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Abstract—For distributed graph processing on massive graphs,
a graph is partitioned into multiple equally-sized parts which
are distributed among machines in a compute cluster. In the last
decade, many partitioning algorithms have been developed which
differ from each other with respect to the partitioning quality, the
run-time of the partitioning and the type of graph for which they
work best. The plethora of graph partitioning algorithms makes
it a challenging task to select a partitioner for a given scenario.
Different studies exist that provide qualitative insights into the
characteristics of graph partitioning algorithms that support a
selection. However, in order to enable automatic selection, a
quantitative prediction of the partitioning quality, the partitioning
run-time and the run-time of subsequent graph processing jobs
is needed. In this paper, we propose a machine learning-based
approach to provide such a quantitative prediction for different
types of edge partitioning algorithms and graph processing
workloads. We show that training based on generated graphs
achieves high accuracy, which can be further improved when
using real-world data. Based on the predictions, the automatic
selection reduces the end-to-end run-time on average by 11.1%
compared to a random selection, by 17.4% compared to selecting
the partitioner that yields the lowest cut size, and by 29.1%
compared to the worst strategy, respectively. Furthermore, in
35.7% of the cases, the best strategy was selected.

Index Terms—graph partitioning, automatic partitioner selec-
tion, distributed graph processing, machine learning

I. INTRODUCTION

In the last decade, many distributed graph processing sys-
tems and databases have emerged to process large graphs with
billions of edges, such as Pregel [1], Giraph [2], PowerGraph
[3], PowerLyra [4], GraphX [5] and Neo4j [6]. In order to en-
able distributed graph processing, a graph must be partitioned
into multiple equally sized parts which are distributed among
multiple machines in a compute cluster [7]–[9]. Each machine
performs computations on its partition and communication
between the machines takes place via the network. The amount
of communication between the machines is influenced by the
quality of the partitioning and affects the performance of the
distributed graph processing [9]–[12].

Many graph partitioning algorithms have been developed
and can be categorized as follows: Streaming algorithms [4],
[5], [13]–[23] stream the graph, e.g., as an edge list and, de-
pendent on the cut model, assign edges or vertices to partitions
one after the other on the fly. In-memory algorithms [8], [9],
[24]–[27] load the entire graph into memory for partitioning.
Hybrid algorithms [11] partition one part of the graph in-
memory and the remaining part in a streaming fashion. The

partitioning algorithms differ from each other with respect to
the partitioning quality, the run-time of the partitioning and the
type of graph for which they work best [11], [12], [28]–[30].

The plethora of graph partitioning algorithms makes it a
challenging task to select a partitioner for a given scenario. It is
hard to tell which partitioner will lead to the best partitioning
quality on a given graph, or how much will be the quality
difference between two partitioners. It is even harder to select
the partitioning algorithm that leads to the lowest end-to-
end run-time of both partitioning run-time and subsequent
graph processing run-time. However, the choice of partitioning
algorithm matters a lot. As we show in our paper, the best
choice can lead to a reduction of end-to-end run-time of up to
71% compared to the worst choice.

Existing studies [12], [28]–[30] on graph partitioning algo-
rithms provide interesting qualitative insights into the char-
acteristics of these algorithms. For example, it was shown
that there is not a single partitioner that works best for all
graph processing workloads, that partitioning run-time is not
always negligible and that the degree distribution of a graph
can influence that partitioning result. However, the studies are
not sufficient to automatically select a graph partitioner which
minimizes the end-to-end time for a given graph and graph
processing workload. In order to automatically choose among
multiple partitioners, a quantitative prediction of the partition-
ing run-time and the graph processing run-time is needed. For
example, if the end-to-end time should be minimized, the sum
of the predicted partitioning run-time and the graph processing
run-time matters.

We propose a machine learning-based approach to provide
such a prediction and thereby enable automatic partitioner
selection to either minimize the graph processing or end-
to-end processing run-time. To this end, we profile different
types of partitioners on a wide range of graphs and measure
the partitioning run-time, partitioning quality metrics and
properties of the graph. Then, we execute different graph
processing algorithms on the partitioned graphs to measure
the graph processing run-time. Finally, we use the profiled data
to build machine learning models to predict the partitioning
run-time and the partitioning quality metrics on an arbitrary
graph for different partitioners. In addition, we train a model to
predict the run-time of different graph processing algorithms
based on the predicted partitioning quality metrics and graph
properties. While there are different formalizations of graph
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partitioning, we focus on the edge partitioning problem in
this work, as it is commonly used in many distributed graph
processing frameworks [3], [5], [31] and subject to vibrant
research [7], [8], [11], [25].

A major challenge in using machine learning for the said
prediction tasks is the need for training data which covers a
wide spectrum of possible graphs (with different properties).
It can be difficult to acquire enough representative real-world
graphs for training for the following reasons. First, the number
of available real-world graphs can be limited. Second, only
known graphs can be used for the training, but new graphs with
different properties may appear in future workloads. Third, the
graphs may need to be downloaded from different sources in
different formats which is a time-intensive and brittle process.
An additional challenge is the selection of features for the
machine learning models and how to fine tune the models.

In our work, we make the following contributions:

1) We propose EASE, a machine learning-based system
to predict the partitioning and processing run-time for
a given graph, graph partitioner and graph processing
algorithm. We show that these predictions enable au-
tomatic edge partitioner selection which reduces the
end-to-end run-time on average by 11.1% compared to
a random selection, by 17.4% compared to selecting
the partitioner that yields the lowest cut size, and by
29.1% compared to the worst strategy, respectively.
Furthermore, in 35.7% of the cases, the best strategy
was selected. Our approach is extensible so that new
partitioners and graph processing algorithms can be in-
corporated without needing to re-train the entire model.

2) We show how to tackle the challenge of acquiring a large
variety of graphs for training by using a graph generator.
This makes our approach easy to apply and reproduce,
as we provide the graph generator along with its settings,
so that the model can be trained without being dependent
on external graph datasets.

3) We describe how the prediction accuracy of the machine
learning model can be further improved by enriching
the synthetic graphs with real-world graphs, if available.
This enables the user to include real-world graphs in
order to further increase the performance of the machine
learning model for specific graph types. With enrich-
ment, we decrease the prediction error for the replication
factor by a factor of up to 3.2× which leads to a
reduction of end-to-end time of 5% for the enriched type
of graph.

The rest of the paper is organized as follows. In Section II,
we introduce the edge partitioning problem, partitioning qual-
ity metrics and common graph properties. In Section III, we
show the importance of partitioning algorithm selection for
graph processing performance. In Section IV, we introduce
our machine learning based approach for partitioning quality,
partitioning run-time and processing run-time prediction. In
Section V, we evaluate our approach. In Section VI, we discuss
related work. Finally, we conclude in Section VII.

II. BACKGROUND

Let G = (V,E) be a graph consisting of a set of vertices
V and a set of edges E ⊆ V × V . The goal of edge
partitioning is to cut G into k partitions. In edge partitioning
[10], the edges are divided into k pairwise disjoint partitions
P = {p1, . . . , pk} with ∪ki=1pi = E. Each partition pi covers
a set of vertices V (pi) = {v ∈ V |∃u ∈ V : (u, v) ∈
pi ∨ (v, u) ∈ pi}. The vertices covered by a partition can be
further categorized into source and destination vertices defined
as Vsrc(pi) = {u ∈ V |∃v ∈ V : (u, v) ∈ pi} and Vdst(pi) =
{v ∈ V |∃u ∈ V : (u, v) ∈ pi}, respectively. Vertices which
are covered by multiple partitions are cut and need to be
replicated. The goal of edge partitioning [25] is to minimize
the number of replicated vertices with the constraint that the
edge partitions are α-balanced: ∀pi ∈ P : |pi| ≤ α · |E|k .

A. Partitioning Quality Metrics

Different partitioning quality metrics exist. First, the replica-
tion factor which is defined as RF (P ) = 1

|V |
∑
i∈[k] |V (pi)|.

It represents the average number of partitions a vertex spans.
The replication factor is closely related to the communication
cost [10], [28]. Second, different balancing metrics that mea-
sure how balanced a partitioning is. In distributed graph pro-
cessing, a balanced partitioning is important in order to avoid
overloading machines that become stragglers [28]. Often, the
edge balance is considered in vertex-cut partitioning (e.g., [7],
[8], [10], [11], [16], [20], [21]). In addition, the vertex balance
can influence the processing performance [8], [11] which we
also show in Section III. For directed graphs, one can further
differentiate between source vertex balance and destination
vertex balance if the computation or communication load is
dependent on the number of source or destination vertices per
partition.

Let M = {m1, . . . ,mk} be a set containing natural num-
bers. We define max(M) as the largest element x ∈ M s.t.
∀y ∈ M : y ≤ x, and avg(M) = 1

|M |
∑
i∈[k]mi as the

average of the set. Now, we define four balancing metrics.
1) Edge balance: Bedge(P ) =

max(|p1|,...,|pk|)
avg(|p1|,...,|pk|)

2) Vertex balance: Bv(P ) =
max(|V (p1)|,...,|V (pk)|)
avg(|V (p1)|,...,|V (pk)|))

3) Source balance: Bsrc(P ) =
max(|Vsrc(p1)|,...,|Vsrc(pk)|)
avg(|Vsrc(p1)|,...,|Vsrc(pk)|))

4) Destination balance:
Bdst(P ) =

max(|Vdst (p1)|,...,|Vdst (pk)|)
avg(|Vdst (p1)|,...,|Vdst (pk)|))

In this work, we build machine learning models to predict
these five partitioning quality metrics (i.e., replication factor
and the four balancing metrics) as a basis for graph processing
run-time prediction.

B. Graph Properties

There are different properties that characterize a graph. The
following graph properties are used as features for our machine
learning models. In Section IV-B, a detailed discussion is
provided why these graph properties are promising feature
candidates for our prediction tasks.

1) Density: The density is defined as dens(G) =
|E|

|V |·(|V |−1) and describes how many edges are contained



in a graph compared to all possible edges which could
be created with the given vertices [32].

2) Average degree: The average degree is defined as
deg(G) = 2·|E|

|V | .
3) Average number of triangles: A triangle is a complete

subgraph T = {VT , ET } of an undirected graph G =
(V,E) with exactly three vertices [33]. The number of
triangles of a vertex is defined as t(v) = |{T |v ∈ VT }|.
The average number of triangles is defined as t(G) =
1
|V |

∑
v∈V t(v).

4) Average local clustering coefficient (LCC): The local
clustering coefficient [33]–[35] of a vertex v is defined
as
c(v) = t(v)

0.5·deg(v)·(deg(v)−1) , with deg(v) being the
degree of v and t(v) the number of triangles (see above).
The average local clustering coefficient is defined as
C (G) = 1

|V |
∑
v∈V c(v).

5) Skewness: For all metrics which are calculated for each
vertex v in the graph (e.g., degree), also, the skewness of
the values can be described with Pearson’s first skewness
coefficient skew(values) = mean(values)−mode(values)

σ ,
with σ being the standard deviation of the values.

III. GRAPH PARTITIONER SELECTION

As mentioned in Section I, partitioning algorithms differ a
lot from each other. The properties of graph partitioning algo-
rithms pose a complex trade-off when selecting a partitioner.
While a better partitioning quality in many cases leads to faster
distributed graph processing, it may also be more expensive
in terms of partitioning run-time to achieve it.

We showcase this in the following experiments for two
graph processing algorithms: PageRank [36] and Label Propa-
gation [37]. We choose PageRank as a communication-bound
algorithm which is sensitive to the replication factor and
Label Propagation as a computation-bound algorithm which
is sensitive to load balancing.

A. PageRank

PageRank is executed on the graphs Friendster [38] and sk-
2005 [39]–[41] for 50 iterations on a Spark/GraphX cluster
with 64 machines. Friendster and sk-2005 consists of 1.8 B
and 1.9 B edges and 66 M and 51 M vertices, respectively.
The graphs are partitioned into 64 partitions with 2D [5],
2PS [21] and NE [25] as representatives for stateless stream-
ing, stateful streaming and in-memory partitioning algorithms,
respectively. Additionally, we use CRVC [5] as a baseline. In
Figure 1, we report the replication factor, the partitioning run-
time and the graph processing run-time.

We observe that a better replication factor leads to a lower
processing run-time. However, algorithms that yield a low
replication factor impose a longer partitioning run-time. In-
memory partitioning with NE is on both graphs much better
than stateless streaming with 2D in terms of replication factor
and graph processing run-time, but takes a much higher par-
titioning run-time. The graph partitioning run-time of stateful
streaming with 2PS is between the run-time of 2D and NE,
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Fig. 1: Performance comparison of graph partitioning algo-
rithms for PageRank computation on Friendster (FR) and sk-
2005 (SK) graph.
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Fig. 2: Performance comparison of graph partitioning algo-
rithms for Label Propagation computation on Socfb-A-anon
(FB) graph.

while the replication factor and the graph processing run-
time for 2PS depends on the graph. On sk-2005, 2PS is very
close to NE and therefore also much better than 2D. On
Friendster, 2PS is much worse than NE and close to 2D. These
examples show a correlation between replication factor and
graph processing run-time. Therefore, the replication factor is
an important partitioning feature for graph processing run-time
prediction.

B. Label Propagation

Label Propagation is executed on the graph Socfb-A-anon
[42] for 10 iterations on a Spark/GraphX cluster with 4
machines. Socfb-A-anon consist of 3.1 M vertices and 24 M
edges. The graphs are partitioned with 2D [5], DBH [16] and
NE [25] into 4 partitions. In Figure 2, we report the graph
processing run-time, the vertex balance and the replication
factor. The graph partitioning run-time is not reported since it
is negligible compared to the graph processing run-time in this
scenario. We observe that a better vertex balance (i.e., close
to 1.0) leads to a lower processing run-time. The replication
factor is less important since label propagation is computation-
bound. We conclude that balancing metrics can be important
features for graph processing run-time prediction.

These examples show that the prediction of graph process-
ing run-time can depend on different partitioning metrics, and
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that partitioning run-time can also play a significant role in
selecting a graph partitioner. We use these insights to design
EASE, as described in the next section.

IV. APPROACH

Motivation: Figure 3 illustrates a graph processing pipeline
consisting of three phases: First, a graph partitioner is selected.
Second, the graph is partitioned and finally, the distributed
graph processing is performed. The partitioner selection is an
important phase in this pipeline since it influences the run-
time of the graph partitioning and graph processing phase.
However, until now, the graph partitioner can only be selected
with manual heuristics and best practices which make it a
challenging task for unexperienced users. It is hard to tell
which selection will lead to the lowest end-to-end run-time for
a given graph processing workload and graph. Additionally,
the selection phase needs to be really fast so that it does
not slow down the pipeline. In order to tackle these chal-
lenges, we propose a machine learning-based system called
Edge pArtitioner SElection (EASE) which enables efficient
automatic partitioner selection.

Approach Overview: EASE’s design is visualized in Fig-
ure 4. The system consists of four components: (1) Partition-
ingQualityPredictor, to predict different partitioning quality
metrics (replication factor, edge balance, vertex balance, des-
tination balance and source balance) for different partitioners
on a given graph. (2) PartitioningTimePredictor, to predict
the partitioning run-time for different partitioners on a given
graph. (3) ProcessingTimePredictor, to predict the graph pro-
cessing run-time of a given graph processing algorithm for a
partitioned graph with the corresponding partitioning quality
metrics. (4) PartitionerSelector which, based on the prediction
of partitioning and processing run-time, automatically selects
a partitioner to either minimize the processing run-time or the
end-to-end run-time.

Training Phase Overview: The training phase of EASE con-
sists of four steps (see Figure 5). First, graphs with different
properties are collected or generated. Second, the graphs are

Generate or collect
training graphs 

Partition graphs. Measure
partitioning quality metrics
and partitioning run-time 

Execute graph processing
algorithms and measure

run-time

Train
EASE

1 2 3 4

Fig. 5: The training phase of EASE consists of four steps.

partitioned with different partitioning algorithms into different
numbers of partitions and the partitioning quality metrics and
the partitioning run-time are measured. Third, different graph
processing algorithms are executed for each combination of
graph and partitioner and the processing run-time is measured.
Forth, the acquired data is used to train machine learning
models for PartitioningQualityPredictor, PartitioningTimePre-
dictor and ProcessingTimePredictor. Finally, the models can
be applied to enable automatic partitioner selection.

In the following, we show how to acquire enough training
data which covers a wide spectrum of graphs with different
properties (Section IV-A) and which graph properties to select
as features for the machine learning models (Section IV-B).
Afterwards, we describe how to select and fine tune the
machine learning models (Section IV-C) and how to apply
the models to a given graph problem (Section IV-D). Finally,
we discuss design decisions for EASE (Section IV-E).

A. Training Data Acquisition

The goal of data acquisition is to cover a wide spectrum
of graph properties of unseen real-world graphs that are
expected as a workload and for which the three prediction
tasks should be performed. At the same time, it should be
easy to obtain these graphs. In Section I, we described that
it can be challenging for several reasons to acquire enough
real-world graphs. We tackle this challenge by using synthetic
graphs. By doing so, we can generate many graphs and cover
a wide spectrum of graph properties. This is our basis to
build machine learning models. Then, the models are tested on
real-world graphs and possible weaknesses can be identified,
e.g., that certain combinations of graph types and partitioning
algorithms do not yield accurate results. For these weaknesses
of the model, the training can be refined by enriching the
synthetic data with real-world graphs, if available.

In our work, we use R-MAT [43] as graph generator and
use the implementation of Khorasani et al. [44]. R-MAT is
lightweight, scales well, produces realistic graphs [45]–[47]
and is used in the well-known Graph500 benchmark [48].
According to the original R-MAT paper [43], the partitions a
and d can be seen as communities that are connected by edges
in the partitions b and c. The recursive generation process leads
to sub-communities. In order to generate different graphs, we
choose different combinations of parameters. First, we use
different number of vertices (215 to 227) and edges (1 M to
200 M). All combinations are shown in Table Ia. Thereby,
we can systematically generate graphs with different average
degrees and densities (which are seen in graph repositories like
SNAP [38] and KONECT [49]). Second, for each combination
of numbers of vertices and edges, we use nine combinations
of values for a, b, c and d. By doing so, we influence
the skewness of the degree distribution, the average local



clustering coefficient and the mean number of triangles. For
all graphs, we fixed d to 5%. We use 19% or 34% for c, which
leads to different numbers of edges between community a and
d. Now, we use different combinations for a and b. Larger
values for a lead to more skew in the degree distribution
and a larger community a. Larger values for b lead to more
edges between a and d (inter-cluster edges). All nine R-MAT
parameter combinations are shown in Table II.

We compare the graph properties of the 297 generated
graphs with real-world graphs. The violin plots in Figures 6a
to 6e show the distribution of the graph property values along
with the minimal, maximal and median value of the real-
world and generated graphs. The graph properties of real-
world graphs are covered by the generated graphs to a large
extent, which indicates good coverage of real-world graph
properties.

In Figure 6f, it is shown that the different combinations
of values for a, b, c and d influence the clustering coef-
ficient of the generated graphs and how “easy” the graphs
can be partitioned. In the figure, multiple graphs are rep-
resented as follows. All graphs have |E| = 160M edges.
Each line in the diagram represents how many vertices n ∈
{222, 223, 224, 225, 226, 227} the graph contains. The markers
on the lines are the nine different parameter combinations of
values for a, b, c, and d and therefore represent one single
graph each. On the y-axis, the clustering coefficient of the
graphs is shown. On the x-axis, the replication factor achieved
by partitioning the graph with the streaming partitioner High-
Degree Replicated First (HDRF) [7] into 64 partitions is
shown. We observe a correlation between high clustering
coefficients and low replication factors. Similar results were
observed for other graphs and partitioning algorithms.

The 297 R-MAT graphs are used to train PartitioningQual-
ityPredictor. However, the graphs are too small to mea-
sure representative figures of the performance of distributed
graph processing. Hence, we additionally generated 180 larger
graphs with the same parameter combinations for the R-
MAT generator from above (see Table II). These graphs
contain 1.8M to 50M vertices and 100M to 500M edges
(see Table Ib). The larger graphs are used to train both
ProcessingTimePredictor and PartitioningTimePredictor.

We also attempted to use the Barabasi-Albert model [50]
as graph generator (implementation of Hagberg et al. [51]).
The generator expects the total number of vertices |V | and
the number of edges m which are added for each new vertex.
We created 70 graphs with |V | = 1M and m ∈ {1, 2, . . . , 70}
to obtain graphs with average degrees between 2 and 140.
The average degree influences the replication factor). However,
if we fix m and change |V |, the replication factor does not
change for all partitioning algorithms. Therefore, it is not
possible to create graphs with the same average degree that
lead to different replication factors. In contrast to R-MAT, it is
also not possible to cover all the graph properties of real-world
graphs.

In conclusion, using R-MAT for graph generation yields
promising results, while the Barabasi-Albert model is not

TABLE I: Different combinations of the number of edges and
vertices in the generated R-MAT graphs used for training of (a)
PartitioningQualityPredictor and (b) ProcessingTimePredictor
and PartitioningTimePredictor.

(a) R-MAT-SMALL

|E| (M) |V |
1 215, 216, 217, 218, 219

40 221, 222, 223, 224, 225

80 221, 222, 223, 224, 225, 226

120 222, 223, 224, 225, 226

160 222, 223, 224, 225, 226, 227

200 222, 223, 224, 225, 226, 227

(b) R-MAT-LARGE

|E| (M) |V | (M)

100 1.8, 2.5, 4, 10
200 3.6, 5, 8, 20
300 5.4, 7.5, 12, 30
400 7.3, 10, 16, 40
500 9.1, 12.5, 20, 50

TABLE II: Nine combinations Ci for the R-MAT parameters
a, b, c and d used for generating training graphs.

C1 C2 C3 C4 C5 C6 C7 C8 C9

a 0.35 0.45 0.55 0.60 0.40 0.50 0.60 0.65 0.70
b 0.26 0.16 0.06 0.01 0.36 0.26 0.16 0.11 0.06
c 0.34 0.34 0.34 0.34 0.19 0.19 0.19 0.19 0.19
d 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

flexible enough to generate a broad variety of graphs.

B. Machine Learning Features

For all three prediction components of EASE, we use two
kinds of features. (1) Common graph properties in order
to map the graph to the closest graph(s) we have already
processed and (2) other features which are specific to the
prediction component.

1) Graph Properties: In total we use three different sets of
graph properties as features (see Table III). In the following,
we show which features are used for which prediction task.

PartitioningQualityPredictor uses the basic and advanced
graph properties as features. The rationale for using two
different feature sets is that the basic graph properties can
be easily computed if not known, compared to the advanced
graph properties which are more compute-intensive to obtain.
However, the advanced features provide more insights into the
characteristics of the graph and therefore may lead to a better
prediction. In many graph dataset repositories [38], [42], [49],
advanced properties are precomputed. The basic features are
the mean degree of the graph, the skewness of the in-degree
distribution, the skewness of the out-degree distribution and
the density of the graph. These are common properties of
graphs, and it is expected that they provide insights about how
well a graph can be partitioned. In experimental studies [12],
[28], the degree distribution was considered for the selection
of the partitioner. Furthermore, it was observed that different
partitioners can be sensitive to the skewness of the degree
distribution [7]. The advanced features are, in addition to the
basic features, the average number of triangles and the average
local clustering coefficient. It was observed that many real-
world networks have a community structure which leads to
a high clustering coefficient [34]. This can be an interesting
indicator for how well a graph can be partitioned. In [52],
the authors observed that their partitioner performed better (in
terms of cut-size) on graphs with higher clustering coefficients.
Therefore, we use the advanced features to investigate how
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Fig. 6: (a)-(e): Graph properties of generated R-MAT and Barabasi-Albert (BA) graphs and real-world (RW) graphs,
(f) correlation between high clustering coefficients and low replication factors.

much they can improve the replication factor prediction.
However, we have not found any literature that shows the
advanced features would influence the balancing. Therefore,
we use the advanced features only for the replication factor
prediction and not for balancing prediction.

ProcessingTimePredictor only considers the simple features.
Many graph processing algorithms perform computations for
each edge or vertex. Therefore, the number of edges and
vertices are the most important graph properties.

For the PartitioningTimePredictor, all feature sets are con-
sidered. For the stateless partitioners, the simple features
will be most important as they represent the size of the
graph. However, for the more advanced partitioners, also the
basic and advanced properties can be important features. For
example, in HEP [11], the decision of how much of the graph
is partitioned in-memory and how much in a streaming fashion
is decided based on the mean degree. Therefore, the mean
degree influences the partitioning-runtime [11]. As another
example, 2PS performs clustering as a pre-processing step and
sorts the clusters [21]. Therefore, the clustering coefficient can
be an important feature.

2) Other features: In addition to the graph properties,
we consider features which are specific to the prediction
component.

PartitioningQualityPredictor always considers as specific
features the graph partitioner and the number of partitions.
Some graph partitioners use a configuration parameter that
influences the partitioning quality. We treat different settings
of partitioner-specific parameters as if they were separate
partitioners. We showcase this in Section V for the HEP parti-
tioner [11] by using different parameters for τ ∈ {1, 10, 100}
that influence how many edges of the graph are partitioned
in-memory and how many in a streaming fashion. The three
settings result in three different partitioners HEP-1, HEP-10
and HEP-100.

ProcessingTimePredictor uses the partitioning quality met-
rics (replication factor, edge balance, vertex balance, source
balance and destination balance) as specific features. For
each graph processing algorithm, a separate model is trained.
Thereby, new graph processing algorithms can easily be added
and trained individually.

PartitioningTimePredictor considers the partitioner as spe-
cific feature. As for the quality prediction, we treat different
settings of partitioner-specific parameters as if they were
separate partitioners.

C. Training

For each of the three prediction components, we com-
pare six supervised machine learning algorithms. Polynomial
Regression is effective in predicting computational costs in
practice [53]. Support Vector Regression (SVR) leads to a
very good performance and is considered as an important
technique for regression tasks [54], [55]. Random Forest
Regressor (RFR) is relatively robust to outliers and noise, can
easily be parallelized and the importance of the used features
can be interpreted [56] - we leverage the interpretability of
RFR in Section V-E. Extreme Gradient Boosting (XGB) leads
to state-of-the-art results and is commonly used in well-known
machine learning competitions [57]. Decision tree ensembles
such as RFR or XGB can compete and even outperform deep
neural networks on tabular data [58]–[61]. K-nearest Neigh-
bors Regressor (KNN) serves as a simple baseline. In addition
to these traditional machine learning methods, we use a fully-
connected multi-layer perceptron (MLP) as a representative for
a feed-forward deep neural network.

Data Splitting: All models are trained on the syntheti-
cally generated R-MAT graphs. PartitioningQualityPredictor
is trained on the smaller 297 R-MAT graphs and Partition-
ingTimePredictor and ProcessingTimePredictor are trained on
the larger 180 R-MAT graphs. The hyper-parameter tuning
is performed for each machine learning algorithm on the
training set by using 5-fold cross-validation [62]. The models
are compared against each other based on the cross-validation
score and are retrained with the best hyper-parameter on the
complete training set. Finally, the models are evaluated on the
test set, which consists only of real-world graphs.

Preprocessing: We preprocess the generated data as fol-
lows: The data was standardized with z-score normaliza-
tion [63]. For PartitioningQualityPredictor and Partitioning-
TimePredictor, one-hot encoding is used for the partitioning
algorithms to use them as a numerical feature.

Hyper-Parameter Search: For all six machine learning
algorithms, hyper-parameters can be tuned. We performed a
grid search for each machine learning algorithm to identify
the best hyper-parameters. Please find the used combinations
in our GitHub repository [64].

Test & Enrichment: As the last step, our models are tested
on real-world graphs. In order to identify weaknesses of
PartitioningQualityPredictor, the prediction performance is
evaluated for different combinations of partitioning algorithm
and graph type. If one combination does not perform well, but
is relevant for the user, the training set can be enriched with
real-world graphs. For example, if a user mainly processes



TABLE III: Overview which graph properties are used in which feature set and which features are used for which prediction
component. I is the number of iterations of a given graph processing algorithm (e.g., PageRank), k is the number of partitions.

Graph Properties (Sec. II-B) Other Features (Sec. IV-B2)

Description |E| |V|
Mean

Degree Density
In-Deg.

Dist.
Out-Deg.

Dist.
Average

#triangles LCC
Quality Metrics

(Sec. II-A) k Partitioner I
Opt.
Goal

Feature Sets
Simple 3 3

Basic 3 3 3 3 3 3

Advanced 3 3 3 3 3 3 3 3

Prediction Tasks and Partitioner Selector
Partitioning Quality 3 3 3 3 3 3 3 3

Partitioning Time 3 3 3 3 3 3 3

Processing Time 3 3 3 3

Selector 3 3 3 3 3 3 3 3 3 3 3 3 3

wiki graphs, but the predictions for this graph type are not
accurate, the user can enrich the training data with real-world
wiki graphs in order to improve the prediction performance.

D. Inference
In order to make predictions for an unseen graph, for Par-

titioningQualityPredictor, the graph properties, the partitioner
and the number of partitions need to be provided. For Process-
ingTimePredictor, the graph processing algorithm to execute,
the graph properties and the partitioning quality metrics need
to be provided. In contrast to graph processing algorithms that
run until convergence, for graph processing algorithms that run
for a given number of iterations, also the number of iterations
needs to be provided. For PartitioningTimePredictor, the graph
properties and the partitioner is needed for inference. In order
to automatically select a partitioner with PartitionerSelector,
the optimization goal to either minimize the processing or the
end-to-end time, needs to be provided. Table III shows which
features are needed for which prediction task.

E. Discussion of Design Choices
Seperate Machine Learning Models for Prediction Tasks:

We discuss two alternatives to our approach. First, instead of
predicting the partitioning and processing run-time separately,
it is possible to train a single model which directly predicts
the end-to-end time (Alternative 1). Second, for the processing
run-time prediction, the partitioner could be used as a feature
(Alternative 2) instead of the partitioning quality metrics.
Therefore, in Alternative 2 it is not necessary to predict
partitioning quality metrics.

We decided against Alternative 1 for two reasons. First,
it is less flexible than our approach because only the end-
to-end run-time can be predicted. Some users may only
be interested in minimizing the graph processing run-time,
e.g., when partitioning can be performed offline on a cheap
compute node, while processing is running on an expensive
compute cluster, and therefore, only processing costs should
be minimized. Second, if a new partitioner is added or the
processing framework is changed, the entire model needs
to be retrained. With our approach, only the model for the
partitioning run-time or the processing run-time prediction
needs to be retrained in such a scenario.

We decided against Alternative 2 for the following reasons.
First, with our approach, new partitioning algorithms can be

incorporated with less overhead: If a new partitioner should be
included, it simply needs to be executed on the training graphs
to measure the quality metrics and the partitioning run-time.
Then, PartitioningQualityPredictor and PartitioningTimePre-
dictor can be retrained. ProcessingTimePredictor does not
need to be retrained, since a model already exists that predicts
the graph processing run-time based on the quality metrics. In
contrast, with Alternative 2, all graph processing algorithms
would need to be re-executed on the training graphs, since
the partitioner and not the partitioning quality is used as a
feature. Second, with our approach, additional insights can
be gained on how the partitioning quality metrics influence
the processing run-time. This can be useful for researchers to
better understand for which graph processing algorithm which
quality metrics are most important. This insight may be useful
for the design of new partitioning algorithms or optimizations
of graph processing frameworks. Third, the replication factor
prediction is also useful for memory-bound processing as each
replica produces a copy of the vertex state. For example, in
graph neural networks (GNNs), the vertex state can consist of
thousands of features and memory is heavily restricted because
the processing is performed on GPUs. In such a scenario,
the predicted replication factor can be an important decision
criterion for selecting a partitioner.

Use of Graph Embeddings as Features: It would also be
possible to use complex graph features for the prediction
tasks by computing graph embeddings with graph neural
networks (GNNs) to represent a graph with low dimensional
vectors [65]–[68]. In our experiments1, we measure the in-
ference time of a two-layer GraphSage GNN [66] with mean
pooling on a CPU and on two different GPUs for all graphs
of Table IV. We observe that the inference time on the CPU is
9 to 19 times the partitioning time of the slowest partitioner.
Therefore, it is possible to run all partitioners and to measure
the actual metrics instead of predicting them, so we could
not amortize the high inference time end-to-end. Inference
on GPUs at this scale is heavily bounded by GPU memory.
Even on a large GPU with 48 GB GPU memory, we can only
compute embeddings for the first four graphs of Table IV and
run out of GPU memory for the remaining graphs. It will not

1In our GitHub repository, we report all inference times on a CPU and two
different GPUs and compare them with EASE. Here, we summarize these
results.



TABLE IV: Test set (real-world graphs) for Partitioning-
TimePredictor and ProcessingTimePredictor.

Graph Edges (M) Vertices (M)

com-orkut.ungraph 117.2 3.1
enwiki-2021 150.1 6.3
eu-2015-tpd 165.7 6.7
hollywood-2011 229.0 2.0
out.orkut-groupmemberships 327.0 8.7
eu-2015-host 379.7 11.3
gsh-2015-tpd 581.2 30.8

pay off to use such heavy-weight processing just to optimize
the partitioning step of distributed graph processing. Therefore,
we do not use GNNs in our system.

V. EVALUATION

In the following, we evaluate the ability of EASE to predict
the partitioning quality metrics, the partitioning run-time and
the processing run-time. We also compare EASE to manual
heuristics in selecting a graph partitioner, such as random
selection or selection of the partitioner that yields to the lowest
replication factor.

A. Evaluation Metrics

We evaluate the machine learning models using evaluation
metrics that are commonly used for regression tasks. In the
following formulas, yi is the true value (e.g., the replication
factor) for the i-th sample, ŷi is the predicted value for the i-th
sample, y is the mean value of all samples and ε is a small
value in order to prevent divisions by zero.

1) Root Mean Squared Error is defined as
RMSE (y, ŷ) = 2

√
1
n

∑n−1
i=0 (yi − ŷi)2. The closer the

value is to 0, the better.
2) Mean Absolute Percentage Error is defined as

MAPE (y, ŷ) = 1
n

∑n−1
i=0

|yi−ŷi|
max(ε,|yi|) . The closer the

value is to 0, the better.

B. Test Set

For the evaluation of PartitioningQualityPredictor, we col-
lected 175 real-world graphs from SNAP [38], KONECT [49]
and the Network Data Repository [42]. The graphs can be
categorized into the following graph types: (1) 12 affiliation
graphs, (2) 3 citation graphs, (3) 6 collaboration graphs, (4) 5
interaction graphs, (5) 5 internet graphs, (6) one product
network, (7) 31 social networks, (8) 12 web graphs, (9) 101
wiki graphs. All graphs except 96 of the 101 wiki graphs
are used as the final test set for all evaluations. The 96 wiki
graphs are later used to evaluate training data enrichment.
From the same graph data repositories, we collected 7 real-
world graphs for the evaluation of PartitioningTimePredictor
and ProcessingTimePredictor (see Table IV). The links to all
graph datasets are provided in our GitHub repository [64].

C. Training, Validation & Test

Data Generation: For all three prediction components
we measure the graph properties introduced in Section II-B
of the training and the test graphs. We use 11 different
partitioners of four categories. (1) Stateless streaming with

1-dimensional hashing of destination vertices (1DD) and
source vertices (1DS) [5], 2-dimensional hashing (2D) [5],
canonical random vertex cut (CRVC) [5] and degree-based
hashing (DBH) [16]. (2) Stateful streaming with high-
degree replicated first (HDRF) [7] and two phase stream-
ing (2PS) [21]. (3) In-memory partitioning with Neighborhood
Expansion (NE) [25]. (4) Hybrid partitioning with Hybrid
Edge Partitioner (HEP) [11]. HEP uses a parameter τ to
control how many edges are partitioned in-memory and how
many in a streaming fashion [11]. As the authors suggest, we
configured HEP with τ ∈ {1, 10, 100} abbreviated as HEP-
1, HEP-10, HEP-100 and treat them as different partitioners.
Therefore, we have 11 partitioners in total. The selected
partitioning algorithms are strong baselines in their respective
category and claim to have a good balance in terms of
partitioning quality and partitioning run-time. Therefore, all of
them are potential candidates to minimize end-to-end run-time
and it is difficult to manually decide on the optimal partitioning
strategy.

For PartitioningQualityPredictor, we partition the graphs
into k ∈ K = {4, 8, 16, 32, 64, 128} partitions and measure
the five partitioning quality metrics discussed in Section II-A.

For ProcessingTimePredictor, we partition all graphs with
all partitioners into 4 partitions and measure the partitioning
quality metrics. Then, we execute 6 graph processing algo-
rithms on a Spark/GraphX cluster with 4 machines: PageR-
ank (PR) for 10 iterations, Connected Components (CC),
Single Source Shortest Paths (SSSP) with a randomly selected
seed vertex and K-Cores with k = deg(G). These algorithms
are characteristic for different sorts of workloads. In PageR-
ank, all vertices are active in each iteration. In Connected
Components, in the first iteration all vertices are active and
the number of active vertices decreases over time. In Single
Source Shortest Paths, in the first iteration only one vertex
is active. In the following iterations, the number of active
vertices first increases and then decreases until no vertex is
active anymore. In K-cores, in the first iteration many vertices
are active and become inactive over time. In addition to these
4 real-word algorithms, we implement a synthetic algorithm:
Each vertex in the graph contains a feature vector with s 64-bit
doubles and sends its feature vector along the outgoing edges
in each iteration. With s, the amount of communication can
be influenced. We set s to 1 and to 10 and abbreviate these
two configurations with Synthetic-Low and Synthetic-High for
low and high communication load, respectively. We set the
number of iterations to 5. For both the synthetic workloads and
PageRank, the computation and communication load remains
constant throughout the iterations and the number of iterations
is a parameter of the algorithms. Therefore, we measure the
average iteration time which is also the prediction target.
The total processing run-time is the average iteration time
multiplied with the number of iterations. For the remaining
algorithms in which the computation and communication load
changes over time and which run until convergence, we
measure the total processing time until convergence.

For the PartitioningTimePredictor, we partition all graphs



TABLE V: Quality metrics for ProcessingTimePredictor on
test set (average across real-world graphs).

Algorithm Model MAPE

Connected Components PolyRegression 0.272
K-Cores XGB 0.401
PageRank XGB 0.295
Single Source Shortest Paths XGB 0.300
Synthetic-High PolyRegression 0.259
Synthetic-Low PolyRegression 0.271

with all partitioners into 4 partitions and measure the parti-
tioning run-time.

Training and Validation: For all three prediction com-
ponents, we train regression models with all six machine
learning algorithms mentioned in Section IV-C and select the
best model based on the 5-fold cross-validation score on the
synthetic graphs. In the following, we evaluate the selected
models on the test set consisting of real-world graphs.

Test: We evaluated PartitioningTimePredictor and Process-
ingTimePredictor on the seven real-world graphs listed in Ta-
ble IV. For PartitioningTimePredictor we achieved a MAPE of
0.335 on the test set with XGB. For ProcessingTimePredictor,
XGB led to a MAPE of 0.295, 0.401, 0.300 for PageRank,
K-Cores and Single Source Shortest Paths, respectively (see
Table V). For Connected Components, Synthetic-Low and
Synthetic-High, Polynomial Regression led to a MAPE of
0.272, 0.271, 0.259, respectively. We evaluated Partition-
ingQualityPredictor with the 80 real-world graphs mentioned
in Section V-B. Table VI shows the results. RFR led to a
MAPE of 0.152, 0.144, 0.079, 0.154 for vertex balance, source
balance, edge balance and destination balance, respectively. In
terms of replication factor, XGB led to a MAPE of 0.296 for
the basic features and could be slightly improved to 0.288 by
using the advanced features. This means that the balancing
metrics can be predicted more accurately than the replication
factor. We further investigate for which combination of graph
type and partitioning algorithm the model works well and
for which combinations further training would be useful. The
results for the replication factor are shown in Figure 7a. We
observe that all partitioning algorithms achieve good scores for
the graph types citation, interaction, internet, product-network
and social. However, the predictions for the partitioners 2PS,
HDRF, HEP and NE on the graph types collaboration, web
and wikis are not as good. Similar results are achieved for
the advanced features. The results for the vertex balance are
shown in Figure 7c. The results for the other balancing metrics
are omitted here due to space limitations, but are available in
our GitHub repository [64].

Compared to the replication factor prediction, the prediction
results for the vertex balance are less dependent on the graph
type, but more on the partitioning algorithm. It is notable
that for NE and HEP-100, accuracy is rather low. When
investigating the problem in more detail, we found that this
is likely related to the unstable behavior of the partitioners
themselves: We observed that when NE is executed multiple
times on the same graph with the same number of partitions,
the vertex balance can heavily fluctuate by a factor of up to

TABLE VI: Quality metrics for PartitioningQualityPredictor
on test set (average across real-world graphs).

Target Model Features MAPE RMSE

RF (P ) XGB basic 0.296 1.197
RF (P ) XGB adv. 0.288 1.238
Bv(P ) RFR basic 0.152 0.921
Bsrc(P ) RFR basic 0.144 0.851
Bedge(P ) RFR basic 0.079 1.055
Bdst (P ) RFR basic 0.154 1.020

2.1 between different runs. This is due to the random seed
vertex selection in NE, which leads to different partitionings
in different runs. HEP is, to a lesser extent, affected by the
same problem. Different from vertex balance, the replication
factor remains stable between different runs of NE and HEP,
respectively.

D. Enrichment

We suggest to use real-world graphs to enrich the training
set for PartitioningQualityPredictor when the model trained
with synthetic data shows weaknesses at specific combinations
of graph types and partitioners.

The replication factor predictions for the partitioners 2PS,
HDRF, HEP and NE on the graph types collaboration, web and
wikis show weaknesses when compared to the other combina-
tions (see Figure 7a). Hence, we enrich the synthetic training
set with up to 96 additional real-world wiki graphs (Gwiki ).
In order to investigate how many graphs are needed for the
enrichment, we select subsets of 19, 38, 57, 76 and 96 of the
wiki graphs (Gselected ) for the enrichment. We use the same
test set as in Section V-B. Since we randomly select Gselected

from Gwiki , we repeat each experiment three times and report
the mean quality metrics along with the standard deviation.

For the balancing metrics and replication factor, we use the
RFR models of Table VI. XGB only leads to the slightly better
MAPE of 0.296 vs. 0.303 when using the basic features, but
the training time per enrichment level takes much longer for
XGB than for RFR (140 minutes vs. 1 minute).

The results for an enrichment of 96 real-world graphs are
shown in Figure 7b for each combination of partitioning
algorithm and graph type. In Figure 8, the influence of the
size of the enrichment data set on the quality metrics is shown.
The main observations for the replication factor prediction are
as follows:

(1) When enriching with all 96 real-world graphs, MAPE
for the wiki graphs decreases from 0.555 to 0.244 and from
0.566 to 0.178 for the basic features and the advanced features,
respectively. Therefore, through enrichment, the weakness of
the synthetically trained model for the wiki graphs could be
reduced.

(2) The advanced features lead to a better MAPE (0.178 vs.
0.242) with enrichment. Therefore, when using enrichment, it
is worth to consider the advanced features. A possible expla-
nation for this observation is that through enrichment, wiki
graphs with more realistic values for the advanced features
are used in the training and therefore, the unseen graphs can
be mapped to them better.
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(a) Replication factor.
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(b) Replication factor (with enrichment).
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(c) Vertex balance.

Fig. 7: MAPE scores for replication factor and vertex balance predictions.
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Fig. 8: Mean MAPE along with the standard deviation for
different graph types with different enrichment levels.

(3) As can be seen in Figure 8, the larger the enrichment,
the better the prediction. However, even with an enrichment of
only 19 graphs, the prediction quality can be increased a lot
(improvement of MAPE from 0.555 to 0.370). In other words,
already a small number of real-world graphs in the training
data set can improve the prediction for “weak spots” of the
model.

(4) In addition to the wiki graphs, also the prediction error
for other graph types (especially web graphs) was decreased
by the enrichment or at least kept stable (see Figure 8). It is
expected that the wiki graphs are similar to web graphs and
therefore insights gained at the basis of the wiki graphs can
be transferred to web graphs.

The prediction performance for the balancing metrics could
also be improved for the wiki graphs by enrichment. On
average, MAPE slightly decreases from 0.156 to 0.114 for
the wiki graphs. However, the overall MAPE for all graph
types slightly increases from 0.132 to 0.154. Overall, balanc-
ing predictions are already remarkably accurate even without
enrichment. Hence, enrichment is less effective in this case.

E. Feature Importance

In order to understand how important the different features
are for the prediction of the partitioning quality metrics, we
calculate the feature importance for each feature for the RFR
model. A random forest is an ensemble of multiple decision
trees. The decision trees split all samples recursively into
smaller subsets based on the features. A purity metric is used
in order to decide which feature to use for splitting a node. In

TABLE VII: Feature importance for quality metrics.

Feature RF Bv Bsrc Bdst Bedge

Partitioner 0.299 0.268 0.245 0.542 0.244
Mean Degree 0.274 0.065 0.059 0.058 0.036
#Partitions 0.256 0.271 0.293 0.177 0.472
Degree Distr. 0.165 0.368 0.372 0.214 0.214
Density 0.007 0.028 0.031 0.009 0.034

the machine learning framework we used, the mean squared
error is used as the purity metric [69]. The importance of a
feature is expressed by how much the purity is increased by
splitting a node based on that feature, weighted by how many
samples are contained in that node divided by the total number
of samples.

Table VII lists the feature importance of the basic features
for all partitioning quality metrics. We make the following
observations: First, both the partitioning algorithm and the
number of partitions are very important for all partitioning
quality metrics, ranging from 0.244 to 0.542 and from 0.177
to 0.477, respectively. Second, the degree distribution is an
important feature with 0.165 for the replication factor and
a very important feature (0.214 to 0.372) for the balancing
metrics. Third, the mean degree is an important feature (0.274)
for the replication factor and a less import feature (0.036 to
0.065) for the balancing metrics. The density is for all quality
metrics the least important feature (0.007 to 0.034).

These results seem reasonable. First of all, it is expected that
both, the partitioning algorithm and the number of partitions,
are important to the machine learning model. Second, it seems
plausible that the mean degree is important for the replication
factor. We observed for all partitioning algorithms, that the
higher the average degree, the higher the replication factor.
Third, the importance of the degree distribution is also ex-
pected. It was already observed that the degree distribution can
influence partitioning algorithms [7], [21]. Interestingly, the
density is not important. Probably, the mean degree captures
similar characteristics and no additional density feature is
necessary. Therefore, the density could be discarded from the
feature set.

F. Automatic Partitioner Selection

In the following, we evaluate how well PartitionerSelector
can automatically select a partitioner based on the predic-



TABLE VIII: Comparison of different partitioner selection
strategies: SPS , SO, SSRF , SR and SW represent the time
to which PartitionerSelector (our approach), the optimal par-
titioner, the partitioner with the smallest replication factor, a
randomly selected partitioner and the worst partitioner lead.
We differentiate between two selection goals: minimize the
end-to-end time (E2E) or the processing time (Pro.).

(a) No Enrichment

Goal Algorithm
SPS in % of baselines SSRF in %

of SOSO SSRF SR SW

E2E SSSP 102 69 84 67 152
E2E CC 103 58 76 57 184
E2E PR 110 96 96 79 119
E2E K-Cores 111 76 91 73 152
E2E Synthetic-High 113 98 92 73 119
E2E Synthetic-Low 117 99 95 76 121

Pro. SSSP 106 93 94 80 117
Pro. CC 107 92 91 74 121
Pro. PR 111 99 96 79 116
Pro. K-Cores 113 94 97 80 123
Pro. Synthetic-High 114 99 92 72 117
Pro. Synthetic-Low 119 101 96 76 120

(b) Enrichment

Goal Enrich.

SPS in % of baselines
(Enwiki-2021)

SPS in % of baselines
(All Graphs)

SO SR SW SO SR SW

E2E No 113 94 78 110 89 71
E2E Yes 107 89 74 112 91 72

Pro. No 111 91 73 114 96 78
Pro. Yes 106 88 71 117 98 80

tions of PartitioningQualityPredictor, PartitioningTimePredic-
tor and ProcessingTimePredictor to minimize the end-to-end
time and the graph processing time. We compare PartitionerS-
elector (SPS ) against four baseline strategies: (1) Select the
worst partitioner (SW ), (2) select a random partitioner (SR),
select the optimal partitioner (SO) and (4) select the partitioner
with the smallest replication factor (SSRF ).

Our main observations are as follows. In 26.2% and 35.7%
of the cases, SPS selects the optimal partitioner out of the 11
partitioners to minimize the processing and end-to-end time,
respectively. In comparison, manual selection strategies like
SSRF and SR fall behind. SSRF selects in 7.1% and 14.3% of
the cases the best partitioner in terms of processing and end-to-
end time, respectively. SR selects only in 9.1% (= 1

11 · 100%)
of the cases the best partitioner for both optimization goals.

Further, we analyze the processing time and the end-to-
end time to which the selection of SPS lead compared to
the four baselines. Table VIIIa (see columns 3-6) shows both
the processing and end-to-end time of SPS ’s selection in
percentage of the respective baseline for each graph processing
algorithm (lower is better).

Worst selection (SW): SPS leads to a processing time
which is on average between 72% (Synthetic-High) and 80%
(SSSP) of SW and to an end-to-end time which is on average
between 57% (CC) and 79% (PR) of SW (see column SW
in Table VIIIa). Therefore, SPS leads in all cases to a much
better performance.

Random selection (SR): The end-to-time of SPS is on
average between 76% (CC) to 96% (PR) of SR and the
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Fig. 9: End-to-End time comparison for different partitioners
and the selection strategies SPS and SSRF on the graph
Enwiki-2020 for (a) Synthetic-High and (b) CC.

processing run-time is on average between 91% (CC) to 97%
(K-cores) of SR (see column SR in Table VIIIa). Therefore,
SPS also outperforms random selection.

Optimal selection (SO): Compared to the optimal selection
SO, SPS leads to an end-to-end time which is on average
between 102% (SSSP) and 117% (Synthetic-Low) of SO and
to a processing time which is on average between 106%
(SSSP) and 119% (Synthetic-Low) of SO (see column SO
in Table VIIIa). Therefore, for the algorithms SSSP, CC
and PR, the selection is relatively close to the optimum for
both optimization goals, while for K-Cores and the synthetic
algorithms there is more room for improvement.

Smallest replication factor (SSRF): SPS leads to an end-to-
end time which is on average between 58% (CC) and 99%
(Synthetic-Low) of SSRF . The processing time is between
92% (CC) and 101% (Synthetic-Low) of SSRF (see column
SSRF in Table VIIIa). Only in one case (for the algorithm
Synthetic-Low) SPS leads to a graph processing time which
is 101% of SSRF .

We further compare SSRF with the optimal strategy SO. In
the last column of Table VIIIa, we report the processing and
end-to-end time of SSRF ’s selection in percentage of SO for
each graph processing algorithm.We observe that even if the
replication factor of all partitioners would be known, it is not
sufficient for partitioner selection. First of all, in addition to the
replication factor, the balancing metrics are important. Second,
the partitioning time is important and there are cases where
it is not worth to invest much time for partitioning to achieve
the smallest replication factor, as it can not be amortized
by a lower graph processing time. This can be seen in
Figure 9: HEP-100 achieves the smallest replication factor and
minimizes the end-to-end time for the communication-bound
algorithm Synthetic-High (see. Table 9a). The partitioning time
can be amortized. However, for CC, fast partitioning with
DBH leads to the lowest end-to-end time (see Table 9b). SPS

takes into account both partitioning and processing time, and
hence, makes a good choice in a wide range of workloads. We
further want to point out that SSRF is a rather hypothetical
strategy, as the replication factor is usually not known before
a graph has been partitioned.
We also investigated whether through enrichment with the
wiki graphs, the performance of SPS for enwiki-2021 can be
improved. We used the same random forest models to predict



the partitioning quality with and without enrichment as in
the experiments in Section V-D. Compared to SPS without
enrichment, SPS with enrichment reduces the processing and
end-to-end time for enwiki-2021 on average by 4% and 5%,
respectively. Evaluated on all graphs, the selection of SPS with
enrichment increases the processing and end-to-end time on
average by 2% and 3%, respectively. In Table VIIIb, we report
the average processing and end-to-end time of SPS ’s selection
(with and without enrichment) in percentage of the respective
baseline evaluated on enwiki-2021 (see columns 3-5) and
evaluated on all graphs (see columns 6-8). Improvements
in the target category are larger than the degradation of
performance in other categories, so that enrichment pays off
if the majority of workloads concern the enriched graph type.

Summary: Our experiments showed that EASE can provide
a quantitative prediction of the partitioning run-time and
partitioning quality for different types of graph partitioning
algorithms. On that basis, EASE is able to predict the run-
time of graph processing algorithms with different workload
characteristics. We achieved a high prediction accuracy by
solely training with synthetic graphs which can be improved
by enriching the training data with real-world graphs. Based on
run-time predictions, we provide automatic graph partitioner
selection to either minimize the graph processing or the
end-to-end run-time. In both cases, the automatic selection
outperforms manual selection heuristics.

VI. RELATED WORK

In the past years, experimental studies [12], [28]–[30], [70]
have been conducted that provide qualitative insights into the
characteristics of different graph partitioning algorithms to
help selecting one. However, the studies are not sufficient for
automatic partitioner selection for a given scenario and do not
include an automatic method to incorporate new partitioning
and graph processing algorithms. In our work, we provide a
quantitative prediction of the expected partitioning quality, the
partitioning and graph processing time that is easily extensible
to include new partitioning and graph processing algorithms.

Lots of research has been conducted in the field of graph
generators (e.g., [34], [43], [45], [46], [50], [71]–[73]) to
generate synthetic graphs with real-world properties. Graph
generators are an important component of our approach and we
propose to select a suitable graph generator that can generate
representative graphs which are expected as a workload and
for which the partitioning quality, the partitioning and graph
processing run-time should be predicted. In our experiments,
we used R-MAT as a domain-agnostic general graph generator
[46] which can create graphs with real-world properties [45].
However, further graph generators such as [73]–[75] can be
explored for our approach in the future.

Many graph partitioning algorithms have been developed
and can be categorized into (1) streaming algorithms (2) in-
memory algorithms and (3) hybrid partitioning algorithms.
Streaming partitioning algorithms [4], [5], [13], [14], [16]–
[23], [76] stream the graph, e.g., as an edge list and assign

edges (vertex-cut) or vertices (edge-cut) on the fly to partitions.
Streaming algorithms can be stateless or stateful. In-memory
partitioners [8], [9], [24]–[27], [77] load the complete graph
into memory to perform partitioning. Therefore, in contrast
to streaming partitioning, a complete view of the graph is
available for partitioning. This leads in many cases to lower
replication factors, but the partitioning run-time and memory
overhead may be higher. Hybrid edge partitioning [11] is a
combination of in-memory and streaming partitioning. One
part of the graph is partitioned in-memory and the remaining
part in a streaming fashion. In the evaluation we showed
that the partitioning quality and run-time of representative
partitioning algorithms of each category could be predicted
by our system. We also showed on the example of HEP that
our approach can handle partitioners that use a parameter that
influences the partitioning quality and the run-time. This could
also be applied to other partitioners [15], [18] that have a
similar parameter.

Fan et al. [78] proposed an approach to incrementalize
vertex-cut and edge-cut partitioners. Our approach can be used
to select a partitioner, which can then be incrementalized. Fan
et al. [79] further studied dynamic scaling for parallel graph
processing. In order to scale in or out, the graph often needs to
be re-partitioned. Our approach can be applied to predict how
the partitioning quality metrics, the partitioning and processing
run-time will change.

Fan et al. [53] proposed an application-driven partitioning
strategy. They showed how for a graph processing task, a given
vertex or edge partitioning can be refined and transformed to
a hybrid partitioning. Our approach can be used to support the
selection of the initial partitioning which can then be refined
and transformed to a hybrid partitioning.

There are several works for using machine learning to opti-
mize data management systems, e.g., to learn index structures
[80], cardinality estimation [81] or for automatic configuration
tuning [82]. Our work is among the first approaches to use
machine learning to optimize graph processing systems.

VII. CONCLUSIONS

In order to enable distributed graph processing, a graph
needs to be partitioned. However, the plethora of graph par-
titioning algorithms makes it a challenging task to select a
partitioner for a given scenario. In this paper, we propose a
machine learning-based approach to predict the partitioning
quality, the partitioning run-time and the graph processing run-
time for different types of partitioning algorithms and graph
processing algorithms on unseen graphs. We show that such
a quantitative prediction enables automatically selecting the
partitioner that minimizes the graph processing or end-to-end
time.

In future work, we plan to extend our approach to hyper-
graph partitioning algorithms [83]–[87] and systems [88], [89].
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