-
tuning procedure for various test tasks.

Model-Agnostic Meta-Learning (MAML). A meta GNN
model can be built by a model-agnostic meta-learning algo-
rithm, MAML [37], over a set of training tasks D. MAML
is a two-level end-to-end optimization algorithm, where the
lower level is to optimize task-specific parameters θi for one
task Ti and the upper level is to optimize the task-common
parameters θ∗ over the training task set D. The learned task-
common parameters θ∗ will be used as the neural network
initialization and updated by a few gradient steps to generalize
a new task T ∗, given the few-shot task-specific data Q∗

and L∗. To be concrete, training data Qi = {qj}Jj=1 and
Li = {lqj}Jj=1 of one training task Ti are divided into two
sets, Si = {(qj , lqj)}J

′

j=1 and Qi = {(qj , lqj)}Jj=J′+1. Si is
called support set and Qi is called query set. The task-specific
parameters θi is updated by the support set of Ti as Eq. (4) in
an inner loop, and the task-common parameters θ∗ is updated
by the query set over D in an outer loop as Eq. (5), by gradient
descent with learning rates α and β, respectively.

θi ← θ − α∇θ

∑
(q,lq)∈Si

L(q; θ) (4)

θ∗ ← θ − β∇θ

∑
Ti∼D

∑
(q,lq)∈Qi

L(q; θi) (5)

Although MAML is an effective and fairly general frame-
work, it suffers from a variety of problems, including train-
ing instability, restrictive model generalization performance
and extensive computational overhead [52]. To alleviate the
computational overhead, Reptile, is proposed as a first-order
meta-learning algorithm [39]. Reptile directly updates the task-
common parameters θ∗ by the first-order gradients, bypassing
the computation of the high-order derivatives. First, the inner
loop follows MAML to compute the task-specific parameters
θi for Ti as Eq. (4). Then, in the outer loop, the task-common
parameters θ∗ are directly updated by the difference of θi to
current parameters θ as shown in Eq. (6).

θ∗ ← θ + β
1

|D|
∑
Ti∼D

(θi − θ) (6)

Here, since evaluating the query set Qi of Ti is unnecessary,
Reptile does not split Qi and Si for updating θi, but update
θi by all the training data of Ti in the inner loop.

Graph Prototypical Network (GPN). Prototypical Net-
work [40] is an effective approach for few-shot classifica-
tion, which learns a metric space in which classification is
performed by computing distances to the centroid (prototype)
representation of each class. Different from general classifi-
cation, the prototype representation of CS should be query-
specific. For a query node q, two prototypes, c+q and c−q ,
are computed by the mean representations of the positive and
negative samples in the ground-truth lq , respectively (Eq. (7)).
Here, h(K)

v is the node representation of v of the K-th layer of
GNN, generated by Eq. (2). Then, the likelihood that node v
is in the same community with q is predicted by its distances
to the prototypes as Eq. (8), given a distance function dist.

c+q =
1

|l+q |
∑

v+∈l+q

h
(K)
v+ , c−q =

1

|l−q |
∑

v−∈l−q

h
(K)
v− (7)

ŷ(v) = softmax

(
[−dist(h(K)

v , c+q)∥ − dist(h(K)
v , c−q)]

)
(8)

In the training stage, ground-truth sets l+q and l−q are split into
two sets, respectively. One is used to compute the prototypes
in Eq. (7) and the other is to compute the BCE loss in
Eq. (3) for parameter update. It is worth noting that each
query node must compute its own prototypes as it has its
own communities. Therefore, GPN cannot support query node
in the test task without any ground-truth, where computing
prototypes is infeasible.

V. CGNP FOR CS
To overcome the disadvantages of the naive approaches,

we devise a novel meta-learning framework for CS, named
Conditional Graph Neural Process (CGNP), on the basis of
Conditional Neural Process (CNP) [14]. In this section, we
first introduce CNP as a preliminary, then present the core
idea of CGNP for CS as an overview of our framework.

CNP is a neural network approximation of stochastic pro-
cess, e.g., Gaussian Process (GP). It directly models the
predictive distribution conditioned on an arbitrary number of
context observations by neural networks. Specifically, given
observed data X = {xi}Ni=1 with corresponding ground-truth
Y = {yi}Ni=1, CNP models the predictive distribution of new
data x∗ with the target y∗, p(y∗|x∗, X, Y), by the neural
network architecture in Eq. (9).

p(y∗|x∗, X, Y) = ρθ

(
x∗,

N⊕
i=1

ϕθ(xi, yi)

)
(9)

Here, ϕθ : X × Y → Rd and ρθ : X × Rd → Re are neural
networks. The big ⊕ is a commutative operation that takes
elements in Rd and aggregates them into a single element of
fixed length Rd. ϕθ is the encoder that transforms pairs of
(xi, yi) into d-dimensional hidden representations. The big ⊕
aggregates N representations into a context representation in
a permutation-invariant fashion which memorizes the whole
dataset X and Y . To deal with a query for new observation
x∗, a decoder ρθ takes the context and x∗ as inputs and makes
a final prediction for x∗.

Similar to stochastic process, CNP can be used to build
meta models via learning the prior of data generation, where
each data instance is a collection of (xi, yi), i.e., a task. The
difference lies in that stochastic process, e.g., GP, explic-
itly specifies the prior distribution, and optimizes the hyper-
parameters of the prior by maximum likelihood. CNP instead
explicitly parameterizes the predictive distribution as neural
networks thereby learning the prior implicitly.

Conditional Graph Neural Process (CGNP). The CGNP
model we propose is a graph specification of CNP for query-
dependent node classification. For a CS task T = (G,Q,L),
CGNP directly models the predictive probability p(ˆlq∗ |q∗, T)
for a new query node q∗ ∈ V (G) \ Q, where ˆlq∗ =
{ ˆlq∗(v)}v∈V (G) ∈ {0, 1}n is the binary target prediction for
all the nodes in G. We instantiate the encoder ϕθ that encodes
each query node q with its ground lq in the task T , the com-
mutative operation that generates the context representation of
T , and the encoder ρθ that predicts p(ˆlq∗ |q∗, T) as Eq. (10).
CGNP inherits the interpretation of CNP [14] that using neural
networks to mimic an implicit kernel function, Kθ(·, ·), which
evaluating the similarity between an observed query node q
and the target query node q∗. The predictive probability is the
summation of the observed ground-truth lq , weighted by the
similarities of query nodes as Eq. (11).

p(ˆlq∗ |q∗, T) = ρθ

(
q∗,

⊕
(q,lq)∈(Q,L)

ϕθ(q, lq)

)
(10)

≈
∑

(q,lq)∈(Q,L)

Kθ(q
∗, q)⊙ lq (11)

Like k-nearest neighbor (KNN) algorithm, the non-parametric
metric learning intuition makes CGNP promising for small
samples and classification tasks as CS. Unlike KNN, for
CGNP, the kernel function Kθ(·, ·), as well as the multipli-
cation operation ⊙ is implicitly learned from the data by our
instantiated ρθ, ϕθ and big ⊕. In other words, KNN and CGNP
memorize the input data in different ways. KNN persists the
input data by simple concatenation whereas CGNP persists it
by learning a hidden context representation.

Apart from the implicit kernel Kθ(·, ·) derived from CNP,
in particular, we also impose an explicit metric objective on
the learning of CGNP. For CS task, since we only need a
binary prediction to indicate whether a node v is a community
member of the query node q∗, we let the predictive probability
of the membership be determined by the distance of v and q∗

in a hidden space H as Eq. (12). The mapping function from
the initial node features to that hidden space is specified by the
neural network encoder ϕθ, decoder ρθ and the commutative
operation big ⊕ of CNP.

p(ˆlq∗(v)|q∗, T) |= dist(H(q∗), H(v)) (12)

In this explicit metric-based modeling perspective, we use
inner product similarity to distinguish between membership
and nonmembership in the hidden space H that is learned in
the training process. The meta CGNP model is also a common

𝑞!

Support Set：

𝑞"
𝑞#

𝑞$
𝑞%

𝑞!

Support Set：
𝑞"

𝑞#
…

𝑛×𝑑

Adjacency
Matrix

Encoder 𝜙!

⨁

…

𝑛×𝑑

…

𝑛×𝑑

…

Decoder 𝜌!

Query Set 𝑄"：

𝑞$
Output
𝑝 ∈ ℝ#

𝑞%

𝑞!

Support Set 𝑆"：
𝑞"

𝑞#

𝑞&

Task 𝑖

Feature
Matrix

…

𝑛×𝑑'

…

𝑛×𝑑'

…

𝑛×𝑑'
*

Extract the embedding of query nodes

GNN
layer

…

Inner ProductMLP/GNN

Embedding
matrix 𝐻$

Combined
representation

𝐻

…

𝑛×𝑑'
𝐺"

Fig. 2: The Architecture of CGNP

neural network mapping, shared by multiple CS tasks, that
maps nodes for partitioning in a task-specific hidden space
H . Note the kernel Kθ(·, ·) in Eq. (11) and the distance
dist(·, ·) in Eq. (12) are two different concepts. The kernel
measures the similarity between two input query nodes q and
q∗ regarding their community-member relationship with all
the remaining nodes in G, whereas the distance measures the
closeness of a query node q and one remaining node v in
G regarding their community membership. To learn a task-
common kernel and distance mapping, CGNP iterates on the
training task set to optimize the neural network parameters θ,
where data in one task is processed as a batch. Compared with
the two-level optimization-based algorithm MAML, CGNP
learns the prior knowledge of CS by metric learning for node
clustering/partitioning, which better exploits small data for
classification and avoids unstable and inefficient parameter
adaptation in the test stage. The metric learning principle of
CGNP is also different from that of GPN. GPN computes
positive and negative prototypes, c+q and c−q , for each query
node q by its ground-truth. Inference on other nodes is based
on their distances to the prototypes. In contrast, CGNP directly
models and evaluates the distances between the query nodes
and the remaining nodes, thereby supporting queries without
any ground-truth in test tasks.

VI. CGNP MODEL DESIGN

We elaborate on how to design a CGNP model for the query-
dependent node classification over graphs. CGNP adopts an
encoder-decoder based architecture and operates on task-level.
Fig. 2 delineates the architecture of CGNP, which is composed
of a GNN based encoder operating on query-level representa-
tion, a commutative operation, big ⊕, combining query-level
representation to task-level context, and a decoder to perform
final predictions.

GNN Encoder (ϕθ(q, lq, G)). For each query node q ∈ Q and
its corresponding ground-truth lq ∈ L, the encoder ϕθ(q, lq, G)
is a K-layer GNN that maps the pair (q, lq) together with the
graph G to a node embedding matrix Hq = {h(K)

v }v∈V (G) ∈
Rn×dK

. Here, h(K)
v is a dK-dimensional output of the K-th

layer of GNN for node v. The subscript q of Hq indicates
the node embedding Hq is generated particularly for query
node q, as all the query nodes in Q share the same GNN

encoder. Specifically, as the inputs of GNN, the adjacency
matrix of graph G is used for message passing of GNN, and
(q, l) determines the initial node h

(0)
v as Eq. (13), where ∥

is the vector/bit concatenation operation, A(v) is the attribute
features of node v. In Eq. (13), Il(v) ∈ {0, 1} is a binary
ground-truth identifier which distinguishes nodes within and
without a same community, under the close world assumption.

h(0)
v = [Il(v)∥A(v)], Il(v) =

{
1 v ∈ l+q ∪ {q}
0 otherwise

(13)

We can concatenate auxiliary features, e.g., the core number
and local clustering coefficient of node v on h

(0)
v to exploit

additional structural information. The intuition of the GNN
encoder is to generate a view, Hq , for the whole graph given
an observation (q, lq) by message passing. A collection of
views will be aggregated by the commutative operation big
⊕. This idea is enlightened by a CNP specialization for 3D
scene understanding and rendering, Generative Query Network
(GQN) [53], where few-shot observed 3D views are summed
up for predicting the view of a new query perspective. It is
worth mentioning that, to the best of our knowledge, we are
the first to introduce the insight of GQN to graph domain.

Commutative Operation (⊕). To combine the views Hq for
all query nodes in Q into one context representation, CGNP
is equipped with three choices of commutative operations,
sum, average and self-attention. All of the three operations
are permutation-invariant.

Sum & Average are simple yet widely used pooling operations
in many CNP instances [14], [53]. The sum operation conducts
element-wise sum up as Eq. (14) and average further imposes
a denominator of |Q|.

H =
∑
q∈Q

Hq (14)

Self-Attention is inspired by Attentive Neural Process
(ANP) [54] and GP. Instead of giving the same weight to
aggregate multiple data points, ANP and GP aggregate ob-
served data by self-adaptive weights by self-attention [55] and
GP’s kernel function, respectively. Thereby, CGNP leverages
the self-attention to combine the node representations derived
from all the query nodes, weighted by a set of learnable

weights {wq}q∈Q ∈ R|Q| as H =
∑

q∈Q wqHq . The weights
{wq}q∈Q are shared by all the nodes in G. Specifically,
to compute the attention weight {wq}q∈Q by the multiple
views {Hq}q∈Q, let H = {Hq[v]}q∈Q ∈ R|Q|×dK

be the
matrix stacked by the |Q| node embeddings in {Hq}q∈Q for
an arbitrary node v. In Eq. (15), H1,H2 ∈ R|Q|×d′

are
transformed by linear weight matrices W1,W2 ∈ RdK×d′

,
respectively. {wq}q∈Q is computed by the inner product of
H1 and the transpose of H2 followed by a softmax function
that normalizes the weights to a probability, as Eq. (16) shows.

H1 = HW1, H2 = HW2, (15)

{wq}q∈Q = softmax

(⟨H1,HT
2 ⟩√

d′

)
(16)

Decoder (ρθ(q∗, H)). Given the combined context H , a de-
coder ρθ(q

∗, H) estimates the membership for a new query
node q∗, p(l∗|q∗, H) ∈ Rn, conditioned on the memorized
context H . We design three decoders with different complex-
ities, a simple inner product decoder, multi-layer perception
(MLP) decoder and GNN decoder. The latter two decoders
MLP and GNN are also based on inner product.

Inner Product Decoder is free of parameters and only operates
on the context H . Since H is a node embedding combined by
multiple views, we can directly compute the node similarities
between the embedding of a query node q and all the other
nodes. We use the inner product operation, ⟨·, ·⟩, to compute
the similarity score as Eq. (17), followed by a sigmoid func-
tion to predict the probability that one node is in the same
community with query node q∗. The inner product operation
indicates that the smaller the angle of two node embeddings
in the vector space, the more likely the two nodes are from
the same community.

p(ˆlq∗ |q∗, T) = sigmoid(⟨H[q∗], H⟩) (17)

MLP & GNN Decoder. MLP decoder firstly transforms the
context matrix H by an MLP, then feeds the transformed H
to an inner product operation of Eq. (17). Similarly, firstly
transforms the context matrix H by a K-layer GNN, followed
by the inner product. Note the GNN here is independent to
the GNN in the encoder. In contrast to the inner product
decoder, the MLP and GNN encoder impose additional para-
metric transformations on the combined context embedding
H to improve the modeling capability of the decoder. The
difference between MLP and GNN lies in that GNN further
allows message passing among the nodes whereas the MLP
transforms each node independently.

In the following, we present the learning algorithms to train
a meta CGNP model M and adapt the model to new tasks.
Recall that CGNP is to model a generative process of tasks
f ∼ D, where D is the set of training tasks {Ti}Ni=1. Suppose
the tasks are independent and the query nodes are independent
in each task. The marginal likelihood of CGNP over D is

p({L1, · · · , LN}|{Q1, · · · , QN}, θ) =
∏
Ti∈D

p(Li|Qi) (18)

Algorithm 1: CGNP Meta Train
Input : training task set D = {Ti}Ni=1, learning rate α, number of

epochs T
Output: parameters θ of meta model M

1 for epoch← 1 to T do
2 Shuffle the task set D = {Ti}Ni=1;
3 for Ti = (Gi, Qi, Li) ∈ D do
4 Si,Qi ∼ (Qi, Li); ▷ allocate support and query sets

5 for (q, lq) ∈ Si do
6 Hq ← ϕθ(q, lq , Gi); ▷ compute query-specific view

7 H ←
⊕

(q,lq)∈Si
Hq ; ▷ compute context embedding (Eq. (14))

8 for (q, lq) ∈ Qi do
9 p(l̂q |q,Si)← ρθ(q,H); ▷ compute pred. prob. (Eq. (17))

10 Compute the Loss L(q) by p(l̂q |q,Si) and lq ;

11 L ←
∑

(q,lq)∈Qi
L(q);

12 θ ← θ − α∇θL; ▷ update model parameters

13 return θ;

Algorithm 2: CGNP Meta Test
Input : test task T ∗ = (G∗, Q∗, L∗), parameter θ of meta model

M, a query node q∗ ∈ V (G∗) \Q∗

Output: predictive probability of q∗
1 S∗ ← (Q∗, L∗);
2 for (q, lq) ∈ S∗ do
3 Hq ← ϕθ(q, lq , G

∗); ▷ compute query-specific view

4 H ←
⊕

q∈S∗ Hq ;▷ compute context embedding (Eq. (14))

5 p(ˆlq∗ |q∗,S∗)← ρθ(q
∗, H); ▷ compute pred. prob. (Eq. (17))

6 return p(ˆlq∗ |q∗,S∗);

Similar to MAML, for one training task Ti, we split the train-
ing data Qi = {qj}Jj=1 and Li = {lqj}Jj=1 into the support set
Si = {(qj , lqj)}J

′

j=1 and query setQi = {(qj , lqj)}Jj=J′+1. The
learning objective is to minimize the negative log-likelihood
of the query set Qi conditioned on the support set Si across
all the tasks in D as Eq. (19). The negative log-likelihood loss
in Eq. (19) is in accordance with the BCE loss (Eq. (3)) of
the query nodes in the query set Qi.

L = −
∑
Ti∈D

∑
(q,lq)∈Qi

log p(lq|q,Si) (19)

= −
∑
Ti∈D

∑
(q,lq)∈Qi

(∑
v+∈l+q

log ŷ(v+) +
∑

v−∈l−q

log
(
1− ŷ(v−)

))

Meta Training. In the training stage, given the training task set
D, learning rate α, and the number of epochs T , a meta CGNP
model is trained by optimizing the negative log-likelihood of
Eq. (19) by stochastic gradient descent. Algorithm 1 presents
the training process. In each epoch (line 1-12), all the training
tasks are randomly shuffled in line 2. For each task Ti, we
get the allocated support set Si and query set Qi from the
given query node and ground-truth (line 4). First, each query
node q associated with the ground-truth l in the support set
Si, together with the graph structure Gi is fed into the GNN
encoder, ϕθ , to generate a query-specific view Hq (line 5-
6). Second, in line 7, all the views are aggregated into the
context matrix H by the permutation-invariant operation big

⊕, e.g., by the summation aggregation of Eq. (14). Third,
for each query node in the query set Qi, we compute its
predictive probability and loss in line 9-10, via evaluating the
inner product similarities between node presentations and the
query representation in H as Eq. (17). Fourth, the model is
updated by one gradient step of the aggregated task-specific
loss (line 11-12).

Meta Testing. For a test task T ∗ with graph G∗, few-
shot query nodes Q∗ and the associated ground-truth L∗,
Algorithm 2 presents the steps to predict the community
members for a query node q∗. The whole Q∗ and L∗ serve as
the support set S∗ (line 1), followed by computing the context
representation H (line 2-4). Finally, the query node q∗ and
context H are fed into the decoder network ρθ to obtain the
prediction.

Example 2: We use a real example to illustrate how CGNP
works in Algorithm 2 on a test task T ∗ = (G∗, Q∗, L∗)
of a DBLP subgraph, G∗, in Fig. 1. Suppose the task pos-
sesses query nodes Q∗ = {q1, q2, q3} correspond to 3 users
{Julian, Jaewon, Deepayan}, respectively, and the correspond-
ing ground-truth L∗ = {l1, l2, l3}. Each li is composed a
positive node set l+i , and a negative node set l−i . First, for the 3
pairs (q1, l1), (q2, l2), (q3, l3), by line 2-3, the GNN encoder ϕθ

generates 3 node embedding matrices H1, H2, H3 ∈ Rn×dK

as the query-specific views, respectively, where n = |V (G)|.
Second, by line 4, the combine operator big ⊕ aggregates the
three matrices H1, H2, H3 to one context embedding H . Given
a query node q∗ in the subgraph G, e.g, Jure, by line 5 the inner
product decoder ρθ predicts the probability of community
membership of Jure for all the nodes, by computing the
inner product similarity of vector H[q∗] and H followed by a
sigmoid function as Eq. (17).

Computation Complexity. We analyze the time complexity
of CGNP in brief. To be concise, we assume fixed dimension
vector add, multiplication, and inner product take constant
time when the dimension is far smaller than the graph node
number n. For the GNN encoder of CGNP, the time complex-
ity is O(Km|S|) for a single task, where K is the number
of GNN layers, m is the number of edges and |S| denotes
the number of shots. The complexity of the big ⊕ operation is
O(n|S|) for the sum and average pooling and O(n|S|2) for the
self-attention, respectively. For the decoders, the inner product
operation takes O(n|Q|) time, and an MLP decoder and K ′

layer GNN decoder takes extra O(n|Q|) and O(K ′m|Q|)
cost, respectively. In total, the complexity of the meta test
algorithm, Algorithm 2, is O(c(n+m)), where c is a constant
determined by K,K ′, |S|, |Q|. And the training complexity of
Algorithm 1 is O(TNc(n + m)), where T and N are the
numbers of iterations and training tasks.

VII. EXPERIMENTAL STUDIES

We introduce the experimental setup (section VII-A) and
report our substantial results as follows: ① compare the
effectiveness of CGNP under different task configurations
(section VII-B), ② evaluate the efficiency of CGNP with

TABLE I: Profile of Datasets
Dataset |V (G)| |E(G)| |A| |C(G)|
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Arxiv 199,343 1,166,243 N/A 40
DBLP 317,080 1,049,866 N/A 5,000
Reddit 232,965 114,615,892 N/A 50

Facebook

0 348 2,867 224 24
107 1,046 27,795 576 9
348 228 3,420 162 14
414 160 1,853 105 7
686 171 1,827 63 14
698 67 337 48 13

1684 793 14,817 319 17
1912 756 30,781 480 46
3437 548 5,361 262 32
3980 60 206 42 17

the baselines, and conduct scalability test for learning-based
approaches (section VII-C), ③ investigate the effect of the
volume of the ground-truth on the performance of CGNP
(section VII-D), and ④ conduct the ablation studies on the
CGNP model regarding the GNN layer and the commutative
operation (section VII-E).

A. Experimental Setup

Datasets: We use 6 real-world graph datasets, including five
single graphs (Cora, Citeseer, Arxiv, Reddit, DBLP) and one
multiple graph (Facebook). Table I lists the profile of the
6 datasets. Cora, Citeseer and Arxiv are citation networks
whose nodes represent research papers and edges represent
citation relationships. We use node class labels to simulate
the communities derived from the paper citation, which reveal
the research topics that papers belong to. DBLP [56] is a
co-authorship network where nodes represent authors and
two authors are connected if they collaborate on at least
one paper. A ground-truth community is by the publication
venue. Reddit is collected from an online discussion forum,
where nodes refer to posts, and an edge between two posts
exists if a user comments on both of the posts. The ground-
truth is the communities that posts belong to. Facebook is
a dataset containing 10 ego-centric social networks, which
have friendship community ground-truth. Cora, Citeseer, and
Facebook have discrete node attributes. The attributes of Cora
and Citeseer are the keywords in the papers and the attributes
of Facebook are the user properties. For Cora, Citeseer, and
Facebook, we use one-hot representations of the attributes as
the node features, concatenating with the core number and
local cluster coefficient of the node. We use core number
and local cluster coefficient alone as node features, for Arxiv,
DBLP and Reddit, as they do not have node attributes.

Tasks & Queries: We test our CGNP in different subgraphs
of same graph, different graphs, and different application
scenarios, following the 4 different types of tasks described
in section III: ① Single Graph Shared Communities Task
(SGSC), ② Single Graph Disjoint Communities Task (SGDC),
③ Multiple Graphs from One Domain Task (MGOD), and ④
Multiple Graphs from Different Domains Task (MGDD). For
SGSC, SGDC and MGDD, one task is generated by sampling a
subgraph of 200 nodes by BFS. The query nodes are randomly
drawn from a sampled subgraph, G, where we assign 1 or 5
query nodes to the support set S, i.e., 1-shot or 5-shot tasks,
and assign 30 query nodes to the query set Q disjointly. It

is worth noting that the query nodes may be from the same
ground-truth communities for SGSC whereas the query nodes
must be from disjoint communities for SGDC. For each query
q, we randomly drawn 5 positive samples from the community
of q, Cq(G), to construct l+q and 10 negative samples from
V (G)\Cq(G) to construct l−q . Here, for SGSC and SGDC, we
generate 100 training tasks for Cora, Citeseer, Arxiv, Reddit
and DBLP, and generate 50 valid tasks and 50 test tasks for
the five datasets, respectively. For MGOD, we use one Facebook
ego-network as the graph in one task, and sample the same
numbers of queries and labels as discussed above. Ten tasks
are split into 6 for training, 2 for validation, and 2 for testing.
For MGDD, we also generate 100 tasks of Citeseer for training,
50 tasks of Cora for validation, and 50 tasks of Cora for
testing, denoted as Cite2Cora.

Baselines: To comprehensively evaluate the performance of
CGNP framework for CS, we compare with 10 baseline
approaches, including 3 graph algorithms, 4 naive approaches
discussed in section IV, 3 traditional ML/DL-based ap-
proaches. ❶ Attributed Truss Community Search (ATC) [16].
It is an attributed community search algorithm given the input
of query nodes and attributes. Firstly, it finds the maximal
(k, d)-truss containing the query nodes. Then, the algorithm
iteratively removes unpromising nodes from the truss, which
has a small attribute score. ❷ Attributed Community Query
(ACQ) [15]. It aims to find subgraph whose nodes are tightly
connected and share common attributes with the given query
node. ❸ Closest Truss Community (CTC) [51]. It is a k-
truss based community search framework for non-attributed
graphs. Given a set of query nodes, Q, a greedy algorithm
finds a k-truss with the largest k that contains Q and has the
minimum diameter among the truss. ❹ Model-Agnostic Meta-
Learning (MAML) [37]. We use GNN as the base model. The
task-specific parameters of GNN are updated in an inner loop
as Eq. (4), and the task-common parameters are updated in
an outer loop as Eq. (5) over all training tasks. ❺ First-Order
Meta-Learning (Reptile) [39]. As a first-order alternative
of MAML, Reptile adopts the same GNN as the base
model. Task-common parameters are updated by Eq. (6) in
an outer loop, over all the training tasks. ❻ Feature Transfer
(FeatTrans). A base GNN model is pre-trained on all the
training tasks. For a test task T ∗ = (S∗,Q∗), the final layer
of the GNN is finetuned on the support set S∗ by one gradient
step, while all the other parameters are kept intact. ❼ Graph
Prototypical Network (GPN). For each query q, 3 positive
samples and 3 negative samples are randomly drawn from lq
to compute the query-specific prototypes. We use Euclidean
distance as the distance function in Eq. (8). ❽ Supervised
GNN (Supervised). One GNN model is trained for each
test task from scratch by the few-shot data in S∗. ❾ ICS-
GNN (ICS-GNN) [12]. For each query node q, a GNN model
is trained by some positive and negative samples and predicts
a score for the remaining nodes. Then, the algorithm finds
a subgraph connected to q, with a fixed number of nodes,
aiming to maximize the summation of the scores predicted by

GNN. ❿ AQD-GNN (AQD-GNN) [13]. The setting is similar to
Supervised. For each test task, AQD-GNN trains the model
from scratch by the few-shot data in S∗ and test in Q∗. It
is worth noting that GPN and ICS-GNN are different from
other learning-based approaches, where test query nodes are
required to have ground-truth. GPN uses the ground-truth to
compute the query-specific prototypes while ICS-GNN uses
the ground-truth to train a query-specific model. These two
approaches cannot fully generalize to query nodes without any
prior knowledge of membership.

Implementation and Settings: We give the settings of 8
ML approaches, including our CGNP and 7 baselines, MAML,
Reptile, FeatTrans, GPN, Supervised, ICS-GNN and
AQD-GNN. For the GNN encoder of CGNP and the base GNN
models of the 6 baselines, the number of the GNN layers is
3, where each GNN layer has 128 hidden units and a Dropout
probability of 0.2 by default.

We investigate popular GNN layers, including the vanilla
Graph Convolutional Network (GCN) [57], Graph Attention
Network (GAT) [58] and GraphSAGE [59], and finally choose
GAT by default due to its high performance. For the MLP
decoder of CGNP, we use a two-layer MLP with 512 hidden
units. For the GNN decoder of CGNP, we use a two-layer
GNN which has the same configuration as the encoder.

The learning framework of CGNP and the 7 ML baselines
are built on PyTorch [60] with PyTorch Geometric [61]. We
use Adam optimizer with a learning rate of 5× 10−4 to train
CGNP, GPN, ICS-GNN, Supervised, and FeatTrans by
200 epochs. For MAML and Reptile, the inner loop performs
10 gradient steps for training and 20 steps for testing, with
a learning rate of 5 × 10−4, and the learning rate for the
outer loop is 10−3. It is worth mentioning that the perfor-
mance of CGNP is robust in the range of empirical training
hyper-parameters. By default, the training and prediction are
conducted on a Tesla V100 with 16GB memory. ATC, ACQ
and CTC are tested on the same Linux server with 32 Intel(R)
Silver 4,215 CPUs and 128GB RAM.

Evaluation Metrics: To evaluate the quality of the found
result, we use accuracy, precision, recall and F1-score between
the prediction and the ground-truth. F1-score is the harmonic
average of precision and recall, which better reflects the overall
performance.

B. Effectiveness

We investigate the overall performance of CGNP on the
four types of tasks (SGSC, SGDC, MGOD and MGDD), for 1-
shot and 5-shot learning. The number of shots is the number of
query nodes provided in the support set. The three variants of
CGNP, CGNP with simple inner product decoder (CGNP-IP),
CGNP with MLP decoder (CGNP-MLP), and CGNP with
GNN decoder (CGNP-GNN) are compared with 10 baseline
approaches.

Table II presents the performance for tasks of single graph
with shared/disjoint communities. Here, we highlight the first
(purple) and the second (blue) best F1. We observe that CGNP

TABLE II: Performance on SGSC and SGDC Tasks (First and Second Best F1 Scores are Highlighted)

Dataset Task config. Single Graph with Shared Communities Single Graph with Disjoint Communities
1-shot 5-shot 1-shot 5-shot

Methods Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

C
it
es
ee
r

ATC 0.4759 0.8366 0.1044 0.1856 0.4623 0.8344 0.1005 0.1793 0.5393 0.8288 0.1131 0.1990 0.5373 0.8357 0.1144 0.2013
CTC 0.4386 0.8585 0.0226 0.0440 0.4264 0.8653 0.0225 0.0439 0.5043 0.8262 0.0262 0.0508 0.5010 0.8293 0.0261 0.0507
MAML 0.5293 0.6450 0.3942 0.4894 0.5494 0.6937 0.4108 0.5160 0.5528 0.5835 0.4071 0.4796 0.5738 0.6277 0.4022 0.4903
Reptile 0.5474 0.6382 0.4825 0.5495 0.5550 0.6886 0.4363 0.5342 0.5812 0.6038 0.5022 0.5483 0.5970 0.6500 0.4531 0.5340
FeatTrans 0.4719 0.6625 0.1571 0.2540 0.4548 0.6692 0.1337 0.2229 0.5044 0.5346 0.1602 0.2465 0.4925 0.5127 0.0819 0.1413
GPN 0.1744 0.1159 0.1564 0.1332 0.1383 0.1208 0.1441 0.1314 0.4498 0.4632 0.6199 0.5302 0.2957 0.3960 0.3263 0.3578
Supervised 0.5492 0.6574 0.4429 0.5293 0.5688 0.6895 0.4780 0.5646 0.5751 0.6072 0.4544 0.5198 0.6221 0.6692 0.5110 0.5795
ICS-GNN 0.4856 0.7115 0.1783 0.2852 0.4793 0.7094 0.1760 0.2821 0.5424 0.6738 0.1925 0.2994 0.5411 0.6658 0.1905 0.2963
AQD-GNN 0.5036 0.5993 0.4406 0.5079 0.5263 0.5806 0.6816 0.6270 0.5558 0.5717 0.5291 0.5496 0.5072 0.5100 0.7761 0.6155
CGNP-IP 0.6076 0.6429 0.7071 0.6734 0.6150 0.6562 0.7176 0.6855 0.5611 0.5488 0.7469 0.6327 0.5626 0.5515 0.7584 0.6386
CGNP-MLP 0.6041 0.6556 0.6490 0.6523 0.6160 0.6710 0.6735 0.6723 0.5510 0.5427 0.7174 0.6179 0.5773 0.5633 0.7588 0.6466
CGNP-GNN 0.6133 0.6393 0.7443 0.6878 0.6158 0.6513 0.7367 0.6914 0.5685 0.5527 0.7730 0.6446 0.5765 0.5631 0.7532 0.6444

A
rx
iv

ATC 0.5802 0.7253 0.0734 0.1333 0.5850 0.7349 0.0757 0.1373 0.5767 0.7875 0.0542 0.1015 0.5804 0.7930 0.0557 0.1042
CTC 0.5751 0.7693 0.0484 0.0911 0.5795 0.7783 0.0501 0.0942 0.5733 0.8160 0.0411 0.0782 0.5766 0.8200 0.0415 0.0790
MAML 0.5674 0.6512 0.0355 0.0673 0.5903 0.8005 0.0806 0.1465 0.5692 0.7345 0.0355 0.0676 0.5770 0.7221 0.0544 0.1011
Reptile 0.5762 0.6409 0.0829 0.1468 0.5888 0.8260 0.0726 0.1334 0.5697 0.6034 0.0693 0.1242 0.5719 0.6804 0.0409 0.0771
FeatTrans 0.5735 0.6527 0.0647 0.1177 0.5762 0.6626 0.0577 0.1062 0.5744 0.7288 0.0546 0.1016 0.5775 0.7066 0.0589 0.1087
GPN 0.2588 0.2458 0.2061 0.2242 0.2754 0.2773 0.2453 0.2603 0.4681 0.6257 0.5354 0.5771 0.4195 0.4867 0.6055 0.5397
Supervised 0.5531 0.4742 0.1488 0.2265 0.5816 0.6512 0.0877 0.1545 0.5461 0.4508 0.1364 0.2094 0.5791 0.6245 0.0957 0.1659
ICS-GNN 0.5904 0.6004 0.2016 0.3019 0.5896 0.5995 0.2011 0.3012 0.5968 0.6224 0.2153 0.3199 0.5999 0.6220 0.2168 0.3215
AQD-GNN 0.5183 0.4622 0.5217 0.4901 0.4821 0.4425 0.7266 0.5501 0.5215 0.4573 0.5105 0.4824 0.5069 0.4619 0.7220 0.5633
CGNP-IP 0.5172 0.4716 0.8118 0.5966 0.5520 0.4915 0.7889 0.6057 0.5699 0.5076 0.8067 0.6231 0.5856 0.5170 0.8083 0.6306
CGNP-MLP 0.5079 0.4649 0.7870 0.5845 0.5642 0.5003 0.7371 0.5960 0.5365 0.4806 0.6397 0.5489 0.5847 0.5194 0.6841 0.5905
CGNP-GNN 0.4699 0.4496 0.9161 0.6032 0.4649 0.4449 0.9205 0.5998 0.4938 0.4548 0.7464 0.5652 0.5520 0.4950 0.8399 0.6229

R
ed

d
it

ATC 0.6574 0.3566 0.4286 0.3893 0.6582 0.3553 0.4282 0.3883 0.4784 0.9586 0.4108 0.5752 0.4787 0.9572 0.4136 0.5776
CTC 0.6614 0.3593 0.4202 0.3874 0.6627 0.3583 0.4190 0.3863 0.4713 0.9593 0.4019 0.5664 0.4722 0.9577 0.4054 0.5697
MAML 0.7450 0.3254 0.0007 0.0014 0.7465 0.3812 0.0010 0.0020 0.4679 0.9864 0.3861 0.5550 0.5017 0.9863 0.4277 0.5967
Reptile 0.7414 0.3039 0.0116 0.0224 0.7447 0.2874 0.0050 0.0098 0.4051 0.9904 0.3107 0.4730 0.4046 0.9907 0.3121 0.4746
FeatTrans 0.7327 0.2972 0.0361 0.0644 0.7393 0.3224 0.0261 0.0484 0.2784 0.9369 0.1719 0.2906 0.2345 0.8634 0.1328 0.2302
GPN 0.4731 0.2285 0.5556 0.3238 0.5051 0.2253 0.5379 0.3175 0.6708 0.9891 0.6749 0.8024 0.6622 0.9871 0.6675 0.7965
Supervised 0.7079 0.2677 0.0845 0.1284 0.7288 0.2546 0.0364 0.0637 0.5834 0.9736 0.5296 0.6860 0.5536 0.9827 0.4907 0.6545
ICS-GNN 0.6949 0.3331 0.1959 0.2467 0.6975 0.3361 0.1990 0.2500 0.2748 0.9460 0.1652 0.2813 0.2725 0.9499 0.1652 0.2815
AQD-GNN 0.5221 0.2514 0.4427 0.3207 0.4141 0.2616 0.7199 0.3837 0.6476 0.8851 0.6772 0.7673 0.7830 0.9139 0.8250 0.8672
CGNP-IP 0.2557 0.2549 0.9991 0.4062 0.2543 0.2534 0.9983 0.4042 0.7885 0.9264 0.8184 0.8691 0.8482 0.9110 0.9122 0.9116
CGNP-MLP 0.2566 0.2544 0.9934 0.4051 0.2774 0.2557 0.9694 0.4047 0.8229 0.9397 0.8479 0.8915 0.8697 0.9508 0.8945 0.9218
CGNP-GNN 0.2548 0.2548 1.0000 0.4061 0.2534 0.2534 1.0000 0.4043 0.8578 0.8578 1.0000 0.9235 0.8584 0.8584 1.0000 0.9238

D
B
L
P

ATC 0.8376 0.8749 0.1752 0.2919 0.8230 0.8916 0.1676 0.2822 0.7527 0.7539 0.0922 0.1643 0.7360 0.7849 0.1038 0.1834
CTC 0.8365 0.9107 0.1599 0.2720 0.8216 0.9214 0.1534 0.2629 0.7512 0.7711 0.0803 0.1454 0.7345 0.8012 0.0931 0.1668
MAML 0.8161 0.6395 0.0864 0.1522 0.8029 0.6545 0.1065 0.1832 0.7383 0.5337 0.0581 0.1047 0.7201 0.5713 0.0776 0.1366
Reptile 0.8106 0.5135 0.1704 0.2559 0.7993 0.5833 0.1162 0.1938 0.7208 0.3890 0.1033 0.1632 0.7184 0.5508 0.0741 0.1306
FeatTrans 0.8194 0.6339 0.1296 0.2152 0.8057 0.6600 0.1315 0.2193 0.7417 0.5736 0.0796 0.1397 0.7238 0.6301 0.0789 0.1402
GPN 0.1819 0.0120 0.4528 0.0235 0.1790 0.0748 0.6846 0.1349 0.4017 0.2292 0.5911 0.3303 0.3581 0.2408 0.3988 0.3003
Supervised 0.7312 0.2142 0.1523 0.1780 0.7773 0.3987 0.1438 0.2113 0.6805 0.3075 0.1692 0.2183 0.7015 0.4255 0.1307 0.2000
ICS-GNN 0.7997 0.4662 0.3571 0.4044 0.7911 0.5030 0.3519 0.4141 0.7366 0.4978 0.2304 0.3150 0.7290 0.5414 0.2373 0.3299
AQD-GNN 0.6129 0.2257 0.4220 0.2941 0.5615 0.2705 0.6556 0.3830 0.5421 0.2990 0.5737 0.3931 0.4567 0.2994 0.6992 0.4192
CGNP-IP 0.3951 0.2206 0.8548 0.3507 0.5320 0.2829 0.8175 0.4203 0.3988 0.2779 0.8288 0.4162 0.5166 0.3404 0.7720 0.4725
CGNP-MLP 0.4926 0.2317 0.7147 0.3499 0.5203 0.2487 0.6488 0.3596 0.4437 0.2814 0.7415 0.4080 0.5652 0.3632 0.7304 0.4851
CGNP-GNN 0.4262 0.2223 0.8018 0.3481 0.4535 0.2463 0.7928 0.3759 0.3999 0.2682 0.7644 0.3971 0.3777 0.2894 0.8377 0.4302

outperforms all the baselines in most cases. The F1 of CGNP
succeeds all the baselines 0.28 on average. The superiority
of CGNP is reflected in improving the recall significantly,
while keeping relatively high accuracy and precision. In the
testing, we observe that the optimization-based approaches,
e.g., MAML, Reptile, predict almost all the nodes as the
negative samples. These approaches are sensitive to the im-
balanced label distribution, leading to a higher accuracy but
low recall. That indicates accuracy is not a suitable metric
to evaluate the overall performance for CS task, because
most nodes are in the negative class. A model is easy to
achieve high accuracy as long as it predicts more nodes as
the negative samples. ICS-GNN performs best in some cases
(e.g., DBLP and Facebook), as it is a query-specific model
and uses the ground-truth of the test query nodes additionally.
The naive approaches like FeatTrans even fail to search the
community in most cases due to their low F1 score. As for
ML/DL-based methods, they get comparable scores with naive
approaches. Since these methods are trained from scratch for
each new test task or each new query, ML/DL-based methods
can utilize task-specific knowledge. However, our approach
gets higher score than these methods. It indicates that our

TABLE III: Performance on MGOD and MGDD Tasks
Dataset Task config. 1-shot 5-shot

Methods Acc Pre Rec F1 Acc Pre Rec F1

F
a
ce
b
o
o
k

ATC 0.5564 0.2595 0.6305 0.3677 0.5592 0.2611 0.6464 0.3720
ACQ 0.3625 0.2190 0.8248 0.3461 0.4109 0.2266 0.7944 0.3526
CTC 0.8518 0.8734 0.3224 0.4710 0.8540 0.8904 0.3159 0.4664
MAML 0.6050 0.2319 0.1692 0.1956 0.6806 0.4091 0.2687 0.3244
Reptile 0.6356 0.3049 0.2215 0.2566 0.6680 0.4251 0.4642 0.4438
FeatTrans 0.6105 0.2462 0.1804 0.2082 0.5867 0.2936 0.3192 0.3059
GPN 0.1549 0.0648 0.1289 0.0863 0.0938 0.0469 0.0967 0.0631
Supervised 0.6291 0.2343 0.1350 0.1713 0.6073 0.3421 0.4079 0.3721
ICS-GNN 0.7606 0.5722 0.5598 0.5659 0.7574 0.5906 0.5516 0.5704
AQD-GNN 0.6779 0.3548 0.1644 0.2247 0.4239 0.3112 0.8396 0.4540
CGNP-IP 0.3727 0.3107 0.9925 0.4733 0.5121 0.3666 0.9756 0.5329
CGNP-MLP 0.4161 0.3203 0.9418 0.4781 0.5659 0.3860 0.8832 0.5372
CGNP-GNN 0.3077 0.2888 0.9835 0.4465 0.6029 0.4118 0.9145 0.5678

C
it
e2

C
or
a

ATC 0.5779 0.8191 0.1885 0.3064 0.5783 0.8154 0.1934 0.3127
CTC 0.5166 0.8714 0.0269 0.0523 0.5156 0.8692 0.0271 0.0526
MAML 0.5042 0.4986 0.3630 0.4202 0.5334 0.5544 0.3008 0.3900
Reptile 0.5202 0.5219 0.3620 0.4275 0.5658 0.6066 0.3538 0.4469
FeatTrans 0.5289 0.5529 0.2498 0.3442 0.5122 0.5464 0.0960 0.1632
GPN 0.2521 0.1716 0.3800 0.2364 0.1766 0.1656 0.3524 0.2254
Supervised 0.5446 0.5537 0.4099 0.4711 0.6066 0.6206 0.5320 0.5729
ICS-GNN 0.5532 0.6642 0.1923 0.2982 0.5538 0.6677 0.1932 0.2996
AQD-GNN 0.5145 0.5040 0.5685 0.5343 0.4652 0.4626 0.6365 0.5358
CGNP-IP 0.5351 0.5177 0.8822 0.6525 0.5280 0.5134 0.9241 0.6601
CGNP-MLP 0.5397 0.5207 0.8781 0.6537 0.5476 0.5267 0.8654 0.6548
CGNP-GNN 0.5367 0.5179 0.9181 0.6623 0.5456 0.5191 0.8532 0.6455

method is an efficient meta-learning approach, which can learn
prior knowledge from different tasks. The prior knowledge is
beneficial for predicting the community. CGNP is the most
robust learner due to its metric-based learning strategy, and
this property is similar to KNN and GP, which fully validates
the effectiveness of CGNP for small data.

Table III shows the performance for tasks of multiple
graphs. The tasks of multiple graphs are harder than that of
the single graph, and the tasks across domains are even harder.
The F1 of CGNP surpasses the F1 of all the baselines 0.25
by average. The CGNP variants dominate the top two best
models on Cite2Cora while it is overwhelmed by ICS-GNN on
Facebook. This demonstrates that CGNP can effectively learn
prior knowledge from only a few data of one graph and adapt
to other graphs even from different domains, and the learned
prior is indeed helpful. In fact, transferring the prior of a shared
node embedding function for clustering, as what CGNP does,
is much easier than transferring model parameters, as MAML,
Reptile and FeatTrans do.

CGNP with different decoders may bring different perfor-
mance to the result. The difference between them is subtle i.e.
less than 5%. Both MAML and Reptile perform worse than
CGNP in general. The graph algorithms ATC, ACQ and CTC
also fail to outperform learning-based approaches due to their
low recall. It is worth to mentioning that ACQ fails to return
the results for Cite2Cora and Citeseer in 12 hours, since ACQ
needs to enumerate all the sets of attributes that are shared
by the query node and candidates. In addition, ACQ relies on
the node attributes and it cannot support graphs without node
attributes, such as Arxiv, DBLP and Reddit.

C. Efficiency

We compare the efficiency of CGNP and the baselines
regarding the test/training time. Fig. 3(a) presents the total test
time. Regarding the prediction efficiency, our CGNP is the best
learning-based approach and the second-best among all the
approaches, which is over one order of magnitude faster than
ATC, ACQ, MAML, Reptile, GPN, Supervised, ICS-GNN
and AQD-GNN, and slightly faster than FeatTrans. For
one test task, MAML, Reptile and FeatTrans apply the
backward propagation algorithm to update the parameters
online, and Supervised and AQD-GNN train the parameters
from scratch. ICS-GNN needs to train a model for each query
node on-the-fly. GPN not only needs to apply the backward
propagation algorithm to update parameters but also has to
compute the distance between each node and prototypes. ACQ
needs to enumerate all the sets of attributes shared by the query
node and candidates, so that it fails to return the results for
Cite2Cora and Citeseer in 12 hours. For CTC, the intermediate
candidate communities of Reddit and Facebook are large, it
takes much longer time to compute the diameter and maintain
the k-truss structure.

Fig. 3(b) shows the meta training time of the learning-based
approaches on the training task set, where all the models are
trained by the same epoch of 200. Note that ATC, ACQ, CTC,
GPN, Supervised, ICS-GNN and AQD-GNN do not involve
this meta training stage. Our CGNP is one order of magnitude
faster than MAML and Reptile and its training efficiency is
close to the simplest transfer strategy, FeatTrans, MAML
and Reptile are quite time-consuming due to their two-
level optimization paradigm. For the three CGNP variants,
due to different model complexities, training CGNP-GNN is

Citeseer Arxiv Reddit DBLP Facebook Citeseer2Cora

10−1

100

101

102

103

Dataset

Ti
m

e
(s

)

ACQ ATC CTC MAML Reptile
FeatTrans GPN Supervised ICS-GNN AQD-GNN
CGNP-IP CGNP-MLP CGNP-GNN

(a) Total Test Time

Citeseer Arxiv Reddit DBLP Facebook Citeseer2Cora
101

102

103

Dataset

Ti
m

e
(s

)

(b) Total Training Time

Fig. 3: Training & Test Time (s)

200 1000 5000 10000
100

101

102

103

104

|V(G)| of DBLP

Ti
m

e
(s

)

MAML Reptile FeatTrans GPN Supervised
ICS-GNN AQD-GNN CGNP-IP CGNP-MLP CGNP-GNN

1

200 1000 5000 10000
100

101

102

103

104

|V(G)| of DBLP

Ti
m

e
(s

)

(a) Total Test Time

200 1000 5000 10000
102

103

104

105

|V(G)| of DBLP

Ti
m

e
(s

)

(b) Total Training Time

Fig. 4: Scalability of Training & Test (s)

slightly slower than that of CGNP-MLP, which is further
slightly slower than that of CGNP-IP. We observe that these
differences are negligible in the testing stage in Fig. 3(a).

Scalability Test. We explore the scalability of the learning-
based approaches. Fig. 4 shows the GPU training time and
test time of our CGNP and 6 ML baselines, as the number of
nodes of graph in each task increases from 1, 000 to 10, 000.
All the methods can scale to graphs of 10, 000 nodes in the
limited 16GB GPU memory. The test time of CGNP costs
the least time than other baselines in all the sizes. Only
FeatTrans spends close time to CGNP. Other methods like
MAML, Reptile, GPN, AQD-GNN show similar results as
shown in Fig. 3(a) due to their training strategy. While the
training time of CGNP does not increase significantly with
the size increasing. And it is one or two orders of magnitude
faster than other methods in large graph.

D. Effect of the ground-truth number

We further evaluate how the number of ground-truth sam-
ples influences the performance of the learning-based ap-
proaches. For each query node q in the support set, we vary
the number of positive/negative samples, i.e., |l+q |/|l−q |, from
2%/10% to 20%/100% of the total number of the nodes.
Fig. 5 shows the F1-score of the 3 CGNP variants and 7 ML
baselines on the 6 different tasks in 1-shot scenario. In Fig. 5,
CGNP variants surpass the ML baselines by 30% on average,
particularly under the circumstances of the scarce ground-
truth. For small training samples, Supervised suffers from

2/10 5/25 10/50 15/75 20/100
0

0.2

0.4

0.6

0.8

Ratio of Positive/Negative Samples (%)

F 1

MAML Reptile FeatTrans GPN Supervised
ICS-GNN AQD-GNN CGNP-IP CGNP-MLP CGNP-GNN

1

2/10 5/25 10/50 15/75 20/100
0

0.2

0.4

0.6

Ratio of Positive/Negative Samples (%)

F 1

(a) Citeseer

2/10 5/25 10/50 15/75 20/100
0

0.2

0.4

0.6

0.8

Ratio of Positive/Negative Samples (%)

F 1

(b) Arxiv

2/10 5/25 10/50 15/75 20/100

0.2

0.4

0.6

0.8

1

Ratio of Positive/Negative Samples (%)

F 1

(c) Reddit

2/10 5/25 10/50 15/75 20/100
0

0.1

0.2

0.3

0.4

0.5

Ratio of Positive/Negative Samples (%)

F 1

(d) DBLP

2/10 5/25 10/50 15/75 20/100
0

0.2

0.4

0.6

Ratio of Positive/Negative Samples (%)

F 1

(e) Facebook

20/20 40/40 60/60 80/80 100/100
0

0.2

0.4

0.6

0.8

Ratio of Positive/Negative Samples (%)

F 1

(f) Cite2Cora

Fig. 5: F1 under Different Ratios of Ground-truth

severe over-fitting, and FeatTrans and GPN also face a high
risk of over-fitting in their adaptation step. As the number
of ground-truth increases, the performance of GPN would
degrade, since more samples may blur the representation
of prototypes. The performance of MAML, Reptile and
AQD-GNN increase in general with the increasing number
of ground truth. In addition, Supervised would overtake
CGNP as shown in Fig. 5(a), when the number of ground-truth
is at a high level. Given sufficient training data, a task-specific
Supervised model can better adapt to the task, compared
with a meta model. The F1 of ICS-GNN tends to be stable on
varying ratios of samples. We conjecture the reason could be
its hyper-parameter, the community size to search, determines
the final results in the post-processing stage. Furthermore, we
find that the performance of CGNP is robust to the number of
ground-truth. That is in accordance with the nature of metric-
based learning, where only a few training samples can achieve
high performance for KNN and kernel learning.

E. Ablation Study

In this section, we conduct ablation studies to investigate
the effect of different options for the GNN layer and the com-
mutative operation on the performance of CGNP. CGNP-MLP,
the CGNP with an GNN decoder, is tested as the base CGNP
model and all the model variants are trained by the same
hyper-parameters. These model variants are tested on the 5-
shot Citeseer SGSC, Arxiv SGSC, Reddit SGDC, DBLP SGDC,
Facebook MGOD and Cite2Cora MGDD tasks, respectively.

GNN Layer. We adopt three popular GNN, GCN [57], GAT
[58] and GraphSAGE [59] as the encoder, where the commu-
tative operation is fixed to the average pooling. Table IV lists
the performance of the CGNP-GNN variants on the 2 tasks.

TABLE IV: Performance with Different Layers and Com. Op.
Dataset Layer Acc Pre Rec F1 ⊕ Acc Pre Rec F1

Citeseer
GCN 0.5001 0.4601 0.7779 0.5782 Att. 0.5956 0.6437 0.6893 0.6657
GAT 0.5520 0.4950 0.8399 0.6229 Sum 0.6154 0.6526 0.7306 0.6894
SAGE 0.6348 0.5555 0.8553 0.6736 Ave. 0.6158 0.6513 0.7367 0.6914

Arxiv
GCN 0.4540 0.4388 0.9076 0.5916 Att. 0.4816 0.4526 0.9080 0.6041
GAT 0.4649 0.4449 0.9205 0.5998 Sum 0.4696 0.4405 0.8044 0.5692
SAGE 0.6035 0.5305 0.7800 0.6315 Ave. 0.4649 0.4449 0.9205 0.5998

Reddit
GCN 0.8006 0.8596 0.9175 0.8876 Att. 0.8006 0.8006 1.0000 0.8893
GAT 0.8584 0.8584 1.0000 0.9238 Sum 0.7122 0.7122 1.0000 0.8319
SAGE 0.9335 0.9553 0.9679 0.9615 Ave. 0.8584 0.8584 1.0000 0.9238

DBLP
GCN 0.3189 0.2829 0.9308 0.4339 Att. 0.3761 0.2866 0.8223 0.4251
GAT 0.3777 0.2894 0.8377 0.4302 Sum 0.3742 0.2896 0.8472 0.4316
SAGE 0.5480 0.3446 0.6783 0.4570 Ave. 0.3777 0.2894 0.8377 0.4302

Facebook
GCN 0.3082 0.2880 0.9676 0.4438 Att. 0.5547 0.3795 0.8826 0.5307
GAT 0.6029 0.4118 0.9145 0.5678 Sum 0.5427 0.3762 0.9156 0.5333
SAGE 0.4361 0.3143 0.8263 0.4554 Ave. 0.6029 0.4118 0.9145 0.5678

Cite2Cora
GCN 0.5427 0.5179 0.8224 0.6356 Att. 0.5626 0.5310 0.8390 0.6504
GAT 0.5456 0.5191 0.8532 0.6455 Sum 0.5341 0.5113 0.8898 0.6494
SAGE 0.5591 0.5306 0.7867 0.6337 Ave. 0.5456 0.5191 0.8532 0.6455

In general, the GAT encoder consistently outperforms GCN
encoders. This is because GAT aggregates the node represen-
tation weighted by learnable weights via self-attention, where
the importance of each neighbor are considered regarding its
local structure, possible features and positive/negative labels.
The higher F1 of GAT demonstrates the attention mechanism
can also contribute to improving the performance of CGNP
in the encoder part. GraphSAGE encoder gets highest F1
scores in SGDC and SGSC tasks. This is because GraphSAGE
uses a generalized aggregation function and this mechanism
is beneficial for encoder of CGNP.

Commutative Operation. We adopt the sum, average pooling
and self-attention, introduced in section VI as the commutative
operation big ⊕ of CGNP-GNN, by fixing GAT as the encoder
GNN. Table IV shows the corresponding performance of the
3 model variants. In different tasks, the performance of three
commutative operations is different. However, the differences
between the three variants are relatively slight. We speculate
that different tasks, graphs or ground-truth distributions may
benefit from different commutative operations, and the effect
of the type of commutative operation is not as remarkable as
that of the GNN encoder.

VIII. CONCLUSION

In this paper, we study leveraging ML/DL approaches for
community search (CS), under the circumstance that the train-
ing data is scarce. We propose a metric-based meta-learning
framework, Conditional Graph Neural Process (CGNP) to
learn a meta model to capture the prior knowledge of CS.
The meta model is adapted to a new task swiftly to make
predictions of the community membership, where a task is
a graph with only a few given ground-truth. To the best of
our knowledge, CGNP is the first meta-learning model for CS
that utilizes the generalization ability of neural networks to
the greatest extent. Compared with algorithmic approaches,
CGNP supports flexible community structures learned from
the data. Compared with general meta-learning algorithms,
CGNP further exploits the characteristic of CS. Our extensive
experiments demonstrate that CGNP outperforms the two lines
of approaches significantly regarding accuracy and efficiency.

ACKNOWLEDGMENT

This work was supported by the Research Grants Council
of Hong Kong, China, No. 14203618, No. 14202919 and No.
14205520.

REFERENCES

[1] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” VLDB J., vol. 29,
no. 1, pp. 353–392, 2020.

[2] X. Huang, L. V. S. Lakshmanan, and J. Xu, Community Search over
Big Graphs, ser. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2019.

[3] R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
large networks,” Proc. VLDB Endow., vol. 8, no. 5, pp. 509–520, 2015.

[4] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in Proc. SIGKDD. ACM, 2010, pp.
939–948.

[5] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in Proc. SIGMOD. ACM, 2014, pp. 991–1002.

[6] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in Proc. SIGMOD. ACM,
2014, pp. 1311–1322.

[7] E. Akbas and P. Zhao, “Truss-based community search: a truss-
equivalence based indexing approach,” Proc. VLDB Endow., vol. 10,
no. 11, pp. 1298–1309, 2017.

[8] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in Proc. SIGMOD. ACM, 2013, pp. 277–
288.

[9] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang, “Index-based densest
clique percolation community search in networks (extended abstract),”
in Proc. ICDE. IEEE, 2019, pp. 2161–2162.

[10] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang, “Index-based
optimal algorithms for computing steiner components with maximum
connectivity,” in Proc. SIGMOD. ACM, 2015, pp. 459–474.

[11] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang, “Querying minimal
steiner maximum-connected subgraphs in large graphs,” in Proce. CIKM.
ACM, 2016, pp. 1241–1250.

[12] J. Gao, J. Chen, Z. Li, and J. Zhang, “ICS-GNN: lightweight interactive
community search via graph neural network,” Proc. VLDB Endow.,
vol. 14, no. 6, pp. 1006–1018, 2021.

[13] Y. Jiang, Y. Rong, H. Cheng, X. Huang, K. Zhao, and J. Huang,
“Query driven-graph neural networks for community search: From non-
attributed, attributed, to interactive attributed,” Proc. VLDB Endow.,
vol. 15, no. 6, pp. 1243–1255, 2022.

[14] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. J. Rezende, and S. M. A. Eslami,
“Conditional neural processes,” in Proc. ICML, vol. 80. PMLR, 2018,
pp. 1690–1699.

[15] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
for large attributed graphs,” Proc. VLDB Endow., vol. 9, no. 12, pp.
1233–1244, 2016.

[16] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” Proc. VLDB Endow., vol. 10, no. 9, pp. 949–960, 2017.

[17] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin, “Efficient computing
of radius-bounded k-cores,” in Proc. ICDE. IEEE Computer Society,
2018, pp. 233–244.

[18] R. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community search
in temporal networks,” in Proc. ICDE. IEEE Computer Society, 2018,
pp. 797–808.

[19] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. NeurIPS, 2018,
pp. 537–546.

[20] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proc. NIPS,
2017, pp. 6348–6358.

[21] J. Bai and P. Zhao, “Tagsim: Type-aware graph similarity learning and
computation,” Proc. VLDB Endow., vol. 15, no. 2, pp. 335–347, 2021.

[22] Z. Qin, Y. Bai, and Y. Sun, “Ghashing: Semantic graph hashing for
approximate similarity search in graph databases,” in Proc. KDD. ACM,
2020, pp. 2062–2072.

[23] Y. Bai, D. Xu, Y. Sun, and W. Wang, “Glsearch: Maximum common
subgraph detection via learning to search,” in Proc. ICML, ser. Proc. of
Machine Learning Research, vol. 139. PMLR, 2021, pp. 588–598.

[24] C. T. Duong, D. Hoang, H. Yin, M. Weidlich, Q. V. H. Nguyen, and
K. Aberer, “Efficient streaming subgraph isomorphism with graph neural
networks,” Proc. VLDB Endow., vol. 14, no. 5, pp. 730–742, 2021.

[25] H. Wang, Y. Zhang, L. Qin, W. Wang, W. Zhang, and X. Lin, “Re-
inforcement learning based query vertex ordering model for subgraph
matching,” CoRR, vol. abs/2201.11251, 2022.

[26] R. Ying, Z. Lou, J. You, C. Wen, A. Canedo, and J. Leskovec, “Neural
subgraph matching,” CoRR, vol. abs/2007.03092, 2020.

[27] K. Zhao, J. X. Yu, H. Zhang, Q. Li, and Y. Rong, “A learned sketch for
subgraph counting,” in Proc. SIGMOD. ACM, 2021, pp. 2142–2155.

[28] X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang, “Neural
subgraph isomorphism counting,” in Proc. KDD. ACM, 2020, pp.
1959–1969.

[29] K. Zhao, J. X. Yu, Q. Li, H. Zhang, and Y. Rong, “Learned sketch for
subgraph counting: a holistic approach,” The VLDB Journal, pp. 1–26,
2023.

[30] J. Qi, W. Wang, R. Zhang, and Z. Zhao, “A learning based approach to
predict shortest-path distances,” in Proc. EDBT. OpenProceedings.org,
2020, pp. 367–370.

[31] K. Zhao, Z. Zhang, Y. Rong, J. X. Yu, and J. Huang, “Finding critical
users in social communities via graph convolutions,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2021.

[32] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu, C. Paris,
S. Nepal, D. Jin, Q. Z. Sheng, and P. S. Yu, “A comprehensive survey on
community detection with deep learning,” CoRR, vol. abs/2105.12584,
2021.

[33] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
CoRR, vol. abs/1410.5401, 2014.

[34] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in Proc.
ICLR, 2015.

[35] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Proc.
ICML, ser. JMLR Workshop and Conference Proceedings, vol. 48.
JMLR.org, 2016, pp. 1842–1850.

[36] T. Munkhdalai and H. Yu, “Meta networks,” in Proc.ICML, ser. Pro-
ceedings of Machine Learning Research, vol. 70. PMLR, 2017, pp.
2554–2563.

[37] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. ICML, ser. Proceedings of
Machine Learning Research, vol. 70. PMLR, 2017, pp. 1126–1135.

[38] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. ICLR, 2017.

[39] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[40] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in Proc. NIPS, 2017, pp. 4077–4087.

[41] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot learn-
ing,” in Proc. CVPR. Computer Vision Foundation / IEEE Computer
Society, 2018, pp. 1199–1208.

[42] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. NIPS, 2016, pp.
3630–3638.

[43] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng, “Meta-
gnn: On few-shot node classification in graph meta-learning,” in Proc.
CIKM. ACM, 2019, pp. 2357–2360.

[44] K. Huang and M. Zitnik, “Graph meta learning via local subgraphs,” in
Proc. NeurIPS, 2020.

[45] A. J. Bose, A. Jain, P. Molino, and W. L. Hamilton, “Meta-graph: Few
shot link prediction via meta learning,” CoRR, vol. abs/1912.09867,
2019. [Online]. Available: http://arxiv.org/abs/1912.09867

[46] J. Chauhan, D. Nathani, and M. Kaul, “Few-shot learning on graphs via
super-classes based on graph spectral measures,” in Proc. ICLR, 2020.

[47] N. Ma, J. Bu, J. Yang, Z. Zhang, C. Yao, Z. Yu, S. Zhou, and X. Yan,
“Adaptive-step graph meta-learner for few-shot graph classification,” in
Proc. CIKM. ACM, 2020, pp. 1055–1064.

[48] F. Zhou, C. Cao, G. Trajcevski, K. Zhang, T. Zhong, and J. Geng,
“Fast network alignment via graph meta-learning,” in Proc. INFOCOM.
IEEE, 2020, pp. 686–695.

[49] W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang, “One-shot rela-
tional learning for knowledge graphs,” in Proc. EMNLP. Association
for Computational Linguistics, 2018, pp. 1980–1990.

[50] D. Mandal, S. Medya, B. Uzzi, and C. Aggarwal, “Meta-learning
with graph neural networks: Methods and applications,” CoRR, vol.
abs/2103.00137, 2021.

http://arxiv.org/abs/1912.09867

[51] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate
closest community search in networks,” Proc. VLDB Endow., vol. 9,
no. 4, pp. 276–287, 2015.

[52] A. Antoniou, H. Edwards, and A. J. Storkey, “How to train your
MAML,” in Proc. ICLR, 2019.

[53] S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Morcos,
M. Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka, K. Gregor et al.,
“Neural scene representation and rendering,” Science, vol. 360, no. 6394,
pp. 1204–1210, 2018.

[54] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, S. M. A. Eslami, D. Rosen-
baum, O. Vinyals, and Y. W. Teh, “Attentive neural processes,” in Proc.
ICLR, 2019.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. NIPS,
2017, pp. 5998–6008.

[56] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proc. ICDM. IEEE Computer Society, 2012,
pp. 745–754.

[57] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017.

[58] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. ICLR, 2018.

[59] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NIPS, 2017, pp. 1024–1034.

[60] “Pytorch,” https://github.com/pytorch/pytorch.
[61] “Pytorch Geometric,” https://github.com/rusty1s/pytorch geometric.

https://github.com/pytorch/pytorch
https://github.com/rusty1s/pytorch_geometric

	Introduction
	Related Work
	Problem Statement
	Naive Approaches
	CGNP for CS
	CGNP Model Design
	Experimental Studies
	Experimental Setup
	Effectiveness
	Efficiency
	Effect of the ground-truth number
	Ablation Study

	Conclusion
	References

