
Contrastive Enhanced Slide Filter Mixer for
Sequential Recommendation

Xinyu Du1†, Huanhuan Yuan1†, Pengpeng Zhao1*, Junhua Fang1, Guanfeng Liu2, Yanchi Liu3,
Victor S. Sheng4, and Xiaofang Zhou5

1School of Computer Science and Technology, Soochow University, Suzhou, China
2Department of Computing, Macquarie University, Australia

3Rutgers University, USA 4Texas Tech University, USA
5The Hong Kong University of Science and Technology, China
{xydu, hhyuan}@stu.suda.edu.cn {ppzhao, jhfang}@suda.edu.cn

guanfeng.liu@mq.edu.au yanchi.liu@rutgers.edu victor.sheng@ttu.edu zxf@cse.ust.hk

Abstract—Sequential recommendation (SR) aims to model user
preferences by capturing behavior patterns from their item
historical interaction data. Most existing methods model user
preference in the time domain, omitting the fact that users’
behaviors are also influenced by various frequency patterns
that are difficult to separate in the entangled chronological
items. However, few attempts have been made to train SR in
the frequency domain, and it is still unclear how to use the
frequency components to learn an appropriate representation
for the user. To solve this problem, we shift the viewpoint to the
frequency domain and propose a novel Contrastive Enhanced
SLIde Filter MixEr for Sequential Recommendation, named
SLIME4Rec. Specifically, we design a frequency ramp structure
to allow the learnable filter slide on the frequency spectrums
across different layers to capture different frequency patterns.
Moreover, a Dynamic Frequency Selection (DFS) and a Static
Frequency Split (SFS) module are proposed to replace the self-
attention module for effectively extracting frequency information
in two ways. DFS is used to select helpful frequency components
dynamically, and SFS is combined with the dynamic frequency
selection module to provide a more fine-grained frequency
division. Finally, contrastive learning is utilized to improve the
quality of user embedding learned from the frequency domain.
Extensive experiments conducted on five widely used benchmark
datasets demonstrate our proposed model performs significantly
better than the state-of-the-art approaches. Our code is available
at https://github.com/sudaada/SLIME4Rec.

Index Terms—Sequential Recommendation, Filtering Algo-
rithm, Periodic Pattern, Contrastive Learning.

I. INTRODUCTION

Recommender systems (RSs) have become popular on vari-
ous online platforms for their ability to accurately recommend
a series of proper items that users may be interested in.
Different from conventional RSs [1] that usually assume user
preferences are static, sequential recommendation algorithms
consider time series information [2]–[4] to better recognize
user behavior patterns from user interaction sequences and
capture the evolution of user interests.

The majority of sequential models, however, primarily pro-
cess historical interactions from the perspective of the time

†They are co-first authors with equal contributions.
*Corresponding author

𝝎𝒊 < 𝝎𝒋 𝝎 ∝
𝟏
𝑻

Alice

Bob

𝑡! 𝑡" 𝒕𝑡#

?… … … …

?… … … …

Historical Item Sequence

Behavior Patterns
(Frequency dom

ain)

…

Low Frequency

High Frequency

Behavior Patterns
(Frequency dom

ain)

…
Low Frequency

High Frequency

𝝎

(Time Domain)

𝝎

𝝎𝑨𝒋

𝝎𝑩𝒊

𝝎𝑩𝒋

𝝎𝑨𝒊

𝑡"$#

Items that Alice interacts with at long intervals

Items that Alice interacts with at short intervals

Items that Bob interacts with at long intervals

Items that Bob interacts with at short intervals

Fig. 1. Illustration of a user’s historical item sequence observed from two
different perspectives. When we observe from the viewpoint of the time
domain, the items interacted by Alice and Bob are chronologically ordered
along the t-axis. When we shift our perspective to the frequency domain, the
historical item sequence of each user decomposed into multiple behavioral
patterns with different frequencies and periods along the ω-axis. Both Alice
and Bob have low-frequency behavior (i.e., ωAi , ωBi) and high-frequency
behavior (i.e., ωAj , ωBj).

domain and rarely fully exploit the features of users in the fre-
quency domain, which is frequently used in the field of digital
signal processing to filter noises [5], [6]. For example, Figure 1
shows the sequence of historical items interacted by Alice
and Bob, respectively. When we observe from the viewpoint
of the time domain, all the items are chronologically ordered
and intertwined along the t-axis, which are in essence noisy
or even contain malicious fakes [5]. By converting the input
time features to the frequency domain with a discrete Fourier
transform [7], [8], the historical item sequence of each user
can be decomposed into different frequency spectrums to find
more fine-grained sequential patterns in different frequencies.

In the time domain, deep recommender models tend to
overfit on noisy interaction data [5] in the time domain,
due to present approaches providing weights to all interacted
items in order to uncover user behavior patterns at the item

ar
X

iv
:2

30
5.

04
32

2v
1

 [
cs

.I
R

]
 7

 M
ay

 2
02

3

level. Furthermore, some studies have shown that the widely
used self-attention operation is substantially better at gathering
global low-frequency information but reduces high-frequency
signals [9], [10], which can be easily obtained in the frequency
domain. For this reason, FMLP-Rec [5] tries to process
sequence data in the frequency domain to attenuate noise
information hidden in the feature and capture the frequency
patterns for users.

For the frequency-based method, how to effectively employ
the frequency components to represent the user’s behaviors is
a vital problem. On the one hand, although the model can
best preserve the user’s thorough information in the frequency
domain by simply multiplying a filter that covers all frequency
components, it may lead to inferior representations because of
noisy inputs [11]. On the other hand, it is not advisable to
learn different frequency characteristics simultaneously. The
frequency domain features can be further divided into other
components (such as high- and low-frequencies), which could
help learn variable patterns for different frequencies. Such
merit is particularly appealing for the recommendation task,
where the user’s behaviors tend to show certain periodic
trends. For RSs, the high-frequencies mainly include the items
that regularly are brought in a short time interval (e.g., clothes),
and the relatively low-frequencies often include the items that
usually are purchased in a long time interval (e.g., mobile
phone or computer). In Figure 1, the behavior ωBj (e.g., Cloth-
ing and Outdoors) is obviously more frequent than ωBi (e.g.,
Electronic products) since ωBj > ωBi . But it is hard to rec-
ognize these variable patterns when items with all frequencies
are entangled in the time sequences. Hence, flexibly learning
high-frequency behaviors (Clothing and Outdoors) and low-
frequency behaviors (Electronic products) respectively could
be a way to have a better understanding of the whole user
preference.

For these reasons, we propose a simple and efficient model
named Contrastive Enhanced Slide Filter Mixer for Sequential
Recommendation, or, SLIME4Rec for short. We keep ex-
ploring the frequency features in the frequency domain and
find that the user historical sequence is composed of a variety
of behavior patterns with different periods and frequencies.
The key component in SLIME4Rec is the filter mixer, which
replaces the self-attention module with dynamic frequency
selection and static frequency split module in the frequency
domain. Firstly, different from FMLP-Rec [5] which utilizes
a global learnable filter to cover all frequency components,
a dynamic frequency selection module is proposed to make
the learnable filter slide on the frequency domain. Specifi-
cally, to trade off the different frequency patterns of users,
the frequency ramp structure module hierarchically covers a
specific frequency range with different neural network layers
in the frequency domain. The main function of this module
is to enable SLIME4Rec to adaptively emphasize or filter
some frequency components, and ease the overfit phenomenon
caused by noise. Secondly, to ensure all frequency components
are considered to best preserve the user’s meaningful periodic
characteristics, we mix a static frequency split module with

the dynamic frequency selection module. It averagely divides
all frequency components according to the number of layers,
which is to provide a more fine-grained frequency division
and recapture frequencies missed by the dynamic frequency
selection module. Finally, to improve the quality of user
embedding, we design a contrastive learning task to augment
the supervisory signal and take it as a supplement to the
recommended task. The main contributions of this paper are
summarized as follows:
• We shift the perspective to the frequency domain and

design a frequency ramp structure, which uses slide filters
to capture different subsets of whole frequency features
in different layers.

• We propose dynamic frequency selection and static fre-
quency split module, respectively, which mixes different
fine-grained frequency features captured by filters of
different sizes.

• We introduce our frequency feature-based model into
the contrastive learning paradigm. By unifying the rec-
ommendation task and the user behavior-level self-
supervised task, the recommendation performance can be
significantly improved.

• We conduct extensive experiments on five public datasets
and demonstrate the superiority of the SLIME4Rec com-
pared to state-of-the-art baselines with less computational
complexity.

II. PRELIMINARIES

Before elaborating on the proposed SLIME4Rec, we first
present some necessary notations to formulate the sequen-
tial recommendation problem and then introduce some back-
ground knowledge of the Fourier transform and convolution
theorem.

A. Problem Statement

The goal of sequential recommendation is to predict the
next item a user will click based on the user’s previous
interactions. We define the sequential recommendation issue
with the following formulation. Let V = {v1, v2, ..., v|V|}
denote a set of all unique items, and U = {u1, u2, ..., u|U|}
denote a set of all users, where u ∈ U denotes a user and
v ∈ V denotes an item. The numbers of users and items
are denoted as |U| and |V|, respectively. The set of user
behavior can be represented as S = {s1, s2, ..., s|U|}. In SR,
the user’s behavior sequence is usually in time order. This
means that each user sequence is made up of (chronologically
ordered) item interactions su = [v

(u)
1 , v

(u)
2 , ..., v

(u)
t , ..., v

(u)
n],

where su ∈ S, v(u)t ∈ V is the item with which user
u interacts at step t, and n is the length of the sequence.
su,t = [v

(u)
1 , v

(u)
2 , ..., v

(u)
t] represents the subsequence of items

that the user u interacts with before t + 1. Sequences are
typically truncated at N maximum length. Only the most
recent N interacting elements are taken into account if the
sequence length is larger than N . Zero padding items will be
inserted to the left until the sequence length reaches N if it
is less than N . As a result, if t > N , we truncate the input

sequence su,t to the final N elements when inferring the user
u representation at time step t+ 1:

su,t = [vt−N+1, vt−N+2, . . . , vt] (1)

Specifically, the recommendation model is trained to gen-
erate the probability score for each candidate, i.e., ŷ ={
ŷ1, ŷ2, . . . , ŷ|V|

}
, where ŷi denotes the prediction score of

item vi. Given a user’s historical interaction sequences without
any other auxiliary contextual information, the SR task takes
su,t as input to predict the most possible top-K items at the
timestamp t+ 1, which can be formulated as follows:

v∗u = argmax
vi∈V

P
(
v
(u)
t+1 = vi | su,t

)
(2)

where v∗u represents the groundtruth item of u.

B. Fourier Transform

Discrete Fourier Transform (DFT) [7], [8] is one of the most
widely used computing methods, with numerous applications
in data analysis, signal processing, and machine learning. In
order to transfer sequential behaviors from the time domain
to the frequency domain, we introduce DFT into SLIME4Rec.
Since the input data is sequential in SR, we only consider the
1D DFT. Given a finite sequence of {xn}N−1n=0 , the 1D DFT
converts the original sequence into the sequence of complex
numbers in the frequency domain by:

Xk =

N−1∑
n=0

xnW
nk
N , 0 ≤ k ≤ N − 1 (3)

where Wnk
N is the twiddle factor. It can be expanded into the

following form by Euler’s formula:

Wnk
N = e−

2πi
N nk = cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)
(4)

where i is the imaginary unit of the complex number. Xk is a
complex number representing the frequency spectrum of the
signal of frequency ωk = 2πk/N . The DFT is obtained by de-
composing a sequence of values into components of different
frequencies. Note that DFT is a one-to-one unique mapping
operation in the time and frequency domains. The sequence of
frequency representation {Xk}N−1k=0 can be transferred to the
time feature domain via an Inverse DFT (IDFT), which can
be formulated as:

xn =
1

N

N−1∑
k=0

XkW
−nk
N (5)

For real input xn, it has been proven that its DFT is conjugate
symmetric, i.e., Xk = X∗N−k, where X∗N−k denotes the
conjugate of XN−k. This property implies that a real discrete
signal xn can be recovered by half of the DFT {Xk}dN/2e

k=0 [6].
Benefited from this property, the Fast Fourier Transform (FFT)
algorithm [12], [13] is widely implied to compute DFT, which
could reduce the computational complexity from O(N2) to
O(N logN). Consequently, we convert sequential behaviors
into the frequency domain via FFT and denote it by F(·) in
our paper. Similar to IDFT, the Inverse FFT (IFFT) (denoted

by F−1(·)) is also used to efficiently transfer the frequency
feature back to the time domain.

C. Convolution Theorem

Frequency domain convolution has been paid more and
more attention in recent years, which opens up another
perspective in the field of deep learning. According to the
convolution theorem, the circular convolution in the time
domain is equivalent to the multiplication in the frequency
domain. This property directly helps us to design filters for
capturing different frequency components. In the context of
DFT, the convolution theorem can be proved as follows.

Given implicitly periodic signal x[n], the convolution of
x[n] and f [n] under this condition is called circular convolu-
tion, which can be described by a mathematical formula as:

f [n] ∗ x[n] =
N−1∑
m=0

f [n]xN [n−m] (6)

where “*” denotes circular convolution and xN [·] is the period
extension of {xn}N−1n=0 :

xN [n−m]
def
=

∞∑
k=−∞

x[n− kN] =

∞∑
k=−∞

x[n+ kN] (7)

It is a special case of circular convolution between two
periodic functions that have the same period. We have the
following derivations:

F(f [n] ∗ x[n]) = F(
N−1∑
m=0

f [m]xN [n−m])

=

N−1∑
n=0

N−1∑
m=0

f [m]xN [n−m]Wnk
N

=

N−1−m∑
u=−m

N−1∑
m=0

f [m]xN [u]W
(u+m)k
N

=

N−1∑
m=0

f [m]Wmk
N

N−1−m∑
u=−m

xN [u]Wuk
N

=

N−1∑
m=0

f [m]Wmk
N

N−1∑
u=0

x[u]Wuk
N

= F(f [n]) · F(x[n])

In conclusion, given the transformed frequency feature X[k]:

y[n] = f [n] ∗ x[n] = F−1(F(f [n]) ·X[k]) (8)

In this paper, F(f [n]) is the learnable filter and y[n] is the
feature transformed back to the time domain after filtering.

III. METHOD

In this section, we present the contrastive enhanced slide
filter mixer architecture (named as SLIME4Rec) for sequen-
tial recommendation. As shown in Figure 2, SLIME4Rec is
an attention-free Transformer architecture, wherein each block
starts with a filter mixer layer and ends with a feed-forward
layer. Essentially, we use the filter mixer layer that consists

User
Historical Item Sequence

𝑣!" 𝑣#$!" 𝑣#" 𝑣#%!
" 𝑣#%&

" 𝑣'"… …

Embedding Layer

𝑡! 𝑡#$! 𝑡# 𝑡#%! 𝑡#%& 𝑡' t

Filter Mixer

Add & Norm

FFN

Add & Norm

Prediction Layer

	𝐿	×	

Dynamic Frequency Selection Module

𝜔#$! 𝜔# 𝜔#%! 𝜔#%& 𝜔(𝝎𝜔!

Layer 1 Learnable Filter

Layer 2 Learnable Filter

Layer 3 Learnable Filter

…

Learnable Filter

𝒔𝒕𝒆𝒑 𝒔𝒕𝒆𝒑 𝒔𝒕𝒆𝒑

𝑫𝒚𝒏𝒂𝒎𝒊𝒄	𝑭𝒊𝒍𝒕𝒆𝒓	𝑺𝒊𝒛𝒆

…

Layer L Learnable Filter

Frequency Domain Feature

Inverse FFT

FFT

𝑃(𝑣!"#
(%) = 𝑣'|𝑠%,!)

Static Frequency Split Module

Layer L Learnable
Filter

𝑭𝒊𝒍𝒕𝒆𝒓	𝑺𝒊𝒛𝒆 𝑭𝒊𝒍𝒕𝒆𝒓	𝑺𝒊𝒛𝒆

𝑺𝒕𝒂𝒕𝒊𝒄	𝑭𝒊𝒍𝒕𝒆𝒓	𝑺𝒊𝒛𝒆

𝜔! 𝜔#$! 𝜔# 𝜔#%! 𝜔#%& 𝜔(𝝎𝜔&

…
Frequency Domain Feature

𝑭𝒊𝒍𝒕𝒆𝒓	𝑺𝒊𝒛𝒆

… Learnable
Filter

Layer 3 Learnable
Filter

Layer 2 Learnable
Filter

Layer 1 Learnable
Filter

…
…

𝑺𝑫 = 𝜶𝑴 𝑺𝑺 =
𝟏
𝑳
𝑴

𝜔&
Low High Low High

𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲	𝐑
𝐚𝐦

𝐩	𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞

𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲	𝐑
𝐚𝐦

𝐩	𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞

Fig. 2. The model architecture of SLIME4Rec is similar to the transformer encoder. It first generates item embedding with positional embedding through
the embedding layer, then extracts user preference from the frequency domain by the filter mixer layer instead of the self-attention layer. The details of the
filter mixer are shown on the right side which consists of two modules, i.e., Dynamic Frequency Selection (DFS) and Static Frequency Split (SFS) module.
For simplicity, we draw all the learnable filters of different layers in one block to show how the frequency ramp structure work on two modules, which looks
like the filter slides on the frequency domain feature across different layers. Finally, a prediction layer computes a recommendation score for all candidate
items.

of Dynamic Frequency Selection (DFS) and Static Frequency
Split (SFS) modules to replace the self-attention layer in the
transformer encoder. Then the frequency ramp structure on
two modules and the training object are discussed in detail.

A. Embedding Layer
Sequential recommendation focus on modeling the user

behavior sequence of implicit feedback, which is a list of
item IDs in SR. For all items given in V , we create an
item embedding matrix MV ∈ R|V|×d for all items, where
d is the embedding size. User behavior sequence su =

[v
(u)
1 , v

(u)
2 , ..., v

(u)
|su|] is embedded as:

E = [e
(u)
1 , e

(u)
2 , ..., e(u)n], e

(u)
k = LookUp(v

(u)
k ,MV) (9)

where LookUp(·, ·) retrieves an item embedding from the
embedding matrix.

Positional embedding is used to add more positional in-
formation while keeping the original embedding dimensions
of the item in order to make our model more responsive to
the item’s position. We also perform layer normalization and
dropout [14] operations to stabilize the training process. Thus,
we generate the sequence representation E ∈ RN×d by:

E = Dropout(LayerNorm(E+P)) (10)

B. Filter Mixer
To transform the input item representation matrix E to

the frequency domain, we first execute FFT along the item
dimension:

H0 = E (11)

F(Hl)→ Xl ∈ CM×d (12)

where Hl ∈ RN×d is the time feature of the l-th layer, and
F(·) denotes the 1D FFT. Note that Xl is a complex tensor
and represents the spectrum of Hl. As said in section II-B, due
to the conjugate symmetric property in the frequency domain,
half of the DFT contains the full information about the periodic
features in the time domain. M is calculated as:

M = dN/2e+ 1 (13)

After the Fourier transformation, we get M frequency
components {Xl

k}
M−1
k=0 from Xl ∈ CM×d. Frequency ωk =

2πk/N is used to describe the position of these frequency
components along the ω-axis in the frequency domain. To
model the frequency-domain features Xl

k, we propose filter
mixer blocks, where each block consists of two modules, i.e.,
DFS and SFS module, to capture the frequency information
in two different ways.

1) Dynamic Frequency Selection Module: In SLIME4Rec,
instead of preserving all frequency components, we design a
module to dynamically select features at specific frequencies
in the frequency domain. As proved in Section II-C, the
filter operation in the frequency domain is equal to circular
convolution that has a global receptive field like the self-
attention mechanism in Transformer architecture and captures
the periodic characteristics in the item sequences. By mul-
tiplying a corresponding learnable filter Wl

D ∈ CM×d, we
dynamically select the frequency features as:

X̂l
D = Xl � σl

ij(ω)�Wl
D (14)

where � is the element-wise multiplication and l indicates
that it is the i-th layer. As shown in Figure 2, Xl has M
frequency components and we use ω to represent the index of
each frequency component. Therefore, the σl

ij(ω) is defined
as:

σl
ij(ω) = I(il ≤ ω ≤ jl), 0 ≤ i < j ≤M (15)

Where I is an indicator function, determined by i and j.
The filter Wl

D is learnable since it is composed of complex
parameters that can be optimized by SGD to adaptively capture
sequential pattern characteristics in the frequency domain.
When the receptive field of the learnable filter in the frequency
domain is set as a fixed length window, other frequency
components around are shielded to eliminate dependence on
irrelevant frequencies. Therefore, when capturing the charac-
teristics of the current specific frequency range, the learnable
filter will simply disable all features that are not in the current
range.

2) Frequency Ramp Structure: As shown in Figure 2, to
make the filters of each layer cover a specific range, we further
design a frequency ramp structure for making the learnable
filter slide on the spectrum in different layers. Specifically, for
the dynamic frequency selection module, we define σl

ij(ω) as
←

σl
D(ω), where ← denote the direction of the filter slides, i.e.,

from high frequency to low frequency (low ← high) and →
denotes the direction from low frequency to high frequency
(low→ high). It is defined as:

←
σl
D(ω) =

{
1 if ω ∈ [

←
ilD,

←
jlD]

0 otherwise
(16)

←
ilD =M ∗ (1− α)− (l ∗ step) (17)

←
jlD =M − (l ∗ step) (18)

where α is the ratio of the dynamic filter size SD relative to
the frequency feature range M :

α =
SD

M
(19)

And given L as the number of filter mixer blocks:

step =
(1− α)M
L− 1

(20)

In this way, different layers can capture diverse frequency
characteristics.

When α is set to 1, the dynamic filter size of SLIME4Rec
is the same as FMLP-Rec [5], whose the value of Eq. (20)
equals 0 and the filter does not slide on the spectrum.
For a model with L layers, we get a list of indicator

functions of length L which can be denoted as
←

σD(ω) =

{
←

σ0
D(ω),

←
σ1
D(ω), ...,

←
σL−1
D (ω)}. It can be easily proved that

→
σD(ω) = inverse(

←
σD(ω)), where inverse(·) means reverse

the order of the input. Taking into account that top layers focus
more on modeling low-frequency global information while
bottom layers are more important for capturing high-frequency

details [15], we choose the direction from high frequency to
low frequency and Eq. (14) is rewritten as:

X̂l
D = Xl �

←
σl
D(ω)�Wl

D (21)

3) Static Frequency Split Module: The static frequency
split module is to make up for the problem of missing some
frequency domain features that may exist in the dynamic
frequency selection module. Specifically, when dynamic filter
size SD < step, the dynamic filter will not be able to cover the
frequency features between the current step and the previous
step, i.e.:

αM <
(1− α)M
L− 1

(L− 1)α < (1− α)

α <
1

L

So we define the relative ratio of the static filter size as β:

β =
1

L
=
SS

M
(22)

where SS is the size of the static filter. Therefore, the slide

index i and j of
←

σl
S(ω) can be denoted as:

←
ilS =M ∗ (1− β)− (l ∗ SS) (23)

←
jlS =M − (l ∗ SS) (24)

After that, by multiplying a static learnable filter Wl
S ∈

CM×d, we can modify the spectrum to capture missing
frequency features that the dynamic filter cannot capture even
if α < β.

X̂l
S = Xl �

←
σl
S(ω)�Wl

S (25)

Finally, we mix the features extracted by the dynamic filter
and the features extracted by the static filter and adopt the
inverse FFT to transform the modulated spectrum X̂l

mix back
to the time domain:

X̂l
mix = (1− γ)X̂l

D + γX̂l
S (26)

Ĥl ← F−1(X̂l
mix) ∈ RN×d (27)

where F−1 stands for the inverse 1D FFT, which transforms
the complex tensor into a tensor of real numbers. To address
the gradient vanish and unstable training issues, we also
include the skip connection, layer normalization, and dropout
operations as follows:

Ĥl = LayerNorm(Hl +Dropout(Ĥl)) (28)

C. Point-wise Feed Forward Network

Similar to the self-attention mechanism, the frequency-
domain convolution in the filter mixer is still a linear operation,
which fails to model complex non-linear relations. To endows
the models with non-linearity characteristics between different
dimensions in the time domain, we also add a feed-forward
network after each filter mixer, which consists of Multi-Layer
Perceptron (MLP) with GELU activation. The process of the

point-wise Feed-Forward Neural network (FFN) is defined as
follows:

H̃l = FFN(Ĥl) = (GELU(ĤlW1 + b1))W2 + b2 (29)

where W1,W2 ∈ Rd×d and b1,b2 ∈ R1×d are learnable
parameters. In order to prevent overfitting, we add a dropout
layer above each hidden layer and perform layer normalization
procedures again using densely residual connection structure
on the output Hl+1, as below:

Hl+1 = LayerNorm(Hl + Ĥl +Dropout(H̃l)) (30)

D. Prediction Layer

After L filter mixer blocks that adaptively and hierarchically
extract behavior pattern information of previously interacted
items, we get the final combined representation of items
that represent the user preference. Based on the L-layer
encoder output HL, we select the last hidden vector hL

t in
HL = [hL

0 ,h
L
1 , · · · ,hL

t] as the user representation of this user
sequence, we can compute the recommendation probability of
candidate item v to predict how likely the user would adopt
the item. Specifically, the corresponding predicted probability
ŷ can be generated by:

ŷ = softmax((MV)>hL) (31)

where ŷ ∈ R|V|. As a result, we expect that the true item v
that user u adopted will lead to a higher score ŷi. To optimize
the model parameter, we therefore use the cross-entropy loss.
The objective function of SR can be formulated as:

LRec = −
|V|∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) (32)

E. Contrastive Learning

To enhance the training of the filters in both dynamic fre-
quency selection and static frequency split modules to capture
the core frequency components of user sequence, we leverage
a multi-task training strategy to jointly optimize the main
recommendation loss with auxiliary contrastive loss. It helps to
minimize the difference between differently augmented views
of the same user and maximize the difference between the
augmented sequences derived from different users.

Although previous augmentations methods [16] including
item cropping, masking, and reordering help to enhance
the performance of SR models, the data-level augmentations
cannot guarantee a high level of semantic similarity [17].
Instead of using typical data augmentations, we let the same
user’s sequence pass through the network twice and model
the frequency components to construct harder positive samples
by mixing the frequency feature extract from DFS and SFS
before the inverse Fourier transform. Since there are different
dropout layers in the network module, we will get two output
views with different numerical features but similar semantics.
Besides, in order to increase the supervision signal of contrast
learning, we follow DuoRec [17] to use a sequence with
the same target as a positive sample of supervised contrast

learning. All the other augmented samples in the training
batch are treated as negative samples in order to efficiently
create the negative samples for an augmented pair of samples
(represented as neg).

For the batch B, the contrastive regularization is defined as:

LCLReg = LCLReg(h
′,h′s) + LCLReg(h

′
s,h
′) (33)

LCLReg(h
′,h′s) = − log

exp(sim(h′,h′s))∑
neg exp(sim(h′,hneg))

(34)

where h′ and h′s represent unsupervised and supervised aug-
mented views, respectively, defined as follows:

h′ = HL′
[−1], h′s = HL′

s [−1] (35)

Thus, the overall objective of SLIME4Rec is:

` = `Rec + λ`CLReg (36)

where λ is hyperparameter to control the strengths of con-
trastive regularization.

F. Complexity Analysis

Different from transformer-based models that rely on the
self-attention mechanism, SLIME4Rec is an attention-free
architecture with dynamic and static filters. The computation
complexity of traditional self-attention is O(n2d+nd2), where
n is the sequence length of user and d is hidden size. In con-
trast, the time complexity of the filter mixer block can be re-
duced to O(n log(nd)) with FFT [18]. The time complexity of
the element-wise product in our proposed dynamic frequency
selection and static frequency split module is O(nd), and
the time cost of feed-forward networks is O(nd

2

2). Therefore,
considering contrastive objectives and layer numbers the total
time complexity of SLIME4Rec isO(3L(n log nd+nd+nd2

2))
which is proportional to the log-linear complexity of the input
sequence length n.

IV. EXPERIMENTS

In this section, we first briefly introduce the datasets used in
our experiments, eight baselines, the evaluation metrics, and
the implementation details in our experimental settings. Then,
we compare our proposed model SLIME4Rec with state-of-
the-art baseline methods, present the experimental results of
each model and analyze the reasons. Additionally, we explore
how the performance of our model SLIEM4Rec is impacted
by important model components and parameters. Finally, we
discuss the robustness of SLIME4Rec to synthetic noises
and present the visualization of dynamic and static filters.
Specifically, to study the validity of SLIME4Rec, we conduct
experiments to try to answer the following questions:
• RQ1 Does SLIME4Rec perform better than the state-of-

the-art baselines?
• RQ2 What is the influence of dynamic and static filter

modules in the SLIME4Rec?
• RQ3 What is the influence of filter slide direction on

model performance?

• RQ4 How do the parameters, such as dynamic filter
size ratio α, max item length N , hidden size d, and the
number of filter mixer blocks L, affect the effectiveness
of SLIME4Rec?

• RQ5 How robust is the proposed model to synthetic
noise?

A. Dataset

We conduct experiments on five public datasets collected
from real-world platforms in order to thoroughly evaluate
SLIME4Rec. These datasets, which differ in scenarios, sizes,
and sparsity, are frequently used in tests of sequential recom-
mendation methods. The main statistics of five datasets after
preprocessing are reported in Table I. We elaborate on the
descriptions of the individual dataset below.
• Beauty, Clothing, and Sports [19] are three datasets

that were gathered from Amazon, one of the biggest e-
commerce platforms in the world. They are divided by
the highest-level product categories on Amazon. High
sparsity and a variety of rating review categories are char-
acteristics of Amazon datasets. We follow the setting in
DuoRec and adopt three categories, “Beauty”, “Clothing
Shoes and Jewelry”, and “Sports and Outdoors”.

• MovieLens-1M [20] is based on reviews of movies that
were collected from the non-commercial movie recom-
mendation website MovieLens. The interaction number
in ML-1M is about 1 million.

• Yelp [17] is a famous dataset for business recommen-
dation. We only use the transaction records from after
January 1st, 2019, due to the scale of transactions.

Following [21], [22], we also adopt the 5-core settings by
filtering out users with less than 5 interactions.

B. Evaluation Metrics

In our evaluation, we adopt the leave-one-out strategy, in
which the final item that a user interacts with is held out
for testing, the next-to-last item is held out for validation,
and the remaining items are held out for training. We rank
the prediction scores throughout the entire item set without
using negative sampling, as recommended by [23], which
ensures that the evaluation process is unbiased. Performance
is evaluated on a variety of evaluation metrics, including Hit
Ratio at K (HR@K) and Normalized Discounted Cumulative
Gain at K (NDCG@K) on all datasets. Note that higher values
of both indicate better performance. HR@K is a recall-based
metric that measures the average proportion of ground-truth
items in the top-K recommendation lists. NDCG@K is a
position-aware metric that evaluates the ranking quality of the
top-K recommendation lists in a position-wise manner. We
report HR and NDCG for K = 5 and 10 in this paper.

C. Baseline Models

To demonstrate the effectiveness of the proposed model, we
compare SLIME4Rec with the most wide-used and state-of-
the-art methods, including plain matrix factorization methods

TABLE I
STATISTICS OF THE DATASETS AFTER PREPROCESSING.

Specs. Beauty Clothing Sports ML-1M Yelp

Users 22,363 39,387 35,598 6,041 30,499
Items 12,101 23,033 18,357 3,417 20,068
Avg.Length 8.9 7.1 8.3 165.5 10.4
Actions 198,502 278,677 296,337 999,611 317,182
Sparsity 99.93% 99.97% 99.95% 95.16% 99.95%

(BPR-MF), sequential models with different neural architec-
tures (GRU4Rec, Caser, SASRec, BERT4Rec, FMLP-Rec),
and competitive sequential models using self-supervised learn-
ing contrastive objective function (CL4SRec, ContrastVAE,
CoSeRec, and DuoRec). All baselines are described as follows:

BPR-MF [1] is a classic non-sequential method for learning
personalized ranking from implicit feedback and optimizing
the matrix factorization through a pair-wise Bayesian Person-
alized Ranking (BPR) loss.

GRU4Rec [2] is the first model to apply Gated Recurrent
Unit (GRU) to model sequences of user behavior for sequential
recommendation. The final hidden feature of the GRU is
treated as the latent representation of the input sequence.

Caser [3] is a CNN-based method capturing local dynamic
patterns of user activity by using horizontal and vertical
convolutional filters over time.

SASRec [4] is one of the Transformer-based models with
the multi-head self-attention mechanism. Since the powerful
capability to model long-term dependence, SASRec has be-
come a strong baseline in the sequential recommendation.

BERT4Rec [22] uses a masked item traning scheme sim-
ilar to the masked language model sequential in NLP. The
backbone is the bi-directional self-attention mechanism.

FMLP-Rec [5] is a all-MLP model using a learnable filter-
enchanced block to remove noise in the embedding matrix.
Compared to traditional sequence modeling techniques, this
structure is significantly different.

CL4SRec [16] uses three data augmentation techniques,
including sequence cropping, masking, and reordering, to
generate different contrastive representations of the same user
interaction sequence for the auxiliary contrastive learning task.

ContrastVAE [24] is a VAE-based method that combines
three augmentations strategies including data augmentation,
model augmentation, and variational augmentation for con-
trastive learning.

CoSeRec [25] makes use of correlations between items
to improve the robustness of data augmentation within the
contrastive framework.

DuoRec [17] uses unsupervised model-level augmentation
and supervised semantic positive samples for contrastive learn-
ing. It is the most recent and strong baseline for sequential
recommendation.

D. Implementation Details
We implement our SLIME4Rec model in PyTorch. All the

experiments are conducted on a Linux server equipped with a

TABLE II
OVERALL PERFORMANCE. THE BOLD SCORES INDICATE THE BEST RESULTS OF ALL METHODS. UNDERLINED SCORES STAND FOR THE SUBOPTIMAL

RESULTS OF ALL METHODS. THE SLIME4REC OUTPERFORMS ALL BASELINE MODELS BY A LARGE MARGIN IN TERMS OF ALL EVALUATION METRICS.

Datasets Metric BPR-MF GRU4Rec Caser SASRec BERT4Rec FMLP-Rec CL4SRec ContrastVAE CoSeRec DuoRec SLIME4Rec Improv.

Beauty

HR@5 0.0120 0.0164 0.0259 0.0365 0.0193 0.0398 0.0401 0.0422 0.0537 0.0546 0.0621 13.74%
HR@10 0.0299 0.0365 0.0418 0.0627 0.0401 0.0632 0.0683 0.0681 0.0752 0.0845 0.0910 7.69%
NDCG@5 0.0040 0.0086 0.0127 0.0236 0.0187 0.0258 0.0223 0.0268 0.0361 0.0352 0.0396 12.50%
NDCG@10 0.0053 0.0142 0.0253 0.0281 0.0254 0.0333 0.0317 0.0350 0.0430 0.0443 0.0489 10.38%

Clothing

HR@5 0.0067 0.0095 0.0108 0.0168 0.0125 0.0126 0.0168 0.0161 0.0175 0.0193 0.0225 16.58%
HR@10 0.0094 0.0165 0.0174 0.0272 0.0208 0.0206 0.0266 0.0247 0.0279 0.0302 0.0343 13.58%
NDCG@5 0.0052 0.0061 0.0067 0.0091 0.0075 0.0082 0.0090 0.0105 0.0095 0.0113 0.0126 11.50%
NDCG@10 0.0069 0.0083 0.0098 0.0124 0.0102 0.0107 0.0121 0.0133 0.0131 0.0148 0.0164 10.81%

Sports

HR@5 0.0092 0.0137 0.0139 0.0218 0.0176 0.0218 0.0227 0.0225 0.0287 0.0326 0.0373 14.42%
HR@10 0.0188 0.0274 0.0231 0.0336 0.0326 0.0344 0.0374 0.0366 0.0437 0.0498 0.0565 13.45%
NDCG@5 0.0040 0.0096 0.0085 0.0127 0.0105 0.0144 0.0129 0.0151 0.0196 0.0208 0.0243 16.83%
NDCG@10 0.0051 0.0137 0.0126 0.0169 0.0153 0.0185 0.0197 0.0184 0.0242 0.0262 0.0305 16.41%

ML-1M

HR@5 0.0078 0.0763 0.0816 0.1087 0.0733 0.1356 0.1147 0.1406 0.1262 0.2038 0.2237 9.76%
HR@10 0.0162 0.1658 0.1593 0.1904 0.1323 0.2118 0.1975 0.2220 0.2212 0.2946 0.3156 7.13%
NDCG@5 0.0052 0.0385 0.0372 0.0638 0.0432 0.0870 0.0662 0.0895 0.0761 0.1390 0.1567 12.73%
NDCG@10 0.0079 0.0671 0.0624 0.0910 0.0619 0.1113 0.0928 0.1157 0.1021 0.1680 0.1864 10.95%

Yelp

HR@5 0.0127 0.0152 0.0156 0.0161 0.0186 0.0179 0.0216 0.0177 0.0241 0.0441 0.0516 17.01%
HR@10 0.0245 0.0263 0.0252 0.0265 0.0291 0.0304 0.0352 0.0294 0.0395 0.0631 0.0766 21.39%
NDCG@5 0.0760 0.0104 0.0096 0.0102 0.0118 0.0113 0.0130 0.0113 0.0151 0.0325 0.0359 10.46%
NDCG@10 0.0119 0.0137 0.0129 0.0134 0.0171 0.0153 0.0185 0.0147 0.0205 0.0386 0.0439 13.73%

32GB NVIDIA Tesla V100 GPU. For the baseline models,
we refer to their best hyper-parameters setups reported in
the original papers and directly report their reimplementations
results if available, since the datasets and evaluation metrics
used in these works are strictly consistent with ours.

The model is optimized by Adam optimizer with a learning
rate of 0.001. Both the dimension of the feed-forward network
and item embedding size are set to 64. For the dropout rate
on the embedding matrix and filter mixer blocks are chosen
from {0.1, 0.2, 0.3, 0.4, 0.5}. Thanks to the frequency ramp
structure, we stack more filter layers and search the total num-
ber of filter mixer layers in {2, 4, 8}. Due to the O(N logN)
complexity, the maximum sequence length N can be chosen
from {25, 50, 75, 100} without adding too much computation
cost. For the dynamic frequency selection modules, we set the
α as hyper-parameters and select it from [0, 1] with step 0.1.
All these parameters are tuned on the validation set. We report
the result of each model under its optimal hyper-parameter
settings. The implementation of our model can be found at
https://github.com/sudaada/SLIME4Rec.

E. Recommendation Performance Comparison

To prove the sequential recommendation performance of
our model SLIME4Rec, we compare it with other state-of-the-
art methods (RQ1). Table II presents the detailed evaluation
results of each model where the results of our SLIME4Rec
and the strongest baselines are highlighted in bold and under-
lined respectively. According to the results, we can draw the
following observations and conclusions.

First, it is no doubt that the non-sequential recommendation
method BPR-MF displays the lowest results across all datasets
since it ignores the sequential information, which indicates the
importance of mining the sequential patterns hidden inside

user behavior sequences. Second, all of the neural network
methods (GRU4Rec, Caser, SASRec, BERT4Rec, and FMLP-
Rec) are significantly better than conventional methods, prov-
ing the neural network based models are capable of capturing
complex sequential patterns for making recommendations.
For example, GRU4Rec performs better than BPR-MF by
leveraging the recurrent structure to capture the user’s general
preference. We can draw the conclusion that using sequen-
tial information can enhance performance. Moreover, Caser
achieves better performance than GRU4Rec on most datasets,
which indicates the effectiveness of convolution kernels to
capture the more complex behavior pattern. Compared with
the previous RNN-based and CNN-based methods, the ad-
vanced Transformer-based method (e.g., SASRec) improves
the performance by a large margin. It demonstrates that the
self-attention mechanism has a stronger capability of modeling
interaction sequences in SR. For example, BERT4Rec applies
the masked item prediction objective. Although such a task can
introduce a meaningful signal for the model, the performance
is not consistent since the masked item prediction is not
aligned well with the recommendation task. More recently,
a filter-enhanced MLP structure achieved almost the same
performance as SASRec or even better on most datasets by
attenuating the noise in the frequency domain.

Third, compared with the vanilla method, the model with
auxiliary self-supervised learning tasks gains decent improve-
ment. For example, CL4SRec improves the performance of
SASRec with three data augmentation. ContrastVAE apply
variational augmentations to create a stronger augmented view
for contrastive learning, which achieves comparable or even
better results than CL4SRec. CoSeRec follows the pipeline
of CL4SRec to enhance contrast sequences by leveraging
item correlations. It demonstrates how contrastive learning

(a) Clothing (b) ML-1M (c) Yelp

Fig. 3. Ablation study of the different filter module and contrastive learning.

could be a useful method for sequential recommendation tasks.
DuoRec outperforms all the baselines by a large margin by
model augmentation and semantic augmentation, which verify
the effectiveness of the combination of supervised contrastive
learning and unsupervised contrastive learning.

Finally, our model outperforms other competing methods on
both sparse and dense datasets with a significant margin across
all the metrics, demonstrating the superiority of our model.
Specifically, SLIME4Rec achieves remarkable improvements
over the strongest baselines w.r.t. NDCG@5 improves by
16.58% and 12.73% on Amazon Sports and ML-1M, re-
spectively, and HR@10 improves by 21.39% on Yelp. This
observation demonstrates the effectiveness of SLIME4Rec and
shows that transforming user sequence from the time domain
to the frequency domain and multiplying a learnable filter of
the appropriate size on the frequency components is promising
to extract useful information for accurate recommendation.

F. Ablation Study

As introduced in Section III, the backbone architecture of
SLIME4Rec is constructed with two main novel components,
i.e., the dynamic and static filter module and the frequency
ramp structure. To better understand the design rationale of our
method, we conduct some ablations study on the proposed
model to investigate the effectiveness of these components
separately (RQ2). Due to the space limit, we only show the
analysis results in terms of HR@5 and NDCG@5. We have
obtained similar experimental results in terms of other metrics.

TABLE III
PERFORMANCE (HR@5 AND NDCG@5) OF THE DIFFERENT FILTER

MODULE DESIGNS.

Layer DFS SFS
Beauty Clothing Sports ML-1M Yelp

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

L=2
α=0.3 7 0.0588 0.0360 0.0209 0.0116 0.0357 0.0227 0.1876 0.1287 0.0449 0.0317
α=0.3 β=0.5 0.0604 0.0370 0.0210 0.0118 0.0358 0.0228 0.1907 0.1312 0.0454 0.0320

L=4
α=0.2 7 0.0594 0.0373 0.0213 0.0121 0.0367 0.0234 0.1874 0.1273 0.0467 0.0327
α=0.2 β=0.25 0.0599 0.0376 0.0217 0.0124 0.0369 0.0235 0.1879 0.1274 0.0481 0.0337

L=8
α=0.1 7 0.0570 0.0371 0.0203 0.0120 0.0365 0.0232 0.1945 0.1357 0.0452 0.0312
α=0.1 β=0.125 0.0591 0.0379 0.0211 0.0128 0.0369 0.0239 0.2020 0.1384 0.0460 0.0327

1) Investigation of Filter Module Design: We start by ex-
ploring the influence of different filter module designs and how
contrastive learning enhance these modules. To investigate
the contribution of each component to the final recommen-
dation performance, we design three variants of SLIME4Rec.

When the contrastive learning, dynamic filter or static fil-
ter is removed from SLIME4Rec, the model is degraded
to SLIME4Recw/oC , SLIME4Recw/oD and SLIME4Recw/oS

respectively. SLIME4Rec has both dynamic and static filter
modules, which is the full version of our proposed model.

Specifically, we conduct an ablation study on three datasets
and show the results in Figure 3. From the results, we can ob-
serve that removing any component would lead to performance
degradation and all the variants of SLIME4Rec perform better
than DuoRec, proving that all components of the proposed
model are effective and necessary. Besides, we can see that
SLIME4Rec outperforms all the other variants with a single
filter module. The reason is that dynamic and static feature mix
can learn the sequential pattern from different receptive fields
jointly, which is promising to better capture user preference.

To prove the necessity of using a static filter module, we
conduct a detailed ablation study when the dynamic filter
size is too small to capture the frequency range of the
current step. We analyze the importance of local awareness
in Table III. Table III shows that although the dynamic filter
module plays a more critical role in capturing frequency
features, the static filter plays an important supporting role
when α < β. Benefiting from both using dynamic and static
filter modules, SLIME4Rec can preserve complete information
on spectrum characteristics in each layer when α < β and
collect all informative signals across different layers without
losing information of any frequency range.

TABLE IV
PERFORMANCE(HR@5 AND NDCG@5) OF THE DIFFERENT FILTER SLIDE

MODES OF FREQUENCY RAMP STRUCTURE.

Slide DFS SFS
Beauty Clothing Sports ML-1M Yelp

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

Mode 1 ← → 0.0577 0.0371 0.0216 0.0120 0.0360 0.0239 0.2086 0.1432 0.0486 0.0343

Mode 2 → ← 0.0563 0.0360 0.0214 0.0121 0.0361 0.0224 0.2104 0.1461 0.0489 0.0346

Mode 3 → → 0.0589 0.0371 0.0220 0.0123 0.0367 0.0233 0.2108 0.1455 0.0493 0.0343

Mode 4 ← ← 0.0621 0.0396 0.0225 0.0126 0.0373 0.0243 0.2237 0.1567 0.0516 0.0359

2) Investigation of Frequency Ramp Structure: SLIME4Rec
mainly focuses on extracting features in the frequency domain,
and one of its most innovative structures is the sliding filter.
Since the features of low frequency and high frequency are
distributed on the left and right sides respectively in the
frequency domain, there are two sliding directions. In both
the dynamic module and static module, we adopt the slide
technique to fuse information about users’ behavior patterns
with different frequencies from the feature in the frequency
domain. To further illustrate the impact of different slide
modes on SLIME4Rec, we conduct ablation studies on five
datasets (RQ3). As shown in Table IV, there are four slide
modes. Symbol ← stands for the filter sliding from high-
frequency feature to low-frequency feature. Symbol → stands
for the filter sliding from low-frequency feature to high-
frequency feature.

We note that sliding mode 4 outperforms other sliding
modes. This implies that the details in the high-frequency fea-
ture are suitable for the lower layers filter to capture the local

(a) Beauty (b) Clothing (c) Sports (d) ML-1M (e) Yelp

R
el

at
iv

e
Im

pr
ov

em
en

ts
(%

)

! ! ! ! !

Fig. 4. Relative improvement with different dynamic filter sizes α compared to the strongest baseline DuoRec.

frequently changed interest of the user. As the network layer
goes deeper, various local information is gradually collected
to understand the entire global interaction sequence. Besides,
mode 3 achieves the second-best performance. The sliding
mode 3 is very similar to mode 4, but in opposite directions.
The dynamic and static filter in mode 3 captures low-frequency
feature at the bottom layer and high-frequency information at
the top layer, which is inconsistent with the conclusion in [15]
that lower layers often need more local information, while
higher layers desire more global information.

In fact, the dynamic and static filters in modes 1 and 2 have
opposite and conflicting sliding directions no matter whether
they are on the top layer or the bottom layer. In other words,
the low-frequency information extracted by the dynamic filter
is directly mixed with the high-frequency information ex-
tracted by the static filter, and vice versa. Therefore adding
these two conflicts frequency feature leads to suboptimal
results. Applying frequency ramp structure on the filter module
makes SLIME4Rec better trade-off high- and low-frequency,
since the layers at different positions in the neural network
play different roles in capturing feature details. SLIME4Rec
further models sequential patterns from high-frequency to low-
frequency in the frequency ramp structure, which is suitable
for feature extraction of deep neural networks [15].

G. Influence of Hyper-parameters

To explore the effectiveness of capturing sequential patterns
in the frequency domain with a sliding filter, we study how
four hyperparameters, the filter size ratio α, the model depth
L, hidden size d, and the maximum length of user sequence
M , affect the performance of SLIME4Rec (RQ4). We analyze
one hyper-parameter at a time by fixing the remaining hyper-
parameters at their optimal settings.

1) Impact of Filter Size Ratio α: One of the novelties
in the proposed SLIME4Rec model is that we let a filter
of appropriate size slide over the frequency domain features
across different layers. So in our work, we introduce the hyper-
parameter α to control the filter size, which can significantly
affect the performance of our model. We conduct experiments
under different α on five datasets and illustrate the impact of
this hyperparameter in Figure 4.

As shown in Figure 4, we can observe that with the increase
of α the performance of SLIME4Rec starts to increase at
the beginning, and it gradually reaches its peak when α is

0.4 on Amazon-Beauty, 0.8 on Amazon-Clothing, and 0.3 on
Amazon-Sports. Afterward, it starts to decline. Interestingly,
the best α for the Sports dataset is only 0.3 and 0.4 for Beauty.
It suggests that for sparse datasets, the sliding filter size does
not need to be too large. It is necessary to focus on the specific
frequency bands where important frequency features exist. For
example in the Amazon dataset, the important frequency com-
ponents of users are more concentrated and mainly distributed
in the low-frequency region [5]. While on dense datasets like
ML-1M composed of various kinds of movies, the spectrum of
user sequences is more complex and the important frequency
components are scattered in various frequency bands, making
users’ interests in the ML-1M dataset more diverse and harder
to understand. To capture more complex sequential patterns
of users, the dynamic filter structure requires more complex
parameters in the frequency domain and a larger receptive field
in the time domain. Note that no matter the value of α except
0.1 and 1, our method SLIME4Rec always performs better
than DuoRec. However, when α is set too small (α = 0.1), it
will lead to suboptimal recommendation results.

2) Impact of Input Sequence Length N : As mentioned in
section III, α is the ratio of the dynamic filter size SD relative
to the frequency domain feature range M , where M depends
on N . To investigate the benefit of utilizing a sliding filter
of appropriate size along the sequence length dimension, we
conduct SLIME4Rec with different N . We only report the
results on HR@5 due to space limitations, and similar trends
can be found on other metrics. Figure 5(a) and (b) show
how the relative improvements of HR@5 vary with filter size
ratio α when using different input sequence length. For the
Beauty dataset, increasing the N of SLIME4Rec from 25
to 50 consistently improves the performance but when N
becomes larger, the model performance will decline. These
results suggest that increasing N arbitrarily does not always
result in an improvement in performance. However, for the
dense dataset ML-1M with more average actions of users,
increasing the sequence length N when the dynamic filter size
ratio equals 1 is promised to improve performance since more
existing interacted items are considered. Finally, it can be seen
that the dynamic filter size ratio is not sensitive to the change
in sequence length despite increasing the sequence length.

3) Impact of Hidden Size d: We also conduct experiments
on different hidden sizes d in addition to the experiment of

R
el

at
iv

e
Im

pr
ov

em
en

ts
 (%

)

(a) HR@5 on Beauty
𝛼

(b) HR@5 on ML-1M
𝛼

(c) Beauty
𝑑

(d) ML-1M
𝑑

R
el

at
iv

e
Im

pr
ov

em
en

ts
 (%

)
Fig. 5. Performances with different dynamic filter size ratio α when setting different max item list length. And performances with different hidden size d.

TABLE V
PERFORMANCE COMPARISON OF SLIME4REC WITH DUOREC AT

DIFFERENT LAYERS. HR IS SHORT FOR HIT RECAL AND NG IS SHORT FOR
NDCG. THE BEST PERFORMANCE IN EACH ROW IS BOLDFACED.

Method
Beauty Clothing Sports

HR@5 NG@5 HR@10 NG@10 HR@5 NG@5 HR@10 NG@10 HR@5 NG@5 HR@10 NG@10

L = 2

DuoRec 0.0546 0.0352 0.0845 0.0443 0.0193 0.0113 0.0302 0.0148 0.0326 0.0208 0.0498 0.0262

Ours
0.0604 0.0370 0.0903 0.0467 0.0225 0.0126 0.0343 0.0164 0.0364 0.0230 0.0561 0.0294

↑10.62% ↑5.11% ↑6.86% ↑5.42% ↑16.58% ↑11.50% ↑13.58% ↑10.81% ↑13.75% ↑10.58% ↑13.79% ↑12.21%

L = 4

DuoRec 0.0551 0.0344 0.0855 0.0441 0.0197 0.0113 0.0299 0.0146 0.0315 0.0204 0.0480 0.0257

Ours
0.0607 0.0379 0.0920 0.0480 0.0221 0.0126 0.0341 0.0165 0.0373 0.0243 0.0565 0.0305

↑10.16% ↑10.17% ↑7.60% ↑8.84% ↑12.18% ↑11.50% ↑14.05% ↑13.01% ↑17.46% ↑19.12% ↑19.17% ↑18.68%

L = 8

DuoRec 0.0565 0.0353 0.0867 0.0451 0.0197 0.0116 0.0316 0.0154 0.0299 0.0197 0.0460 0.0248

Ours
0.0621 0.0396 0.0910 0.0489 0.0221 0.0128 0.0342 0.0167 0.0365 0.0239 0.0563 0.0302

↑9.91% ↑12.18% ↑4.96% ↑8.43% ↑12.18% ↑10.34% ↑8.23% ↑8.44% ↑22.07% ↑21.32% ↑19.17% ↑21.77%

Method ML-1M Yelp
HR@5 NG@5 HR@10 NG@10 HR@5 NG@5 HR@10 NG@10

L = 2
DuoRec 0.2038 0.1390 0.2946 0.1680 0.0441 0.0325 0.0631 0.0386

Ours 0.2139 0.1457 0.3026 0.1743 0.0516 0.0359 0.0766 0.0439
↑4.96% ↑4.82% ↑2.72% ↑3.75% ↑17.01% ↑10.46% ↑21.39% ↑13.7%

L = 4
DuoRec 0.2065 0.1423 0.2917 0.1699 0.0454 0.0333 0.0643 0.0394

Ours 0.2202 0.1515 0.3127 0.1812 0.0502 0.0348 0.0765 0.0432
↑6.63% ↑6.47% ↑7.20% ↑6.65% ↑10.57% ↑4.5% ↑18.97% ↑9.64%

L = 8
DuoRec 0.2164 0.1501 0.3063 0.1701 0.0438 0.0318 0.0629 0.0380

Ours 0.2262 0.1559 0.3132 0.1840 0.0493 0.0336 0.0745 0.0417
↑4.53% ↑3.86% ↑2.25% ↑8.17% ↑9.80% ↑5.66% ↑14.97% ↑9.74%

sequence length N to fully examine the impact of filter size
across all dimensions. We vary the hidden size d of our latent
representations from 16 to 256. The experiment results are
displayed in Figure 4. We observe that for user sequential
behavior modeling, a limited dimension size cannot preserve
enough latent information of items. The model performance
saturates as the number of hidden units reaches around 64 on
Beauty and ML-1M since the larger embedding dimensionality
enhances the representation of each frequency component with
more dimensions. But when the hidden size goes above the
optimal point, the outcomes stop improving and even start to
deteriorate. This demonstrates that when the hidden size is too
large, it may result in overfitting.

4) Impact of Model Depth L: The depth of the model
determines the capacity of and the parameters of the backbone
encoder, thus affecting the performance of the sequential
representation learning. Existing SR models are not very
deep, however in our experiments we found that SLIME4Rec
benefits from more layers. To investigate the impact of filter
mixer layer numbers, we fix other parameters and change the
number of network layers for both SLIME4Rec and DuoRec

(a) Beauty
	"

(b) ML-1M
	"

H
R@

5

H
R@

5

Fig. 6. Robustness to different proportion of synthetic noise.

to be the same for a fair comparison. Table V demonstrates the
experimental result. We can observe that SLIME4Rec achieves
the best performance with the setting L = 8 on Beauty and
ML-1M dataset while getting the best result with the setting
L = 2 or L = 4 on the Clothing, Sports, and Yelp dataset.
In general, SLIME4Rec constantly outperforms baseline under
all different network depth settings and can stack more layers
without losing too much recommendation performance, which
is largely due to using smaller filters and allowing each layer
to focus on capturing user behavior patterns in a specific
frequency range. This shows that the boost in the performance
of the Transformer cannot be achieved by simply adding more
layers, while the proposed slide filter mixer structure utilizes
dynamic and static components wisely and can capture higher
interaction order of the features while avoiding overfitting.

H. Robustness to Synthetic Noises

To verify the robustness of SLIME4Rec to synthetic noises
(RQ5), we conduct experiments on the Beauty and ML-1M
datasets. Specifically, random uniform noises are added to
the original representations at each layer. From Figure 6,
we can see that the increase of ε leads to the degradation
of the performance of SLIME4Rec and DuoRec. However,
the performance of SLIME4Rec is consistently higher than
that of DuoRec. The reason might be the noises added in
the time domain can be easily distinguished by our slide
filter in the frequency domain. Interestingly, on the dense
ML-1M dataset, when the proportion of added noise is too

(a) Dynamic Selection Module (b) Static Split Module (c) Amplitude of Filters

layer 1

layer 3

layer 4

layer 2

Fig. 7. Visualization of the learned slide filters in SLIME4Rec. We visualize
the dynamic filters in (a) and show the corresponding static filters in (b)
setting the slide mode four (←) of frequency ramp structure with α = 0.1
and β = 0.25. We compute the amplitude of dynamic and static filters along
the sequence dimension and show the frequency differential between them in
(c). There are some frequency patterns that are missed when α < 1

L
while

using the static filter module can recapture them.

large, the recommendation performance of SLIME4Rec does
not decrease but improves a lot. The reason might be that
excessive noise can be easily removed from the spectrum of
dense datasets, and better representations without noise are
generated for contrastive learning. In other words, SLIME4Rec
shows great robustness to random noise.

I. Visualization of Learned Filters

To evaluate how the slide filter capture sequential behavior
in each layer, the complex weights learned in the sliding
filter are visualized on the Beauty dataset. The visualization
of dynamic and static filters can help understand how the
frequency ramp structure works. The results are displayed in
Figure 7. Based on our observations from Figure 7(a) and
(b), we can derive the following results: All the dynamic and
static filters of different layers have a clear frequency pattern
which means that different layers focus on capturing the
user’s patterns in different frequency ranges. When capturing
the characteristics of the current specific frequency range,
the learnable filter will simply disable surrounding frequency
components. If we look at the whole picture, it is obvious to
find that filters are sliding in mode 4, the dynamic and static
filter slides from high-frequency to low-frequency features.

As mentioned in Section III, when the dynamic filter size
SD < step, there are some missing frequency components
between adjacent frequency bands, which prevents our model
from modeling the user’s multi-term preference. The frequency
differential is illustrated in Figure 7(c). The static filter recap-
tures the frequency patterns missed by the dynamic filter since
the static module splits the frequency components averagely by
model depth L. It also provides a more fine-grained frequency
division, which helps to model users’ complex preferences
when these features are mixed with those extracted by the
dynamic module. Although the filter tends to assign more

weight to the low frequency components, from the perspective
of the whole frequency range, these relatively high frequency
components are emphasized, which alleviates the problem that
high frequency information is often overlooked.

V. RELATED WORK

A. Sequential Recommendation

Sequential recommendation forecasts future items through-
out the user sequence by modeling item transition correlations.
Early SR studies are often based on the Markov Chain assump-
tion. Afterward, numerous sequential recommender models
powered by deep learning were created. GRU4Rec [2] is
the very first attempt to utilize the GRU network in SR. To
discover sequential patterns, Caser [3] employs both horizontal
and vertical convolutional filters. Later on, self-attention net-
works have shown great potential in modeling sequence data
and a variety of related models are developed, e.g., SASRec
[4], BERT4Rec [22] and S3Rec [26]. Most of these methods
[27]–[33] use the next-item supervised training style as their
training scheme. The other training scheme usually has extra
auxiliary training tasks. CL4SRec [16] applies a contrastive
strategy to multiple views generated by data augmentation.
CoSeRec [25] introduces more augmentation operations to
train robust sequence representations. DuoRec [17] combines
recommendation loss with unsupervised learning and super-
vised contrastive learning to optimize the SR models. Despite
the success of these model in SR, they ignored important
information hidden in the frequency domain.

B. Frequency Domain Learning

Fourier transformation has been an important tool in dig-
ital signal processing for decades [34], [35]. There are a
variety of works that incorporate Fourier transformation in
computer vision [36]–[39] and natural language processing
[40], [41]. Global filter networks (GFNet) [6] learn Fourier
filters to perform depthwise global convolution. Very recent
works try to leverage Fourier transform enhanced model for
long-term series forecasting [11], [42] and partial differential
equations solving [43]–[45]. However, there are few Fourier-
related works in the sequential recommendation. More re-
cently, FMLP-Rec [5] utilizes an all-MLP structure without
self-attention mechanism for SR. More recently, FMLP-Rec
[5] first introduce a filter-enchanced MLP for SR, which
multiplies a global filter to remove noise in the frequency
domain. However, the global filter tend to give greater weight
to low frequencies and underrate relatively high frequencies.

VI. CONCLUSION

In this paper, we proposed a novel model SLIME4Rec
for the sequential recommendation, which goes beyond the
existing time feature-based methods in SR. We built two
frequency selection modules with frequency ramp structure
namely dynamic frequency selection and static frequency split
module, respectively, to find more fine-grained sequential
patterns in different frequencies bands, thus alleviating the
problem caused by noise. Finally, to the best of our knowledge,

we are the first to employ a contrastive learning paradigm for
frequency-based model to supplement primary recommenda-
tion loss with contrastive loss. Experimental results on five
benchmark datasets showed the superiority of our SLIME4Rec
model over all state-of-the-art models.

ACKNOWLEDGEMENT

This research was partially supported by the NSFC
(61876117, 62176175), the major project of natural science
research in Universities of Jiangsu Province (21KJA520004),
Suzhou Science and Technology Development Program
(SYC2022139), the Priority Academic Program Development
of Jiangsu Higher Education Institutions and the Exploratory
Self-selected Project of the State Key Laboratory of Software
Development Environment.

REFERENCES

[1] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” arXiv preprint
arXiv:1205.2618, 2012.

[2] D. Jannach and M. Ludewig, “When recurrent neural networks meet the
neighborhood for session-based recommendation,” in RecSys, 2017, pp.
306–310.

[3] J. Tang and K. Wang, “Personalized top-n sequential recommendation
via convolutional sequence embedding,” in WSDM, 2018, pp. 565–573.

[4] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in ICDM. IEEE, 2018, pp. 197–206.

[5] K. Zhou, H. Yu, W. X. Zhao, and J.-R. Wen, “Filter-enhanced mlp is all
you need for sequential recommendation,” in WWW, 2022, pp. 2388–
2399.

[6] Y. Rao, W. Zhao, Z. Zhu, J. Lu, and J. Zhou, “Global filter networks
for image classification,” in NeurIPS 2021, 2021, pp. 980–993.

[7] L. R. Rabiner and B. Gold, “Theory and application of digital signal
processing,” Englewood Cliffs: Prentice-Hall, 1975.

[8] S. S. Soliman and M. D. Srinath, “Continuous and discrete signals and
systems,” Englewood Cliffs, 1990.

[9] N. Park and S. Kim, “How do vision transformers work?” arXiv preprint
arXiv:2202.06709, 2022.

[10] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovit-
skiy, “Do vision transformers see like convolutional neural networks?”
NeurIPS, vol. 34, pp. 12 116–12 128, 2021.

[11] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer:
Frequency enhanced decomposed transformer for long-term series fore-
casting,” in ICML, ser. Proceedings of Machine Learning Research, vol.
162, 2022, pp. 27 268–27 286.

[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[13] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[15] C. Si, W. Yu, P. Zhou, Y. Zhou, X. Wang, and S. Yan, “Inception
transformer,” arXiv preprint arXiv:2205.12956, 2022.

[16] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, and B. Cui,
“Contrastive learning for sequential recommendation,” in ICDE. IEEE,
2022, pp. 1259–1273.

[17] R. Qiu, Z. Huang, H. Yin, and Z. Wang, “Contrastive learning for
representation degeneration problem in sequential recommendation,” in
WSDM, 2022, pp. 813–823.

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[19] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in SIGIR, 2015, pp. 43–52.

[20] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[21] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for
sequential recommendation,” in WSDM, 2020, pp. 322–330.

[22] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in CIKM, 2019, pp. 1441–1450.

[23] W. Krichene and S. Rendle, “On sampled metrics for item recommen-
dation,” in KDD, 2020.

[24] Y. Wang, H. Zhang, Z. Liu, L. Yang, and P. S. Yu, “Contrastvae:
Contrastive variational autoencoder for sequential recommendation,” in
CIKM, 2022, pp. 2056–2066.

[25] Z. Liu, Y. Chen, J. Li, P. S. Yu, J. McAuley, and C. Xiong, “Contrastive
self-supervised sequential recommendation with robust augmentation,”
arXiv preprint arXiv:2108.06479, 2021.

[26] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang,
and J.-R. Wen, “S3-rec: Self-supervised learning for sequential recom-
mendation with mutual information maximization,” in CIKM, 2020, pp.
1893–1902.

[27] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “Sse-pt: Sequential
recommendation via personalized transformer,” in RecSys, 2020, pp.
328–337.

[28] J. Lin, W. Pan, and Z. Ming, “Fissa: fusing item similarity models
with self-attention networks for sequential recommendation,” in RecSys,
2020, pp. 130–139.

[29] Y. He, Y. Zhang, W. Liu, and J. Caverlee, “Consistency-aware recom-
mendation for user-generated item list continuation,” in WSDM, 2020,
pp. 250–258.

[30] X. Fan, Z. Liu, J. Lian, W. X. Zhao, X. Xie, and J.-R. Wen, “Lighter
and better: low-rank decomposed self-attention networks for next-item
recommendation,” in SIGIR, 2021, pp. 1733–1737.

[31] Z. Liu, Z. Fan, Y. Wang, and P. S. Yu, “Augmenting sequential
recommendation with pseudo-prior items via reversely pre-training
transformer,” in SIGIR, 2021, pp. 1608–1612.

[32] Z. Cui, Y. Cai, S. Wu, X. Ma, and L. Wang, “Motif-aware sequential
recommendation,” in SIGIR, 2021, pp. 1738–1742.

[33] J. Zhao, P. Zhao, L. Zhao, Y. Liu, V. S. Sheng, and X. Zhou, “Variational
self-attention network for sequential recommendation,” in ICDE. IEEE,
2021, pp. 1559–1570.

[34] I. Pitas, Digital image processing algorithms and applications. John
Wiley & Sons, 2000.

[35] G. A. Baxes, Digital image processing: principles and applications.
John Wiley & Sons, Inc., 1994.

[36] K. Xu, M. Qin, F. Sun, Y. Wang, Y.-K. Chen, and F. Ren, “Learning in
the frequency domain,” in CVPR, 2020, pp. 1740–1749.

[37] L. Chi, B. Jiang, and Y. Mu, “Fast fourier convolution,” NeurIPS, vol. 33,
pp. 4479–4488, 2020.

[38] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha,
A. Silvestrov, N. Kong, H. Goka, K. Park, and V. Lempitsky,
“Resolution-robust large mask inpainting with fourier convolutions,” in
WACV, 2022, pp. 2149–2159.

[39] I. Shchekotov, P. Andreev, O. Ivanov, A. Alanov, and D. Vetrov, “Ffc-
se: Fast fourier convolution for speech enhancement,” arXiv preprint
arXiv:2204.03042, 2022.

[40] A. Tamkin, D. Jurafsky, and N. Goodman, “Language through a prism:
A spectral approach for multiscale language representations,” NeurIPS,
vol. 33, pp. 5492–5504, 2020.

[41] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon, “Fnet: Mixing
tokens with fourier transforms,” arXiv preprint arXiv:2105.03824, 2021.

[42] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
NeurIPS, vol. 34, pp. 22 419–22 430, 2021.

[43] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Fourier neural operator for parametric
partial differential equations,” arXiv preprint arXiv:2010.08895, 2020.

[44] J. Guibas, M. Mardani, Z. Li, A. Tao, A. Anandkumar, and B. Catanzaro,
“Adaptive fourier neural operators: Efficient token mixers for transform-
ers,” arXiv preprint arXiv:2111.13587, 2021.

[45] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson,
“U-fno—an enhanced fourier neural operator-based deep-learning model
for multiphase flow,” Advances in Water Resources, vol. 163, p. 104180,
2022.

	I Introduction
	II PRELIMINARIES
	II-A Problem Statement
	II-B Fourier Transform
	II-C Convolution Theorem

	III METHOD
	III-A Embedding Layer
	III-B Filter Mixer
	III-B1 Dynamic Frequency Selection Module
	III-B2 Frequency Ramp Structure
	III-B3 Static Frequency Split Module

	III-C Point-wise Feed Forward Network
	III-D Prediction Layer
	III-E Contrastive Learning
	III-F Complexity Analysis

	IV EXPERIMENTS
	IV-A Dataset
	IV-B Evaluation Metrics
	IV-C Baseline Models
	IV-D Implementation Details
	IV-E Recommendation Performance Comparison
	IV-F Ablation Study
	IV-F1 Investigation of Filter Module Design
	IV-F2 Investigation of Frequency Ramp Structure

	IV-G Influence of Hyper-parameters
	IV-G1 Impact of Filter Size Ratio
	IV-G2 Impact of Input Sequence Length N
	IV-G3 Impact of Hidden Size d
	IV-G4 Impact of Model Depth L

	IV-H Robustness to Synthetic Noises
	IV-I Visualization of Learned Filters

	V RELATED WORK
	V-A Sequential Recommendation
	V-B Frequency Domain Learning

	VI CONCLUSION
	References

