
AutoAC: Towards Automated Attribute Completion
for Heterogeneous Graph Neural Network

(Extended Version)
Guanghui Zhu, Zhennan Zhu, Wenjie Wang, Zhuoer Xu, Chunfeng Yuan, Yihua Huang

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
Department of Computer Science and Technology, Nanjing University, Nanjing, China

{zhuzhennan, wenjie.wang, zhuoer.xu}@smail.nju.edu.cn, {zgh, cfyuan, yhuang}@nju.edu.cn

Abstract—Many real-world data can be modeled as het-
erogeneous graphs that contain multiple types of nodes and
edges. Meanwhile, due to excellent performance, heterogeneous
graph neural networks (GNNs) have received more and more
attention. However, the existing work mainly focuses on the
design of novel GNN models, while ignoring another important
issue that also has a large impact on the model performance,
namely the missing attributes of some node types. The hand-
crafted attribute completion requires huge expert experience
and domain knowledge. Also, considering the differences in
semantic characteristics between nodes, the attribute completion
should be fine-grained, i.e., the attribute completion operation
should be node-specific. Moreover, to improve the performance
of the downstream graph learning task, attribute completion
and the training of the heterogeneous GNN should be jointly
optimized rather than viewed as two separate processes. To
address the above challenges, we propose a differentiable at-
tribute completion framework called AutoAC for automated
completion operation search in heterogeneous GNNs. We first
propose an expressive completion operation search space, includ-
ing topology-dependent and topology-independent completion
operations. Then, we propose a continuous relaxation schema
and further propose a differentiable completion algorithm where
the completion operation search is formulated as a bi-level
joint optimization problem. To improve the search efficiency,
we leverage two optimization techniques: discrete constraints
and auxiliary unsupervised graph node clustering. Extensive
experimental results on real-world datasets reveal that AutoAC
outperforms the SOTA handcrafted heterogeneous GNNs and the
existing attribute completion method.

Index Terms—heterogeneous graph, graph neural network,
attribute completion, differentiable search

I. INTRODUCTION

Graph-structured data are ubiquitous, such as social net-
works [1], scholar networks [2], biochemical networks [3],
and knowledge graphs [4]. Meanwhile, many real-world graph
data are heterogeneous [5]. Unlike the homogeneous graph
with only one node type and one edge type, the hetero-
geneous graph [6] consists of multiple types of nodes and
edges associated with attributes in different feature spaces.
For example, the IMDB dataset is a typical heterogeneous
graph, which contains three node types (movie, actor, director)
and two edge types (movie-actor, movie-director), as shown in
Figure 1(a). Due to containing rich information and semantics,
heterogeneous graphs have drawn more and more attention.

Recently, graph neural networks (GNNs) [7], [8] have
demonstrated powerful representation learning ability on
graph-structured data [9]. Meanwhile, many heterogeneous
GNNs (HGNNs) have been proposed for heterogeneous
graphs [10] [11] [12] [13] [14] [15] [16] [17]. However, the
existing work on heterogeneous graphs mainly focuses on the
construction of novel GNN models, while ignoring another
important issue that also has a large impact on the model
performance, namely the attributes of some types of nodes are
missing [18]. Missing node attributes is a common problem
because collecting the attributes of all nodes is prohibitively
expensive or even impossible due to privacy concerns. Since
the attributes of all nodes are required in the GNN-based
heterogeneous models, some handcrafted ways are employed
to deal with the problem of missing attributes. For example,
the missing attribute vector can be the sum or the mean of
directly connected nodes’ attribute vectors. Besides, the one-
hot representations of a certain node type can also be used
to replace the missing attributes. However, the handcrafted
ways require huge expert experience and domain knowledge.
Also, the topological relationships in the graph are not taken
into account. Recently, an attention-based method [18] was
proposed to complete each no-attribute node by weighted
aggregation of the attributes from the directly neighboring
attributed nodes. Such an attribute completion method only
considers the attributes of 1-hop neighbors without exploiting
the attributes of higher-order neighbors.

Moreover, existing attribute completion methods are all
coarse-grained. That is, for a specific node type without
attributes, they adopt the same attribute completion operation
for all nodes without considering the differences in semantic
characteristics between nodes. In practice, fine-grained at-
tribute completion is more reasonable. The attribute comple-
tion operations for the nodes with different semantics should
be different. Take the IMDB dataset as an example. The target
type of nodes (i.e., movie nodes) has attributes, and the other
types of nodes (i.e., actor nodes and director nodes) have no
attributes. As shown in Figure 1(b), there exist three attribute
completion operations, including 1) For actors (e.g. Jackie
Chan) who are involved in movies that mostly belong to the
same genre (Kung Fu movies), average attribute aggregation
of local (i.e., 1-hop) neighboring nodes should be used. 2)

ar
X

iv
:2

30
1.

03
04

9v
2

 [
cs

.L
G

]
 2

0
Fe

b
20

23

Movie
(with attribute)

director
(attribute missing)

actor
(attribute missing)

Romance?
Thriller?
Action?
…?

classification
node

(a)

Jackie Chan

Ruch Hour

Police Story

CZ12 The Foreigner

Project A

actor

Ng Man-Tat

actor

Stephen
Chow

actor

A Chinese Odyssey

Li Gong

actor

Red Sorghum

director

Yi-Mou Zhang

2-hop

2-hop

Faye Wong

actor

Chungking Express

Alan Tam

actor

We Are Family

singer (guest actor)

(b)

Fig. 1. (a) Example of heterogeneous graphs with incomplete attributes, i.e., the IMDB dataset. (b) Different attribute completion operations for the actor
node, i.e., local attribute aggregation, message-passing based multi-hop attribute aggregation, and one-hot representation.

For actors who have strong collaborative relationships with
other actors and directors, the message-passing based multi-
hop attribute aggregation is more suitable. 3) For guest actors
without representative movies, we can directly use the simple
one-hot encoding to complete attributes.

For the IMDB dataset, the number of actor nodes that have
no attributes is 6124. Manually differentiating the semantic
characteristics of all no-attribute nodes and then selecting
the most suitable completion operations according to seman-
tic characteristics is infeasible. Thus, an automated attribute
completion method that can search the optimal completion
operations efficiently is required. Moreover, to improve the
performance of the downstream graph learning task, the au-
tomated attribute completion and the training of the heteroge-
neous GNN should be jointly optimized rather than viewed as
two separate processes.

To address the above challenges, we propose a differentiable
attribute completion framework called AutoAC1 for automated
completion operation search in heterogeneous GNNs. AutoAC
is a generic framework since it can integrate different hetero-
geneous GNNs flexibly. By revisiting the existing attribute
completion methods, we first propose an expressive com-
pletion operation search space, including topology-dependent
and topology-independent completion operations. Instead of
searching over the discrete space (i.e., candidate completion
operations for each no-attribute node), we propose a con-
tinuous relaxation scheme by placing a weighted mixture of
candidate completion choices, which turns the search task into
an optimization problem regarding the weights of choices (i.e.,
completion parameters). Thus, due to the continuous search
space, the search process becomes differentiable and we can
perform completion operation search via gradient descent.

To further improve the search efficiency, we formulate the
search of attribute completion operations and the training of
GNN as a constrained bi-level joint optimization problem.
Specifically, we keep the search space continuous in the
optimization process of completion parameters (i.e., upper-
level optimization) but enforce attribute completion choices
being discrete in the optimization process of weights in the
heterogeneous GNN (i.e., lower-level optimization). In this
way, there is only one activated completion operation for each
no-attribute node during the training of GNN, removing the

1AutoAC is available at https://github.com/PasaLab/AutoAC

need to perform all candidate completion operations. Inspired
by NASP [19], we employ proximal iteration to solve the
constrained optimization problem efficiently.

Finally, to reduce the dimension of the attribute completion
parameters, we further leverage an auxiliary unsupervised
graph node clustering task with the spectral modularity func-
tion during the process of GNN training.

To summarize, the main contributions of this paper can be
highlighted as follows:
• We are the first, to the best of our knowledge, to model

the attribute completion problem as an automated search
problem for the optimal completion operation of each no-
attribute node.

• We propose an expressive completion operation search
space and further propose a differentiable attribute com-
pletion framework where the completion operation search
is formulated as a bi-level joint optimization problem.

• To improve search efficiency, we enforce discrete con-
straints on completion parameters in the training of
heterogeneous GNN. Moreover, we leverage an auxiliary
unsupervised graph node clustering task to reduce the
dimension of the attribute completion parameters.

• Extensive experimental results on real-world datasets
reveal that AutoAC is effective to boost the performance
of heterogeneous GNNs and outperforms the SOTA at-
tribute completion method in terms of performance and
efficiency.

II. RELATED WORK

A. Heterogeneous Graph Neural Network

Graph neural network [8] [20] [1] [21] [22] [9] aims
to extend neural networks to graphs. Since heterogeneous
graphs are more common in the real world [5], heterogeneous
GNNs have been proposed recently. Part of the work is based
on meta-paths. HAN [10] leverages the semantics of meta-
paths and uses hierarchical attention to aggregate neighbors.
MAGNN [14] utilizes RotatE [23] to encode intermediate
nodes along each meta-path and mix multiple meta-paths using
hierarchical attention. Another part of the work chooses to
extract rich semantic information in heterogeneous graphs.
GTN [11] learns a soft selection of edge types and com-
posite relations for generating useful multi-hop connections.
HetGNN [13] uses Bi-LSTM to aggregate node features for

each type and among types. As the state-of-the-art model,
SimpleHGN [17] revisits existing methods and proposes a
simple framework using learnable edge-type embedding and
residual connections for both nodes and edges. Recently,
AS-GCN [24] employs the heterogeneous GNN to mine the
semantics for text-rich networks.

Different from the above methods, HGNN-AC [18] notices
that most of the nodes in the real heterogeneous graph have
missing attributes, which could cause great harm to the per-
formance of heterogeneous models, and proposes an attention-
based attribute completion method. However, HGNN-AC
needs to get node embeddings based on network topology
using metapath2vec [25], which is a time-consuming process.
Moreover, the attribute completion in HGNN-AC is coarse-
grained and supports only one completion operation for all
no-attribute nodes. HGCA [26] unifies attribute completion
and representation learning in an unsupervised heterogeneous
network. MRAP [27] performs node attribute competition in
knowledge graphs with multi-relational propagation.

B. Neural Architecture Search (NAS)

NAS [28] that designs effective neural architectures auto-
matically has received more attention. The core components
of NAS contain search space, search algorithm, and perfor-
mance estimation strategy. Recently, many works use NAS
to design GNN models due to the complexity of GNN [29].
PolicyGNN [30] uses reinforcement learning to train meta-
strategies and then adaptively determines the choice of ag-
gregation layers for each node. SANE [31] and SNAG [31]
search for aggregation functions using microscope-based
and reinforcement learning-based strategies, respectively. The
architecture-level approaches such as GraphNAS [32], Au-
toGNN [33], and PSP [34] aim to search for architectural
representations of each layer, including sampling functions, at-
tention computation functions, aggregation functions, and acti-
vation functions. The above works are based on homogeneous
graphs. Due to the rich semantic and structural information in
heterogeneous graphs, applying NAS to heterogeneous graphs
is more challenging. Recently, there exist some excellent
attempts. GEMS [35] uses the evolutionary algorithm to search
for meta-graphs between source and target nodes. DiffMG [36]
uses differentiable methods to find the best meta-structures in
heterogeneous graphs. However, the above works only focus
on the GNN model and ignore the heterogeneous graph data
itself, which is even more important in practice.

C. Proximal Iteration

Proximal iteration [37] is used to handle the optimization
problem with a constraint C, i.e., minx f(x), s.t. x ∈ C, where
f is a differentiable objective function. The proximal step is:

x(k+1) = proxC
(
x(k) − ε∇f

(
x(k)

))
proxC(x) = arg min

z

1

2
(‖z − x‖)2, s.t. z ∈ C

(1)

where ε is the learning rate. Due to the excellent theoretical
guarantee and good empirical performance, proximal iteration

has been applied to many deep learning problems (e.g., archi-
tecture search [19]).

III. PRELIMINARIES

Heterogeneous Graph. Given a graph G = 〈V,E〉 where V
and E denote the node set and the edge set respectively, G
is heterogeneous when the number of node and edge types
exceeds 2. Each node v ∈ V and each edge e ∈ E are
associated with a node type and an edge type respectively.

Attribute Missing in Heterogeneous Graph. Let xv ∈ Rd
denote the original d-dimensional attribute vector in the node
v. In practice, the attributes of some types of nodes are not
available. Thus, the node set V in G can be divided into two
subsets, i.e., V + and V −, which denote the attributed node-set
and no-attribute node-set.

Attribute Completion. Let X = {xv | v ∈ V +} denote the
input attribute set. Attribute completion aims to complete the
attribute for each no-attribute node v ∈ V − by leveraging the
available attribute information X and the topological structure
of G. Let xCv denote the completed attribute. Thus, after com-
pletion, the node attributes for the training of heterogeneous
GNN is Xnew = X∪XC = {xv | v ∈ V +}∪{xcv | v ∈ V −}.
In this paper, we aim to search for the optimal completion
operation for each no-attribute node to improve the prediction
performance of GNN models.

IV. THE PROPOSED METHODOLOGY

In this section, We first present the proposed completion
operation search space and then introduce the differentiable
search strategy. Moreover, we introduce the optimization
techniques including discrete constraints and the auxiliary
unsupervised graph node clustering task for further improving
the search efficiency.

A. Search Space of Attribute Completion Operation

Due to the semantic differences between nodes, using a
single attribute completion operation for all no-attribute nodes
belonging to the same node type is not reasonable. The avail-
able completion operations should be diverse and we can select
the most suitable completion operation for each node with
missing attributes. Thus, to capture both the node semantics
and the topological structure information during the attribute
completion process, we first propose an expressive completion
operation search space, which consists of topology-dependent
and topology-independent operations.

Specifically, the topology-dependent operations employ the
topology information of the graph to guide the attribute
completion. Inspired by the node aggregation operations in
typical GNNs (e.g., GraphSage [1], GCN [8], APPNP [38]),
we design three topology-dependent attribute completion op-
erations, i.e., mean, GCN-based, PPNP-based operations. In
contrast, the topology-independent operation directly uses one-
hot encoding to replace the missing attribute. AutoAC aims to
search the optimal operation for each no-attribute node from
the general and scalable search space where we can draw

on more node aggregation operations in GNNs as attribute
completion operations.

1) Topology-Dependent Completion Operation: Such type
of completion operations can be further divided into two
categories: local attribute aggregation and global (i.e., multi-
hop) attribute aggregation.
Local Attribute Aggregation. Similar to the node aggregation
in GraphSage [1], we first propose mean attribute aggregation.

Mean Attribute Aggregation. For the node v ∈ V −, we
calculate the mean of neighbors’ attributes to complete the
missing attribute. The completed attribute xCv is as follows:

xCv = W ·mean
{
xu,∀u ∈ N+

v

}
(2)

where N+
v denotes the local (i.e, 1-hop) neighbors of node v

in set V +. W is the trainable transformation matrix.
GCN-based Attribute Aggregation. Similar to spectral graph

convolutions in GCN [8], we complete the missing attribute
with the following renormalized graph convolution form.

xCv =
∑
u∈N+

v

(deg(v) · deg(u))−1/2 · xu ·W (3)

Global Attribute Aggregation. Motivated by the node aggre-
gation in APPNP [38], we propose PPNP-based completion
operation for global attribute aggregation.

PPNP-based Attribute Aggregation. Besides the GCN-based
attribute completion, we use another popular node aggregation
method PPNP (i.e., Personalized PageRank [38]) for attribute
completion. Specifically, let A ∈ Rn×n denote the adjacency
matrix of the graph G. Ã = A+In denotes the adjacency ma-
trix with added self-loops. The form of PPNP-based attribute
completion is:

Xppnp = α
(
In − (1− α ˆ̃A)

)−1

·X ′, X ′ = X ·W

XC = {Xppnp
i | ∀i ∈ V −}

(4)

where ˆ̃A = D̃−1/2ÃD̃−1/2 is the symmetrically normalized
adjacency matrix with self-loops, with the diagonal degree
matrix D̃. α ∈ (0, 1] is the restart probability. Note that the
missing attributes are filled with zeros in X . After PPNP-based
attribute aggregation, we complete the attributes of the nodes
in V − with Xppnp.

2) Topology-Independent Completion Operation: For the
no-attribute nodes that have few neighbors or are less af-
fected by the neighbor information, we can directly use one-
hot encoding to replace the missing attributes. The one-hot
representation of a specific node type is also a commonly
used handcrafted attribute completion method [17]. For ex-
ample, there are K distinct actors in IMDB. The one-hot
representation for the actor node is a K-dimensional vector.
For a specific actor, the element in the corresponding index
is 1 and the others are 0. Then, the one-hot representation is
transformed linearly for dimension alignment.

3) Search Space Size Analysis: In summary, the proposed
search space O contains a diverse set of attribute completion
operations. Let N− denote the total number of nodes with
missing attributes. Thus, the space size can be calculated by
|O|N

−
, which is exponential to N−. In practice, the attribute

missing of some node types is a common problem, leading
to huge search space. Thus, the block-box optimization-based
search method (e.g., evolutionary algorithm) over a discrete
search space is infeasible. To address this issue, we propose
a differentiable search strategy to find the optimal completion
operations efficiently.

B. Differentiable Search Strategy

In this section, we first introduce a continuous relaxation
scheme for the completion operation search space to make the
search process to be differentiable. Then, we introduce the dif-
ferentiable search algorithm and two optimization techniques
to improve the search efficiency.

1) Continuous Relaxation and Optimization: Inspired by
the success of the differentiable NAS, we first design a contin-
uous search space and then perform differentiable completion
operation search via gradient descent.

As shown in Equation 5, instead of searching over the
discrete space, we view the completion operation as a weighted
mixture of candidate choices.

xCv =
∑
o∈O

exp
(
α

(v)
o

)
∑
o′∈O exp

(
α

(v)
o′

)o (v) (5)

where v denotes the node with the missing attribute, o
denotes the candidate operation in the search space O, o (v)
denotes the completed attribute of node v with o. α(v) indicates
the mixing weight vector of dimension |O| for node v.
Furthermore, we refer to α = {α(v) | v ∈ V −} ∈ RN−×|O|
as the completion parameters.

After continuous relaxation, the search objective becomes
the learning of the completion parameters α. To this end, we
formulate the search problem as an optimization problem that
can jointly learn the completion parameters α and the weights
w in the heterogeneous GNN by gradient descent. Let Ltrain
and Lval denote the training loss and validation loss respec-
tively. Since both losses are determined by the completion
parameters α and the weights w, the search objective is a bi-
level optimization problem.

min
α
Lval (ω∗, α)

s.t. ω∗ = argminw Ltrain(ω, α)
(6)

where the upper-level optimization is for the optimal comple-
tion parameters α and the lower-level optimization is for the
optimal weights w in the GNN model.

2) Overview: Figure 2 shows the overall framework of au-
tomated attribute completion for heterogeneous graphs. First,
we perform a continuous relaxation of the search space by
placing a mixture of candidate completion operations. Then,

one-hot

mean

GCN

PPNP

Discrete search space for

automated attribute completion
Node with missing attributes

?
?

?

?

one-hot

mean

GCN

PPNP

𝜶𝟐

𝜶𝟏

𝜶𝟑
𝜶𝟒

one-hot

mean

GCN

PPNP

×

×
×

Continuous relaxation

by placing a mixture of

candidate choices

Adding discrete constraints

when training GNN

Graph
Neural

Network

Softmax
Layer

Softmax
Layer

Supervised
Classification

Loss

𝑪𝟏

𝑪𝟐

…

𝑪𝑴

Auxiliary
Unsupervised

Clustering
Loss

Joint
Loss

GNN Training

𝑪𝟏

𝑪𝟐

…

𝑪𝑵

𝑪𝟏

𝑪𝟐

…

𝑪𝑴

𝑪𝟑

𝑪𝑴−𝟏

Graph Clustering

𝑪𝟏

𝑪𝟐

𝑪𝟑

𝑪𝑴

𝑪𝑴−𝟏

node
attributes

attributes
after completion

Attribute Completion

attributes

missing

Fig. 2. The overall workflow of automated attribute completion for the heterogeneous graph neural network.

the completion parameters α are optimized. After determin-
ing the attribute completion operations for each no-attribute
node, we view the completed attributes together with the raw
attributes as the initial embedding for the training of the graph
neural network.
Why not use the weighted mixture. Although the continuous
relaxation allows the search of completion operations to be dif-
ferentiable, there still exist following limitations when directly
using the weighted mixture of all completion operations:

1) High computational overhead: After continuous relax-
ation, we need to perform all candidate completion
operations for each no-attribute node when training het-
erogeneous GNNs, leading to huge computational over-
head. Also, solving the bi-level optimization problem in
Equation 6 incurs significant computational overhead.

2) Performance gap: At the end of the search, con-
tinuous parameters α needs to be discretized, i.e.,
argmaxo∈O α

(v)
o , resulting in inconsistent performance

between searched and final completion operations.
3) Large dimension of α: The dimension of completion

parameters α is N− × |O|, which is proportional to the
total number of nodes with missing attributes. The large
dimension of α leads to a slow convergence rate and
low search efficiency.

To address the first two issues (i.e., reducing computational
overhead and avoiding performance gap), we first propose an
efficient search algorithm with discrete constraints. Specifi-
cally, for each no-attribute node v, the completion parameters
satisfy the following constraints: α(v) ∈ C = C1 ∩ C2, where
C1 = {α(v) | ‖α(v)‖0 = 1}, C2 = {α(v) | 0 ≤ α

(v)
i ≤ 1}.

The constraint C2 allows α to be optimized continuously, and
C1 keeps the choices of completion operation to be discrete

when training GNN. As shown in Figure 2, there is only one
activated edge for each choice when training GNN, removing
the need to perform all candidate completion operations. The
final completion operation is derived from the learned com-
pletion parameter α. For node v, the edge with the maximum
completion parameter will be kept. We leverage proximal
iteration [37] to solve the constrained optimization problem.
Moreover, proximal iteration can improve the computational
efficiency of optimizing α without second-order derivative.

Moreover, to address the third issue (i.e., reducing the
dimension of α), we propose an auxiliary unsupervised clus-
tering task. In practice, the no-attribute nodes with similar
semantic characteristics may have the same completion opera-
tion. Take the actor nodes in the IMDB dataset as an example.
For the actors with a large number of representative movies,
the average attribute aggregation operation is more suitable.
Thus, we can cluster all no-attribute nodes into M clusters,
where the nodes in each cluster have the same completion
operation. The optimization goal becomes to search for the
optimal attribute completion operation for each cluster. In this
way, the size of the completion parameters α is reduced from
N−× |O| to M × |O|, M � N−. As shown in Figure 2, the
auxiliary unsupervised clustering loss can be jointly optimized
with the node classification loss (i.e., cross-entropy).

The proposed framework AutoAC is composed of multiple
iterations. In each iteration, the completion parameters α and
the weights in the GNN are optimized alternatively. Next, we
introduce the search algorithm with discrete constraints and
the auxiliary unsupervised clustering task in detail.

C. Search Algorithm with Discrete Constraints

Equation 6 implies a bi-level optimization problem with α
as the upper-level variable and w as the lower-level variable.

Following the commonly used methods in meta learning [39]
and NAS [40], we use a one-step gradient approximation to
the optimal internal weight parameters ω∗ to improve the
efficiency. Thus, the gradient of the completion parameters
α is as follows (we omit the step index k for brevity):

∇αLval (ω∗, α)

≈∇αLval (ω − ξ∇ωLtrain(ω, α), α)

=∇αLval (ω′, α)− ξ∇2
α,ωLtrain(ω, α)∇ω′Lval (ω′, α)

(7)

where ω is the weights of the GNN, ξ is the learning rate
of internal optimization, and ω′ = ω − ξ∇ωLtrain(ω, α)
indicates the weights for a one-step forward model. we update
the completion parameters α to minimize the validation loss.
In Equation 7, there exists a second-order derivative, which
is expensive to compute due to a large number of param-
eters. Also, the continuous relaxation trick further leads to
huge computational overhead since all candidate completion
operations need to be performed when training the GNN.
Moreover, the overall search process is divided into two stages:
search and evaluation. In the evaluation stage, the continuous
completion parameters α need to be discretized for replacing
every mixed choice as the most likely operation by taking the
argmax, leading to performance gap between the search and
evaluation stage.

To optimize α efficiently and avoid the performance gap,
we propose a search algorithm with discrete constraints when
optimizing completion parameters α. For the no-attribute node
v, let the feasible space of α(v) be C = {α(v) | ‖α(v)‖0 = 1∧
0 ≤ α(v)

i ≤ 1}. We denote it as the intersection of two feasible
spaces (i.e., C = C1 ∩ C2), where C1 = {α(v) | ‖α(v)‖0 = 1},
C2 = {α(v) | 0 ≤ α(v)

i ≤ 1}. The optimization problem under
constraints can be solved by the proximal iterative algorithm.

Proposition 1: proxC(z) = proxC2(proxC1(z))

Inspired by Proposition 1 [19], [37], in the k-th proximal
iteration, we first get discrete variables constrained by C1,
i.e., ᾱ(k) = proxC1(α(k)) (the node notation v is omitted for
brevity). Then, we derive gradients w.r.t ᾱ(k) and keep α to
be optimized as continuous variables but constrained by C2.

α(k+1) = proxc2(α(k) − ε∇ᾱ(k)Lval(ᾱ(k))) (8)

The detailed search algorithm is described in Algorithm 1.
First, we get a discrete representation of α by proximal step
(Line 3). Then, we view ω(k) as constants and optimize α(k+1)

for continuous variables (Line 4). Since there is no need to
compute the second-order derivative, the efficiency of updating
α can be improved significantly. After updating α, we further
refine discrete choices and get ᾱ(k+1) for updating ω(k) on the
training dataset, which contributes to reducing the performance
gap caused by discretizing completion parameters α from con-
tinuous variables. Moreover, since only one candidate choice
is activated for each no-attribute node, the computational
overhead can also be reduced. The computational efficiency
of updating α can be significantly improved.

Algorithm 1 Search Algorithm in AutoAC
1: Initialize completion parameters α according to defined

search space O;
2: while not converge do
3: Get discrete choices of attribute completion operations:

ᾱ(k) = proxc1(α(k))
4: Update α for continuous variables: α(k+1) =

proxc2(α(k) − ε∇ᾱ(k)Lval(ω(k), ᾱ(k)))
5: Refine discrete choices after updating: ᾱ(k+1) =

proxc1(α(k+1))
6: Update ω(k) by ∇ω(k)Ltrain(ω(k), ᾱ(k+1))
7: end while

D. Auxiliary Unsupervised Clustering Task

As mentioned before, the dimension of the completion
parameters α is N− × |O| (|O| � N−, |O| = 4). Take the
DBLP dataset as an example, the number of nodes with
missing attributes is about 1.2 × 104, leading to a large
dimension of completion parameters α. As a result, optimizing
α with a limited size of validation dataset is very difficult.

Inspired by the observation that the no-attribute nodes
with similar explicit topological structure or implicit semantic
characteristics, we further propose an auxiliary unsupervised
clustering task to divide all no-attribute nodes into M clusters.
In each cluster, all nodes share the same completion operation.
In this way, the dimension of the completion parameters α can
be reduced to M×|O|, M � N−, and optimizing α becomes
feasible and efficient.

It is well known that the EM algorithm [41] is a commonly
used method (e.g., K-Means [42]) to solve the problem of un-
supervised clustering. In the scenario of graph node clustering,
let hv denote the hidden node representation learned by the
heterogeneous GNN. The E-step is responsible for assigning
the optimal cluster for each node v by calculating the distances
between hv and all cluster centers. The M-step is used to
update the centers of all clusters. The E-step and M-step are
performed alternately until convergence.

Although the EM algorithm has a convergence guarantee,
it is sensitive to the initial values, making it difficult to apply
to the proposed automated completion framework. The main
reason is that the bi-level optimization problem defined in
Equation 6 is iterative. In the early optimization process,
the weights of the GNN have not yet converged and the
node representations learned in the GNN are less informative.
Such low-quality representations lead to inaccurate clustering,
which has a negative impact on the subsequent clustering
quality and further leads to a deviation from the overall
optimization direction.

To address this issue, we first formulate the problem of
unsupervised node clustering as a form of soft classification,
and use the assignment matrix C to record the probability of
each node belonging to each cluster. Moreover, as shown in
Figure 2, we embed the clustering process into the bi-level
iterative optimization process.

Motivated by graph pooling and graph module partitioning,
we introduce the Spectral Modularity Function Q [43] [44].
From a statistical perspective, this function can reflect the clus-
tering quality of graph node modules through the assignment
matrix C [45]:

Q =
1

2 |E|
∑
ij

[
Aij −

didj
2 |E|

]
δ (ci, cj) (9)

where |E| is the number of edges in the graph, δ(ci, cj) = 1
only if nodes i and j are in the same cluster, otherwise 0. di
and dj represent the degrees of node i and node j respectively.
It can be known that in a random graph, the probability that
node i and node j are connected is didj

2|E| [45].
Then, the optimization goal is converted into maximizing

the spectral modularity function Q, but it is an NP-hard
problem. Fortunately, this function can be represented by an
approximate spectral domain relaxation form:

Q =
1

2 |E|
Tr
(
C>BC

)
(10)

where Cij ∈ [0, 1] denotes the cluster probability. B is the
modular matrix B = A− dd>

2|E| . Finding the optimal solution
of the assignment matrix C is to maximize Q. To prevent
falling into local optimum (i.e., all nodes tend to be in the
same cluster), we further add the collapse regularization term.
The assignment matrix C should be amortized as adaptively
as possible, so as to skip the local optimum.

Let LGmoC denote the unsupervised clustering loss, which
can be expressed as:

LGmoC = − 1

2 |E|
Tr
(
C>BC

)
︸ ︷︷ ︸

modularity loss

+

√
M

|V |

∥∥∥∥∥∑
i

C>i

∥∥∥∥∥
F︸ ︷︷ ︸

collapse regularization

(11)

where |V | is the number of nodes, M is the number of
clusters, ‖ · ‖F represents the Frobenius norm of the matrix.
Note that LGmoC can be jointly optimized with the supervised
classification loss. Specifically, LGmoC can be used as an aux-
iliary task for the bi-level optimization problem in Equation 6.
The unsupervised clustering loss is added to Ltrain for joint
optimization. Let λ denote the loss-weighted coefficient. The
optimization objective is updated as:

min
α
Lval (w∗, α)

s.t. w∗ = arg min
w

(Ltrain(w,α) + λLGmoC)
(12)

E. Complexity Analysis

In the heterogeneous graph G = 〈V,E〉, the total number
of nodes is N , the total number of nodes with missing
attributes is N−, and the embedding dimension is k. In each
iteration of Equation 12, we can divide the search process
of AutoAC into three phases, i.e., attribute completion phase,
upper-level optimization for completion parameters α, and
lower-level optimization for weights ω. We first analyze the

TABLE I
STATISTICS OF THE DATASETS

Datasets #Nodes #Node
Types

#Nodes under
Each Type #Edges Target Node/Edge

Type Attribute

DBLP 26128 4

author(A):4057

239566 author
A:Missing

paper(P):14328
paper-author

P:Raw
term(T):7723 T:Missing
venue(V):20 V:Missing

ACM 10942 4

paper(P):3025

547872 paper

P:Raw
author(A):5959 A:Missing
subject(S):56 S:Missing
term(T):1902 T:Missing

IMDB 21420 4

movie(M):4932

86642 movie
M:Raw

director(D):2393
movie-keyword

D:Missing
actor(A):6124 A:Missing
keyword(K):7971 K:Missing

LastFM 20612 3
user(U):1892

141521 user-artist
U:Missing

artist(A):17632 A:Raw
tag(T):2980 T:Missing

computational complexity. Since discrete constraints are per-
formed, only one candidate completion operation is activated
for each no-attribute node. The computational complexity
of each completion operation is as follows: Mean attribute
aggregation: O(N− × k2), GCN-based attribute aggregation:
O(N− × k2), PPNP-based attribute aggregation: O(N × k2),
one-hot attribute completion: O(1). Thus, the computational
complexity of the attribute completion phase is O(N × k2).
In the upper-level optimization phase, the complexity is
O(CH + |O| × M × bα), where CH denotes the forward
computation overhead of the heterogeneous GNN, bα the
gradient computation overhead for each completion parameter.
For brevity, we omit the difference between the validation and
training datasets. The lower-level optimization phase contains
the optimization of weights and unsupervised clustering. The
complexity of optimizing ω is O(CH + |ω|× bω), where bω is
the gradient computation overhead for each weight parameter.
The complexity of calculating the clustering loss LGmoC is
O(d2×N + |E|) [45], where d is the average degree. Overall,
the computational complexity of each iteration is, O(N×k2)+
O(CH + |O| ×M × bα) + |ω| × bω) +O(d2 ×N + |E|).

Next, we analyze the space complexity of AutoAC. For the
attribute completion phase, the space complexity is O(k2). For
the optimization phase, the space complexity is O(N × k +
|O| ×M + |ω| + N ×M), where O(N ×M) is the space
complexity in the unsupervised clustering.

V. EXPERIMENTS

A. Experimental Setup

1) Experimental Setting: We use the recently proposed
Heterogeneous Graph Benchmark (HGB) [17] to conduct all
experiments, which offers a fair way to compare heterogeneous
GNN models. HGB gives a set of standard benchmark datasets
and unified strategies for feature preprocessing and data split.
In the node classification task, all edges are available during
training, and node labels are split according to 24% for
training, 6% for validation, and 70% for test in each dataset.
In the link prediction task, we mask 10% edges of the target
link type and the negative edges are randomly sampled. The

statistics of the four datasets are summarized in Table I. More
details of datasets can be seen in Appendix A.

Moreover, the handcrafted attribute completion methods for
existing heterogeneous GNNs are provided by HGB. Micro-F1
and Macro-F1 are provided to evaluate the node classification
performance, while the MRR and ROC-AUC metrics are used
for link prediction. The evaluation metrics are obtained by
submitting predictions to the HGB website2.

B. Implementation Details

All experiments are performed in the transductive setting.
We employ the Adam optimizer [46] to optimize both ω and
α. For optimizing ω, the learning rate and the weight decay
are 5e-4 and 1e-4 respectively. For optimizing α, the learning
rate and the weight decay are 5e-3 and 1e-5 respectively.

We implement AutoAC based on the widely-used hetero-
geneous GNNs, i.e., MAGNN [14] and SimpleHGN [17].
The loss weighted coefficient λ and the number of clusters
M are two hyperparameters of AutoAC. For MAGNN, we
empirically set λ to 0.5 for all datasets, M to 4 for the DBLP
and ACM datasets, 16 for the IMDB dataset. For SimpleHGN,
λ is 0.4 for all datasets, and M is 8 for the DBLP dataset,
12 for the ACM and IMDB datasets. Moreover, all the GNN
models are implemented with PyTorch. All experiments are
run on a single GPU (NVIDIA Tesla V100) five times and the
average performance and standard deviation are reported.

C. Effectiveness of AutoAC

1) Performance comparison with humancrafted heteroge-
neous GNNs: Depending on whether or not the meta-path is
used, we divide the humancrafted heterogeneous GNNs into
two categories:
• GNNs with meta-path: HAN [13], GTN [11], Het-

SANN [16], MAGNN [14], HGCA [26].
• GNNs without meta-path: HGT [15], GATNE [47], Het-

GNN [13], GCN [8] and GAT [20] (two commonly used
general-purpose GNNs), as well as the current SOTA
GNN model SimpleHGN [17].

The configurations of baselines can be seen in Appendix B.
As a generic framework, AutoAC can integrate different
GNNs. We select two representative GNN models from
the two categories (i.e., MAGNN and SimpleHGN) from
the perspective of performance and computational efficiency.
Then, we combine AutoAC with the two models, denoted by
MAGNN-AutoAC and SimpleHGN-AutoAC respectively.

Table II shows the performance comparison between Au-
toAC and existing heterogeneous GNNs on node classifica-
tion. AutoAC can improve the performance of MAGNN and
SimpleHGN stably on all datasets. The performance gain
obtained by AutoAC over MAGNN is around 0.7%-3% and
the error rate is reduced by 2.87%-11.69%. Also, SimpleHGN-
AutoAC outperforms SimpleHGN by 1%-3% and reduces the
error rate by 1.59%-22.09%. By combining with the SOTA

2https://www.biendata.xyz/competition/hgb-1/

model SimpleHGN, SimpleHGN-AutoAC can achieve the best
performance in all models.

Moreover, Table II shows that AutoAC can bring signif-
icant performance improvement on the datasets where the
classification target nodes have no raw attributes (e.g., DBLP).
Besides, for the datasets where the target nodes already have
raw attributes (e.g., ACM and IMDB), completing other non-
target nodes using AutoAC can still promote the classification
accuracy of target nodes. Especially, for the IMDB dataset,
since there are too many non-target nodes with missing at-
tributes (i.e., 77% of all nodes), the performance improvement
with AutoAC is more significant.

Note that the performance of MAGNN without attribute
completion is not as good as other models, such as GTN
and GAT. However, MAGNN-AutoAC performs better than
GTN on DBLP and ACM, and outperforms GAT on DBLP
and IMDB, which indicates that effective attribute completion
for heterogeneous graphs can compensate for the performance
gap introduced by the GNN model. By unifying attribute
completion and representation learning in an unsupervised
heterogeneous network, the recently proposed HGCA can also
achieve competitive performance on DBLP and ACM. Such
experimental results further verify the necessity of AutoAC.

2) Performance comparison with the existing attribute com-
pletion method HGNN-AC: As the current SOTA attribute
completion method, HGNN-AC [18] uses the attention mech-
anism to aggregate the attributes of the direct neighbors for
the nodes with missing attributes. The attention information
is calculated by the pre-learning of topological embedding.
To be fair, both AutoAC and HGNN-AC are evaluated under
the unified HGB benchmark. And, we also combine HGNN-
AC with MAGNN and SimpleHGN, denoted by MAGNN-
HGNNAC and SimpleHGN-HGNNAC respectively.

Table III shows that AutoAC outperforms HGNN-AC on
all datasets. Specifically, MAGNN-AutoAC achieves 1%-
4% performance improvement over MAGNN-HGNNAC. For
the SimpleHGN model, SimpleHGN-AutoAC outperforms
SimpleHGN-HGNNAC by 0.4%-2%. Moreover, the perfor-
mance improvement of HGNN-AC for attribute completion
is not stable. As shown in Table III, after attribute completion
with HGNN-AC, MAGNN-HGNNAC is instead inferior to
MAGNN on the three datasets, while MAGNN-AutoAC can
achieve significant performance improvement with attribute
completion. Similarly, there is a degradation in performance
on the DBLP dataset compared to SimpleHGN.

3) Performance comparison on link prediction: To verify
the effectiveness of AutoAC on different downstream tasks, we
further conduct link prediction in Table V. AutoAC can greatly
improve the performance of heterogeneous GNNs, especially
on IMDB. With AutoAC, MRR and ROC-AUC of SimpleHGN
are increased by 9.7% and 28%, respectively.

In summary, AutoAC achieves better performance and more
stable performance improvement, indicating the effectiveness
of searching for the most suitable attribute completion opera-
tions for no-attribute nodes from a diverse search space.

TABLE II
PERFORMANCE AND RUNTIME (CLOCK TIME IN SECONDS) COMPARISON BETWEEN AUTOAC AND SOTA HUMANCRAFTED HETEROGENEOUS GNNS ON
NODE CLASSIFICATION. THE BOLD AND THE UNDERLINE INDICATE THE BEST AND THE SECOND BEST IN EACH CATEGORY (I.E., USING AND NOT USING

META-PATH). * INDICATES THE GLOBAL BEST IN ALL MODELS. p-VALUE INDICATES THE STATISTICALLY SIGNIFICANT IMPROVEMENT (I.E., T-TEST WITH
p < 0.05) OVER THE BEST BASELINE.

Dataset DBLP ACM IMDB

Macro-F1 Micro-F1 Runtime
(Total)

Runtime
(Per epoch) Macro-F1 Micro-F1 Runtime

(Total)
Runtime

(Per epoch) Macro-F1 Micro-F1 Runtime
(Total)

Runtime
(Per epoch)

HAN 93.17±0.19 93.64±0.17 44 0.23 87.68±1.94 87.73±1.81 31 0.25 59.70±0.90 65.61±0.54 13 0.08
GTN 93.52±0.55 93.97±0.54 13600 340 91.63±1.27 91.53±1.30 3234 77 59.26±0.84 64.07±0.65 9960 249
HetSANN 84.08±1.01 84.96±0.88 201 0.93 90.09±1.06 90.00±1.02 470 1.50 49.25±0.57 57.47±1.12 520 1.13
HGCA 93.05±0.46 93.62±0.41 495 55 91.75±0.54 91.67±0.56 30 1.5 43.54±1.17 53.44±1.00 56 2.8
MAGNN 93.16±0.38 93.65±0.34 401 19 91.06±1.44 90.95±1.43 230 23 56.92±1.76 65.11±0.59 108 9.8
MAGNN-AutoAC 93.95±0.30 94.39±0.25 432 21 91.84±0.45 91.77±0.45 684 25 58.96±1.31 66.11±0.53 576 11

HGT 92.77±0.35 93.44±0.31 131 1.87 90.27±0.55 90.14±0.51 545 7.07 63.02±0.80 67.01±0.36 257 3.38
HetGNN 92.77±0.24 93.23±0.23 20580 98 84.93±0.78 84.83±0.76 25410 121 47.87±0.33 50.83±0.26 18270 87
GCN 90.54±0.27 91.18±0.25 29 0.09 92.63±0.23 92.60±0.22 26 0.08 59.95±0.72 65.35±0.35 10 0.11
GAT 92.96±0.35 93.46±0.35 14 0.14 92.41±0.84 92.39±0.84 29 0.14 56.95±1.55 64.24±0.55 10 0.21
SimpleHGN 93.83±0.18 94.25±0.19 43 0.39 92.92±0.67 92.85±0.68 42 0.47 62.98±1.66 67.42±0.42 25 0.36
SimpleHGN-AutoAC 95.15±0.29* 95.52±0.26* 72 0.58 93.86±0.18* 93.80±0.18* 108 0.62 64.92±0.58* 67.94±0.41* 72 0.55

p-value 2.9× e− 8 3.3× e− 9 - - 1.6× e− 6 2.9× e− 6 - - 1.4× e− 6 9.8× e− 6

TABLE III
PERFORMANCE COMPARISON BETWEEN AUTOAC AND HGNNAC.THE BOLD AND THE UNDERLINED INDICATE THE BEST AND THE SECOND BEST IN

EACH CATEGORY. p-VALUE INDICATES THE STATISTICALLY SIGNIFICANT IMPROVEMENT (I.E., T-TEST WITH p < 0.05) OVER THE BEST BASELINE.

Dataset DBLP ACM IMDB

Model \ Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

MAGNN 93.16±0.38 93.65±0.34 91.06±1.44 90.95±1.43 56.92±1.76 65.11±0.59
MAGNN-HGNNAC 92.97±0.72 93.43±0.69 90.89±0.87 90.83±0.87 56.63±0.81 63.85±0.85
MAGNN-AutoAC 93.95±0.30 94.39±0.25 91.84±0.45 91.77±0.45 58.96±1.31 66.11±0.53

SimpleHGN 93.83±0.18 94.25±0.19 92.92±0.67 92.85±0.68 62.98±1.66 67.42±0.42
SimpleHGN-HGNNAC 93.24±0.49 93.73±0.45 93.16±0.24 93.09±0.23 64.44±1.13 67.67±0.39
SimpleHGN-AutoAC 95.15±0.29 95.52±0.26 93.86±0.18 93.80±0.18 64.92±0.58 67.94±0.41

p-value 2.9× e−8 3.3× e−9 7.3× e−7 1.1× e−6 4× e−3 1× e−3

TABLE IV
THE OVERALL RUNTIME OVERHEAD (CLOCK TIME IN SECONDS) OF AUTOAC AND HGNN-AC. / INDICATES THAT THE STAGE IS NOT INVOLVED.

Datasets Models End-to-End Runtime Overhead (Seconds) SpeedupPre-learn Search Train/Retrain Total

DBLP

SimpleHGN-HGNNAC 33048 / 432 33480 465×SimpleHGN-AutoAC / 36 36 72

MAGNN-HGNNAC 33048 / 900 33948 78×MAGNN-AutoAC / 72 360 432

ACM

SimpleHGN-HGNNAC 3888 / 432 4320 40×SimpleHGN-AutoAC / 72 36 108

MAGNN-HGNNAC 3888 / 1260 5148 7.5×MAGNN-AutoAC / 432 252 684

IMDB

SimpleHGN-HGNNAC 8568 / 324 8892 123×SimpleHGN-AutoAC / 36 36 72

MAGNN-HGNNAC 8568 / 180 8748 15×MAGNN-AutoAC / 504 72 576

D. Efficiency Study

Besides the effectiveness, we also evaluate the efficiency
of AutoAC in the terms of runtime overhead. Table II and V
show the runtime of AutoAC and other handcrafted HGNNs
on node classification and link prediction tasks. Although the
attribute completion and GNN training are jointly optimized
in AutoAC, the computational efficiency of AutoAC is still
competitive compared to other baselines.

Also, we compare AutoAC with the existing attribute com-
pletion method HGNN-AC. Table IV shows the efficiency
comparison between AutoAC and HGNN-AC. AutoAC con-
tains the search and retraining stages, and HGNN-AC contains
the pre-learning and training stages. We can see that AutoAC is

much more efficient than HGNN-AC. The end-to-end runtime
overhead of AutoAC can be reduced by 15× to 465×. The
main reason why HGNN-AC is inefficient is that the pre-
leaning stage that learns a topological embedding for each
node is very time-consuming. Especially for the DBLP dataset
with a large number of nodes, the pre-learning overhead
is up to 9 GPU hours. In contrast, there is no additional
pre-leaning stage in AutoAC. Moreover, by introducing the
discrete constraints and auxiliary unsupervised clustering task,
the search efficiency can be improved significantly.

In summary, AutoAC can not only achieve better perfor-
mance but also demonstrate higher computational efficiency.

TABLE V
PERFORMANCE AND RUNTIME (CLOCK TIME IN SECONDS) COMPARISON ON LINK PREDICTION. THE BOLD AND THE UNDERLINE INDICATE THE BEST

AND THE SECOND BEST. p-VALUE INDICATES THE STATISTICALLY SIGNIFICANT IMPROVEMENT (I.E., T-TEST WITH p < 0.05) OVER THE BEST BASELINE.

Dataset LastFM DBLP IMDB

Model \ Metrics ROC-AUC MRR Runtime
(Total)

Runtime
(Per epoch) ROC-AUC MRR Runtime

(Total)
Runtime

(Per epoch) ROC-AUC MRR Runtime
(Total)

Runtime
(Per epoch)

GATNE 66.87±0.16 85.93±0.63 75960 15435 71.94±2.00 87.23±0.76 92160 16278 47.45±6.48 74.58±3.34 71280 14269
HetGNN 62.09±0.01 85.56±0.14 20580 98 88.89±0.40 94.39±0.62 22050 105 56.55±0.83 78.10±0.56 19950 95
GCN 59.17±0.31 79.38±0.65 13 0.13 80.48±0.81 90.99±0.56 31 0.12 51.90±1.10 76.99±1.87 28 0.11
GAT 58.56±0.66 77.04±2.11 10 0.12 72.89±3.09 82.56±3.35 32 0.15 48.30±1.35 76.74±2.00 12 0.10
SimpleHGN 67.16±0.37 86.73±0.27 46 0.35 94.61±0.11 97.21 ±0.16 58 0.75 57.92±2.32 79.09 ±1.40 28 0.44
SimpleHGN-AutoAC 67.72±0.17 87.10±0.19 42 0.43 95.87±0.66 98.21±0.21 61 0.87 74.14±0.73 86.27±0.45 32 0.49

p-value 9.3× e−4 9.5× e−4 - - 4.2× e−5 8.2× e−7 - - 6.7× e−9 7.2× e−10 - -

E. Ablation Study

1) Study on the necessity of searching attribute completion
operations from a diverse search space: We compare AutoAC
with the following two methods:

• Single-operation attribute completion: We complete
all no-attribute nodes with the same single completion
operation (i.e., GCN AC, PPNP AC, MEAN AC, and
One-hot AC).

• Random attribute completion: For each no-attribute
node, we randomly select an attribute completion opera-
tion from the search space.

Table VI and Table VII show the completion operation
ablation study on SimpleHGN and MAGNN. Due to the
differences in the data characteristics, there is no single
completion operation that can perform well on all datasets. By
searching the optimal attribute completion operations AutoAC
can achieve the best performance on all datasets.

Take SimpleHGN shown in Table VI for example. GCN AC
is more effective on DBLP and IMDB, while PPNP AC
performs better on ACM. Moreover, for a specific attribute
completion operation, the performance is related to the dataset
and the chosen GNN model. We take DBLP as an example.
GCN AC performs better on SimpleHGN. However, when
the GNN model becomes MAGNN, GCN AC is not as good
as MEAN AC. Additionally, the performance of the random
attribute completion is not stable and can be even worse than
the baseline model. Choosing an inappropriate completion
operation can have a negative effect on the final performance.

2) Study on the search algorithm with discrete constraints:
When optimizing the attribute completion parameters α, we
enforce discrete constraints on α and solve the bi-level op-
timization problem with proximal iteration. To verify the
effectiveness of discrete constraints, we further run AutoAC
with and without discrete constraints in Table VIII.

The search algorithm with discrete constraints can achieve
better performance with less search time overhead on all
datasets. Additionally, proximal iteration allows removing
the need for second-order derivative in solving the bi-level
optimization problem. Thus, the memory overhead can also
be reduced significantly.As shown in Table VIII, the memory
overhead of MAGNN-AutoAC without discrete constraints is
huge and the out-of-memory error occurs on DBLP.

3) Study on the auxiliary unsupervised clustering: To re-
duce the dimension of the completion parameters α, we

(a) SimpleHGN

(b) MAGNN

Fig. 3. Performance comparison between different clustering methods.

(a) DBLP (b) ACM (c) IMDB

Fig. 4. Convergence of LGmoC on three datasets.

leverage an auxiliary unsupervised clustering task. Figure 3
shows the performances of different clustering methods.
• w/o cluster: We directly search the attribute completion

operations for each no-attribute node without clustering.
• EM: After each iteration of the optimization process, we

adopt the EM algorithm for clustering according to node
representation learned by the GNN model.

• EM with warmup: a variant of the EM algorithm, which
adds a warm-up process at the beginning of the clustering.

In Figure 3, AutoAC can achieve the best performance on all
datasets. Searching completion operations without clustering
yields relatively poor performance. Reducing the dimension of
α with unsupervised clustering is very necessary. Moreover,

TABLE VI
COMPLETION OPERATION ABLATION STUDY ON SIMPLEHGN. BOLD INDICATES THE GLOBAL BEST. UNDERLINE INDICATES THE BEST AMONG ALL

SINGLE ATTRIBUTE COMPLETION OPERATIONS.

Dataset DBLP ACM IMDB

Model \ Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Baseline (SimpleHGN) 93.83±0.18 94.25±0.19 92.92±0.67 92.85±0.68 62.98±1.66 67.42±0.42

GCN AC 94.23±0.21 94.88±0.23 93.25±0.45 93.18±0.47 64.67±0.94 67.96±0.53
PPNP AC 85.76±2.24 86.58±2.23 93.42±0.46 93.34±0.48 53.36±19.31 61.68±11.76
MEAN AC 90.91±0.72 91.53±0.67 92.99±0.60 92.90±0.62 63.73±0.94 67.61±0.30
One-hot AC 93.80±0.13 94.30±0.14 93.38±0.16 93.31±0.15 64.17±0.83 67.89±0.24

Random AC 91.28±1.63 91.77±1.55 93.02±0.29 92.95±0.31 64.03±0.68 67.43±0.33

AutoAC 95.15±0.29 95.52±0.26 93.86±0.18 93.80±0.18 64.92±0.58 67.94±0.41

TABLE VII
COMPLETION OPERATION ABLATION STUDY ON MAGNN. BOLD INDICATES THE GLOBAL BEST. UNDERLINE INDICATES THE BEST AMONG ALL SINGLE

ATTRIBUTE COMPLETION OPERATIONS.

Dataset DBLP ACM IMDB

Model \ Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Baseline (MAGNN) 93.16±0.38 93.65±0.34 91.06±1.44 90.95±1.43 56.92±1.76 65.11±0.59

GCN AC 93.74±0.34 94.16±0.34 90.96±0.77 90.87±0.76 57.96±1.11 65.71±0.50
PPNP AC 93.46±0.32 93.94±0.29 90.38±0.67 90.28±0.67 58.46±1.17 65.97±0.56
MEAN AC 93.89±0.12 94.33±0.13 90.97±0.48 90.86±0.49 57.60±0.71 65.42±0.38
One-hot AC 93.73±0.32 94.15±0.28 91.04±0.69 90.92±0.70 58.12±1.71 65.43±0.68

Random AC 93.38±0.25 93.87±0.19 91.09±0.61 90.98±0.63 57.97±1.15 65.57±0.77

AutoAC 93.95±0.30 94.39±0.25 91.84±0.45 91.77±0.45 58.96±1.31 66.11±0.53

TABLE VIII
ABLATION STUDY ON DISCRETE CONSTRAINTS. / INDICATES MEMORY OVERFLOW.

Dataset DBLP ACM IMDB

Model \ Metrics Macro-F1 Micro-F1 Search Time
(Seconds) Macro-F1 Micro-F1 Search Time

(Seconds) Macro-F1 Micro-F1 Search Time
(Seconds)

SimpleHGN-AutoAC 95.15±0.29 95.52±0.26 32 93.86±0.18 93.80±0.18 72 64.92±0.58 67.94±0.41 36
w/o Discrete constraints 95.12±0.27 95.49±0.25 216 93.43±0.74 93.34±0.76 360 64.74±0.68 67.85±0.52 180

MAGNN-AutoAC 93.95±0.30 94.39±0.25 72 91.84±0.45 91.77±0.45 432 58.96±1.31 66.11±0.53 504
w/o Discrete constraints / / / 91.24±0.67 91.45±0.68 1800 58.44±1.12 65.65±0.34 1908

Fig. 5. Distribution of searched attribute completion operations.

the proposed unsupervised clustering method outperforms
EM and its variant, indicating the effectiveness of the joint
optimization of the unsupervised clustering loss and the clas-
sification loss. Figure 4 also shows the convergence of the
unsupervised clustering loss LGmoC , which exhibits a stable
decreasing trend during the optimization process.

F. Distribution of Searched Completion Operations

Figure 5 shows the proportion of attribute completion
operations searched by SimpleHGN-AutoAC and MAGNN-

(a) Author (b) Subject (c) Term

Fig. 6. Detailed distribution of searched completion operations for each no-
attribute node type on the ACM dataset using SimpleHGN-AutoAC.

(a) Actor (b) Director (c) Keyword

Fig. 7. Detailed distribution of searched completion operations for each no-
attribute node type on the IMDB dataset using SimpleHGN-AutoAC.

AutoAC. For different models and datasets, the proportions
of searched completion operations are quite different. In
SimpleHGN-AutoAC, DBLP tends to select GCN AC, while
ACM prefers PPNP AC. For the same dataset, different

(a) DBLP (b) ACM (c) IMDB

Fig. 8. Performance comparison under different M .

GNNs also result in different distributions. Take DBLP as an
example. MAGNN-AutoAC is more inclined to MEAN AC
than GCN AC compared to SimpleHGN-AutoAC. The results
further indicate the necessity of searching for suitable attribute
completion operations under different datasets and GNNs.

Figure 6 and Figure 7 show the proportion of searched
completion operations for each no-attribute node type on ACM
and IMDB. For ACM, multiple different completion operations
are selected even for the same node type. Specifically, more
than half of the author and subject nodes choose PPNP AC,
while the proportions of other three operations are quite sim-
ilar. Most term nodes are assigned PPNP AC (i.e., 94.74%),
indicating that the term type is more likely to capture the
global information. The main reason is that the target node
type (i.e., paper) with raw attributes in ACM contains only the
paper title. The high-order PPNP AC operations are preferred.
In contrast, GCN AC accounts for the majority of completion
operations on IMDB. This is because the target node type (i.e.,
movie) has raw attributes and contains rich features, such as
length, country, language, likes of movies, and ratings. Thus,
the local completion operation GCN AC is appropriate.

Next, we analyze the completion operations of concrete
actor nodes. In IMDB, node No.10797 is the actor Leonardo
DiCaprio, who has starred in 22 movies, and the neighbor-
hood information is very rich. As a result, AutoAC chooses
GCN AC for him. In contrast, node No.10799 is the actor
Leonie Benesch, who has appeared in only one movie. Thus,
one-hot AC is automatically selected by AutoAC.

G. Hyperparameter Sensitivity

1) Effect of the number of clusters M : Figure 8 shows the
performance of AutoAC under different M . Both SimpleHGN-
AutoAC and MAGNN-AutoAC can achieve stable perfor-
mance, showing that AutoAC has sufficient robustness to M .

2) Effect of the loss weighted coefficient λ: We further
evaluate the weighted coefficient λ of the auxiliary unsuper-
vised clustering loss. The available values of λ are set to
[0.1, 0.2, 0.3, 0.4, 0.5]. Figure 9 shows the performances of
AutoAC under different λ. IMDB is very robust to λ, and the
performance change is very insignificant. For DBLP, λ = 0.4
and λ = 0.5 are suitable for SimpleHGN and MAGNN,
respectively. For ACM, the choice of λ is slightly sensitive.

The effects of the learning rate and the weight decay can
be seen in Appendix C.

H. Impacts of Attribute Missing Rates and Masked Edge Rates

1) Study on the performance of the same dataset with
varying attribute missing rates in the node classification task:
Table IX shows the performance of SimpleHGN-AutoAC with

(a) DBLP (b) ACM (c) IMDB

Fig. 9. Performance comparison under different λ

TABLE IX
PERFORMANCE OF SIMPLEHGN-AUTOAC WITH VARYING ATTRIBUTE

MISSING RATES IN THE NODE CLASSIFICATION TASK.

Datasets Attribute
Missing Rates

Node Types with
Missing attributes Macro-F1 Micro-F1

DBLP
0% / 93.83±0.18 94.25±0.19
15% author 94.35±0.17 94.72±0.16
30% term, venue 95.09±0.13 95.47±0.12
45% author, term, venue 95.15±0.29 95.52±0.26

ACM
0% / 92.92±0.67 92.85±0.68
17% subject, term 93.10±0.27 93.14±0.26
54% author, subject 93.55±0.20 93.47±0.21
69% author, subject, term 93.86±0.18 93.80±0.18

IMDB
0% / 62.98±1.66 67.42±0.42
37% keyword 63.65±0.57 67.52±0.36
67% actor, keyword 64.59±0.53 67.86±0.42
76% director, actor, keyword 64.92±0.58 67.94±0.41

TABLE X
PERFORMANCE OF SIMPLEHGN-AUTOAC WITH VARYING MASKED EDGE

RATES IN THE LINK PREDICTION TASK.

Datasets Masked Edge Rates Models ROC-AUC MRR

DBLP

5% SimpleHGN 95.92±0.56 97.16±0.44
SimpleHGN-AutoAC 97.62±0.36 99.02±0.24

10% SimpleHGN 94.61±0.11 97.21±0.16
SimpleHGN-AutoAC 95.87±0.66 98.21±0.21

20% SimpleHGN 91.34±0.61 95.65±0.41
SimpleHGN-AutoAC 94.08±0.72 97.61±0.33

30% SimpleHGN 88.76±0.66 95.39±0.24
SimpleHGN-AutoAC 91.11±0.67 97.42±0.44

IMDB

5% SimpleHGN 64.89±0.58 81.86±0.94
SimpleHGN-AutoAC 86.57±1.36 92.75±0.84

10% SimpleHGN 57.92±2.32 79.09±1.40
SimpleHGN-AutoAC 74.14±0.73 86.27±0.45

20% SimpleHGN 58.21±0.39 79.71±0.34
SimpleHGN-AutoAC 73.75±0.82 86.25±0.32

30% SimpleHGN 54.13±0.79 77.57±0.67
SimpleHGN-AutoAC 65.81±0.31 83.23±0.21

varying attribute missing rates. We change attribute miss-
ing rates by completing the missing attributes with one-hot
encoding, which is a commonly used handcrafted attribute
completion method. A missing rate of 0% means that all
missing attributes are completed manually. 45%, 69%, and
76% are inherent attribute missing rates of DBLP, ACM, and
IMDB, respectively, i.e., only one node type has raw attributes.
From Table IX, we can see that SimpleHGN-AutoAC performs
better with higher missing rates, indicating that AutoAC is
capable of searching for the suitable completion operation for
each no-attribute node and the searched completion operations
are superior to the handcrafted completion method.

2) Study on the performance of the same dataset with
varying masked edge rates in the link prediction task: Table X
shows the performance of SimpleHGN-AutoAC with varying
masked edge rates. The edges are masked randomly. We
can see that SimpleHGN-AutoAC achieves better performance
than SimpleHGN at different masked edge rates, especially on

the IMDB dataset. Moreover, the performance of both models
decreases as the masked edge rate increases.

VI. CONCLUSION

In this paper, we proposed a differentiable attribute com-
pletion framework called AutoAC for automated completion
operation search in heterogeneous GNNs. First, we introduced
an expressive completion operation search space and proposed
a continuous relaxation scheme to make the search space dif-
ferentiable. Second, we formulated the completion operation
search as a bi-level joint optimization problem. To improve
search efficiency, we enforced discrete constraints on com-
pletion parameters and further proposed a proximal iteration-
based search algorithm. Moreover, we leveraged an auxiliary
unsupervised node clustering task to reduce the dimension of
completion parameters. Extensive experimental results reveal
that AutoAC is effective to boost the performance of heteroge-
neous GNNs and outperforms the SOTA attribute completion
method in terms of performance and efficiency.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (#62102177), the Natural Science Foun-
dation of Jiangsu Province (#BK20210181), the Key R&D
Program of Jiangsu Province (#BE2021729), Open Research
Projects of Zhejiang Lab (#2022PG0AB07), and the Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization, Jiangsu, China. Guanghui Zhu and Yihua
Huang are corresponding authors with equal contributions.

REFERENCES

[1] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[2] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[3] M. Zitnik and J. Leskovec, “Predicting multicellular function through
multi-layer tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–
i198, 2017.

[4] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 2,
pp. 494–514, 2021.

[5] Y. Sun and J. Han, “Mining heterogeneous information networks:
a structural analysis approach,” Acm Sigkdd Explorations Newsletter,
vol. 14, no. 2, pp. 20–28, 2013.

[6] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2016.

[7] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[9] A. Vretinaris, C. Lei, V. Efthymiou, X. Qin, and F. Özcan,
“Medical entity disambiguation using graph neural networks,” in
Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 2310–2318. [Online]. Available:
https://doi.org/10.1145/3448016.3457328

[10] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Hetero-
geneous graph attention network,” in The world wide web conference,
2019, pp. 2022–2032.

[11] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” Advances in neural information processing systems, vol. 32,
2019.

[12] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang, “Relation structure-
aware heterogeneous graph neural network,” in 2019 IEEE international
conference on data mining (ICDM). IEEE, 2019, pp. 1534–1539.

[13] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heteroge-
neous graph neural network,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019,
pp. 793–803.

[14] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated
graph neural network for heterogeneous graph embedding,” in Proceed-
ings of The Web Conference 2020, 2020, pp. 2331–2341.

[15] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of The Web Conference 2020, 2020, pp. 2704–
2710.

[16] H. Hong, H. Guo, Y. Lin, X. Yang, Z. Li, and J. Ye, “An attention-
based graph neural network for heterogeneous structural learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 34,
no. 04, 2020, pp. 4132–4139.

[17] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang,
Y. Dong, and J. Tang, “Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 1150–1160.

[18] D. Jin, C. Huo, C. Liang, and L. Yang, “Heterogeneous graph neural
network via attribute completion,” in Proceedings of the Web Conference
2021, 2021, pp. 391–400.

[19] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu, “Efficient neural architecture
search via proximal iterations,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6664–6671.

[20] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

[21] D. Yao, Y. Gu, G. Cong, H. Jin, and X. Lv, “Entity resolution with
hierarchical graph attention networks,” in Proceedings of the 2022
International Conference on Management of Data, ser. SIGMOD ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
429–442. [Online]. Available: https://doi.org/10.1145/3514221.3517872

[22] W. Zhang, X. Miao, Y. Shao, J. Jiang, L. Chen, O. Ruas, and
B. Cui, “Reliable data distillation on graph convolutional network,”
in Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1399–1414. [Online].
Available: https://doi.org/10.1145/3318464.3389706

[23] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=HkgEQnRqYQ

[24] Z. Yu, D. Jin, Z. Liu, D. He, X. Wang, H. Tong, and J. Han, “As-
gcn: Adaptive semantic architecture of graph convolutional networks for
text-rich networks,” in IEEE International Conference on Data Mining
(ICDM). IEEE, 2021, pp. 837–846.

[25] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery
and data mining, 2017, pp. 135–144.

[26] D. He, C. Liang, C. Huo, Z. Feng, D. Jin, L. Yang, and W. Zhang,
“Analyzing heterogeneous networks with missing attributes by unsuper-
vised contrastive learning,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–13, 2022.

[27] E. Bayram, A. Garcı́a-Durán, and R. West, “Node attribute comple-
tion in knowledge graphs with multi-relational propagation,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 3590–3594.

[28] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[29] X. Wang, Z. Zhang, and W. Zhu, “Automated graph machine learning:
Approaches, libraries and directions,” arXiv preprint arXiv:2201.01288,
2022.

[30] K.-H. Lai, D. Zha, K. Zhou, and X. Hu, “Policy-gnn: Aggregation
optimization for graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 461–471.

https://doi.org/10.1145/3448016.3457328
https://doi.org/10.1145/3514221.3517872
https://doi.org/10.1145/3318464.3389706
https://openreview.net/forum?id=HkgEQnRqYQ

[31] H. Zhao, L. Wei, and Q. Yao, “Simplifying architecture search for graph
neural network,” arXiv preprint arXiv:2008.11652, 2020.

[32] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graphnas: Graph
neural architecture search with reinforcement learning,” arXiv preprint
arXiv:1904.09981, 2019.

[33] K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-gnn: Neural architecture
search of graph neural networks,” arXiv preprint arXiv:1909.03184,
2019.

[34] G. Zhu, W. Wang, Z. Xu, F. Cheng, M. Qiu, C. Yuan, and Y. Huang,
“Psp: Progressive space pruning for efficient graph neural architecture
search,” in IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 2022, pp. 2168–2181.

[35] Z. Han, F. Xu, J. Shi, Y. Shang, H. Ma, P. Hui, and Y. Li, “Genetic
meta-structure search for recommendation on heterogeneous information
network,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 455–464.

[36] Y. Ding, Q. Yao, H. Zhao, and T. Zhang, “Diffmg: Differentiable meta
graph search for heterogeneous graph neural networks,” in Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 279–288.

[37] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and
trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[38] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in International
Conference on Learning Representations, 2019.

[39] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70, 2017, pp.
1126–1135.

[40] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in International Conference on Learning Representations, 2018.

[41] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22,
1977.

[42] J. MacQueen, “Classification and analysis of multivariate observations,”
in 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297.

[43] B. H. Good, Y.-A. De Montjoye, and A. Clauset, “Performance of
modularity maximization in practical contexts,” Physical review E,
vol. 81, no. 4, p. 046106, 2010.

[44] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in International Conference
on Machine Learning. PMLR, 2020, pp. 874–883.

[45] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering
with graph neural networks,” arXiv preprint arXiv:2006.16904, 2020.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[47] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang, “Representation
learning for attributed multiplex heterogeneous network,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 1358–1368.

[48] I. Cantador, P. Brusilovsky, and T. Kuflik, “Second workshop on infor-
mation heterogeneity and fusion in recommender systems (hetrec2011),”
in Proceedings of the fifth ACM conference on Recommender systems,
2011, pp. 387–388.

APPENDIX

A. Details of Datasets

DBLP3 is a computer science bibliography website. The raw
attribute of the paper node is the bag-of-words representation
of keywords. ACM4 is a citation network. The raw attribute
of the paper node is also the bag-of-words representation of
keywords. IMDB5 is a website about movies. The attributes
of movie nodes are originally present, they are represented
by the bag-of-words representation of words extracted for key
episodes of movies. LastFM is extracted from last.fm with
timestamps from January 2015 to June 2015. We use the subset
released by [48]. The target is to predict whether a user likes
a certain artist. The raw attribute of the artist node is the one-
hot encoding. For the DBLP dataset, the attributes of the target
nodes are missing. For the ACM and IMDB datasets, the target
nodes have raw attributes.

B. Implementations and Configurations of Baselines

We use the HGB benchmark to evaluate the performance
of all baselines. In HGB, implementations of baselines are
based on their official codes to avoid errors introduced by
re-implementation. Next, we present the configurations of
baselines in the node classification and link prediction tasks,
respectively. For brevity, we denote the dimension of node
embedding as d, the dimension of edge embedding as de, the
dimension of attention vector (if exists) as da, the number of
GNN layers as L, the number of attention heads as nh, the
negative slope of LeakyReLU as s.

1) Node Classification: The baselines in the node classifi-
cation task contain HAN, GTN, HetSANN, MAGNN, HGCA,
HGT, HetGNN, GCN, GAT, SimpleHGN, and HGNN-AC.

• HAN: We set d = 8, da = 128, nh = 8, and L = 2 for
all datasets.

• GTN: The adaptive learning rate is employed for all
datasets. We set d = 64 and the number of GTN channels
to 2. For DBLP and ACM, we set L = 2. For IMDB, we
set L = 3.

• HetSANN: For ACM, we set d = 64, L = 3, and nh = 8.
For IMDB, we set d = 32, L = 2, and nh = 4. For DBLP,
we set d = 64, L = 2, and nh = 4.

• MAGNN: For DBLP and ACM, we set the batch size to 8,
and the number of neighbor samples to 100. For IMDB,
we use full batch training.

• HGCA: We set d = 64, the temperature parameter τ =
0.5, and the loss coefficient λ = 0.5.

• HGT: We use the layer normalization in each layer, and
set d = 64 and nh = 8 for all datasets. L is set to 2, 3,
5 for ACM, DBLP and IMDB,respectively.

• HetGNN: We set d = 128, and the batch size to 200 for
all datasets. For random walk, we set the walk length to
30 and the window size to 5.

3https://dblp.uni-trier.de/
4http://dl.acm.org/
5https://www.imdb.com

(a) DBLP (b) ACM (c) IMDB

Fig. 10. Performance comparison under different learning rates

(a) DBLP (b) ACM (c) IMDB

Fig. 11. Performance comparison under different weight decay values

• GCN: We set d = 64 for all datasets. We set L = 3 for
DBLP and ACM, and L = 4 for IMDB.

• GAT: We set d = 64 and nh = 8 for all datasets. For
DBLP and ACM, we set s = 0.05 and L = 3. For IMDB,
we set s = 0.1 and L = 5.

• SimpleHGN: We set d = de = 64, nh = 8, and the edge
residual β = 0.05 for all datasets. For DBLP and ACM,
we set L = 3 and s = 0.05. For IMDB, we set L = 6
and s = 0.1.

• HGNN-AC: We set d = 64, nh = 8, the divided ratio
α of N+ to 0.3, and the loss weighted coefficient λ to
0.5 for all datasets, which are consistent with the original
paper.

2) Link prediction: The baselines in the link prediction task
contain GATNE, HetGNN, GCN, GAT, and SimpleHGN.
• GATNE: We set d = 200, de = 10, and da = 20 for all

datasets. For the random walk, we set the walk length to
30 and the window size to 5. For neighbor sampling, we
set the number of negative samples for optimization to 5
and the number of neighbor samples for aggregation to
10.

• HetGNN: We set d = 128, and the batch size to 200 for
all datasets. For random walk, we set the walk length to
30 and the window size to 5.

• GCN: We set d = 64 and L = 2 for all datasets.
• GAT: For LastFM, we set d = 64, nh = 4, L = 3, and
s = 0.1. For DBLP, we set d = 64, nh = 8, L = 3, and
s = 0.05. For IMDB, we set d = 64, nh = 4, L = 5,
and s = 0.1.

• SimpleHGN: We set d = 64, de = 32, nh = 2, the edge
residual β = 0, and s = 0.01 for all datasets. For DBLP,
we set L = 3. For LastFM, we set L = 4. For IMDB,
we set L = 6.

C. Effects of the learning rate and the weight decay

We further evaluate the effect of the learning rate and
weight decay when optimizing the completion parameters α.
The available learning rates are set to [3e-3, 4e-3, 5e-3, 6e-
3, 7e-3]. The available weight decay values are set to [5e-

6,1e-5, 2e-5, 3e-5, 4e-3]. Figure 10 and Figure 11 show
the performances of AutoAC with different learning rates
and different weight decay, respectively. The green and blue
lines represent SimpleHGN-AutoAC and MAGNN-AutoAC,
respectively. From Figure 10 and Figure 11, we can see that
AutoAC is very robust to the learning rate and the weight
decay.

	I Introduction
	II Related Work
	II-A Heterogeneous Graph Neural Network
	II-B Neural Architecture Search (NAS)
	II-C Proximal Iteration

	III Preliminaries
	IV The Proposed Methodology
	IV-A Search Space of Attribute Completion Operation
	IV-A1 Topology-Dependent Completion Operation
	IV-A2 Topology-Independent Completion Operation
	IV-A3 Search Space Size Analysis

	IV-B Differentiable Search Strategy
	IV-B1 Continuous Relaxation and Optimization
	IV-B2 Overview

	IV-C Search Algorithm with Discrete Constraints
	IV-D Auxiliary Unsupervised Clustering Task
	IV-E Complexity Analysis

	V Experiments
	V-A Experimental Setup
	V-A1 Experimental Setting

	V-B Implementation Details
	V-C Effectiveness of AutoAC
	V-C1 Performance comparison with humancrafted heterogeneous GNNs
	V-C2 Performance comparison with the existing attribute completion method HGNN-AC
	V-C3 Performance comparison on link prediction

	V-D Efficiency Study
	V-E Ablation Study
	V-E1 Study on the necessity of searching attribute completion operations from a diverse search space
	V-E2 Study on the search algorithm with discrete constraints
	V-E3 Study on the auxiliary unsupervised clustering

	V-F Distribution of Searched Completion Operations
	V-G Hyperparameter Sensitivity
	V-G1 Effect of the number of clusters M
	V-G2 Effect of the loss weighted coefficient

	V-H Impacts of Attribute Missing Rates and Masked Edge Rates
	V-H1 Study on the performance of the same dataset with varying attribute missing rates in the node classification task
	V-H2 Study on the performance of the same dataset with varying masked edge rates in the link prediction task

	VI Conclusion
	References
	Appendix
	A Details of Datasets
	B Implementations and Configurations of Baselines
	B1 Node Classification
	B2 Link prediction

	C Effects of the learning rate and the weight decay

