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ABSTRACT
We present a framework for creating small, informative sub-tables
of large data tables to facilitate the first step of data science: data
exploration. Given a large data table table 𝑇 , the goal is to create
a sub-table of small, fixed dimensions, by selecting a subset of
𝑇 ’s rows and projecting them over a subset of 𝑇 ’s columns. The
question is: which rows and columns should be selected to yield an
informative sub-table?

We formalize the notion informativeness based two complemen-
tary metrics: cell coverage, which measures how well the sub-table
captures prominent association rules in 𝑇 , and diversity. Since com-
puting optimal sub-tables using these metrics is shown to be infea-
sible, we give an efficient algorithm which indirectly accounts for
association rules using table embedding. The resulting framework
can be used for visualizing the complete sub-table, as well as for
displaying the results of queries over the sub-table, enabling the
user to quickly understand the results and determine subsequent
queries. Experimental results show that we can efficiently compute
high-quality sub-tables as measured by our metrics, as well as by
feedback from user-studies.

1 INTRODUCTION
Data exploration is an important first step in data analytics. During
this step, the analyst tries to understand an unfamiliar dataset and
determine what part of the data is relevant to their task by displaying
the table, looking at the table description, or visualizing column val-
ues. They may also run simple exploratory queries over the dataset,
using selection, projection, sorting and grouping. However, when
displaying a large input table or query result only a small subset
of the table is typically shown – and without input from the user,
the subset is arbitrary. For example, the default display of Pandas1

tables using the Python display() command includes the first and last
several rows and columns. Frequently, this is not very informative
as the sub-table may contain a lot of missing values and/or fail to
capture the range of possible values in a column; it may also elide
columns that are important for further exploration and analysis.

Example 1.1. Consider a table 𝑇 taken from the Kaggle flights
dataset2 which contains 31 columns and ∼6M rows. The analyst is
using 𝑇 to predict flight cancellations, and hence is interested in a
specific target column, CANCELLED. The analyst starts by visually
inspecting the data using Pandas display(𝑇 ), which yields the table
displayed at the top of Figure 1. This display of 𝑇 is not informative
for the analysis task, as it does not include the target column. More
1Pandas: Python Data Analysis Library. https://pandas.pydata.org/
2https://www.kaggle.com/usdot/flight-delays?select=flights.csv
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Figure 1: System Architecture

importantly, its usefulness for data exploration is limited: e.g., the
last five columns contain only NaN values, and other columns include
many repetitions of arbitrary values. □

Our goal is to support the data exploration task by selecting small,
informative sub-tables through which analysts can view data. That
is, given a table 𝑇 with 𝑛 rows and𝑚 columns, our goal is to create
a sub-table 𝑇sub with 𝑘 << 𝑛 rows and 𝑙 << 𝑚 columns which
is a subset of 𝑘 rows projected over a subset of 𝑙 columns of 𝑇 .
The sub-table should be informative in the sense that it captures
important data patterns within and across columns in 𝑇 , where we
define patterns using the standard notion of association rules. The
sub-table should also contain diverse cell values out of the ones
actually occurring in each selected column. If one or more target
columns are known in advance to be the focus of the analysis, they
must also be included in the 𝑙 selected columns.

Example 1.2. Continuing with the flights dataset, an informative
sub-table is shown at the bottom of Figure 1. The sub-table captures
several prominent association rules that hold over the input table
and that include the target column CANCELLED. We visualize this
by highlighting, in each row, the cells that participate in a rule that
holds for this row (many more rules hold, to avoid visual clutter
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we only highlight one rule per row). For example, the first row of
the sub-table exemplifies an association rule stating that long flights
(AIR_TIME ∈ [198.0, 422.0] and DISTANCE ∈ [1546.0, 2724.0])
are likely not to be cancelled (highlighted in orange). The second
row of the sub-table exemplifies an association rule stating that short
afternoon flights (according to the SCHEDULED_DEPARTURE
and SCHEDULED_ARRIVAL columns) are likely to be cancelled
(CANCELLED = 1, highlighted in blue). Beyond these association
rules, the sub-table gives useful insights about the column values, by
showing diverse rows and diverse values per column. □

As alluded to above, we formalize the notion of informativeness
based on a combination of two complementary metrics: cell coverage
and diversity. Cell coverage measures how well the sub-table 𝑇sub
covers prominent3 association rules that hold over the input table 𝑇 .
Given a set of prominent association rules, we consider the rules that
are captured by the sub-table as well as the marginal contribution of
each rule, and combine them in a metric which reflects the number of
cells in 𝑇 that are describable by association rules that are captured
in𝑇sub. If one or more target columns are known in advance to be the
focus of the analysis, they will be included in the 𝑙 selected columns,
and we measure cell coverage only according to association rules
that include one or more target columns.

For the second metric, diversity, we rely on the average pair-wise
similarity between the rows of the sub-table, using a Jaccard-like
similarity measure that accounts for categorical as well as continuous
columns. These metrics are combined in a score to measure the
informativeness of a sub-table.

Unfortunately, we show that optimizing this informativeness score
directly is infeasible. Moreover, even computing the association rules
may not be practical in our setting: although there are several efficient
techniques for mining association rules (e.g., [2, 15, 24, 27, 28]),
they may still be overly time consuming for large datasets in an
interactive setting.

We therefore consider a sub-table computation method which
indirectly accounts for association rules using table embedding [5–
7]. Given a table 𝑇 we use binning [27] to split each column’s
values into a small set of meaningful groups. We then compute
an embedding of table cells as vectors. Several different methods
have been recently proposed for this task [5–7, 12, 29, 35], among
which we chose a fast and effective embedding method based on
Word2Vec [21] (and compare with other options in Section 6).

The embedding captures bin co-occurrences, and therefore implic-
itly corresponds to frequent itemsets and association rules. To select
rows and columns for a sub-table we derive from the cell vectors a
vector representation for rows and columns, cluster them (separately)
and select the centroids as rows and columns that represent diverse
patterns in the data.

Empirically, this method achieves near-optimal scores when com-
pared to upper bounds on coverage and diversity.

An important benefit of our solution design is in responding to
queries over 𝑇 : during the exploratory data analysis (EDA) session,
users typically issue different queries on a given table 𝑇 (red arrows
of Figure 1). Our computation of cell embedding may be viewed as a
part of the pre-processing step of a given data table𝑇 , along with the

3There are standard metrics we can use to measure the prominence of association rules
in𝑇 , such as Support and Confidence [2].

binning of its values (first blue box in Figure 1). This step only has to
be executed once upon loading the table. Then, if the analyst issues
a selection-projection (SP) query on 𝑇 and wishes to view its result
as a sub-table, we need only to compute the vector representation
of rows and columns in 𝑄 (𝑇 ) based on the cells of 𝑇 that appear in
them, and re-execute clustering and centroid selection (Selecting step
in Figure 1, shown as the second blue box). This significantly speeds
up sub-table computation compared with computing everything from
scratch (a few seconds instead of up to a minute for large tables).

Contributions. The contributions of this work include:

(1) A notion of informativeness for sub-tables, which includes
both cell coverage and diversity. Cell coverage measures how
well the sub-table captures prominent association rules in the
input table, while diversity ensures that repetition of values
within the sub-table are minimized.

(2) A formalization and complexity analysis of the problem of
selecting an optimal sub-table, which shows that comput-
ing optimal sub-tables using the informativeness metric is
infeasible.

(3) A greedy algorithm for row selection which has approxima-
tion guarantees for optimal row selection, and a semi-greedy
algorithm which further samples column combinations in
order to find sub-tables with high cell coverage. Although the
algorithm is not practical in an interactive setting, it serves as
a baseline against which we compare the quality of computed
sub-tables.

(4) A practical algorithm, SubTab, for computing informative
sub-tables which accounts for association rules indirectly
using table embedding. The algorithm has two phases: a pre-
processing phase which performs binning and embedding,
and can be executed as soon as the data is loaded; and a
clustering and centroid selection phase that is called for each
sub-table display, e.g., on query results.

(5) An implementation for SubTab as a local Python library that
hooks into Pandas, and displays tables and query results as
informative sub-tables. The implementation includes a UI
which optionally highlights association rules (as in Figure 1).

(6) Experimental results that measure the running time of SubTab

and several baseline algorithms, as well as the quality of
sub-tables produced. Results show that the quality of sub-
tables computed by SubTab exceed those of other interactive
algorithms, and are comparable to algorithms that directly
optimize our metric. Experiments with EDA sessions and
user-studies show SubTab’s effectiveness for enabling analysts
to derive useful insights from the data. An analysis of its
running time shows that SubTab is suitable for EDA sessions,
and that the pre-processing step enables interactive displays
of query results during the session.

Organization. The rest of the paper is organized as follows. Re-
lated work is discussed in Section 2. In Section 3 we define our
metrics of cell-coverage and diversity. In Section 4 we show hard-
ness results for the problem of optimal sub-table selection, and the
greedy and semi-greedy algorithms. In Section 5 we present our sub-
table computation method based on table embeddings. In Section 6
we discuss experimental results. We conclude in Section 7.
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Figure 2: Example usage of SubTab – presenting an informative, 10X10 sub-table for a large query results-set

2 RELATED WORK
There are three main lines of related work: (1) row sampling, (2)
feature selection, and (3) data summarization. Row sampling (resp.,
feature selection) aims to reduce the number of rows (resp., columns)
in the data, while the goal of data summarization is to generate an
informative yet compressed summary of the data using a series of
aggregations.

Row Sampling. The task of sampling or selecting representative
rows from a large dataset has been studied in previous work for
several different use cases. For example, work in Approximate Query
Processing (AQP) suggests using stratified sampling [1] and dynamic
sampling [1, 3] in order to reduce the number of tuples and produce
faster yet inexact query results. Row sampling is used for efficiently
generating data visualizations [25], i.e., reducing the number of
underlying data points while minimizing the error in the produced
visualization. This is typically done by using a visualization-inspired
loss function [4]. Another use case is query result diversification [20,
30], in which the goal is to select rows from the query result that are
both relevant and diverse. This is often done with a greedy algorithm
which finds local-optimum solutions, given ad-hoc definitions of
relevance and diversity [30].

In contrast, our approach SubTab generates a sub-table by directly
selecting both rows and columns. Also, while most of the works
mentioned above are designed for a particular use case or have
prior assumptions (e.g., a notion of relevance, or a specific query
load [14]), SubTab captures generic patterns in the data, without using
prior assumptions, for the purpose of producing informative, small
samples of large tables. The latter allows SubTab to support many
different data exploration use cases, information needs, and datasets.

Feature Selection. The task of reducing the number of columns
in a dataset is an important step in many machine learning processes.
The goal is typically to reduce the number of input variables con-
sidered by the ML model, which reduces the model’s complexity
as well as the training time [8, 32]. There is a plethora of work on
feature selection (see [8] for a survey), which can be roughly catego-
rized as filter methods, that output the Top-k features w.r.t. a given

metric (e.g., Chi-Square, ANOVA and Information-Gain) [32]; as
well as embedded [16] and wrapper [18] methods, which directly
utilize the ML model to determine feature importance [9].

While this work describes fundamental ML tools, they are ill-
suited to our problem: first of all, they only select columns, and
cannot be easily adapted to also select representative rows. Second,
feature selection tools operate w.r.t a predefined, target column and
a prediction task, which may not exist in the data exploration phase.
As mentioned above, SubTab produces a sub-table by selecting both
rows and columns, and does not require a target feature (although it
will use target features if they are known).

Data summarization. Another line of work attempts to derive
compressed forms of the data, or produce a high-level, compact sum-
mary of the dataset. These includes dimensionality reduction [11]
techniques, data sketches [10] for online streams, and techniques for
aggregation-focused AQP [17, 34].

Such summaries do preserve some properties of the original data,
however they produce an altered, compressed version. While these
summaries are very useful for use cases such as AQP and feature
engineering [11], they are not suitable for interactive analysis, where
the user wants to see the actual data. In contrast, SubTab is focused
on interactive data exploration, and thus efficiently generates sub-
tables which contain representative rows and columns taken from
the original table.

3 METRICS
In this section, we define our metrics of cell coverage and diver-
sity, and the problem of finding an optimal sub-table based on their
combination. We then show that directly optimizing our metrics is in-
feasible in Section 4, and propose a practical solution in Section 5.1.

3.1 Model
Sub-tables are formally defined as follows: A relational schema
𝑈 = {𝑢1, . . . , 𝑢 |𝑈 |} is a finite set of columns, such that each column
𝑢𝑖 allows values from a subset of the global domain D𝑖 ⊆ D (e.g.,
for a binary column, D𝑖 = {0, 1}). A relational table over 𝑈 is a
finite set 𝑇 ⊆ 𝑈→D of tuples such that 𝑡 (𝑢𝑖 ) ∈ D𝑖 is the value of
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the cell in the row corresponding to a tuple 𝑡 ∈ 𝑇 and the column
𝑢𝑖 ∈ 𝑈 .

Definition 3.1 (Sub-table). Given a table 𝑇 over schema 𝑈 , a sub-
table𝑇sub is a table over some schema𝑈sub ⊆ 𝑈 such that each tuple
𝑡 ∈ 𝑇sub is the projection of some tuple 𝑡 ′ ∈ 𝑇 over the columns of
𝑈sub, i.e., for every 𝑢 ∈ 𝑈sub, 𝑡 (𝑢) = 𝑡 ′(𝑢).

We next define two standard notions that will be useful in the
sequel: binning and association rules.

In a schema𝑈 , each column 𝑢𝑖 may be categorical, namely,D𝑖 is
discrete, e.g., a column of airline names; or continuous, namely, D𝑖

is a continuous range, e.g., a column of flight distance. Moreover, in
a table 𝑇 over 𝑈 a different distribution of values (e.g. uniform or
skewed) may occur in each column. Binning the column values is
technique commonly used to allow a uniform treatment of columns
with different ranges and distribution. Formally,

Definition 3.2 (Binning). Given a table 𝑇 over schema𝑈 , a bin-
ning function B maps each column 𝑢𝑖 ∈ 𝑈 to a finite set of bins
B𝑖 = {𝐵𝑖1, . . . , 𝐵

𝑖
|B𝑖 |} such that for every 𝑡 ∈ 𝑇 , 𝑡 (𝑢𝑖 ) belongs to

exactly one bin 𝐵𝑖
𝑗
∈ B𝑖 .

We discuss in Section 5.1 the method we use for computing such
a binning function.

Example 3.3. In the flights dataset, the DISTANCE column is
continuous, and so we split its range into the bins short, medium
and long-distance. Depending on the column value distribution, we
may obtain 𝐵DIST

long = [1546.0, 2724.0]. The continuous AIRTIME col-
umn may also have bins with the same labels, but different ranges
matching is value distribution, e.g., 𝐵AT

long = [198, 422]. The CAN-
CELLED column is binary, hence we can use its categories as bins.
The AIRLINE column is also categorical but has many categories. We
can create a smaller number of groups by e.g. splitting the airlines
according to the continent in which they are headquartered.

Next, we recall the notion of association rules, which we use
to capture patterns in the data. Association rules will be used to
measure and compare the quality of sub-tables. Formally,

Definition 3.4 (Association rules [27]). Given a table 𝑇 over
schema𝑈 , an association rule 𝑅 has the form {(𝑢1, 𝑣1), . . . (𝑢𝑟 , 𝑣𝑟𝑅 )}→
{(𝑢𝑟𝑅+1, 𝑣𝑟𝑅+1), . . . (𝑢𝑟𝑅+𝑝𝑅 , 𝑣𝑟𝑅+𝑝𝑅 )} where each𝑢𝑖 ∈ 𝑈 is a column
and each 𝑣𝑖 ∈ D𝑖 is a cell value. Denote by𝑈𝑅 = {𝑢1, . . . , 𝑢𝑟𝑅+𝑝𝑅 } ⊆
𝑈 the set of columns used in 𝑅. We say 𝑅 holds for a tuple 𝑡 ∈ 𝑇 if
𝑡 (𝑢𝑖 ) = 𝑣𝑖 for every 1 ≤ 𝑖 ≤ 𝑟𝑅 + 𝑝𝑅 . Denote by 𝑇𝑅 ⊆ 𝑇 the subset
of tuples for which 𝑅 holds.

Previous work includes different metrics for the quality of associ-
ation rules, as well as corresponding algorithms for association rule
mining, i.e., the discovery of all association rules that meet some
quality criteria (e.g., [2, 15, 24, 28]).

In tables with diverse columns, the use of binning may improve
the mined association rules [27]: given a table 𝑇 , we can replace
each cell value 𝑡 (𝑢𝑖 ) with an identifier of its matching bin 𝐵𝑖

𝑗
. The

resulting table would have a smaller number of distinct values per
column, and each value would occur more frequently; consequently,
one may be able to mine association rules that apply to many more
tuples.

Example 3.5. Using the bins from example 3.3, the association
rule from Example 1.2 stating that long flights are likely not to be
cancelled can be written as:
AIR_TIME∈ 𝐵AT

long,DISTANCE∈ 𝐵DIST
long →CANCELLED∈ 𝐵CANC

0 .
Similarly, the rule for flights likely to be cancelled can be written as
SCHEDULED_DEPARTURE∈ 𝐵SD

afternoon, SCHEDULED_ARRIVAL∈
𝐵SA

afternoon→CANCELLED∈ 𝐵CANC
1 .

3.2 Informativeness Metrics
We now develop quality metrics for sub-tables. The first type of
metric that we develop intiutively measures how well data patterns
in the full table are captured by the sub-table.

Cell coverage. Given a sub-table 𝑇sub of table 𝑇 and a set a set R
of association rules mined from 𝑇 (e.g., using [27]), to measure the
coverage of 𝑇sub with respect to 𝑇 and R we consider the following.
(q1) Which of the rules of R are covered, i.e., captured by 𝑇sub?
(q2) What is the marginal contribution of each covered rule to𝑇sub’s

informativeness?
(q3) How do marginal contributions aggregate to an overall numeri-

cal score for 𝑇sub?
Since sub-tables include a subset of the table cells, and association

rules are also defined at the level of table cells, we propose below
formal definitions for q1-q3 that yield a cell coverage metric. This
metric intuitively reflects the ratio of cells in 𝑇 that are describable
by association rules in R that are represented in 𝑇sub.

Definition 3.6 (Cell coverage). Let𝑇 be a table, R a set of associ-
ation rules mined from 𝑇 , and 𝑇sub a sub-table of 𝑇 .
(d1) A rule 𝑅 ∈ R is said to be covered by 𝑇sub if all the attributes

of 𝑅 are in 𝑇sub (𝑈𝑅 ⊆ 𝑈sub), and there exists a tuple 𝑡 ∈ 𝑇𝑠𝑢𝑏
for which 𝑅 holds ({𝑇sub}𝑅 ≠ ∅).
Let Rsub be the set of all rules in R that are covered by 𝑇sub.

(d2) The marginal contribution of a rule 𝑅 ∈ Rsub is the subset of
table cells it describes:
cell(𝑅,𝑇 ) := {⟨𝑡,𝑢⟩ | 𝑡 ∈ 𝑇𝑅 ∧ 𝑢 ∈ 𝑈𝑅}.

(d3) The cell coverage of 𝑇sub with respect to 𝑇,R is denoted by

cellCovR (𝑇,𝑇sub) :=
1

upcov

������ ⋃
𝑅∈Rsub

cell(𝑅,𝑇 )

������ (1)

I.e., it is the (normalized) number of cells in𝑇 described by any
covered rule in 𝑅 ∈ Rsub. The normalization factor upcov :=��⋃

𝑅∈R cell(𝑅,𝑇 )
�� is an upper bound on the number of cells that

can be covered, and ensures that cellCovR (𝑇,𝑇sub) ∈ [0, 1].

In developing the cell coverage metric, we considered several al-
ternative approaches. We next briefly describe some of these through
an example, to illustrate the benefit of cell coverage.

Alternative coverage metrics. Consider the example table 𝑇 on
the left of Figure 3, illustrating some of the trends in the flights
dataset mentioned above. The table values represent bin names (e.g.
“short", “medium", “long"). Assume a set R of all association rules
with column CANCELLED on the right, and at least two columns
on the left, that hold for at least two rows. As an example, the rule
DEP._TIME= 𝑁𝑎𝑁 , YEAR= 2015→CANCELLED= 1 applies to
rows 1-4. For convenience, rules of maximal size are highlighted;
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𝑇 Row CANCELLED DEP._TIME YEAR SCHED._DEP. DISTANCE

1 1 NaN 2015 afternoon short
2 1 NaN 2015 afternoon medium
3 1 NaN 2015 morning medium
4 1 NaN 2015 morning short
5 0 morning 2016 morning medium
6 0 morning 2015 morning medium
7 0 evening 2015 evening long
8 0 evening 2015 afternoon long

𝑇
(1)

sub Row CANCELLED DEP._TIME YEAR DISTANCE

1 1 NaN 2015 short
5 0 morning 2016 medium
7 0 evening 2015 long

𝑇
(2)

sub Row CANCELLED DEP._TIME YEAR SCHED._DEP.

1 1 NaN 2015 afternoon
5 0 morning 2016 morning
7 0 evening 2015 evening

Figure 3: Example Table 𝑇 with two sub-tables. Association rules (at most one per row) are highlighted.

each highlighted line illustrates a different rule, with colors alternat-
ing for clarity.

First, observe that rows with CANCELLED=1 are more similar to
each other (have more values in common) compared with rows with
CANCELLED=0 due to the fact that many fields do not apply (i.e.
are NaN) when a flight is cancelled.

As a result, there are 13 association rules for the first 4 rows,
and only 8 for the last 4. This issue is exacerbated when there are
many more columns with fixed values, leading to overlapping rules
including subsets of these columns. Hence, using the number of rules
covered as a measure of sub-table quality would lead to selecting
many representatives from repetitive patterns, whereas we would like
to see representatives from different areas of the data. Consequently,
we propose to use measures based on data coverage rather than rule
coverage.

Next, consider the two sub-tables on the right, 𝑇 (1)sub and 𝑇 (2)sub ,
which differ only in the last attribute. These are “good” sub-tables,
in the sense that they cover at least one rule for each tuple of 𝑇 . If
we chose to use a row coverage metric, they would therefore have
the same score. However, 𝑇 (1)sub covers larger rules (two of size 4 and

one of size 3) compared with 𝑇 (2)sub (two of size 3 and one of size 4).

Accordingly, 𝑇 (1)sub describes 28 cells of 𝑇 , whereas 𝑇 (2)sub describes
only 26. By normalizing these numbers, we would get cell coverage
of 0.78 and 0.72, respectively, since 36 cells in total can be described
by association rules. This motivates us to use a cell-based metric.

Finally, we note that, in 𝑇 (1)sub , if we chose row 3 instead of 1 and
row 6 instead of 5 we would have the same cell coverage. However,
the sub-table would be more repetitive, containing only 2015 in the
year field and two instances of medium distance. This demonstrates
that coverage should be accompanied by a diversity metric, which
we discuss next.

Diversity. To generalize the example shown above, sub-tables
with high cell coverage may seem repetitive to humans, since: 1)
overlapping covered association rules may lead to repeating values in
the sub-table, and 2) values that do not participate in rules are ignored.
We therefore combine cell coverage with a diversity metric based on
pairwise Jaccard similarity. As with cell coverage, binning the data
values is useful in making our diversity metric more meaningful, and
we consider two values in the same bin to be similar.

𝑇
(3)

sub Row CANCELLED DEP._TIME SCHED._DEP. DISTANCE

1 1 NaN afternoon short
5 0 morning morning medium
7 0 evening evening long

Figure 4: Example of a diverse sub-table

Definition 3.7 (Diversity metric). The similarity of two tuples
𝑡, 𝑡 ′ ∈ 𝑇sub is the ratio of cells which fall in the same bin, formally,

Jaccard
(
𝑡, 𝑡 ′,𝑇sub

)
:=

���{𝑢𝑖 ∈ 𝑈sub | ∃𝐵𝑖𝑗 ∈ B(𝑢𝑖 ). 𝑡 (𝑢𝑖 ), 𝑡
′(𝑢𝑖 ) ∈ 𝐵}

���
|𝑈sub |

We then define the diversity of𝑇sub as the complement of the average
similarity between its tuples, namely,

divers(𝑇sub,B) := 1 − avg𝑡,𝑡 ′∈𝑇sub
Jaccard

(
𝑡, 𝑡 ′,𝑇sub

)
(2)

Example 3.8. Consider again Table 𝑇 (1)sub from Figure 3. Here
the shown values are already bin names, so to compute the sub-
table diversity we need to compute the ratio of identical cells in
each pair of rows. In this case, the only overlaps are in CAN-
CELLED in rows 5 and 7, and the YEAR of rows 1 and 7, yielding
a diversity divers

(
𝑇
(1)

sub ,B
)
= 1 − avg(0.25, 0, 0.25) = 0.83. Fig-

ure 4 shows an even more diverse sub-table, with divers
(
𝑇
(3)

sub ,B
)
=

1−avg(0, 0, 0.25) = 0.92, achieved by excluding the repetitive YEAR
column. However, this table has a smaller cell coverage, describing
only 24 cells, which indicates that there is a trade-off between cell
coverage and diversity.

Optimization problem. Based on the metrics defined above, we
define the optimization problem, OPT-SUB-TABLE. This problem
computes a sub-table of a predefined size which balances high cell
coverage and diversity. Moreover, we allow the user to specify target
columns of interest and focus the sub-table on the target columns
by including them in the chosen columns and by considering only
association rules that include at least one of the target columns.

More formally, we are given as input a table 𝑇 over schema 𝑈 ,
dimensions 𝑘, 𝑙 (the number of rows and columns, respectively), a
set of target columns𝑈 ∗ ⊆ 𝑈 such that |𝑈 ∗ | ≤ 𝑙 , a set of association
rules R mined from 𝑇 , a binning B as in Def. 3.2 and a parameter
𝛼 ∈ [0, 1] which is used to balance coverage and diversity (by default,
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𝛼 = 0.5). If there are target attributes (𝑈 ∗ ≠ ∅), we retain only the
rules the contain them: R∗ := {𝑅 ∈ R | {𝑢𝑟1 , . . . , 𝑢𝑟𝑅+𝑝𝑅 } ∩𝑈 ∗ ≠ ∅}.
Otherwise we retain all rules: R∗ = R. Our goal is to find a 𝑘 × 𝑙
sub-table 𝑇sub that includes the target attributes (𝑈 ∗ ⊆ 𝑈sub), and
that maximizes the following score among all such tables:

combined
(
𝑇sub,𝑇 ,R∗, 𝛼

)
=

𝛼 · cellCovR* (𝑇,𝑇sub) + (1 − 𝛼) · divers(𝑇sub,B) (3)

Example 3.9. Consider again sub-tables 𝑇 (1)sub and 𝑇 (3)sub in Fig-
ures 3-4. Their combined scores for 𝛼 = 0.5 are:
0.5 · 28/36 + 0.5 · 0.83 = 0.80 and
0.5 · 24/36 + 0.5 · 0.92 = 0.79, respectively.
In fact, 𝑇 (1)sub is the optimal sub-table for this example.

Unfortunately, we will show in the next section that directly opti-
mizing this problem is infeasible, and therefore give in Section 5.1 a
practical solution that indirectly accounts for association rules using
table embedding.

4 COMPLEXITY
We now analyze the complexity of OPT-SUB-TABLE. For simplic-
ity, we will ignore the use of target columns and of binning, since in
the extreme case the set of target columns may be empty and binning
may assign each value to a separate bin. We mostly focus here on the
sub-problem of MAX-CELL-COVER, namely, finding the sub-table
with maximal cell coverage, i.e. solving OPT-SUB-TABLE with
𝛼 = 1. We denote by DEC-CELL-COVER the corresponding de-
cision problem: given a table 𝑇 over schema 𝑈 , dimensions 𝑘, 𝑙 ,
a set of association rules R and a threshold Θ, decide whether
there exists a sub-table 𝑇sub of size 𝑘 × 𝑙 whose cell coverage is
cellCovR (𝑇,𝑇sub) ≥ Θ.

4.1 Hardness
Let 𝑛 and𝑚 be the numbers of tuples and columns, respectively, in
the input table 𝑇 . A brute-force algorithm can theoretically traverse
all O(𝑛𝑘 ·𝑚𝑙 ) sub-tables of size 𝑘 × 𝑙 and find the one with maximal
score. While this algorithm is polynomial in the size of 𝑇 , it is
infeasible due to the exponential dependency in 𝑘, 𝑙 . For reasonable
dataset and sub-table sizes, e.g., for 𝑛 = 10, 000 and𝑚,𝑘, 𝑙 = 5, we
need to check 1023 sub-tables.

Since 𝑘 is small, a solution that is exponential in 𝑘 may still be
feasible, but not when the basis is 𝑛. Thus, we examine whether
our problem is fixed-parameter tractable: FPT is class of fixed-
parameter tractable problems, defined by having a solution in time
O(poly(𝑛) · 𝑓 (𝑘)) where 𝑛 is the input size, 𝑓 is a function and 𝑘 is a
parameter. Unfortunately, we can show that our problem is probably
not in FPT by the following proposition.

PROPOSITION 4.1. Given a 𝑛 ×𝑚 table 𝑇 over schema𝑈 , and
sub-table dimensions 𝑘, 𝑙 . Dec-Cell-Cover is W[2]-hard with
respect to 𝑛 = |𝑇 | and 𝑘 as a parameter, assuming𝑚, 𝑙 = O(𝑛).

PROOF. Dominating Set is the problem of, given an un-
directed graph of 𝑛 vertices, select 𝑘 vertices such that every vertex
in the graph is either in the selected set or is connected by an edge to
a vertex in the set. This problem is known to be W[2]-complete [13].
The W-hierarchy is a hierarchy of classes defined by properties of the

translation of problems into combinatorial circuits. It is known that
FPT=W[0]⊆W[1]⊆W[2]⊆ . . . , and conjectured that this hierarchy
is strict, i.e., W[0]⊂W[1]⊂W[2]⊂ . . . . We show a reduction from
Dominating Set to Dec-Cell-Cover, thus showing the latter is
also W[2]-hard and hence not in FPT unless FPT=W[2].
Dominating Set≤Dec-Cell-Cover. Given a graph 𝐺 =

(𝑉 , 𝐸), define a table 𝑇 with a tuple 𝑡𝑣 for every 𝑣 ∈ 𝑉 , and an
attribute 𝑢𝑣 for every 𝑣 ∈ 𝑉 , such that 𝑡𝑣 (𝑎𝑢 ) = 1 iff (𝑢, 𝑣) ∈ 𝐸 or
𝑢 = 𝑣 , and is NULL otherwise. Let R be composed of association
rules of the form {𝑢𝑣 ∈ {1}} → {} is in for every 𝑢𝑣 , and seek a
summary of size 𝑘 × |𝑉 |, i.e., no column selection is required. In this
case, 𝑘 tuples that cover all the non-NULL cells in 𝐼 correspond to a
dominating set of size 𝑘 , and vice versa. □

The above proof assumes that 𝑚, 𝑙 = O(𝑛), i.e., the number of
attributes is large. However, in practical cases it is often assumed that
𝑚 << 𝑛. In this case, our reduction does not apply, and in particular,
if𝑚 = O(1), a dominating set with bounded degree is not W[2]-hard.
However, we can show NP-hardness in 𝑘 .

PROPOSITION 4.2. Dec-Cell-Cover is NP-hard in 𝑘, the
number of tuples selected for the summary, even assuming the num-
ber of attributes𝑚 = O(1).

PROOF. The proof is by a reduction from Vertex Cover,
which is known to be hard in 𝑘 for the selection of 𝑘 vertices
that are adjacent to every edge in a given graph, even if the max-
imal degree of a vertex is 3. Given a graph 𝐺 = (𝑉 , 𝐸) we as-
sign each edge 𝑒 ∈ 𝐸 a serial number num(𝑒) and define an in-
put table 𝐼 with 5 attributes and 𝑛 tuples, such that for each edge
(𝑢, 𝑣) ∈ 𝐸 there exists tuples 𝑡𝑢 , 𝑡𝑣 ∈ 𝐼 and an attribute 𝑎 where
𝑡𝑢 (𝑎) = 𝑡𝑣 (𝑎) = num((𝑢, 𝑣)). Since each 𝑣 ∈ 𝑉 appears in at most 3
edges, the other edges of 𝑢 and 𝑣 occupy at most 4 attributes of 𝑡𝑢
and 𝑡𝑣 , and hence we can use the fifth attribute for num((𝑢, 𝑣)). Now,
similarly to the proof of Prop. 4.1, we will construct the rules such
that {𝑎 ∈ {num((𝑒)}} → {} is a rule in R, and so, the maximum
coverage summary of size 𝑘 × 5 covers all the non-NULL cells iff
the vertices corresponding to its tuples form a vertex cover in𝐺 . □

Hardness of diversity optimization. We have so far focused on the
hardness of cell coverage maximization (corresponding to solving
OPT-SUB-TABLE with 𝛼 = 1). However, we note that diversity
maximization (corresponding to OPT-SUB-TABLE with 𝛼 = 0) is
also hard: this problem (without column selection) was proven to
be NP-hard using an analogous diversity definition in the context of
selecting a diverse group of crowd workers [33], and the results hold
for our setting as well. Since OPT-SUB-TABLE is strictly harder
than both sub-problems, we can conclude that it is NP-hard.

4.2 Approximate Solutions and Limitations
Given the hardness results above, we consider approximate solutions
to Max-Cell-Cover, i.e., computing sub-tables with approximately-
optimal score. In some cases, it may be feasible to enumerate all
possible combinations of selecting 𝑙 attributes for the summary, e.g.,
when𝑚 = O(1) or 𝑙 and𝑚 are very close. In such cases, we have an
approximation algorithm, as stated by the following proposition.

PROPOSITION 4.3. Given a table 𝑇 over 𝑈 , where |𝑇 | = 𝑛 and
|𝑈 | = 𝑚 and a set R of association rules, Algorithm 1 computes a

6



ColumnSelection (𝑇, 𝑘, 𝑙,R) // Table, dimensions and
association rules

1 𝑇 ∗sub ← ∅, cov
∗ ← −1;

2 for𝑈 ′ ⊆ 𝑈 such that |𝑈 | = 𝑙 do
3 𝑇 ′ ← 𝜋

𝑈 ′𝑇 ; // Projection of 𝑇 on𝑈 ′

4 𝑇sub, cov← GreedyRowSelection(𝑇 ′, 𝑘,R);
5 if cov > cov∗ then cov∗ ← cov, 𝑇 ∗sub ← 𝑇sub;
6 return 𝑇 ∗sub;

GreedyRowSelection (𝑇 ′, 𝑘,R)
7 𝑇 ∗∗sub ← ∅, cov

∗∗ ← −1;
8 for 𝑖 in 1 . . . 𝑘 do
9 𝑇 ∗sub ← 𝑇 ∗∗sub, cov

∗ ← cov∗∗;
10 for 𝑡 ∈ 𝑇 ′ −𝑇 ∗sub do
11 cov← cellCovR (𝑇,𝑇sub);
12 if cov > cov∗ then cov∗ ← cov, 𝑇 ∗sub ← 𝑇sub;
13 cov∗∗ ← cov∗, 𝑇 ∗∗sub ← 𝑇 ∗sub;
14 return 𝑇 ∗∗sub, cov

∗∗;

Algorithm 1: Greedy Sub-Table Selection.

𝑡×𝑙 sub-table𝑇sub such that cellCovR (𝑇,𝑇sub) ≥ (1− 1
𝑒 ) OPT where

OPT is the score of the optimal solution to Max-Cell-Cover.

PROOF. Algorithm 1 includes two functions. The ColumnSelec-
tion enumerates over the possible column selections and for each
computes a sub-table using the function GreedyRowSelection. The
latter function iteratively attempts to add each single row to the
current sub-table, computes the cell coverage score and records the
sub-table with maximal cell coverage. This is repeated 𝑘 times to
select 𝑘 rows in total. Thus, for each column selection we greedily
compute a sub-table, and among all column combinations we take
the best one.

To prove the approximation bound, note that for a fixed set of
attributes, the cellCovR function is non-negative, monotone and sub-
modular with respect to tuples (adding a tuple only increases the
score, and as we add tuples the marginal contribution of tuples can
only decrease). Therefore, by the well-known result of [23] a greedy
algorithm approximates the optimum by the above-mentioned multi-
plicative factor. Since we enumerate over all column combinations
of size 𝑙 , we achieve this ratio in particular for the same column
selection as the optimal sub-table with cell coverage OPT. □

By the analysis above, the greedy Algorithm 1 is clearly not feasi-
ble in the general case due to the need to enumerate all

(𝑚
𝑙

)
options

for column selection. Note that we cannot greedily select columns,
since the cell coverage metric is not sub-modular with respect to
columns, due to multi-column association rules. The algorithm also
does not take diversity into account.

In Section 6 we show that even a “semi-greedy” variation of
Algorithm 1, which traverses the column combinations in a random
order, can take more than two days to run on an industrial-grade
server and is therefore still impractical. Furthermore, halting the
algorithm after some fixed time period before enumerating all

(𝑚
𝑙

)
possibilities for column selection is not guaranteed to meet the
approximation guarantee.

Pre-processing (𝑇 ) // Raw table
1 𝑇 ← normalize and bin 𝑇 ;

2 𝑆 ← rows and columns of 𝑇 as text;
3 M ← Word2Vec(𝑆, windowSize = max{𝑛,𝑚}) ;

// Embedding Computation
4 returnM ; // cell-to-vector model:M : 𝑇 ×𝑈→R𝛾

Centroid-based Selection (𝑇, 𝑘, 𝑙,𝑄,𝑈 ∗,M)
5 rowVecs, colVecs← empty dictionaries;
6 if 𝑄 ≠ NULL then 𝑇 ← 𝑄 (𝑇 );
7 𝑈 ← columns of 𝑇 ;
8 for 𝑡 ∈ 𝑇 do
9 𝑣 ← avgu∈U (M(𝑡 (𝑢)));

10 rowVecs← rowVecs∪{𝑣 ↦→ 𝑡};
11 C ← cluster(rowVecs, 𝑘);
12 𝑇sub ← rowVecs. getValues(centroids(C));
13 for 𝑢 ∈ 𝑈 −𝑈 ∗ do
14 𝑣 ← avgt∈T (M(𝑡 (𝑢)));
15 colVecs← colVecs∪{𝑣 ↦→ 𝑢};
16 C ← cluster(colVecs, 𝑙 − |𝑈 ∗ |);
17 𝑈sub ← 𝑈 ∗ ∪ colVecs. getValues(centroids(C));
18 𝑇sub ← Π

𝑈sub
𝑇sub;

19 return 𝑇sub,𝑈sub;

Algorithm 2: SubTab Algorithm for Sub-Table Selection.

5 PRACTICAL SOLUTION
As discussed in Section 3, an ideal sub-table captures a large and
diverse set of patterns in the full table. However, optimizing based on
a combined score of cell coverage and diversity is NP-hard, and even
approximated solutions are impractical for interactive exploration
(Section 4). Therefore, to generate good sub-tables in interactive
times (up to several seconds) we take a different approach, based on
tabular embeddings. The embedding captures bin co-occurrences,
and therefore roughly corresponds to frequent itemsets and associa-
tion rules.

We begin by describing our sub-table selection algorithm, and
then discuss its benefits compared to other approaches.

5.1 Sub-table Selection
Our algorithm, shown in Algorithm 2, includes two parts: (1) Pre-
processing, in which we compute a vector representation for each
cell in the full table𝑇 using table embedding, and (2) centroid-based
sub-table selection, which utilizes the embedded vectors to quickly
select a sub-table. Importantly, pre-processing is performed only
once, when the table𝑇 is loaded, and centroid selection is performed
for each exploratory query that the analyst performs over the table 𝑇
to produce the corresponding sub-table.

Pre-Processing. Given a raw table 𝑇 , the first step
is to normalize the values (e.g., remove illegal characters) and bin

continuous columns so that values are replaced by their bin name
(e.g., binning splits the Distance column into short, medium and
long distances). Let 𝑇 be the normalized, binned table.

We then use a table embedding process to generate a real-valued
vector for each cell in the table 𝑇 . Note that while several recent
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works [6, 7, 12, 29, 35] suggest more complex methods for embed-
ding tabular data, e.g., based on graph representations, auto-encoders,
etc., we use a simpler yet effective method that quickly computes
the vector representations based on [5]. (See Section 6.2 for a com-
parison with [7]).

Our embedding method transforms the table into a corpus of sen-
tences and then uses a fast implementation of word embedding [21].
The corpus consists of tabular sentences in which each cell in the
table 𝑇 represents a single word. We use two types of sentences:
tuple-sentences, containing values in each tuple 𝑡 ∈ 𝑇 , and column-
sentences that cover the values in 𝑇 (𝑢),∀𝑢 ∈ 𝑈 . To achieve even
faster execution times, we limit the corpus size to 100𝐾 , where the
sentences are chosen uniformly at random.

Using the corpus of tabular sentences we then train a word-
embedding [21] model that outputs a numeric vector representation
for the table cells. The learned representation of the cells are based
on co-occurrences of values in the same row/column, and hence
capture recurring patterns which roughly correspond to association
rules. The output of this process, as depicted in Line 4, is a mapping
between each cell in𝑇𝑖 𝑗 to a corresponding, learned cell-vectorM𝑖 𝑗 .

Centroid-Based Sub-table Selection. Once the vector represen-
tationsM are computed for each cell in 𝑇 , we perform a fast yet
effective sub-table selection based on the vectors’ centroids. As men-
tioned above, this is done over the results of each exploratory query
performed by the user.

We select a sub-table 𝑇𝑠𝑢𝑏 of size 𝑘 × 𝑙 as follows: First, to se-
lect the 𝑘 tuples in 𝑇𝑠𝑢𝑏 we compute for each tuple 𝑡 ∈ 𝑇 with
columns𝑈 , a tuple-vector, by taking the component-wise average of
its corresponding cell-vectors. Namely, we average the cell-vectors
M (𝑡 (𝑢1)) ,M (𝑡 (𝑢2)) , . . . ,M(𝑢 |𝑈 |))

(lines 8-10).
This allows us to obtain a unified representation of each tuple

in the input table. We then cluster the tuple-vectors into 𝑘 clusters
and select their centroids as the rows of 𝑇sub. Next, to select the
columns of 𝑈sub we perform a similar process, creating column-
vectors, forming clusters, and finding their centroids.

Since the columns of 𝑈 ∗ must be included in the sub-table, we
exclude them from clustering, compute only 𝑙 − |𝑈 ∗ | clusters and
then add the𝑈 ∗ columns to the selected centroids.

5.2 Discussion
We conclude this section with three important observations regard-
ing our embedding-based approach for sub-table generation, which
explain why our system works well in practice despite the fact that
it is not explicitly based on association rules.

First, note that since SubTab does not directly attempt to optimize
the cell-coverage and diversity metrics, there are no guarantees it
will always obtain high scores.

However, as our experiments will show (Section 6), SubTab com-
putes high quality sub-tables in terms of both cell-coverage and
diversity when the underlying rules in 𝑇 are prominent (rather than
arbitrary)

We also show that directly optimizing the metrics, using either
a more-feasible semi-greedy variation of Algorithm 1 or a Multi
Armed Bandit sampling algorithm takes over 24 hours to achieve the
scores SubTab obtains in several seconds.

Intuitively, the reason that our embedding-based algorithm achieves
good results is twofold. (1) SubTab achieve good cell-coverage scores
since the embedded vectors, which are generated based on the fre-
quency of co-occurrences of values in the same rows and columns,
capture underlying frequent patterns – as is also done in association
rules mining. (2) We achieve a high score for diversity due to the
centroid-based columns and tuples selection.

As mentioned earlier, obtaining vector representations for table
cells could be done using several different techniques [5–7, 12, 29,
35]. In our experimental evaluation, we compare SubTab to a baseline
which uses the embedding method suggested in [7], which is geared
towards data integration tasks. We show that not only does SubTab

complete the pre-processing phase 26X faster (90 seconds, rather
than 40 minutes), but that it also obtains superior scores in terms of
cell-coverage and diversity.

Finally, note that it is also possible to apply clustering directly on
𝑇 , without first generating an embedded representation. This method
is also inferior to SubTab as it relies on a “one-hot-encoding” of the
data, which does not capture the underlying patterns as well as the
embedding-based method (see Section 6).

6 EXPERIMENTS
We performed an extensive experimental evaluation of SubTab in
terms of both the quality and usefulness of the resulted sub-tables as
well as its running-times. After describing the experimental setup, we
report our results. First, to test the sub-table quality (Section 6.2), we
conducted two sets of experiments: (1) a twofold user study, where
the participants not only rank the usefulness of the sub-tables through
a questionnaire, but are also required to list insights and conclusions
they identify in each sub-table; and (2) an offline, simulation-based
study, in which we retraced real-life analysis sessions, generated
a sub-table for each exploratory query, then checked whether the
parameters of the next query in the session (e.g., selection term,
aggregation column) appear in the sub-table. We also examined
whether our combined metric of cell-coverage and diversity is corre-
lated with these quality evaluations.

The final two experiments measure the running-time of SubTab

for each dataset (Section 6.3), and the performance using different
parameter settings for the packages used in SubTab (Section 6.4). A
summary of findings from the experiments are in Section 6.5.

6.1 Experimental Setup
SubTab is implemented in Python 3.8 as a local Python library that
hooks into Pandas [31] and therefore can be used, e.g. in com-
mon EDA environments such as Jupyter notebooks. The binning
method used is based on kernel density estimation and is imple-
mented with sciPy4. The Word2Vec embedding method is imple-
mented by gensim5. Centroid selection is performed by creating
clusters via KMeans using sklearn6.The experiments were run on
Intel Xeon CPU based server with 24 cores and 96 GB of RAM.

Metrics implementation. As the cell coverage metric relies on
association rules, we provide details about how they are mined. We
compute the association rules using the Apriori Algorithm [2] and
4https://scipy.org/
5https://radimrehurek.com/gensim/
6https://scikit-learn.org/
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Metric SubTab RAN NC
# correct insights 4 (85%) 1.2 (30%) 0.2 (6%)

% of users with no insights 0% 12% 89%
# Total insights 4.5 3.67 1.5

Table 1: Results of the user study
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Figure 6: Simulated Experiments Results (𝐶𝑌 )

implement it using efficient-apriori7; we set the main parameters,
support and confidence, to 0.1 and 0.6, respectively, and the mini-
mum rule size to 3. In Section 6.4, we conduct several experiments
that test the effect of each of the parameters, by varying the given
parameter while setting all others to their default values. When target
columns are selected by the user, the data is split according to the
binned values of the target columns. The rules are then mined over
each subset separately. An optional extension to our system is color-
ing the patterns (association rules) in the data that are represented by
the sub-table, as illustrated in Figure 3; this was found very helpful
by participants in the user-study (Section 6.2). Lastly, to implement
our combined cell coverage and diversity metric, we take 𝛼 = 0.5
by default for the combined score, assigning equal weights to cell
coverage and diversity.

Datasets. To demonstrate the performance of SubTab in different
domains, we used the following datasets:
• Flights (𝐹𝐿), 8 which has 6M rows and 32 columns
• Cyber-security (𝐶𝑌 )9, which has 30K rows and 15 columns
• Spotify (𝑆𝑃), 10 which has 42K rows and 15 columns, and
• Credit card frauds (𝐶𝐶), 11 which has 250K rows and 31

columns.
7https://pypi.org/project/efficient-apriori/
8https://www.kaggle.com/usdot/flight-delays?select=flights.csv
9https://www.honeynet.org/challenges/
10https://www.kaggle.com/c/bfh-spotify-challenge/data
11https://www.kaggle.com/mlg-ulb/creditcardfraud

• US Funds (𝑈𝑆𝐹 ), 12 which has 23.5K rows and 298 columns.
• Bank Loans dataset (BL) 13 with 110K rows 19 columns.

Baselines. We have tested two types of baselines. The following
baselines support fast response time and are suitable for EDA. They
were used in our quality analysis and user study.

(1) Random (𝑅𝐴𝑁 ): select uniformly at random 𝑘 rows and 𝑙
columns. To increase the quality of this baseline, we itera-
tively repeat the random selection for one minute, and re-
turn the sub-table with highest score among all the randomly
drawn sub-tables.

(2) Naive clustering (𝑁𝐶):
We first transform the categorical and textual columns to
be continuous values using one-hot encoding14. Then we
treat each row as a vector of length 𝑚 (the total number
of columns), and cluster the vectors using K-means. The
centroids of those clusters are used as the rows in the sub-
table. We select the columns analogously.

The second set of baselines that we test are too slow to be used in
an interactive setting, having running times of over 30 minutes. We
nevertheless use them for comparing the quality of our system.

(4) Multi-Armed Bandit (𝑀𝐴𝐵): we use a version of the Multi-
Armed Bandit algorithm [26] that, in each iteration, selects
a set of 𝑛 rows and 𝑘 columns and evaluates the sub-table
using our metric. The reward (i.e. the cell coverage score)
is given to all the columns and rows that participated in the
sub-table, and the exploration-exploitation method used is
Upper Confidence Bound (UCB) [19].

(5) Greedy sub-table selection (Greedy): We modify the greedy
algorithm outlined in Algorithm 1 by traversing the column
combinations in random order (line 2). We can thus halt the
algorithm after any number of iterations and use the sub-table
with maximal score among the ones found until that point.
For our experiments, we use a time limit of 5 hours, which we
empirically found to be required for discovering informative
sub-tables.

(6) 𝐸𝑚𝑏𝐷𝐼 :[7]: This algorithm creates a local embedding (in-
spired by Node2Vec) that is effective for data integration
tasks in relational databases. The table is transformed into a
graph by representing the columns and rows as nodes, con-
nected by edges which capture structural relationships. The
structure created provides a more efficient graph computation
than the naive graph transformation. Thus, it captures rela-
tionships inherent in the tables, and provides a more efficient
computation than the naive graph transformation.

6.2 Quality Analysis
To assess the quality of SubTab, we evaluated the sub-tables gen-
erated by SubTab, using several experiments: (1) We performed a
“live” user-study, where participants used SubTab as well as other
baselines in real-life analysis tasks; (2) Offline simulation-based
evaluation, where we retraced completed EDA sessions and assessed
the usability of a sub-table by determining if it contains elements of
12https://www.kaggle.com/stefanoleone992/mutual-funds-and-
etfs?select=MutualFunds.csv
13https://www.kaggle.com/panamby/bank-loan-status-dataset
14https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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the subsequent query; and (3) Evaluation based on our metrics - to
further compare SubTab to the baselines, we evaluated the generated
sub-tables in terms of our cell coverage and diversity metrics to test
whether our metric score is highly correlated with the user-study
and simulation-based evaluation. In this part, we also compare our
results to slower baselines that could not be tested in the live user
study. These experiments are discussed below.

6.2.1 User Study. We conducted a user study to compare the
usefulness of SubTab to the baseline approaches. We recruited 15
participants, all with varying degree of expertise in data analysis
using Pandas. The participants were first asked to perform an actual
data-analysis task in which they used the sub-table to discover in-
sights about a dataset, and then answer a short questionnaire about
the quality of the sub-tables. We divided the participants to equal
groups, each worked with a different baseline on three different
datasets: 𝑆𝑃 , 𝐹𝐿 and 𝐵𝐿 . As this is a “live” experiment, we com-
pared SubTab with the baselines 𝑅𝐴𝑁 and 𝑁𝐶, which are fast enough
for interactive analysis.

For each dataset there was an exploration task involving several
queries. Each user was given one baseline, and performed explo-
rations over all three datasets. The user’s goal was to write down
insights that are relevant to the given task while examining the sub-
tables that were created during the exploration. We then counted
the number of correct insights that users had, and averaged the re-
sults for each exploration task, per user. To help the users in their
exploration task, we also colored the patterns (association rules) that
were captured in the sub-table for all the baselines, using the 𝑆𝑃 and
𝐹𝐿 dataset. In the 𝐵𝐿 exploration, we did not color the patterns (in
any baseline), displaying only the created sub-table without addi-
tional information. By doing this, we tested whether the trends of
the exploration task without coloring remains the same as those with
coloring.

Insights Discovery Experiment. For each dataset, the participants
were presented a notebook containing several exploratory queries,
and a sub-table of the queries’ results (generated by either SubTab,
𝑅𝐴𝑁 , or 𝑁𝐶). The participants were then instructed to examine
each notebook and derive insights about the dataset’s particular
analysis task. For example, the task in 𝑆𝑃 , containing data about
songs and their popularity in the Spotify streaming service, was to
discover “what makes songs popular”. We then manually evaluated
the correctness of the participants’ insights, and removed ones that
were statistically incorrect or highly irrelevant to the analysis task.

Table 1 shows the total number of insights, percentage of correct
insights, as well as the percentage of users who did not derive in-
sights at all, averaged across all three datasets. First, see that when
using SubTab, users derived an average of 4 correct insights per
dataset, which is 3X more than 𝑅𝐴𝑁 and 12X more than 𝑁𝐶. Inter-
estingly, the percentages of correct insights obtained by SubTab is
85% whereas only 30% and 6% of the insights obtained via 𝑅𝐴𝑁
and 𝑁𝐶 (resp.) were correct. Inspecting the incorrect insights, we
observed that the users reached false conclusions since many of
the sub-tables produced by 𝑅𝐴𝑁 and 𝑁𝐶 were misleading. These
sub-table contained, for example, non-representative distribution of
columns, or presented a random, false correlation between columns.
Last, see that using SubTab 100% of users were able to successfully
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Figure 7: (a) Quality score and (b) Total running time

finish the analysis task, whereas none of the users failed to derive at
least one insight.

Questionnaire Results. As mentioned above, after the partici-
pants completed the insights discovery tasks, they were each given a
short questionnaire asked to evaluate the sub-tables on a scale of 1
(strongly disagree) to 5 (strongly agree) according to the following
statements:

• Q1: The presented system is better than the standard dataframe
sub-table.
• Q2: Would you like to use the sub-table system in future data

exploration tasks?
• Q3: The sub-tables’ columns were relevant to the queries.
• Q4: The sub tables’ rows are representative and capture pat-

terns.

The questionnaire results are summarized in Figure 5. Note that
the average users’ ranking of SubTab is above 4 for all statements,
and are significantly higher than 𝑅𝐴𝑁 and 𝑁𝐶.

6.2.2 Simulation-Based Study. We conducted an additional of-
fline experiment, in order to further evaluate the quality sub-tables.
We used a publicly-available collection of 122 data exploration ses-
sions [22], containing select, project, group-by, and sort operations
over the dataset 𝐶𝑌 . To evaluate the potential usefulness of the
sub-tables we replayed each query in a session, and generated a
corresponding sub-table using SubTab and the baselines 𝑅𝐴𝑁 and
𝑁𝐶. We then examined whether the next query in each session con-
tain a fragment (e.g., a group-by attribute, selection term, etc.) that
appears in the sub-table of the previous query’s results. Intuitively,
appearance of next-query fragments in the sub-table, may imply that
the sub-table is useful in selecting the next exploration step.

The percentage of captured query fragments are shown in Figure
6, when varying the width (i.e., number of columns) of the sub-
table from 3 to 7 (out of the 12 columns of the 𝐶𝑌 dataset). See
again that SubTab significantly outperforms the baselines, and is able
to predict 14% (width=3) to 38% (width=7). Naturally, the results
improve as the sub-table covers more columns, however it is still
very difficult to cover all query fragments (e.g., practically any value
from a column’s value domain can be used as a selection term).

6.2.3 Quality by Our Metrics. So far we have evaluated the
quality of sub-tables based on their performance in external tasks.
We now compare to our intrinsic quality metrics: cell coverage,
diversity and combined score.

Comparison to the interactive baselines. Figure 8 shows the three
scores for the three baselines over the FL, SP and CY datasets. For
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Figure 8: quality metrics for different baselines and datasets

the three datasets, SubTab achieves a significantly higher cell cover-
age and combined scores, compared with the baselines. Interestingly,
in FL and CY it also achieves a higher diversity score, which means
it outperforms the baselines for any choice of 𝛼 . In SP, RAN has
a slightly better diversity score, but its cell coverage is extremely
low. For example, for the 𝑆𝑃 dataset, SubTab achieves a total score of
0.68, were the 𝑅𝐴𝑁 and 𝑁𝐶 achieve 0.47 and 0.51 respectively.

To connect between intrinsic and external metrics, we now com-
pare their ranking of baselines. In our user study (Section 6.2.1), we
compute the combined score for each presented sub-table, and aver-
age per baseline. The resulting average scores for SubTab, RAN and
NC were 0.56, 0.32 and 0.15 respectively, which matches the rank-
ing of these baselines in terms of user ratings (Figure 5). Similarly,
for the simulation based study (Section 6.2.2), we have computed
the combined score for each computed sub-table, and averaged per
baseline and per sub-table size. The resulting ranking between base-
lines per sub-table size was identical to the ranking according to
the percentage of matched steps (Figure 6). This indicates that our
metrics correlate with human judgements and with the usefulness of
sub-tables in EDA sessions.

Comparison to slower baselines. We have also executed the
slower, non-interactive baselines over the 𝐹𝐿 dataset, and show,
in Figure 7, their performance in terms of quality and time and
compared with SubTab. SubTab achieves the same combined score
as the EmbDI baseline; however, the latter takes 40 minutes to exe-
cute, whereas SubTab requires only 1.5 minutes. MAB achieves the
worst quality, even though it is executed for a long time. Finally, the
Greedy baseline slightly outperforms the other baselines in terms of
quality, but is the slowest one – this score was achieved by executing
it for 48 hours on a multi-process architecture. Overall, this shows
that SubTab computes high-quality tables at interactive speed.

6.3 Effectiveness of Pre-processing
Recall that SubTab has two distinct steps: Pre-processing, which is
executed once upon loading a data table, and Selection, which is
executed with each SubTab display, both for the table itself and for
queries over it (see figure 1). Figure 9 shows the execution times for
each step over different datasets. Pre-processing takes the longest
time, 90 seconds, for the CC dataset, although it is smaller than
FL. The reason is that this data contains only numeric columns that
must undergo binning. Still, this is a reasonable time for the set-up
phase of an EDA session. Then, the Selection phase takes only a few
seconds for all the datasets. We have tested the computation time for
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Figure 9: Average running time of SubTab

various sub-table sizes, and the results were similar (the difference
is less than 10%). This shows that our reuse of embeddings is indeed
effective in achieving fast response time.

6.4 Parameter Tuning
Our metric of cell coverage (formula 1) is measured with respect
to an input set of association rules. We have explained above, in
Section 5.1, why the embeddings used by our solution implicitly
capture the data patterns defined by prominent association rules. We
now unwrap the imprecise notion of “prominence” by considering
parameters that affect the set of mined association rules, and showing
that SubTab performs well for varying values for these parameters.
The averaged results for 𝐹𝐿 and 𝑆𝑃 datasets are shown in Figure 10.
In each graph we vary one parameter, and use the default value
for the others. Note that the sub-tables computed by each of the
algorithms are the same across all settings, since these algorithms
do not use the association rules as input; the variation in parameters
only affects the means of evaluating the sub-tables.

The first parameter that we consider is the number of bins per
binned column (the default number is 5). A larger number of bins
would imply more association rules (since there are more bin combi-
nations) but with lower significance, i.e., they would hold for less
tuples. In Figure 10a we can see that the cell coverage achieved by
SubTab is much higher than the other baselines, and that this score
moderately decreases for all three with the increase in number of
bins. Indeed, if association rules hold for less tuples, a sub-table
would need to cover more rules in order to describe the same amount
of cells.

Next, recall that support [2] reflects the ratio of tuples to which an
association rule applies. By default, we set the minimum threshold
for support to be 0.1, i.e., we are interested only in rules that hold
for at least 10% of the tuples. In Figure 10b we vary the support
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Figure 10: Parameter tuning experiment

threshold, and observe it only leads to a minor decrease in cell
coverage, for the three algorithms. Intuitively, if we increase the
threshold, less rules pass it, but these rules are prominent, so the
embedding is still likely to capture them.

The confidence of an association rule measures the strength of
the connection between its parts, i.e., the ratio, among all tuples
for which the left-hand-side holds, of tuples where the right-hand-
side holds as well. We have also varied the confidence threshold for
association rules (by default, it was 0.1) in Figure 10c. The observed
trends are similar to the varying of support.

These results show the robustness of our approach across different
properties of the association rules against which they are evaluated.
In particular, the ranking between algorithms, and the relative gap
between their scores is preserved across settings.

6.5 Findings
Results of these experiments highlight the quality of sub-tables com-
puted by SubTab, and show that they exceed those of other interactive
algorithms and are comparable even to algorithms that directly opti-
mize our metrics or use time-consuming state-of-the-art embedding
methods. They also show that, unlike the baselines, SubTab is suitable
for an interactive setting.

From a usability perspective, experiments with pre-recorded EDA
sessions show that SubTab outperforms other baselines by more
frequently including columns and rows that were later used. The
user study confirms that, as compared to the baselines, our sub-tables
more frequently help data analysts derive useful insights from the
data and increase user satisfaction.

Finally, the results also indicate that our metrics of sub-table
quality are sound and robust, and correlate with external means of
evaluating sub-table quality.

7 CONCLUSION AND FUTURE WORK
This paper presents SubTab, a framework for creating small, infor-
mative sub-tables of large data tables to facilitate the first step in
data analytics: data exploration. Given a larger table, SubTab cre-
ates a sub-table, with a small subset of rows of the table projected
over a small subset of columns, that could be explored manually
by the analyst. The rows and columns are chosen as representatives
of prominent data patterns within and across columns in the input
table. SubTab can also be used for query results, enabling the user to
quickly understand them and determine subsequent queries.

There are several directions for future research. Our current work
considers only single dataset as input. We could consider handling
multiple datasets, as well as optimizing sub-table computation for
operations over multiple tables such as joins. Another intriguing fu-
ture direction is creating sub-tables for other data science tasks, such
as visualization and training ML models, both for the supervised
and unsupervised setting.

As we extend our approach to different tasks, one could explore
different methods for table embedding, that could be performed
offline or within a longer period. Finally, there are many other chal-
lenging variants of sub-table computation, e.g., computing sub-tables
that meet certain fairness requirements with respect to the data they
represent.
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