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Abstract—Real-world graphs are constantly evolving, which
demands updates of the previous analysis results to accommodate
graph changes. By using the memoized previous computation
state, incremental graph computation can reduce unnecessary
recomputation. However, a small change may propagate over
the whole graph and lead to large-scale iterative computations.
To address this problem, we propose Layph, a two-layered
graph framework. The upper layer is a skeleton of the graph
which is much smaller than the original graph, and the lower
layer has some disjoint subgraphs. Layph limits costly global
iterative computations on the original graph to the small graph
skeleton and a few subgraphs updated with the input graph
changes. In this way, many vertices and edges are not involved
in iterative computations, which significantly reduces the com-
putation overhead and improves the performance of incremental
graph processing. Our experimental results show that Layph
outperforms current state-of-the-art incremental graph systems
by 9.08× on average (up to 36.66×) in response time.

Index Terms—incremental graph processing, layered graph,
graph skeleton

I. INTRODUCTION

Iterative graph algorithms, e.g., single source shortest path
(SSSP) and PageRank, have been widely applied in many
fields [1]–[5]. Real-world graphs are continuously evolving
with structure changes, where vertices and edges are inserted
or deleted arbitrarily. These changes are usually small, e.g.,
there were 6.4 million articles on English Wikipedia in
2021 [6], but the average number of new articles per day
was only 580. Traditional classical graph processing systems
[7]–[13] have to recompute the updated graph from scratch.
However, there are considerable overlaps between computa-
tions before and after the graph updates. It is desirable to
adopt incremental graph computation to cope with these small
changes efficiently. That is, a batched iterative algorithm is
applied to compute the result over the original graph G till
convergence, and then an incremental algorithm is used to
adjust the result in response to the input changes ∆G to G.

The incremental graph computation can reduce unnecessary
recomputation by using the memoized iterative computation
state, e.g., intermediate vertex states or messages. The benefits
of incremental graph computation have led to the development

�Yanfeng Zhang is the corresponding author.
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Fig. 1: Number of edge activations and runtime of different
incremental graph processing systems for SSSP and PageRank.

of many incremental graph processing systems, such as Kick-
Starter [14], GraphBolt [15], Ingress [16], DZiG [17], and
RisGraph [18]. They memoize (intermediate or final) vertex
states and organize them in a data structure that captures
result dependencies, such as a tree (for critical path) [14], [18]
or a multilayer network (for per-iteration dependencies) [15],
[17]. With such a structure, the update of a vertex/edge will
be propagated for updating the memoized intermediate/final
states of vertices iteratively. However, an upstream vertex/edge
update may incur a large number of updates to the downstream
vertex/edge states in existing incremental graph processing
systems. That is, a small change may propagate over the entire
graph and lead to large-scale iterative computations.

With 5000 random edge updates on the UK graph (see Table
I for details), we run SSSP and PageRank on five state-of-the-
art incremental graph processing systems (KickStarter [14],
GraphBolt [15], DZiG [17], RisGraph [18], and Ingress [16])
and a Restart system that starts computations on the updated
graph from scratch. The number of edge activations and
runtime of these systems are reported in Figure 1. Even though
the amount of updates is small (|∆G|/|G| = 5000/(9.4 ×
108)<0.001%), these updates propagate widely and iteratively
on the graph, resulting in a large number of edge activations
in some systems, which is almost approaching the number in
restarting iterative computations.

We empirically illustrate this observation with an example
in Figure 2. Figure 2b shows an updated graph based on graph
G, where the edge (v3, v4) is deleted and a new edge (v3, v2)
is added. As shown in Figure 2c, when running SSSP, existing
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Fig. 2: An illustrative example of a layered graph for incremental SSSP, where v0 is source vertex, and G1 and G2 are two
dense subgraphs. The dashed lines are the shortcuts between two vertices, through which the shortest distance from a vertex
to another one can be directly obtained. The number labeled on each link represents the weight of the edge or shortcut. In (c)
and (e), the red links or circles represent the activated edges/shortcuts or vertices involved in iterative computations.

incremental graph processing systems [14], [16], [18] activate
most of the vertices and edges. As the iteration proceeds, the
activated vertices may be updated several times, e.g., v4 and
its downstream vertices are updated twice due to the update
messages from v2 at different iterations.

Challenge. Based on the above observations and illustration,
we can see that very small graph changes can also lead to a
large number of iterative computations, even on the basis of
previous memoized vertex/edge states provided by incremental
processing systems. The main reason is that, in real-world
graphs, vertices are either directly or indirectly connected in
several hops, which makes it hard to constrain the affected
area. The native properties of real graphs fundamentally limit
the effectiveness of incremental graph computation. Is it possi-
ble to reconstruct the graph structure to boost the performance
of incremental graph computation?

Intuition. In incremental graph computation, the messages
initiated by graph updates are propagated iteratively to update
the states of vertices. When an update message enters into a
dense subgraph from entry vertices, a large number of internal
vertices and edges within the subgraph will be activated and
involved in the iterative computation. The incoming messages
probably require many iterations to get out of this dense sub-
graph from exit vertices. A natural idea is to extract the entry
and exit vertices of the dense subgraph, and construct shortcuts
between them to propagate messages directly through the
dense subgraph, which can avoid the activations of a large
number of internal vertices and edges. As shown in Figure 2d,
we extract the entry vertex v0 and exit vertex v4 of G2 and
construct a shortcut between them. Then the messages can be
propagated directly through G2 via the shortcut. Furthermore,
we construct a shortcut between the entry vertices and the
internal vertices in each subgraph. The entry vertices can
accumulate the incoming messages and eventually assign them
to the internal vertices at a time via the shortcuts. As shown in
Figure 2d, after v5 accumulates all incoming messages, v5 will
send the update messages to v6-v8 at a time. In this way, only
the entry and exit vertices of subgraphs and outliers participate
in the global iterative computations.

Our Solution. Based on the above intuition, we propose
an incremental graph processing framework by layering the
graph, Layph. As shown in Figure 2d, Layph divides the

graph into two layers, the upper layer (Lup) and the lower
layer (Llow). Lup is a skeleton of the original graph G
composed of the boundary vertices of subgraphs and outliers,
the size of which is much smaller than that of G. Llow

is composed of some disjoint subgraphs. Vertices on Lup

and vertices on Llow are connected by shortcuts (dashed
lines) or edges. After G is updated by ∆G, we first update
the layered graph accordingly. The revision messages are
generated and propagated only within the subgraphs on Llow

that are updated by ∆G. As shown in Figure 2e, revision
messages are generated from v3 and are propagated within
G2. Then the messages are uploaded to Lup, e.g., the messages
are propagated from v2 to v4 in Figure 2e. The global iterative
computations are performed on Lup. Compared with 10 edges
participating in the iterative computation in Figure 2c, only 2
edges/shortcuts are involved on Lup in Figure 2e. Therefore,
the global iterative computations on Lup are much faster than
that on graph G′. Finally, the updates are assigned to the
other subgraphs on Llow, e.g., G2. Vertex states are updated
directly through shortcuts without iterative computations. We
can see that Layph performs iterative computations only on
the upper layer small skeleton and a few subgraphs (on Llow)
that are updated by ∆G. Most vertices and edges on Llow are
not involved in iterative computations. Thus Layph is able to
accelerate the incremental graph computation efficiently.

To sum up, we make the following contributions.

• Layered Incremental Graph Processing Framework. It
constraints the incremental iterative computation to a small
area, i.e., a few subgraphs affected by the graph update and
a small skeleton, thus greatly reducing the number of edge
activations in the iterative process. (Section III & V)

• Effective Skeleton Extraction and Automated Short-
cut Deduction. We design an effective skeleton extraction
method that reduces the size of the skeleton by replicating
vertices. Based on the input vertex-centric program, our
proposed framework can deduce the weight of shortcuts
automatically. (Section IV)

• High-Performance Runtime Engine. We implement our
runtime engine Layph based on Ingress [16] and Alibaba’s
libgrape-lite [19]. Comparing with current state-of-the-art
incremental graph processing systems, Layph can achieve
3.13-15.82× speedup over Kickstarter [14], 2.54-8.49×
speedup over RisGraph [18], 2.99-36.66× speedup over



GraphBolt [15], 2.92-32.93× speedup over DZiG [17], and
1.06-7.22× speedup over Ingress [16]. (Section VI)

II. PRELIMINARIES

This section provides the necessary preliminaries for itera-
tive graph computation and incremental graph computation.

A. Iterative Graph Computation

Given an input graph G = (V,E), where V is a finite set of
vertices and E ⊆ V ×V is a set of edges. The weight of each
edge (u, v) ∈ E is wu,v in a weighted graph or a consistent
value 1 in an unweighted graph. In general, an iterative
graph algorithm A that executes in an accumulative model,
includes two types of operations, i.e., message generation F
and message aggregation G [9], [10], [20].

mi
u,v = F

(
mi−1

u , wu,v

)
,

xi
v = G

(
xi−1
v , {mi

∗,v|(∗, v) ∈ E}
)
.

(1)

where mi−1
u = G({mi−1

∗,u |(∗, u) ∈ E}).
The message generate operation F applied on each vertex

u ∈ V prepares the message mu,v for each outgoing edge
(u, v) based on the aggregation of received message mu and
the edge weight wu,v . The aggregation operation G is applied
on each destination vertex v. It first aggregates the messages
that terminate at v to obtain a new message mv , then aggre-
gates the old vertex state xv and the aggregated message mv

to update the vertex state xv . The two-step process is applied
iteratively till convergence (when vertex states become stable).
To sum up, an iterative graph computation can be expressed
as A=(F ,G, X0,M0) where F and G are the operations
that specify the algorithm logic, and X0={x0

v|v ∈ V } and
M0={m0

v|v ∈ V } are the initial values of vertex states and
root messages respectively. A graph computation on the input
graph G can be denoted as A(G).

Suppose A can be executed asynchronously, then it can be
expressed as Equation (1) naturally, such as SSSP. Otherwise,
the synchronous algorithms should be rewritten in accumula-
tive mode and executed asynchronously, such as PageRank.
There are some efforts [9], [10] that rewrite a synchronous
algorithm in asynchronous accumulative mode.

Example 1: We show two example algorithms.

(a) SSSP. SSSP computes the shortest distance from a given
source s to all vertices in a directed and weighted graph G.
A is represented as follows
• F(mu, wu,v) = mu + wu,v; G = min;
• x0

v = 0 if v = s, otherwise x0
v = +∞;

• m0
v = 0 if v = s, otherwise m0

v = +∞.
Here the state xv of v indicates the shortest distance from
source s to v and wu,v represents the length of the edge
(u, v). Initially, we have x0

v = m0
v = 0 for v = s, and

x0
v = m0

v = +∞ for all v 6= s. Each vertex u generates and
sends a message mu,v to each neighbor v, which represents
the current shortest distance from the source. Each destination
vertex v aggregates the messages from its incoming neighbors

and updates its state xv by min. The algorithm terminates when
the shortest distance values of all vertices are not changed.

(b) PageRank. PageRank computes the set of ranking scores
{PRv = d× sum(u,v)∈EPRu/Nu + (1− d) | v ∈ V }. Here d
is a constant damping factor and Nu denotes the number of
outgoing neighbors of u. Different from the original PageRank
algorithm that exploits the power method, an asynchronous
PageRank algorithm [10] that has been proved to be equivalent
to the original PageRank can be represented as follows
• F(mu, wu,v) = mu × d/Nu; G = sum;
• x0

v = 0, ∀v ∈ V ; m0
v = 1− d, ∀v ∈ V .

Intuitively, each vertex v uses its state xv to store its PageRank
score. Initially, we have x0

v = 0 and m0
v = 1 − d for all

v ∈ V . Every time when a vertex u receives a message mu,
it will send mu × d/Nu to each neighbor v. Each neighbor v
aggregates the messages from its incoming neighbors by sum
and updates its state by accumulating the aggregated messages.
The algorithm terminates when all vertex states are stable. �

Equation (1) defines the vertex-centric format of asyn-
chronous iterative computation. On this basis, we can define
a set-based iterative computation as follows

M i = F(M i−1);

Xi = G(Xi−1 ∪M i).
(2)

X = {xv | v ∈ V } is the set of vertex states. M0 = {m0
v | v ∈

V } is the set of root messages of each vertex and Mk 6=0 =
{mk

v} is the set of generated messages on all edges. It should
be noticed that these are slight meaning changes of F and G
in set-based format. F is the message generate operation with
edge information embedded so it only needs a single parameter
M . G is the group-by aggregator (group by vertex id). Based
on this set-based computation, the vertex states set X after n
iterations is

Xn =G
(
X0 ∪ (G ◦ F)(M0) ∪ . . . ∪ (G ◦ F)n(M0)

)
=G
(
X0 ∪

n⋃
k=1

(G ◦ F)k(M0)
)
,

(3)

where G◦F(·) = G(F(·)) and (G◦F)k denotes k applications
of (G ◦ F).
Message Passing’s Perspective. From message propagation’s
perspective, the final state xv of each vertex v is obtained
by accumulating the messages M0 initiated from all vertices
transferred along different paths. In each iteration, i.e., one
time application of F and G, a message is processed and split
into several messages from a vertex to its direct neighbors
(under the effect of F). The messages received from different
incoming neighbors are aggregated into one message (under
the effect of G), which will be propagated again in the next
iteration. At the same time, the aggregated message is applied
to the vertex state (under the effect of G). This is exactly the
process described in Equation (1).
B. Incremental Graph Computation

Given an iterative graph computation A and its incremental
counterpart IA, the problem of incremental computation arises



when the input graph G is updated with ∆G. Let A(G) denote
the output of an old graph G with the effect of batch graph
algorithm A. The inputs of incremental computation include
A(G) and graph updates ∆G. Then we have

IA(A(G),∆G) = A(G⊕∆G) (4)

It means that the incremental computation IA(A(G),∆G) that
is performed based on the old result A(G) and the graph
updates ∆G is expected to output A(G⊕∆G), where G⊕∆G
denotes applying the updates ∆G to G. It is noticeable that
the incrementalization scheme IA is algorithm-specific and is
deduced from its original algorithm A.

The input batch update ∆G consists of a set of unit updates.
To simplify our discussion, we consider the insertion or
deletion of a single edge as a unit update in a sequence, which
can simulate certain modifications. For instance, each change
to an edge weight can be considered as deleting the edge
and followed by adding another edge with the new property.
The incremental computation IA will identify the changes to
the old output A(G) and make corrections of the previous
computation in response to ∆G.

Message Passing’s Perspective. From Equation (3) we know
that the input changes will affect the message propagation
since both F and G are correlated with the graph structure,
and as a result, will change the final vertex states. Due to the
insertion, update, or deletion of an edge, a set of messages
might become invalid, and another set of messages might
be missing. An old message transmitted during the run over
the original graph G is called invalid if the path for passing
the message disappears due to input updates ∆G. A new
message transferred in the run over the G ⊕ ∆G is called
missing if it did not appear in the run over G. In incremental
computation, we should first discover all the invalid and
missing messages and then perform the corrections on the
affected areas of G⊕∆G by generating cancellation messages
(resp. compensation messages) to retract (resp. replay) effects
of the invalid messages (resp. missing messages) [14]–[17].
In this paper, the cancellation and compensation messages are
collectively called as revision messages.

III. FRAMEWORK OVERVIEW

In this section, we first present the workflow of the layered
graph framework and then analyze the benefits of Layph.

Workflow of Layph. The overall workflow is illustrated in
Figure 3. At the beginning of incremental graph processing,
given a graph G, we first divide the graph into two layers. The
upper layer (Lup) is the skeleton of the graph. Lup consists of
the entry/exit vertices of all dense subgraphs, vertices that are
not in any dense subgraph, and the shortcuts or edges between
them. The lower layer (Llow) is composed of all disjointed
dense subgraphs. The entry vertices (on Lup) and the internal
vertices (on Llow) of each dense subgraph are connected with
shortcuts between Lup and Llow. Please refer to Section IV for
the details of constructing the layered graph. Then we perform
incremental graph computations on the layered graph, which

��������	��
������������

�
�

�

��������	��
���
����

�
�

�

��������	��
���
����

��

���

�

�Lup

Llow
�

�Lup

Llow
�

�Lup

Llow

�

����������������
������

Lup

Llow
�

�Lup

Llow
�

�Lup

Llow

�

�

�

���������������
�������������������
����

����������������������
�  �����!����

�"�������������
�������
�������!����

Fig. 3: Workflow of Layph.
includes two steps, i) the layered graph update (Section IV)
and ii) the vertex states update (Section V).

Layered Graph Update. Given a layered graph G of an origi-
nal graph G, G should be updated, when G is updated by ∆G.
This is because the shortcuts, including the shortcuts on Lup

and the shortcuts between Lup and Llow, may be changed
as the graph changes. The shortcut update requires iterative
computations and is only performed on the subgraphs updated
by ∆G. Meanwhile, the shortcut update can be parallelized
well as the subgraphs are independent of each other.

Vertex States Update. When the graph changes, we first de-
duce the revision messages based on the memoized infor-
mation [14]–[16], then propagate the revision messages on
the layered graph to revise the vertex states. The incremental
computation on Layph is performed as follows.
• Revision messages upload. In order to apply the revision

messages deduced by vertices on Llow to vertices on Lup,
the revision messages on Llow should be uploaded to Lup.
Similar to shortcut updates, the messages upload can also
be performed in parallel and only performed on subgraphs
affected by ∆G.

• Iterative computation on Lup. After receiving the revision
messages from Llow, iterative computations are performed
to propagate the revision messages and revise the states of
the vertices on Lup.

• Revision messages assignment. After the iterative compu-
tations on Lup, the entry vertices (on Lup) of each subgraph
accumulate all the revision messages. The accumulated re-
vision messages are assigned from entry vertices to internal
vertices (on Llow) through shortcuts to revise the states of
vertices on Llow.

Analysis. From the above workflow of Layph, we can see that
the iterative computations only perform on Lup and a few
subgraphs on Llow. The vertices and edges within subgraphs
that are not updated by ∆G are not involved in iterative
computations, which saves significant computation overhead.

IV. LAYERED GRAPH CONSTRUCTION AND UPDATE

Layph is performed on a layered graph. This section presents
how to construct a layered graph and update it incrementally.



A. Layered Graph Construction

In this section, we first introduce how to extract vertices
on the upper layer. Then we provide an automated shortcut
calculation method.

1) Upper Layer Vertices Extraction: As we have presented
the intuition behind Layph in Section I and the workflow in
Section III, we should extract the entry and exit vertices of the
dense subgraphs and the vertices that are not in any subgraphs
into the upper layer to construct the skeleton of the graph.
This requires us to discover all the dense subgraphs from
the original graph. Before introducing the method of dense
subgraph discovery, we first provide the formal definition of
entry/exit/internal vertices and dense subgraph.

Definition 1 (Entry/Exit/Internal Vertices). Given a subgraph
Gi(Vi, Ei) of the graph G(V,E), where Vi ⊆ V and Ei ⊆ E.
The entry vertices of Gi are defined as V I

i = {v | (u, v) ∈
E, u ∈ V \ Vi, v ∈ Vi}, the exit vertices of Gi are defined as
V O
i = {v | (v, w) ∈ E, v ∈ Vi, w ∈ V \ Vi}, and the internal

vertices of Gi are defined as V̂i = Vi − V I
i − V O

i .

Definition 2 (Dense Subgraph). Given an input graph
G(V,E), the subgraph Gi(Vi, Ei) of G is a dense subgraph
such that the product of the number of entry vertices and that
of exit vertices is smaller than the number of edges in Gi, i.e.,
|V I

i | × |V O
i | < |Ei|.

Our definition of the dense subgraph is based on the follow-
ing observation. For each entry vertex v ∈ V I

i of subgraph Gi,
it is required to connect v with all exit vertices using shortcuts.
Thus, the number of the shortcuts in Gi is the product of the
number of entry and exit vertices, i.e., |V I

i | × |V O
i |. If there

are only a few edges in Gi, e.g., |V I
i | × |V O

i | > |Ei|, then
propagating messages from entry to exit vertices through the
shortcuts is slower than that through the edges in Gi, because
more shortcuts result in more message generation operations
and aggregation operations.

From Definition 2, a dense subgraph requires as many
internal edges as possible and as few boundary (entry/exit)
vertices as possible. We found that the requirements of a dense
subgraph are similar to that of the community. The community
requires as many internal edges as possible and as few external
edges as possible. This inspired us to adopt a community
discovery algorithm to discover dense subgraphs. Therefore,
in this paper, we use the community discovery algorithm to
find dense subgraphs, such as Louvain [21]. However, the
community discovery algorithms may find extremely large
subgraphs, which decreases the performance of our system
since extremely large graphs may result in an imbalance
workload. Therefore, we add a threshold K to limit the size
of each subgraph when discovering the subgraphs, i.e., the
number of vertices in each subgraph is smaller than K. As a
rule of thumb, K is set around 0.002-0.2% of the total number
of vertices. We also employ the work stealing technique to
handle the imbalance workload, in which an idle processing
thread will actively search out work for it to complete. A
community may not be a dense subgraph. We select the dense

subgraphs according to Definition 2, i.e., |V I
i | × |V O

i | < |Ei|,
from the dense subgraphs candidate set discovered by the
community discovery algorithm.

After discovering the dense subgraphs, the internal vertices
and edges within them are put into the lower layer, the other
vertices and edges i.e., entry/exit vertices of subgraphs and the
vertices that are not in any dense subgraphs and their edges
are extracted into the upper layer.
Problem Study. Although we can discover dense subgraphs
by using the above method, it suffers from a key limitation: the
shortcuts that need to be established are still numerous due to
the massive number of entry/exit vertices. As shown in Figure
4, we find that most boundary vertices (entry/exit vertices)
have high degrees and are likely to have many connections
to/from other subgraphs, leading to many entry/exit vertices
in the target/source subgraphs. For example, vertex v9 is with
high out-degree and has 3 out-edges connected to subgraph
G3, leading to 3 entry vertices in subgraph G3, and vertex
v6 with a high in-degree and has 3 in-edges originating from
subgraph G1, leading to 3 exit vertices in subgraph G1. A
large number of entry/exit vertices incurs a large skeleton
of the upper layer as shown in Figure 4b, which will hurt
the performance of iterative computation and increase the
computation cost for shortcut calculations/updates.
Solution: Vertex Replication. Figure 4 demonstrates that
there exist some entry/exit vertices in a subgraph that share the
same source/target vertex. This inspires us to propose a vertex
replication approach for reducing the number of entry/exit
vertices and shortcuts. The idea is illustrated in Figure 4c.
After dense subgraph discovery, if the number of entry/exit
vertices in a subgraph Gi that share the same source/target
vertex v is larger than a threshold, the source/target vertex
v (host vertex) will be replicated in subgraph Gi as a proxy
vertex v′. A high-degree vertex could have many proxy ver-
tices in multiple different dense subgraphs. Both entry and exit
vertices can have proxy vertices in other dense subgraphs. For
example, in Figure 4c, entry vertex v6 has a proxy vertex v′6
acting as a new exit vertex in subgraph G1. Originally, there
are 3 exit vertices in subgraph G1 linking to the entry vertex
v6, while now there is only one exit vertex v′6. Exit vertex
v9 has a proxy vertex v′9 in G3 as a new entry vertex. There
are supposed to be 3 entry vertices in G3 all originating from
vertex v9, but now there is only one entry vertex v′9.

By replicating exit or entry vertices between subgraphs,
some boundary vertices of dense subgraphs become internal
vertices and move from Lup to Llow. The size of the graph
skeleton on Lup is greatly reduced.

2) Shortcuts Calculation: On the upper layer, there are only
entry and exit vertices of each subgraph. It is required to
connect them with shortcuts for propagating messages from
entry vertices to exit vertices correctly and quickly. During
the iterative computations on Lup, the entry vertices send
messages to exit vertices directly through shortcuts and do
not propagate the messages down to internal vertices. In order
to revise the states of vertices on Llow, the entry vertices cache



(b)  Part of original layered graph

v10

v7
v5

v8

(c) Part of reshaped layered graph

v7

v10 v8

v1
v16

v17

v15

Llow Llow
v2 v3 v4
v1
v5

v11
v15
v12v13
v16

v17

(a) Original graph

v2

v10

v3

v7

v0

v4
v1

v11

v8

v9

v15

v12

v6

v14

G1

G2

G3

v13

v5
v16

v17
v4 v13
v6

v0 v14
v2 v3

v9
v12v11

v0 v14

v'9v'6
v9v6LupLup

Fig. 4: An illustrative example of the upper layer reshaping. A dotted circle is a proxy vertex. A bold black link is a
weighted/unweighted edge on original graph. A dotted link is a shortcut from an entry vertex to an exit vertex in a subgraph.
A blue link is a connection between a vertex and its replicated proxy vertex. In (b) and (c), for simplicity, we use two-way
hollow arrows to represent the set of shortcuts and edges between Lup and Llow.

these messages that should be propagated to internal vertices,
then propagate them down to internal vertices after the iterative
computations terminate. However, these messages spread to all
internal vertices may require iterative computations. In order
to propagate the messages from the entry vertices to internal
vertices efficiently, we also connect them with shortcuts.

Based on the above discussion, there are two kinds of
shortcuts in the layered graph, 1) the shortcuts from entry
vertices to exit vertices of the dense subgraph, and 2) the
shortcuts from entry vertices to internal vertices of the dense
subgraph. Essentially, both of these shortcuts connect the entry
vertices and other vertices of the dense subgraph. Therefore,
they can be calculated simultaneously with the same method.
Before introducing the shortcut calculation method, we first
provide the formal definition of the shortcut.

Definition 3 (Shortcut). Given a subgraph Gi(Vi, Ei) and
the input messages vector M = {mu | u ∈ V I

i } arriving at
entry vertices V I

i , the shortcuts Si are the direct connections
from entry vertices V I

i to all vertices Vi, i.e., Si = {~wu,v |
u ∈ V I

i , v ∈ Vi} where ~wu,v is the weight of a shortcut from
vertex u to vertex v, such that

GVi

(
FSi

(M)
)

= GVi

( ∞⋃
k=1

(GVi
◦ FEi

)k(M)
)
, (5)

where FSi and FEi indicate the message propagation through
the shortcuts Si and the original edges Ei respectively, and
GVi

indicates the message aggregation on vertex set Vi.

The shortcut weight ~wu,v from entry vertex u to vertex v
in Gi can be calculated by the following equation

~wu,v = Gv
( ∞⋃

k=1

(GVi
◦ FEi

)k(mu)
)
, (6)

where Gv is the group-by aggregation on vertex v, mu is the
unit message. It means that we first initialize a unit message
mu for entry vertex u. Then we perform iterative computation
on the subgraph Gi to propagate messages from u to v until
all the vertices in Gi no longer receive any messages or the
received messages can be ignored. Finally, the aggregated
value of messages received by v can be treated as the weight
of the shortcut from u to v, i.e., ~wu,v . The unit message
mu should be the identity element of the F operation to
make initiation. As shown in Example 2, the identity element
of ‘+’ is 0. Then, in SSSP, the min value of the messages

received by v originated from u is the shortest path from u
to v, i.e., the weight of the shortcut from u to v. To alleviate
the burden of users, Layph can automatically complete the
shortcut calculation by invoking the user-defined F and G
functions without the user’s intervention (see II-A).

Example 2: Consider running SSSP on the graph as shown
in Figure 2a. When computing the shortcuts inside subgraph
G2, a unit message mv0 = 0 (as the identity element of
‘+’ since F = mu + wu,v containing ‘+’) is input into
entry vertex v0. We iteratively perform F = mu + wu,v to
propagate messages and use G = min to aggregate the received
messages for each vertex. Finally, as shown in Figure 2d, the
aggregated values of the received messages on {v1, v2, v3, v4}
are {1, 4, 1, 2} respectively, i.e., the weights of shortcuts are
~wv0,v1 = 1, ~wv0,v2 = 4, ~wv0,v3 = 1, ~wv0,v4 = 2. �

Finally, we give the formal definition of the layered graph.

Layered Graph. Given an input graph G(V,E), a set of
N dense subgraphs {G1(V1, E1), . . . , GN (VN , EN )}, the
layered graph is formed by the upper layer Lup = (Lup

V , Lup
E ),

the lower layer Llow = (Llow
V , Llow

E ) and the edges between
Lup and Llow, where Lup

V (resp. Llow
V ) is the vertex set on the

upper layer (resp. the lower layer) and Lup
E (resp. Llow

E ) is the
edge set on the upper layer (resp. the lower layer).

• Upper layer (Lup).
– Vertex set LV

up=
⋃N

i=1{V I
i , V

O
i }∪{V −∪Ni=1Vi} is com-

posed of the entry and exit vertices of all dense subgraphs
and the vertices that are not in any dense subgraphs.

– Edge set LE
up=

⋃N
i=1{~wu,v|~wu,v ∈ Si, u ∈ V I

i , v ∈ V O
i }∪

{E −
⋃N

i=1 Ei} is composed of the shortcuts from entry
vertices to exit vertices in each dense subgraph and the
edges that are not in any dense subgraphs.

• Low layer (Llow).
– Vertex set LV

low =
⋃N

i=1{V̂i} is composed of the internal
vertices of all dense subgraphs.

– Edge set LE
low=

⋃N
i=1

{
Ei − {(u, v) ∈ Ei|u ∈ V̂i, v ∈

V I
i ∪ V O

i }
}

is composed of the edges within each sub-
graph, except the edges from internal vertices to entry/exit
vertices.

• Edges between Lup and Llow. LE
up low =

⋃N
i=1

{
{~wu,v ∈

Si | u ∈ V I
i , v ∈ V̂i} ∪ {(u, v) ∈ Ei | u ∈ V̂i, v ∈

V I
i ∪V O

i }
}

is composed of the shortcuts from entry vertices
to internal vertices and the edges from internal vertices to



entry/exit vertices within each dense subgraph.
The size of the upper layer (with respect to |LV

up| and |LE
up|)

is expected to be much smaller than that of the original graph
(with respect to |V | and |E|). For example, in Figure 2, the
upper layer contains 3 vertices and 3 edges/shortcuts, which is
smaller than the original graph with 9 vertices and 14 edges.

Analysis. Due to the introduction of shortcuts, Layph will
require more space. The additional space overhead includes
the shortcuts from entry vertices to all vertices within each
subgraph, i.e., O(

∑N
i=1(|V I

i | × |Vi|)), where |V I
i | is the

number of entry vertices of subgraph Gi and |Vi| is the number
of all vertices in Gi. In practice, the additional space overhead
is always smaller than that of the original graph, as shown in
Figure 11a (in Section VI-G).

B. Layered Graph Update

The layered graph needs to be updated when G is updated
with ∆G. The vertices may move between the two layers, due
to the generation or disappearance of dense subgraphs, e.g., the
internal vertices of the newly generated subgraph move from
Lup to Llow. In order to avoid the expensive overhead caused
by repeated subgraph discovery, we incrementally update
the dense subgraphs with incremental community detection
methods, such as C-Blondel [22] or DynaMo [23]. In practice,
the size of ∆G is very small compared with G. A small ∆G
does not have a large effect on existing dense subgraphs. Thus
we update the dense subgraphs only when enough ∆G are
accumulated. However, even a very small ∆G can still change
the weight of a number of shortcuts of the layered graph.

Shortcuts update. There are three kinds of shortcut updates.
i) Deletion. If all of an entry vertex’s in-edges from outside
are deleted, i.e., the connections from outside are cut off, this
entry vertex will become an internal vertex, and the shortcuts
originated from it should be removed. ii) Addition. If an in-
edge from outside is added to an internal vertex, this internal
vertex will become an entry vertex. The shortcuts from it
to other vertices in the subgraph should be calculated. iii)
Weight update. If there are addition or deletion edges within
a subgraph, the weight of the shortcuts should be updated.

The shortcut is built inside each dense subgraph according
to the Definition 3. Moreover, from the Equation (6), we can
see that the weight of each shortcut on Gi only depends on
the edges and vertices in Gi, and the shortcuts on the different
subgraphs are independent of each other. Therefore, we only
need to update the shortcuts on the subgraphs affected by
∆G, and the shortcuts for each subgraph can be updated in
parallel. For the shortcut deletion or addition, they can be done
directly within the subgraph by removing or calculating the
shortcut. For the weight update, in order to avoid redundant
computation, we use an incremental method to update.

According to Equation (6), the weight of the shortcuts is
calculated by iterative computations, and the weight of the
shortcut from u to v is equal to the aggregate all the messages
received by v through all paths from u to v. After the edge
addition or deletion within the dense subgraph, some messages

received by v may become invalid or missing. Thus, the update
of the shortcut can adopt the existing incremental computa-
tion methods [14]–[16]. The compensation and cancellation
messages can be deduced based on the memoized information
when calculating the old shortcut. These messages will be used
to redo and undo the effect of missing and invalid messages on
vertex v, in which there are some missing and invalid messages
in the received messages of v due to the addition and deletion
edges within the dense subgraph.

Example 3: Consider running SSSP on the updated graph
as shown in Figure 2b. Since ∆G only changes G2, the
shortcuts related to G1 do not need to be updated. For
G2, the vertices on Lup do not need to change, since only
the inner edges change, and the shortcuts can be updated
incrementally. Therefore, we can get the weights of the old
shortcuts as the initial weights of the new shortcuts, i.e., the
initial values of {~wv0,v1 , ~wv0,v2 , ~wv0,v3} are set to {1, 4, 1, 2}.
Since the edge v3 → v4 is deleted and the state of v4 depends
on v3, it is necessary to generate a cancellation message
mv3,v4

=⊥ (⊥ means the vertex needs to be reset to the
default state, i.e., ∞ for SSSP), and mv3,v4 sets the state of
v4 to ∞ [14], [16], [18]. Meantime, v4 will get a message
mv2,v4 = 5 from its neighbor v2. In addition, since the edge
v3 → v2 is added, it is necessary to generate a compensation
message mv3,v2=3. Then all these revision messages will be
propagated inside G2. Finally, as shown in Figure 2e, the
aggregated values of the received messages on {v1, v2, v3, v4}
are {1, 3, 1, 4} respectively, i.e., the new weights of the short-
cuts are ~wv0,v1=1, ~wv0,v2=3, ~wv0,v3=1, ~wv0,v4=4. �

V. INCREMENTAL PROCESSING WITH LAYERED GRAPH

This section will introduce how Layph performs incremental
graph processing on the layered graph.

Revision messages deduction. As shown in Equation (3),
the final vertex state is determined by the received messages
that are from ALL vertices and transferred along different
paths. When the graph is updated, the messages received
by vertices may change due to the changes in the paths
that messages propagate. The incremental graph processing
framework can automatically [14], [16] or manually [15], [17]
obtain the revision messages i.e., compensation messages and
cancellation messages, and propagate them to revise the effect
of the missing and invalid messages on vertex states [15], [16].
For the revision messages, we can deduce them by employing
the method proposed in our previous work [16].

After deducing the revision messages, we propagate them
efficiently with the help of Layph. As we have introduced in
Section III, the propagation of revision messages on Layph is
in three steps, 1) messages upload, 2) iterative computation,
and 3) messages assignment.

A. Messages Upload

The upper layer Lup only contains a subset of vertices,
and the internal vertices inside each subgraph on Llow do not
participate in iterative computation on Lup. To ensure that all



vertices on Lup converge with the effects of internal vertices,
the iterative computation on Lup should collect not only the
revision messages deduced by the vertices on Lup but also
those by internal vertices. Thus, it is required to upload the
revision messages deduced by the internal vertices of the dense
subgraphs on Llow to Lup. Since the entry/exit vertices of each
dense subgraph are on Lup, messages upload can be done by
propagating the revision messages to entry/exit vertices.

Not all the internal vertices within each dense subgraph
have connections with the entry/exit vertices, thus, we perform
a local iterative computation to propagate internal revision
messages to the entry/exit vertices of the subgraph. The iter-
ative computation terminates when the messages received by
entry/exit vertices can be ignored. After the upload of the mes-
sages, the accumulated messages on the entry vertices V I

i and
exit vertices V O

i can be treated as their initial revision mes-
sages i.e.,, M0

V I
i ∪V O

i
= GV I

i ∪V O
i

(⋃∞
k=1(GVi ◦ FEi)

k(M0
Vi

)
)
.

Together with the initial messages of vertices that are not
in any dense subgraph on LV

up, i.e., M0
V−∪N

i=1Vi
, the initial

messages of vertices on Lup can be expressed as follows

M0
LV

up
=
( N⋃

i=1

GV I
i ∪V O

i

( ∞⋃
k=1

(GVi ◦ FEi)
k(M0

Vi
)
))

∪M0
V−∪N

i=1Vi
,

(7)

where M0
Vi

represents the initial revision messages.

Note. It is unnecessary to perform messages upload on all
subgraphs on Llow, because the revision messages are only
generated on subgraphs that are affected by ∆G [14]–[17]. In
general, since the size of ∆G is small, the number of affected
subgraphs is small, too. For all subgraphs affected by ∆G,
messages upload can be efficiently performed in parallel since
each subgraph is independent of the other.

Example 4: Running SSSP to convergence on the layered
graph with v0 as the source vertex in Figure 2d. When the
graph changes as shown in Figure 2b, the layered graph is
updated as shown in Figure 2e. At this time, the conver-
gence states of all vertices on the original graph are taken
as the initial states of the vertices on the updated graph,
i.e., {xv0 , ..., xv8} are {0, 1, 4, 1, 2, 5, 6, 7, 7}. Since G1 is not
directly affected by ∆G, there is no need to derive revision
messages on G1. On G2, a cancellation message mv3,v4

=⊥
and two compensation messages mv2,v4=5 and mv3,v2=3 will
be generated. For the cancellation message mv3,v4=⊥, it will
cause v4 to be reset to the default state (i.e., ∞), and all the
vertices that depend on v4 will be reset to the default state
according to the dependency tree [14], [16], [18]. Then all the
rest of the revision messages will be propagated inside G2,
and finally all messages will also be aggregated to the exit
vertex v4 on Lup, i.e., mv4=4. At this time, Lup obtains all
the revision messages of Llow, and v2 and v4 of G2 get new
states xv2=3 and xv4=4. �
B. Iterative Computation On The Upper Layer

After the upload of the messages, the revision messages
deduced by internal vertices of the subgraphs on Llow have

been propagated to Lup. However, these uploaded messages
are only cached in entry and exit vertices of the dense
subgraphs according to Equation (7). Iterative computations
are required to be performed on Lup to propagate the revision
messages so that the other vertices on Lup can receive all the
revision messages to revise their states.

The iterative computations only perform on Lup, i.e., only
LV
up and LE

up are involved in iterative computations, and the
entry and exit vertices of dense subgraphs will participate in
the iterative computations because they are on LV

up. When the
entry vertices receive messages, they do not send messages
to internal vertices, but propagate messages to exit vertices
via shortcuts. After the iterative computations, the states of
vertices on Lup can be expressed as follows

X∗LV
up

= GLV
up

(
X0

LV
up
∪
∞⋃
k=1

(GLV
up
◦ FLE

up
)k(M0

LV
up

)
)
. (8)

Based on the following Theorem 1, We can see that after
the iterative computations on Lup, the vertices converge to
the same state as performing the iterative computation on the
original graph.

Theorem 1: With initial messages M0
LV

up
defined in Equation

(7) and initial states X0
LV

up
, the converge states X∗LV

up
of the

vertices on the upper layer after iterative computation on the
upper layer Lup(LV

up, L
E
up) are equal to that after iterative

computation on updated graph G⊕∆G. �

Proof sketch: By replacing M0
LV

up
with Equation (7), the

initial messages from each updated subgraph’s internal vertices
are propagated out via boundary vertices. By iteratively apply-
ing FLE

up
and GLV

up
, these initiated messages no matter from

the internal vertices or from the vertices of Lup are propagated
on Lup and will be finally accumulated to vertices on Lup. �
Example 5: Figure 2e has introduced the iterative com-
putation on Lup. Based on Example 4, we get the states
{xv0=0, xv4=4, xv5=∞} and revision message {mv4=4} of
all the vertices on Lup. Then the iterative computation is
performed on Lup based on these initial states. First only v4
is the active vertex because it has revision message {mv4=4}.
v4 is an exit vertex, and the message mv4,v5=mv4+wv4,v5=7
is generated through the outgoing edge (v4, v5). v5 is an entry
vertex, it aggregates the message mv4,v5 to mv5

to update its
own vertex state from xv5=∞ to xv5=7 , and stores mv5

for messages assignment (Section V-C). v5 then generates a
message mv5,v0=mv5+wv5,v0=9 and sends it to v0. Then
v0 cannot update the message mv0 after receiving mv5,v0 .
Therefore, all vertices on Lup reach a convergent state, i.e.,
{v∗0=0, v∗4=4, v∗5=7}. �

C. Revision Messages Assignment

Since the iterative computation is only performed on Lup,
the revision messages will not touch the internal vertices of
each subgraph on Llow, i.e.,, the internal vertices will not
receive revision messages from outside. It is essential to launch
another step to apply outside messages to internal vertices.



Though the internal vertices do not receive the revision
messages from outside, the entry vertices of each dense
subgraph have received all the revision messages from vertices
in other dense subgraphs and Lup according to Theorem 1. In
order to enable the internal vertices to receive outside revision
messages, the entry vertices cache the received messages
before propagating them to exit vertices via shortcuts during
the iterative computations. After many iterations, the entry
vertices may cache a large number of messages, and we only
store the aggregated messages. The cached messages can be
expressed as follows

MV I =

N⋃
i=1

GV I
i

( ∞⋃
k=1

(GLV
up
◦ FLE

up
)k(M0

LV
up

)
)
. (9)

Finally, we send the messages that have been cached in
entry vertices to the internal vertices via shortcuts between
entry vertices and internal vertices. The states of the vertices
on Llow can be expressed as follows

X∗LV
low

= GLV
low

(
XLV

low
∪

N⋃
i=1

(GV̂i
◦ FŜi

)(MV I
i

)
)
, (10)

where Ŝi = {~wu,v ∈ Si | u ∈ V I
i , v ∈ V̂i} is a set of shortcuts

between two layers, XLV
low

are vertex states on Llow after
local iterative computation for uploading revision messages to
vertices of Lup, i.e.,

XLV
low

= GLV
low

(
X0

LV
low
∪
∞⋃
k=1

(GVi
◦ FEi

)k(M0
Vi

)
)
. (11)

We have the following theorem to guarantee correctness.

Theorem 2: After iterative computation on the upper layer,
by assigning the accumulated messages of entry vertices to
internal vertices through shortcuts, the resulted internal vertex
states are the same as that after iterative computation on
updated graph G⊕∆G. �

Proof sketch: According to Equation (11), after local iterative
computation for uploading revision messages to vertices on
Lup, the effects from internal vertices have been applied to
each other. The accumulated outside messages MV I

i
include

the effects from all other vertices outside the subgraph, which
are accumulated at the entry vertices V I

i . By assigning these
outside messages to internal vertices, i.e., GV̂i

(
FŜi

(MV I
i

)
)
, the

outside effects are applied on internal vertices. The aggregation
results of these outside messages and the internal vertex states
XLV

low
are equal to that obtained by iterative computation on

the entire graph. �

Example 6: Following Example 5, for the activated en-
try vertex v5, it assigns revision messages to internal
vertices via shortcuts. Specifically, mv5,v6

=mv5+~wv5,v6=8,
mv5,v7=mv5+~wv5,v7=9, and mv5,v8=mv5+~wv5,v8=9. Fi-
nally, {v6,v7,v8} get the convergence states {x∗v6 = 8, x∗v7 =
9, x∗v8=9} by the message aggregation operation. �

TABLE I: Datasets used in the experiments

Graph Vertices Edges Size
UK-2005 (UK) [24] 39,459,925 936,364,282 16GB
IT-2004 (IT) [25] 41,291,594 1,150,725,436 19GB
SK-2005 (SK) [26] 50,636,154 1,949,412,601 33GB
Sinaweibo (WB) [27] 58,655,850 261,323,450 3.8GB

VI. EXPERIMENTS

We implement Layph on top of Ingress [16], an automated
incrementalization framework equipped with different memo-
ization policies to support vertex-centric graph computations.
In this section, we evaluate Layph and compare it with existing
state-of-the-art incremental graph processing systems.

A. Experimental Setup

We use AliCloud ecs.r6.13xlarge instance (52vCPU, 384GB
memory, 64-bit Ubuntu 18.04 with compiler GCC 7.5) for
these experiments.

Graph Workloads. We use four typical graph analysis algo-
rithms in our experiments, including Single Source Shortest
Path (SSSP), Breadth-First Search (BFS), PageRank (PR), and
Penalized Hitting Probability (PHP) [28]. SSSP and BFS can
be written in the form shown in Equation (1). We also rewrite
PHP and PageRank into the form shown in Equation (1)
using the method in [9], [10]. The former two are considered
converged when all vertex states no longer change. The latter
two are considered converged when the difference between the
vertex states in two consecutive iterations is less than 1e−6.

Datasets and Updates. We use four real graphs (see Table
I) in our experiments, including three web graphs UK-2005
(UK) [24], IT-2004 (IT) [25], and SK-2005 (SK) [26], and a
social network Sinaweibo (WB) [27]. We constructed ∆G by
randomly adding new edges to G and removing existing edges
from G. The number of added edges and deleted edges are
both 5,000 by default unless otherwise specified. ∆G refers
to the edge changes by default, besides, we randomly generate
a ∆G with 1,000 changed vertices (including 500 added
vertices and 500 deleted vertices) to evaluate the performance
of handling vertex updates.

Competitors. We compare Layph with five state-of-the-art
incremental graph processing systems, GraphBolt [15], Kick-
Starter [14], DZiG [17], Ingress [16], and RisGraph [18]. In
fact, KickStarter and RisGraph do not support PageRank and
PHP due to their single-dependency requirement. GraphBolt
and DZiG do not provide the implementations of SSSP and
BFS. In light of this, we only run PageRank and PHP (resp.
SSSP and BFS) on GraphBolt and DZiG (resp. KickStarter
and RisGraph). All of these systems are running with 16
worker threads.
B. Overall Performance

We first compare Layph with the competitors in response
time of each workload executed on different datasets. The Nor-
malized results are reported in Figure 5, where the response
time of Layph is treated as the baseline, i.e., Layph finishes
in unit time 1. In particular, Figure 5e reports the response
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Fig. 5: Response time comparison.
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Fig. 6: Number of edge activations comparison.
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Fig. 10: Speedup over competitors when varying batch size.

time for processing vertex updates, while the rest is used for
edge updates. We can see that the improvement in handling
vertex changes in Layph is consistent with the improvement
in handling edge changes. When updating vertices, the other
systems meet runtime errors, thus we only compare Ingress
with Layph. It is shown that Layph consistently outperforms
others in most cases. Specifically, Layph achieves 3.13-15.82×
(8.49× on average) speedup over KickStarter, 2.54-8.49×
(4.49× on average) speedup over RisGraph, 2.99-36.66×
(18.99× on average) speedup over GraphBolt, 2.92-32.93×
(17.53× on average) speedup over DZiG, and 1.06-7.22×
(2.54× on average) speedup over Ingress. To explain the
reason for the above results, we also report the total number
of edge activations in Figure 6. An edge activation represents
an F operation. In most graph workloads, the cost of F is
much greater than that of G operation, because the number of
F and the unit cost of F are often both larger than that of G.

From Figure 5 and Figure 6, we can see that the normalized
number of edge activations is a similar trend to the normalized
response time of each system.

Regarding SSSP and BFS, RisGraph is faster than Kick-
Starter since it allows more parallelism during incremental
updates and allows for localized data access. Ingress and
RisGraph are comparable because the memoization-path en-
gine in Ingress follows a similar idea. Layph outperforms
the other competitors by leveraging the layered graph. Note
that, when performing BFS on WB, RigGraph is slower than
Layph but with fewer edge activations. This is because that
RisGraph can identify the safe and unsafe updates to reduce
edge activations. It just so happens that most of the updates
on WB are safe for BFS. However, the additional cost of
identifying the safe or unsafe is relatively expensive since WB
is very small. While in SSSP, compared with Ingress, Layph
also requires less response time but with more edge activations.



This is because there are some large dense subgraphs in WB,
requiring more shortcut updates, which increase the number of
edge activations. Since Layph is parallel-friendly for shortcut
updates, it will only have a small effect on the response time.

Regarding PageRank and PHP, DZiG is faster than Graph-
Bolt since DZiG has a sparsity detection mechanism, based
on which it can adjust the incremental computation scheme.
Besides, Ingress is faster than DZiG and GraphBolt. This can
be attributed to its memoization-free engine which is more
efficient than others. Layph is built on top of Ingress, and can
further limit the iterative computation scope with the layered
graph, which reduces the number of activation edges, as shown
in Figure 6. We find that Layph exhibits less improvement on
WB. The reason is that the subgraphs in WB are much larger
than that in other graphs, which increases costs and weakens
gains. The reason will be further explained in Section VI-F.

C. Runtime Breakdown

During incremental computation, Layph consists of four
phases: the layered graph update, revision messages upload,
iterative computation on the upper layer, and messages as-
signment. To study the time spent in each phase, we run
four algorithms on UK and record the runtime of each phase.
The proportion of runtime for different phases is shown in
Figure 7. We can see that the iterative computation takes up
most of the runtime. The messages assignment is the second
most expensive phase. The layered graph update and revision
messages upload are both very fast except in PHP. This is
because the iterative computation of PHP is very fast, say
418 ms, which makes those two phases relatively longer. The
results indicate that the additional cost in our system, i.e., the
maintenance of the layered graph, is lightweight. Based on the
above experimental analysis, it is worth adopting the layered
graph in incremental graph processing.

D. Varying Number of Threads

We vary the number of execution threads from 1 to 32 to
see the runtime reduction. We run SSSP on UK and compare
Layph with KickStarter, RisGraph, and Ingress. The results are
shown in Figure 9a. We can see that as the threads increase,
the runtime decreases steadily in all systems as expected. The
reduction is smoother when the number of threads is larger
than 8. This is because all these systems use atomic operations
to guarantee correctness, hence threads will lead to more
write-write conflicts which will hurt parallelism. Compared
with the runtime with 1 thread, Layph with 32 threads can
achieve 10.1× speedup, which is higher than KickStarter
(4.7× speedup), RisGraph (6.2× speedup), and Ingress (9.0×
speedup). We also run PageRank on UK and compare Layph
with GraphBolt, DZiG, and Ingress. The results are reported
in Figure 9b where a base-10 log scale is used for the Y axis.
We can observe that GraphBolt, DZiG, and Layph show better
scaling performance than Ingress. The reason is that the prob-
lem of the write-write conflict in PageRank is more serious
than that in SSSP. In GraphBolt and DZiG, vertex states need
to be recorded during each iteration, which can alleviate the

conflict problem with massive space cost in sacrifice. In Layph,
both the shortcut update process and the local assignment
process contain many independent local computations, making
Layph more parallel-friendly. Therefore, Layph can benefit
more from parallelism.

E. Varying Amount of Updates

To study the performance with different amounts of updates,
we vary the size of the updates set (a.k.a. batch size) from 10
to 10 million on UK and compare Layph with the competitors
when running SSSP and PageRank. Figure 10 shows the
speedup results of Layph over the competitors. The speedup
is more significant with a smaller batch size because Layph
utilizes the layered graph to effectively reduce the scope
of global iterations. In PageRank, if the batch size is too
small, e.g., 10, the effects of these updates might only be
applied within subgraphs, thus the iterative computations are
constrained in affected subgraphs. However, the speedup is
less significant when the batch size gets larger. This is because
more updates are likely to affect more subgraphs in our system,
which increases the shortcut update cost and undermines
the benefits of the layered graph. However, large batches of
updates will prolong the response time and lose the real-
time property, so smaller batches of updates are preferable
for delay-sensitive applications or online applications.

F. Effect of Vertex Replication

To verify the effectiveness of vertex replication proposed in
Section IV-A1, we measure the sizes of the original graphs,
the original upper layers, and the reshaped upper layers as
shown in Figure 8a. We can see that the sizes of the original
graphs are greatly reduced (by 12%-60%) by using the layered
graph, and the sizes of the original upper layers are further
reduced (by 34%-87%) through vertex replication. We also run
SSSP and PageRank on the original graph with Ingress, the
original upper layer with Layph (without vertex replication),
and the reshaped upper layer with Layph. The runtime results
are reported in Figure 8b and Figure 8c, respectively. We
can see that most of the runtime results are proportional to
their graph sizes or the upper layer sizes. It is noticeable that
the runtime of SSSP on WB by Layph is longer with vertex
replication than without vertex replication. By digging into
the graph property, we find that the sizes of subgraphs in WB
are very large. With vertex replication, an edge update could
incur multiple local recomputations on multiple subgraphs
that are correlated to this updated edge. Therefore, if many
large subgraphs are affected, the layered graph update cost
for shortcut calculations is evident, which may overweigh the
benefits. On the contrary, if the size of the affected subgraph
is small, this will not impact performance as the shortcut
calculation will be very fast.
G. Analysis of Additional Overhead

To evaluate the effect of additional space and offline op-
erations on Layph, we first report the additional space cost
of Layph in Figure 11a. We can see that the additional space
cost brought by the layered graph is 37.89%, 61.53%, 19.79%,
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and 0.32% of the original graph, which is acceptable. We
then report the offline preprocessing time (Layph offline), the
accumulative incremental computation time of Layph (Layph
acc. inc.), and that of Ingress (Ingress acc. inc.) in Figure 11b
when performing SSSP on UK. It is shown that after 9 runs
of incremental computation, the runtime of Layph, including
the offline time and the accumulative incremental computation
time, becomes less than Ingress. This is because the offline
operation is performed only once but can bring a significant
performance gain on each incremental computation.

VII. RELATED WORK

Incremental Graph Processing Systems. Incremental process-
ing for evolving graphs has attracted great attention in recent
years [14]–[18], [29]–[41]. Tornado [29] provides loop-based
incrementalization support for the fix-point graph computa-
tions. KickStarter [14] maintains a dependency tree to memo-
rize the critical paths for converged states and performs neces-
sary adjustments to accommodate changes. RisGraph [18] de-
duces safe approximation results upon graph updates and fixes
these results via iterative computation. GraphBolt [15] keeps
track of the dependencies via the memorized intermediate
states among iterations and adjusts the dependencies iteration-
by-iteration to achieve incremental computation. i2MapReduce
[38], [39] extends Hadoop MapReduce to support incremental
iterative graph computations by memorizing the intermedi-
ate map/reduce output. Similarly, many other works, e.g.,
DZiG [17] and HBSP model [41], also memorize and reuse
the previous computations to minimize useless re-execution.
Ingress [16] can automatically select the best memoization
scheme according to algorithm property. The above systems
propagate the effects of graph updates over the whole graph,
which causes a large number of vertices and edges to be acti-
vated, and ultimately leads to a large number of computations.

Hardware Accelerators for Incremental Graph Processing. A
number of solutions based on new hardware to accelerate
dynamic graph processing have been proposed recently [37],
[42]–[45]. GraSU [42] provides the first FPGA-based high-
throughput graph update library for dynamic graphs. It ac-
celerates graph updates by exploiting spatial similarity. Jet-
Stream [43] extends the event-based accelerator [20] for graph
workloads to support streaming updates. It works well on both
accumulative and monotonic graph algorithms. [44] proposes

input-aware software and hardware solutions to improve the
performance of incremental graph updates and processing.
TDGraph [45] proposes efficient topology-driven incremental
execution methods in accelerator design for more regular state
propagation and better data locality.

Incremental Graph Algorithms. There are also a number of
incremental methods proposed for specific algorithms, e.g.,
regular path queries [46], strongly connected components [47],
subgraph isomorphism [48], k-cores [49], graph partition-
ing [50], [51] and triangle counting [52]. In contrast to these
algorithm-specific methods, our Layph framework extends
Ingress [16], which can automatically deduce incremental
algorithms from the batch counterparts by a generic approach.
It supports a series of incremental graph algorithms with
different computation patterns, i.e., traversal-based (e.g., SSSP
and BFS) and iteration-based (e.g., PageRank and PHP).

Partition-based Methods. Some partition-based methods have
been proposed to improve graph processing, such as Blogel
[53], Giraph++ [54], Grace [55], GRAPE [13]. They employ
a block-centric (or subgraph-centric) framework to process
graphs and try to reduce the communication overhead between
threads or processors (reducing the information flow between
subgraphs). However, these systems are designed for static
graph processing. Different from these existing approaches,
the novelty of Layph lies in that we propose a layered graph
structure to improve the incremental graph processing for
dynamic graphs, which aims to reduce the computation caused
by massive message propagation.

VIII. CONCLUSIONS

We have proposed Layph, a framework to accelerate in-
cremental graph processing by layering graph. It relies on
limiting global iterative computations on the original graph
to a few independent small-scale local iterative computations
on the lower layer, which is used to update shortcuts and
upload messages, and a global computation on the upper
layer graph skeleton. This greatly fits incremental computation
for evolving graphs since the number of vertices and edges
involved in iterative computations is effectively limited by
our layered graph. Specifically, only the dense subgraphs
affected by ∆G on the lower layer and the graph skeleton
on the upper layer perform iterative computations. Layph is
implemented on top of our previous work Ingress to support
message-driven incremental computation. Our experimental
study verifies that Layph can greatly improve incremental
processing performance for dynamic graphs.
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