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Abstract—We study the problem of optimizing data storage
and access costs on the cloud while ensuring that the desired
performance or latency is unaffected. We first propose an
optimizer that optimizes the data placement tier (on the cloud)
and the choice of compression schemes to apply, for given data
partitions with temporal access predictions. Secondly, we propose
a model to learn the compression performance of multiple
algorithms across data partitions in different formats to generate
compression performance predictions on the fly, as inputs to the
optimizer. Thirdly, we propose to approach the data partitioning
problem fundamentally differently than the current default in
most data lakes where partitioning is in the form of ingestion
batches. We propose access pattern aware data partitioning and
formulate an optimization problem that optimizes the size and
reading costs of partitions subject to access patterns.

We study the various optimization problems theoretically as
well as empirically, and provide theoretical bounds as well
as hardness results. We propose a unified pipeline of cost
minimization, called SCOPe that combines the different modules.
We extensively compare the performance of our methods with
related baselines from the literature on TPC-H data as well as
enterprise datasets (ranging from GB to PB in volume) and show
that SCOPe substantially improves over the baselines. We show
significant cost savings compared to platform baselines, of the
order of 50% to 83% on enterprise Data Lake datasets that
range from terabytes to petabytes in volume.

Index Terms—storage costs, multi-tiering, compression, data
partitioning, optimization

I. INTRODUCTION

Customer activities on the internet generate a huge amount
of data daily. This is usually stored in cloud platforms such
as Azure, AWS, Google Cloud etc. and is used for various
purposes like analytics, insight generation and model training.
With the massive growth in data volumes and usages, the costs
of storing and accessing data have spiraled to new heights,
significantly increasing the COGS (cost of goods sold) for
enterprises, thus making big data potentially less profitable.

Cloud storage providers offer a tiered form of storage that
has different costs and different throughput and latency limits
across tiers. Table I shows the storage costs, read costs and
latency (measured as the time to first byte) for the different
tiers of storage offered by Azure, a popular cloud storage
provider. There is a clear trade-off between storage cost, read
cost and latency across the tiers.
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TABLE I: Cost and latency numbers for Azure [8].

Premium Hot Cool Archive
Storage cost cents/GB 15 2.08 1.52 0.099(first 50 TB)
Read cost (cents, every 4 0.182 0.52 1.3 650MB per 10k operations)
Time to first byte Single ms ms Hoursdigit ms

To further complicate things, enterprise workloads often
exhibit non-trivial and differing patterns of access. Data access
patterns are often highly skewed; only a few datasets are
heavily accessed and most datasets see very few or 0 accesses.
Another common trend is recency, i.e., access frequency falls
with age of dataset or file (Fig 1). There are other interesting
patterns too as shown in Fig 2. While some data see a constant
number of read or write accesses, others may see periodic
peaks, or read accesses decreasing over time. For marketing
use cases, data is ingested for activation, leading to one-time
read and write spikes followed by long inactive periods. Rule

(a) % accesses vs dataset index
(b) % accesses vs months since
file was created

Fig. 1: Enterprise Data access patterns

based methods such as pushing data to cooler tiers after x days
of inactivity fail due to seasonality and periodicity in access
patterns, such as year-on-year analysis. Other intuitive rules
such as caching the most recently accessed data in hot tiers
are also ineffective, because even with a consistent number
of accesses, it is non-trivial to determine the right tier for
the data1. Caching rules generally consider access related

1Some cloud storage providers have recently started providing tiering and
lifecycle management options based on last access [6], [7]. However, such
methods are oblivious to varied and long term data usage patterns such as
seasonal trends, year on year analysis, as well as required SLAs on certain
types of data even if they are accessed less frequently.
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information (recency of access or frequency of accesses) for
goals different from storage cost optimization. The optimal
storage tier would depend on a trade-off between the storage
costs (as determined by the size of the dataset and storage
cost per unit size in each tier), access costs (determined by
the amount of data being accessed, the access frequency, cloud
provider’s costs for different access types per unit size of data),
the tier change costs, as well as the SLAs (i.e., latency and
availability agreements with the clients).

Fig. 2: Enterprise workloads on our data lake. Top-left: Read
accesses decreasing over time for a particular dataset. Top-
right: Read accesses remaining relatively constant over time
for a particular dataset. Bottom-left: Periodic trend of read
accesses for a certain class of datasets. Bottom-right: Write
access trend across all datasets

Datasets in enterprise setting are often large, of the order
of terabytes. Often, certain parts (files) of the data are more
“important” or heavily accessed than the others, hence ap-
plying lifecycle management on entire datasets as a whole
might be inefficient or sub-optimal. Recently, workload aware
and adaptive data partitioning schemes have been explored in
the literature [9], [17], [30], [33], [36], [37]. However, these
approaches often suffer from scalability issues as dataset sizes
increase or query workloads becomes richer, and can have
difficulty in dynamically adapting to changing workloads.

Another approach used to reduce the storage and read costs
is data compression [14], [15], but this can potentially add the
overhead of decompression, which might increase the latency
and compute cost. There have been efforts that enable efficient
queries and analytics directly on compressed and/or sampled
data, discussed further in Section II. A solution is thus needed
which reduces the total storage, read, write and compute costs
(which includes the necessary decompression costs, where
unavoidable) from the cloud while meeting any service level
agreements (SLAs).

Our contributions:

1) We analyze the cost optimization problem theoretically
and show it is strongly NP-HARD (proof sketch). For

special cases, we give optimal, polynomial algorithms
including an efficient greedy algorithm.

2) Our greedy algorithm is both scalable and effective.
We apply it on enterprise Data Lake datasets of the
order of petabytes in volume using real (historical)
enterprise workloads that have substantial skew and
other patterns. We show significant cost benefits, ranging
from 50% to 83% compared to platform baselines.
The prediction model is near optimal with F1 > 0.96
and does significantly better than intuitive baselines.

3) We propose a Compression Predictor that predicts the
compression ratio and decompression times for popular
compression schemes on data partitions in different
storage formats (csv, parquet) with good accuracy. We
empirically study different features, models, data lay-
outs, and data distributions across multiple schemes.

4) We study the access-pattern-aware data partitioning
problem and show that it is strongly NP-HARD (proof
sketch). We propose a heuristic that achieves a good
trade-off of space and cost empirically. For time series
data, we give polynomial time approximation schemes.

5) We propose a unified pipeline of the above optimizers,
predictor, and partitioner called SCOPe: Storage Cost
Optimizer with Performance Guarantees, that allows
tunable, access pattern aware storage and access cost
optimization on the cloud while maintaining SLAs. We
provide substantial empirical validation and ablation
studies on enterprise and TPC-H data. SCOPe outper-
forms related baselines by a significant margin. We also
show that applying our partitioning heuristic can directly
improve the baselines.

The rest of the paper is organized as follows. We discuss the
related work in Section II. We discuss the problem setting
and datasets in Section III. We study the cost optimization in
Section IV. We explain the compression predictor in Section
V. We study the query aware data partitioning problem in
details in Section VI. We discuss the entire pipeline SCOPe
(in comparison with baselines) in Section VII. Finally, we
conclude in Section VIII.

II. RELATED WORK

Different aspects of the cloud storage problem have been
studied in the literature.

Multi-tiering Recently, there has been some work that
exploits multi-tiering to optimize performance, e.g., [11], [14],
[16], [21] and/or costs, e.g., [11], [18], [20], [28], [29], [34].
Storage and data placement in a workload aware manner, e.g.,
[4], [5], [11] and in a device aware manner, e.g., [24], [25],
[38] have also been explored. [14] combine compression and
multi-tiering for optimizing latency, but do not consider the
storage, read and compute costs. Many of the existing works
towards optimizing storage and read costs in a multi-tiered
setting, e.g., [11], [18], [20], [28], [29], [31], [32], [34] propose
policies for data transfer between tiers in online or offline
settings, however there is no focus on data partitioning or data
compression. In general, we did not find a direct baseline for



SCOPe that tries to optimize storage costs while maintaining
latency guarantees, estimating compression performance and
considering query aware data partitioning. However, we have
modified some of the existing works on tiering as baselines
for SCOPe, and we have extensively evaluated SCOPe against
such baselines.

Data Compression: Data compression has been heavily
studied in the literature. While some of the works have
studied compression that enables efficient querying, others
have studied the memory footprint and cost aspects. Bit map
compression schemes that enable efficient querying, such as
WAH, EWAH, PLWAH, CONCISE, Roaring, VAL-WAH etc.
[10], [12], [13], [19], [26], [27], [40], [41] have been exten-
sively studied, however these are more efficient and popular for
read-only datasets. Several researchers have studied enabling
efficient queries and analytics directly on compressed and/or
sampled data, e.g., [1]–[3], [45]. Others have considered the
cost aspect, e.g., [14], [15]. Yet others have looked at the
dynamic estimation of compression performance, e.g., [14],
[22] based on data type, size, similarity and distribution. In
our setting, features suggested in literature did not work well,
hence we proposed new, effective features. We have com-
prehensively evaluated multiple compression schemes, data
layouts (parquet, csv, sorted data etc.), different sources of
data (TPC-H and enterprise) and different query workload
distributions (uniform, skewed), and evaluated the effect of
prediction errors on the overall optimization.

The benefits of caching and computation pushdown in a
disaggregated storage setting have been explored [43], [44].
However not all cloud service providers support computation
pushdown for commonly used data formats such as parquet,
and even if they do, it generally comes at a higher price.
Moreover, not all types of queries can be accelerated by
directly performing on compressed data or pushing down to
the storage layer. Nevertheless, our optimization module can
support query accesses that directly run on compressed data
(i.e. no decompression) as well.

Data Partitioning: Data partitioning has been studied in
the database literature as a means of efficient query execution.
Attribute based partitioning have been heavily studied [17],
[30], [33], [35]–[37], [46]. Workload and workflow aware
partitioning [9], [23], [39] has also been explored for different
types of workflows. In particular, partitioning with respect
to query workload has been explored by [17], [36], [37].
However, [36], [37] require row level labeling and hence the
required compute is not scalable to enterprise data lake scale
with 1012 rows in datasets of the order of terabytes. [37]
requires modification of data (by appending tuple ids to rows)
which is difficult on client data due to access restrictions. [37]
proposed tuple reconstruction which becomes non-trivial to
apply in our setting in tandem with tiering and compression
(for both cost and latency estimation to maintain performance
guarantees), due to variability of parameters across tiers and
compression schemes. [17], [36], [37] do not easily adapt
to dynamically changing data and workloads. We give a
novel graph based modeling at file and query level which is

scalable, and easily adaptable to dynamically changing query
workloads. Existing work considers disjoint partitions that
often do not benefit the median query in a rich query set,
whereas we allow overlapping partitions.

III. PROBLEM SETTING

Our problem is motivated by the cloud storage cost and
performance considerations in the Adobe Experience Platform
Data Lake, that is home to huge volumes of customer datasets,
often being time series or event logs. The data resides in the
cloud (e.g., Azure) and we get a break-up of costs at the end
of a billing period, e.g., a month. The cost is incurred for
storage over a period of time and per every access. We consider
optimizing the total costs2 at the end of a billing period,
say, ‘k’ months for optimizing the COGS of the organization.
Our model is run at the beginning of every billing period,
to generate storage recommendations for all the datasets in
the data lake for that billing period. The reader might be
curious as to whether it adversely affects the cost to change
storage tiers in such a periodic (batch processing) manner,
instead of doing this much more frequently, in an ad-hoc way,
especially if the data has an extremely fast changing access
pattern. Note that changing storage tiers too frequently has
the following disadvantages: i) early deletion charges per tier:
data once moved to a tier, needs to reside there for a minimum
period before we move it, otherwise we incur a penalty; ii) tier
change costs: for every tier change there are read and write
costs incurred, iii) tier change scheduler: this would need to
run with increased frequency, hence incurring high compute
costs, offsetting the tier change benefits. Moreover, if data
compression and data partitioning are also involved, frequent
changes would result in a huge amounts of additional compute
cost of data processing, thus increasing the COGS.

We study the following problems.
1) OPTASSIGN: Given predicted volume of accesses for

datasets for a projected period, determine the optimal (in
expectation) assignment of tier and compression scheme,
while maintaining latency and capacity requirements.

2) COMPREDICT: Accurately estimate the compression ra-
tios and decompression speeds for different compression
schemes on various datasets.

3) DATAPART: Access pattern aware optimal and efficient
partitioning of data.

Finally, we present the results for the unified pipeline, SCOPe:
Storage Cost Optimizer with Performance Guarantees.

Datasets and Workloads (Access logs):
1) Enterprise Data: (a) Enterprise Data I: enterprise Data

Lake data (ADLS Gen 2), with hundreds of datasets
ranging from TB to PB in size for several customers.
Here we only have access to meta data and historical
access logs at dataset level. (b) Enterprise data II: 3
tables for which queries as well as timestamp informa-
tion are available. These are about 1.5 GB in total size.

2We use the cost parameters of ADLS Gen2. Similar analysis and modeling
can be done with AWS, GoogleCloud and other cloud providers’ parameters.



Here we have full access to data, but not the access logs,
hence we have generated queries based on a skewed
power-law (Zipf-like) distribution.

2) We use four variants of TPC-H data. It consists of 8
different tables of varying sizes with 22 different types
of complex queries. We generated 20 queries from each
query template and used them for experiments on our
unified pipeline as well as for the compression predictor
module in each case. (a) TPC-H 1GB with uniformly
generated data, (b) TPC-H Skew generated with Zipfian
skew (high skew factor of 3), (c) TPC-H-100GB with
uniformly generated data, and (d) TPC-H 1TB with
uniformly generated data.

We used PostgreSQL for TPCH data, and Apache Spark for
enterprise data. Our enterprise data is partitioned and stored
on ADLS Gen2 in parquet format.

IV. OPTASSIGN: OPTIMIZING OVERALL COSTS

OPTASSIGN determines optimal (in expectation) assignment
of tier and compression schemes, given data partitions with
predicted number of accesses for the projected period. It
assumes that compression performance prediction is available
as a look up for the given data partitions, or, in absence of that,
only optimizes the tier assignments. OPTASSIGN maintains
latency requirements, and also handles capacity constraints, in
case there are storage reservations on tiers.

A. Mathematical Formulation

Let the number of storage tiers or layers be L. The storage
cost of layer ℓ ∈ [L] is Cs

ℓ , read cost is Cr
ℓ , write cost is

Cw
ℓ and the read latency is Bℓ seconds per unit data. Let the

reserved capacity (space) for storage be Sℓ and the compute
cost per second be Cc. Layer 0 denotes the lowest latency
layer and L − 1 denotes the archival layer with the highest
latency. Typically, SL−1 is ∞. The tier change cost from tier
u to tier v is ∆u,v , and this includes reading from layer u,
writing to layer v and any other charges.

Let there be N data partitions P and for each partition
Pi, the span (or, size) is Sp(Pi), and the projected number
of accesses is ρ(Pi). There is also a latency threshold T (Pi)
associated with each partition. Among these, I (let I = |I|)
denotes existing ones, and the remaining are newly ingested in
the current billing period. The current tier assignment for Pi is
L(Pi), and for newly ingested ones, we denote L(Pi) = −1.
Now, the write costs for new partitions to tier ℓ can be written
as ∆−1,ℓ. In other words, Cw

ℓ = ∆−1,ℓ. All existing partitions
have a predicted number of accesses based on past behaviour
and dataset characteristics. In the case of newly ingested
data, this is approximately estimated based on data quality
considerations, query patterns on similar historical data, or
client specific/domain knowledge. There are K compression
algorithms, where one option is ‘no compression’, and Rk

i

denotes the predicted compression ratio of algorithm k on Pi,
and similarly Dk

i denotes the predicted decompression time
(for ‘no compression’, Rk

i is 1 and Dk
i is 0 for all i). The

compression scheme applied to a partition Pi is K(Pi).

We give an ILP for the problem OPTASSIGN. xn,ℓ,k is an
indicator variable that is 1 when partition Pn is assigned to
tier ℓ with compression scheme k, and 0 otherwise. α, β, γ are
hyper-parameters to decide the weight for corresponding cost
terms. The first term in the objective function represents the
cost of writing data (either new data or existing data from
another tier) and then storing it in a tier after applying a
particular compression algorithm. The second term represents
the expected decompression cost (compute cost) and read cost
of the merged partitions. The first equality is for feasibility
purposes: every partition must go to one tier and at most
one compression algorithm can be applied to it. The second
inequality constraint ensures that the data stored does not
exceed the capacity for that layer, where the capacity is
determined by capacity reservations on the cloud. (Note that
in case there are no reservations, hence no upper bound, the
capacity would be ∞.) The third inequality is to ensure that
decompression and read don’t cause overhead in latency, and
are less than the maximum latency threshold for any partition.
Finally, the last equality forces that for existing partitions, the
compression scheme does not change once applied; this is
imposed to prevent additional latency and operational costs of
frequently changing the compression of data partitions. Note
that the above ILP can become infeasible due to capacity
restrictions and latency constraints. In that case, the latency
requirements need to relaxed iteratively till a feasible solution
is found. However, in this case, there can be no solution
satisfying all constraints, and it is a limitation of the system
constraints, and not the solution.

min

N∑
n=1

K∑
k=1

L∑
ℓ=1

[
(
α Cs

ℓ + γ∆L(Pn),ℓ

) Sp(Pn)

Rk
n

+ βρ(Pn)

(
Cc Dk

n + Cr
ℓ

Sp(Pn)

Rk
n

)
] xn,ℓ,k

(1)

s.t.
L∑

ℓ=1

K∑
k=1

xn,ℓ,k = 1 ,∀ n ∈ [N ]

N∑
n=1

K∑
k=1

Sp(Pn)

Rk
n

xn,ℓ,k ≤ Sℓ ,∀ ℓ ∈ [L]

L∑
ℓ=1

K∑
k=1

(
Dk

n +Bℓ

)
xn,ℓ,k ≤ T (Pn) , n ∈ [N ]

xn,ℓ,k ∈ {0, 1} ∀n ∈ [N ], ℓ ∈ [L], k ∈ [K]

xn,ℓ,k = 0 ∀n ∈ [I], ℓ ∈ [L],∀k ̸= K(Pn)

The ILP can be extended to handle the scenario of computation
pushdown or compression schemes allowing certain operations
directly on the compressed data. Let f fraction of queries
be amenable to such a pushdown and the remaining (1 − f)
fraction would require decompression. Then only (1−f)ρ(Pi)
would contribute to the read and decompression-compute costs
in the objective function for partition Pi, and similarly to
the latency constraint, while the remaining fraction, fρ(Pi)
would have 0 contribution to either. In this way OPTASSIGN
can handle a partial storage disaggregation. Also note that



OPTASSIGN is a general framework and can easily handle
following scenarios: a total storage capacity provisioned per
tier by the enterprise3, a customer specific capacity per tier
4, an unlimited (infinite) capacity per tier where there is no
pre-determined storage entitlement but billing is per usage5

These variations would be determined from customer licensing
agreements, pricing by the cloud storage operator, and internal
cost considerations and demand projections. Moreover, by
tuning the weights in the objective, one can give more weight
to one type of cost over others as required by the application.
(We show this in Section VII).

Theorem 1. OPTASSIGN is strongly NP-HARD.

Proof. This follows by a reduction from 3-PARTITION. Here
we provide a proof sketch due to limited space. Consider an
instance I = {ai} of 3-PARTITION with n = 3v integers
such that

∑
i∈[n] ai = Bv. The decision question is whether

there exists a partition of I in to v groups, such that each
group sums to exactly B. Now, construct a relaxed instance
of OPTASSIGN, where cost parameters are 0, K = 0 (no
compression algorithms) and latency thresholds are met by all
tiers. We create a data partition of span = ai for each ai ∈ I.
Let there be v tiers of storage, with a capacity limit of B per
tier. It can be seen that a YES instance in the 3-PARTITION
instance corresponds to a YES instance in the OPTASSIGN
instance, and vice versa.

B. Polynomial Algorithms for Special Cases

1) Equal sized Partitions, No compression: Consider the
case where the data partitions are of equal spans (i.e.,
Sp(Pi) = S ∀i ∈ [N ] for some S), and there are no
compression schemes (K = 0)6. Let all partitions be ingested
at the same time, and no prior assignments exist. This is a
possible scenario in practice when for a given storage account
existing data are purged periodically, and new set of data are
ingested. Since the span of each of the N data partitions is S,
the capacity of each storage tier can be expressed as a multiple
of S, without loss of any generality. Also, as earlier, archive
tier has capacity ∞. Since the data partitions are of equal
sizes, we can consider the partitions to be of unit size. Now
the capacity of each layer ℓ can be expressed as an integer
Zℓ, where Zℓ = min{N, ⌊Sℓ

S ⌋}, because there are at most N
partitions that need to be assigned.

3In this case, the L constraints on per layer storage capacity Sℓ would be
replaced by a single constraint, on the total sum of the storage used across
all layers being bound by a capacity S.

4Here, the per layer storage constraint would be replaced by Q constraints,
one per customer for a total of Q customers.

5Here, Sℓ = ∞ ∀L, hence the L constraints on capacity can be removed.
6We do not require partitions to be equal sized and can handle different

compression algorithms. The datasets are of varying sizes in our experi-
ments. However, it is a possible scenario that can be enforced from the system
administrator end, as a part of the data ingestion workflow, if the client requires
this functionality or for facilitating data management. For example, one can
configure file sizes to a certain set value by the command ‘ write.target-
file-size-bytes’ as per https://iceberg.apache.org/docs/latest/configuration/), or
specify the default parquet compression level to be null.

Now, let us construct a bipartite graph G = (U ,V, E ,W).
There would be N nodes corresponding to the N data parti-
tions in U . For each of the L tiers (including archive), create
Zℓ number of nodes in V . Denote these as Zℓ copies of tier ℓ.
The edge e = (u, v) between a data segment and every copy
of a tier would exist only if the latency threshold of the data
segment would not be violated by assigning the segment to
the tier. The weight of each such edge would be determined
by the storage cost of the tier and the expected read cost from
that tier, as determined by the projected number of accesses
of that data segment. Now, we solve a minimum weighted
bipartite matching problem in this bipartite graph. Note that
the size of the bipartite graph is polynomial since, there are
at most N + N L nodes. The minimum weighted matching
would select the edges of minimum total weight, such that
every node is assigned to at most one copy of at most one
tier. There would be at most Zℓ assignments to any tier, since
there are only Zℓ nodes corresponding to each tier that can
be selected by the matching. The selected edges would not
violate the latency thresholds, as the edges exist only if the
threshold would be satisfied by the assignment. Therefore, the
assignment found by minimum weight bipartite matching is
not only feasible, in terms of latency requirement for assign-
ments to regular tiers, but also optimal in terms of overall costs
for the projected period. The edge weights can also be tuned
based on the chosen hyperparameters and weightage of the
various cost factors. The run time is polynomial in the input
size: O(N2L2E). Fig.6(b) shows the above construction.

Theorem 2. There exists a polynomial time optimal algorithm
for the case of equal sized data partitions and no compression.

Proof. The proof follows from the above discussion. Specif-
ically, the assignment found by the matching is feasible by
construction, and the overall weight of the edges chosen is
minimum by the optimality of the minimum weight bipartite
matching algorithm. The time complexity follows from the
that of Hungarian method.

2) Unbounded Capacity: Consider the general version of
OPTASSIGN (unequal sized partitions, multiple compression
schemes) with the relaxation of the capacity constraints.
Specifically, there are no capacity bounds on the tiers. This
is a commonly occurring scenario in practice, including in
our private enterprise Data Lake setting. In this case, a
simple greedy algorithm gives the optimal solution. For every
partition Pi, compute the set of feasible tuples (ℓ, k) of tier
and compression algorithm, and the choosing the lowest cost
option per partition. This is feasible since there are no capacity
restrictions and gives the optimal solution overall. The run time
is O(N L K), and for constant L and K, this becomes linear
in the number of partitions.

Theorem 3. There exists an optimal polynomial time algo-
rithm for OPTASSIGN when there are no capacity constraints.

Proof. Since the greedy algorithm evaluates the lowest cost
option for every merge, the overall cost is the lowest. If the



overall cost is not the lowest, there has to be at least one
feasible assignment of lower cost, but the greedy algorithm
would have considered at one of the options, and would have
therefore selected it.

C. Empirical Validation on Enterprise Data

We applied OPTASSIGN with K = 0 on Enterprise Data
I using datasets as the data partitions, and projected access
patterns for 6 months using historical access logs. These
datasets are large, ranging from TB to PB. We observed
significant cost reduction benefits over the platform baseline.
Figure 3 shows the % cost benefit vs size and number of
accesses for files for 6 month projections for one customer
account. We show in Table II the projected cost benefits for
4 different customer accounts. Our methods are scalable and
computationally efficient (e.g., the optimization took 2.53s on
463 datasets of customer B from Table II).

TABLE II: % cost benefits for data across 4 customers.

Total Size (PB) % Cost Benefit
2 mos 6 mos

Customer A 0.56 10.59 61.6
Customer B 0.45 8 53.72
Customer C 0.053 11.58 83.69
Customer D 0.085 9.93 49.6

(a) Cost benefit vs read accesses. (b) Cost benefit vs size.

Fig. 3: Projected percent cost benefit for next 6 months
(considering transfer from hot tier to cool+archive tiers)

Predicting Access Patterns and Quantifying Errors Pre-
dicting access patterns is a non-trivial problem. We have
proposed a Random Forest model that is near optimal, with
high precision and recall (F-1 score > 0.96). Table III shows
the confusion matrix for one storage account. Random Forest
showed the best overall performance compared to others like
Gradient Boosted Trees and LSTMs. We used OPTASSIGN

TABLE III: Confusion matrices for predicted vs ideal tiering
for one storage account (Around 700TBs of data in 760
datasets) over a 2 month prediction horizon.

Ideal Tier
Hot Cool

Predicted Tier Hot 291 12
Cool 12 445

to assign the ground truth label encoding (i.e. the optimal
tier) for each dataset while training the model. For prediction

experiments, we ensured out-of-time validation and testing,
and ran experiments on Apache Spark. The features used
were (i) dataset size, (ii) months since dataset creation, and
aggregated monthly (iii) read and (iv) write accesses for the
last few months. The model needs to be retrained periodically
for the next cycle (whose duration is adjustable) to account for
changes in access pattern distributions. The cost for this batch
job and the compute cost of applying the tiering operation
is negligible compared to the tier change costs of the public
cloud storage provider. The % benefit shown is computed after
deducting this cost, which shows that our model is practically
feasible. Table IV shows how our results are consistent over
multiple prediction horizons as well as how we compare to
other tiering baselines, including caching based ones. Note
that even after making errors, the % benefit is close to the
ideal case where all access information is known beforehand.
Moreover, making significant mistakes is unlikely given the
typical skewed or seasonal enterprise query workloads which
are predictable enough by ML models to determine the optimal
tier. Also note that the benefit is higher when we look at
longer prediction horizons since lesser number of tier changes
are required, as expected. Bringing in the archive layer helps
increase the % as well. Regarding performance considerations
- while expected latencies are bounded as required by SLAs,
there can be occasional unexpected accesses, causing tail
latencies to be longer. A comparison with additional nontrivial
baselines that also consider partitioning, latency, and compres-
sion along with multi-tiering is given at the end of the paper.
Caching inspired baselines in rows 2 and 3 perform poorly
because of two main reasons. i) Firstly, recency of access does
not guarantee access in the next projected period, and one
would need to train an ML model for that. ii) Secondly, even
if access prediction is 100% correct and a dataset is certainly
going to be accessed in the next billing period, the optimal tier
(from cost perspective, subject to performance considerations)
might still not be hot, given the dataset size, the number and
type of accesses, the amount of data to be accessed, tier change
costs (if applicable), cloud cost parameters, as well as SLA
and availability agreements with clients, which vanilla caching
rules do not consider.

TABLE IV: Comparison of OptAssign (with predicted or
known access information) with intuitive baselines for the
same storage account in Table III.

Model Access Duration BenefitInformation (months)
All hot N/A 2 0%

“Hot” if data accessed in last 2 mos N/A 4 2.67%
“Hot” if data accessed in last 1 mo N/A 4 3.25%

Use optimal tier of prev. month N/A 2 5.07%
OptAssign (Hot, Cool) Predicted 2 9.570%
OptAssign (Hot, Cool) Predicted 4 13.58%
OptAssign (Hot, Cool) Known 2 9.574%
OptAssign (Hot, Cool) Known 4 13.62%
OptAssign (Hot, Cool) Known 6 15.39%

OptAssign (Hot, Cool, Archive) Known 6 43.8%



V. COMPREDICT: COMPRESSION PREDICTOR

We present COMPREDICT, which estimates compression
ratios and decompression speeds for data partitions on the
fly. This involves training a model that is a one-time task,
assuming the distribution of data types and other features
remain largely unchanged7. The model is trained to predict
for a few popular compression schemes: gzip, snappy, and lz4
and two different data storage layouts (row-store and column-
store). We found that our method also works well on other
compression schemes like bz2, zlib, lzma, lzo, and quicklz,
however we have omitted those results due to lack of space.

Data Sources and Features: Intuitively, compression per-
formance can depend on various factors, such as, choice
of compression scheme, data storage layout (row ordering
vs column ordering), size of datasets, and characteristics of
the data, e.g. data types, repetition in the data, entropy in
the data, organization of data contents (sorted vs unsorted)
among others. Existing approaches for predicting comrpession
performance often use random samples from the dataset and
simple features based on size or datatype. From Fig. 4 we
can see that a sample formed from randomly sampled rows is
typically not a good representation of the data that is usually
queried from tabular datasets. We propose that this is because
queried data typically has more repetition, which results in
higher compression ratios compared to random samples. Note
that if samples are generated in query aware pattern, skew
in query workload can also have an effect. Considering only
features like dataset size, datatype, or assuming a fixed data
distribution like in prior art [14] is not enough to capture
such notions. We created ‘weighted entropy’ features for each
partition P , with one feature for each data type present in P :
H(P, d) = −

∑
s∈P [:, d] len(s)× pr(s)× log(pr(s)), d ∈ D

Here D denotes the set of datatypes of columns present
in the partition P (e.g. int, float, object, etc). For all strings
s that occur within the columns of a particular datatype d,
we compute the probability of occurrence pr(s) and length
len(s) of each string. H(P, d) gives us an approximate
representation of the amount of repetition in the table with
datatype d. Computing these features requires a one-time full
scan of each partition. The samples used to train the model

Fig. 4: Compression Ratio vs Size (left) and Compression
Ratio vs Entropy (right) on TPC-H dataset using gzip.

are derived from results of queries run on partitions. The

7This has to be repeated at periodic intervals to handle slow changing data
type distributions

number of samples required depends on the nature of the
query workload. Computing the samples and features took
around 2-3 hours. Training the model takes a few seconds, and
inference is almost instantaneous. Table V shows a comparison
of data samples (random vs query based) and features (size
vs weighted entropy) for prediction on gzip, using Random
Forest model. From Fig. 4 and Table V we can conclude
that query based sampling using weighted entropy features
are more effective for prediction.

TABLE V: Compression Ratio & Decompression Speed Pre-
diction by Random Forest model for Various Training Data
and Features (GZIP Compression on TPC-H 1GB)

Training Data Features MAE MAPE R2

Compression Ratio
Random Samples Weighted Entropy 1.022 72.188 -0.656

Queries Size 0.049 3.013 0.995
Queries Weighted Entropy 0.021 0.527 0.988

Decompression Speed
Random Samples Weighted Entropy 18.713 268.627 0.069

Queries Size 2.398 5.555 0.792
Queries Weighted Entropy 0.254 1.215 0.989

Row vs Column Oriented Storage: Data can be stored
in a row oriented fashion, with consecutive row entries stored
adjacently, or in a column oriented fashion, with consecutive
column entries stored adjacently. It is important to consider
how this nuance effects the dynamics for compression ratio
predictions. In our experiments, we used CSV files as an
example of row storage and Parquet files (common in enter-
prise data lakes) for columnar storage. Overall, the prediction
performance was good in both cases, though the results are
slightly better for row storage.

Models and Datasets: We trained several statistical models
(XGBoost, Random Forest, SVR) and a Neural Network
(MLP) with the features as input to predict compression
ratios and decompression speeds. Apart from the naive model
of simply averaging, these models performed well and are
comparable, while Random Forest performs the best. Tables
VI, VII and VIII, show the results on TPC-H 1GB, TPC-H
100GB and TPC-H 1GB with Zipfian skew.

Sorting Data: We briefly investigated how the prediction
varies if the data is sorted by different columns. The difference
in compression ratios between data sorted by different columns
is generally small (of the order of our prediction error). We
proposed ‘bucketed weighted entropy’ features for capturing
the effect of sorting on the entropy of columns. Specifically,
the bucketed entropy would be computed for each successive
20% of rows. Our hypothesis was that for column-store data,
there would be a greater change in the compression ratios
because entries of a column are stored together, and thus the
model should work better for parquet compared to csv files.
Empirically, however we observed that prediction performance
using the new entropy features was similar to using the older
features. We leave further exploration on this as future work.

Effect of COMPREDICT on OPTASSIGN: We compare
the effect of the predictions of compression ratios and decom-
pression times on OPTASSIGN. We compute the storage cost,
read + compute cost, and latency time of this placement using
ground truth compression values as the baseline. The optimiza-
tion is computed for a range of many different values of α and



TABLE VI: Compression Ratio Prediction for Various Models, Compression Schemes, & Data Layouts (TPC-H 1GB)

Model gzip snappy parquet + gzip parquet + snappy parquet + lz4
MAE MAPE R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

Averaging 0.215 5.353 - 0.074 3.315 - 0.781 23.154 - 0.531 20.101 - 0.483 19.494 -
XGBoost 0.033 0.851 0.991 0.017 0.733 0.991 0.057 1.482 0.989 0.040 1.305 0.988 0.036 1.206 0.992

Neural Network 0.030 0.793 0.993 0.02 0.930 0.985 0.062 1.549 0.991 0.049 1.730 0.992 0.047 1.747 0.990
SVR 0.071 1.920 0.977 0.069 3.049 0.885 0.089 2.633 0.991 0.089 3.477 0.984 0.091 3.632 0.983

Random Forest 0.021 0.527 0.988 0.011 0.453 0.989 0.043 0.996 0.983 0.029 0.948 0.985 0.026 0.901 0.989

TABLE VII: Compression Ratio Prediction for Various Mod-
els, Compression Schemes, and Data Layouts

Model gzip parquet + gzip
MAE MAPE R2 MAE MAPE R2

TPC-H 100GB
Averaging 0.083 2.378 - 0.324 8.795 -
XGBoost 0.105 2.838 0.936 0.151 3.751 0.943

Neural Network 0.081 2.232 0.968 0.147 3.535 0.962
SVR 0.105 3.077 0.948 0.19 4.765 0.914

Random Forest 0.078 2.151 0.969 0.134 3.369 0.966
TPC-H Skew

Averaging 0.120 4.915 - 0.601 32.491 -
Neural Network 0.125 3.868 0.975 0.336 15.953 0.847

SVR 0.101 4.280 0.992 0.163 8.526 0.969
Random Forest 0.093 3.005 0.988 0.251 12.127 0.894

XGBoost 0.066 2.467 0.992 2.009 6.145 0.897

β for comparing the cost-vs-latency tradeoffs for the predictors
(Fig. 5). Here we show OPTASSIGN using prediction from
SVR on queried samples using weighted entropy features
performs very close to ground truth compression for the TPC-
H 1GB dataset, not leaving much room for improvement.
The magnitude of errors made by our compression predictor
is low as seen from the tables shown. In fact, the impact
of these errors on the final cost is also minimal since the
purple (ground truth compression) and green (our predictor)
curves in Fig. 5 are almost the same. This means both would
result in similar latency and storage cost across different tier
assignments, unlike other baselines (shown in red and blue).

Fig. 5: Left: Latency Cost vs Storage Cost, Right: Total Cost vs
Latency Time. Different tradeoff curves correspond to different
compression predictors used.

VI. DATAPART: ACCESS AWARE DATA PARTITIONING

Data partitioning in an access pattern aware manner is
important for skewed workloads where different parts of a
dataset are accessed with widely different frequencies.

DATAPART considers the (minimal) set of records that need
to be scanned by a query in an attribute agnostic manner.
It then merges these sets of records to generate the data
partitions, such that the total scans (read cost) incurred by

TABLE VIII: Decompression (sec/GB) Prediction for Models,
Compression Schemes, Data Layouts

Model gzip parquet + gzip
MAE MAPE R2 MAE MAPE R2

TPC-H 100GB
Averaging 0.679 3.732 - 5.672 43.472 -
XGBoost 0.322 1.773 0.972 1.606 10.168 0.75

Neural Network 0.147 3.535 0.962 1.86 10.875 0.522
SVR 0.399 2.153 0.961 1.147 10.152 0.949

Random Forest 0.292 1.601 0.98 1.165 9.698 0.799
TPC-H Skew

Averaging 7.037 29.979 - 30.134 125.23 -
MLP 1.862 5.860 0.917 9.380 21.526 0.880
SVR 3.431 15.568 0.847 7.020 19.508 0.955

XGBoost 2.009 6.145 0.897 6.330 12.284 0.948
Random Forest 1.141 4.910 0.922 5.194 7.983 0.915

queries is within a limit, while the overall space required by
such partitions is minimized (by reducing overlapping content
across partitions). We want to generate balanced size partitions
and not fragment the data too much. The decision to make the
partitioning attribute agnostic was driven by enterprise data
privacy regulations. Fragmenting users’ data across multiple
partitions is also undesirable, since that would require that
many additional scans of files, hence increasing compute costs
(COGS). Informally, our goal is to partition the datasets such
that all the files that are generally accessed together belong
to the same partition. The files or the contiguous blocks of
records need not be adjacent in general (Fig. 6(a)).

A. Problem Definition

Define a query family to comprise of all queries that map
to the same files in the data tables. Consider a query family Q
accessing the following files from D: {R1, R2, . . . , Ru}. This
set constitutes an initial (naive) partition of the dataset PQ =
{R1, R2, . . . , Ru}. Let there be N such initial partitions:
P , generated from historical access logs. DATAPART would
generate the final partitions by merging (some of) these initial
partitions in order to optimize certain metrics. We define the
span of a partition Pi ∈ P as: Sp(Pi) :=

∑
Rk∈Pi

|Rk|, where
|Rk| denotes the number of rows or records in the file Rk. The
overlap between two partitions Pi and Pj is the length of files
(or, number of records) in common to both partitions, and is
computed as Ov(Pi, Pj) = Sp(Pi) + Sp(Pj)− Sp(Pi ∪ Pj).
Span of a merge of partitions Pi and Pj , Sp(Pi ∪ Pj) ≤
Sp(Pi)+Sp(Pj) due to potential overlap between Pi and Pj .
Formally, a mergeM refers to the union of a set of partitions
{Pi, Pj , . . . , Pk} with a span Sp(M) = Sp(

⋃
Pℓ∈M Pℓ).

Each partition Pi has an associated access frequency ρ(Pi).
The access frequency of a merge is simply the sum of the
accesses of the constituent partitions. We require the access



frequencies of partitions merged should be comparable. Hence
we define a feasible merge Mk as: any pair of partitions
(Pi, Pj) ∈Mk satisfy at least one of following conditions: (i)
1
ρc
≤ ρ(Pi)

ρ(Pj)
≤ ρc, or, (ii) |ρ(Pi) − ρ(Pj)| ≤ ρ′c, for constants

ρc and ρ′c.
Let the ‘cost’ of a merge, measured as the expected read

cost, depending on the size and expected number of accesses
be defined as: C(Mk) = Sp(Mk)ρ(Mk).

The goal is to choose a set of merges Z such that each
(initial) partition is part of at least one merge, the total cost of
Z is bounded, and the total space required by Z is minimized.

We formulate this MERGE PARTITIONS mathematically as
an ILP as follows. Let M denote the set of feasible merges
(as defined earlier). In order to ensure that there is always a
feasible solution, we allow individual partitions also as feasible
choices for merges. Let yk be an indicator variable that is 1
if merge Mk is chosen in the solution, and 0 otherwise. The
first inequality ensures that the (expected) total read cost of all
the merges is at most Cthresh. Let xℓ,k be another indicator
variable that is 1 if initial partition (or, vertex) Pℓ is covered
by mergeMk in the solution, and 0 otherwise. In other words,
this is 1 when Pℓ ∈Mk andMk is chosen in the solution, and
0 otherwise (if a merge Mk is not part of the solution, xℓ,k

must be 0, and this is ensured by the second inequality). Every
partition Pℓ must be covered by at least one merge chosen in
the solution, and this is ensured by the third inequality.

min
∑

k∈[1,...,|M|]

Sp(Mk) yk

s.t.
∑

k∈[1,...,|M|]

Sp(Mk)ρ(Mk) yk ≤ Cthresh

xℓ,k ≤ yk ∀Pℓ ∈Mk, ∀Mk ∈M∑
Mj∈M|Pℓ∈Mj

xℓ,j ≥ 1 ∀Pℓ ∈ P

yk ∈ 0, 1 ∀Mk ∈M,

xℓ,k ∈ 0, 1 ∀Pℓ ∈ P (2)

The ILP finds the set of merges to minimize the overall
space, while covering all segments, keeping cost of merges
bounded by Cthresh.

Theorem 4. MERGE PARTITIONS is NP-HARD.

Proof. This follows by a reduction from a partitioning problem
studied by Huang et al. [42], where records are shared across
versions of datasets, leading to overlap. Their goal is to divide
the set of all versions into different groups, and simply store
the groups (or, merges), reducing overall storage space and
the overall average checkout cost, assuming equal frequency
of checkout of each version. They show the problem of
minimizing the checkout cost while keeping the storage cost
less than a threshold is NP-HARD. We construct an instance
of MERGEPARTITIONS, where corresponding to each version,
we create a query family (initial partition), and corresponding
to each record we create a file, that can be shared across par-
titions. We want to merge them into groups, reducing overall

storage cost, keeping read costs under a threshold. Assuming
equal access frequency, it can be seen that the decision version
of MERGEPARTITIONS reduces to the decision version of
MINIMIZE CHECKOUT COST (that is, storage cost ≤ γ and
read cost ≤ Cthresh), shown to be NP-HARD by Huang et al.
Details omitted due to lack of space.

1) Algorithm for the General Case: G-PART: In order to
understand the merging problem better, let us consider a graph
representation G = (V, E ,W) where each initial partition Pi

is a node ∈ V in graph G. An edge e = (v, u, w) between two
vertices v and u in V with weight w = Ov(v,u)

Sp(v∪u) > 0 denotes
the fractional overlap between the partitions v and u. (w = 0
corresponds to no overlap between two partitions, hence, there
is no edge between them). Now, merging can be thought of
as merging of nodes to create meta-vertices, collapsing the
internal edges, and re-defining edges incident on the meta-
vertices from neighbors. (Fig.6(c)).

We give a greedy algorithm G-PART for the general graph
case that does very well in practice, especially as a key ingre-
dient in the unified pipeline SCOPe and also helps baselines
improve significantly. In this algorithm, along with the hard
feasibility (based on accesses, as defined earlier) constraints,
we address a soft constraint Sthresh on the span of merges.
Specifically, once a merge is ≥ Sthresh, we don’t merge other
partitions to it. The intuition is to prevent the merging of too
many vertices together, to avoid undue increase in read costs.

We next describe G-PART informally. (The pseudocode is
given in Algorithm 1.) We first filter the edges to determine the
set of feasible edges. We store the edges in a max-heap, where
the heapification is on the weights (denoting the fractional
overlaps) of the edges. We pick the top most heap element
edge (this has the highest fractional overlap between the pair
of segments) and merge the corresponding pair of partitions.
Let u and v be the corresponding nodes. We create a new
(merge) node u′, while removing u and v from V . V is updated
as u′ ∪ {V \ {u, v}}. Similarly, the edge ev,u is deleted from
E . If the span of the merged node Sp(u′) ≥ Sthresh, for some
constant Sthresh, then we don’t consider the merged node any
further. Specifically, we remove every edge e′ = (w, x), where
x ∈ {u, v}), for any w ∈ V from E , and delete these edges
from the heap. However, if Sp(u′) < Sthresh, then it goes
back as a candidate for further merging. In this case, for every
edge e′ = (w, x) for any x ∈ {u, v} and w ∈ V , we replace it
with e′′ = (w, u′) in E (and delete e′ from the heap, if it was
present in the heap). If e′′ satisfies the feasibility constraints,
we add it to the heap with a weight corresponding to the
fractional overlap of u′ with w. Now, we repeat the process
with the next top heap element, till the heap is empty. Note
that at the end we might be left with singleton partitions that
do not meet the feasibility constraints for merging. These are
(individually) added to the set of final merges or partitions.

Space and Cost trade-off achieved by G-PART: We
evaluate G-PART on TPC-H 1GB and TPC-H 100GB to
compare the duplication of data with the cost of merging



Fig. 6: (a) Data partitioning examples. (b) Bipartite matching for equal sized partitions with no compression. (c) Merging of
nodes by G-PART in a graph setting.

(a) (b) (c)

Algorithm 1: G-PART: Partition Merging Algorithm
Data: P = initial set of partitions
Result: P = new set of partitions after merging
H = [ ]; // Max-heap

for i ∈ P do
for j ∈ P do

if (i, j) meet merging criteria then
fij ← fraction of non-overlap;
H.push(fij , i, j);

H.heapify();
D = {}; // To store deleted partitions

while !H.isempty() do
fij , i, j = H.pop();
if i ∈ D or j ∈ D then

continue
D.extend ([i, j]);
m = Merge(i, j); // Merge partition rows

P.add(m);
if m.size() < Sthresh then

for k ∈ P do
if k ∈ D or k == m then

continue;

if (m, k) meet merging criteria then
H.push (fmk,m, k);

for i ∈ D do
P.remove(i)

in Fig. 78. G-PART provides a good trade-off between the
unmerged case and merging all partitions.

Complexity of G-PART: Consider there are m query
families. Let the number of files across all datasets in a client
org be n. Initial processing to generate initial partitions would
require a space of at most O(mn) (In general it would be

8Duplication is computed as 1 − |{Pi}|
|Pi|

, where {Pi} denotes the set of
distinct elements (records) in Pi. The cost of merging is computed as the
increase in expected read cost due to merging.

much less, say, O(mk) where k is the average number of
files accessed by each query family). There would be m
initial partitions, and O(m2) edges. For estimating the cost
of each edge, one would need to find the intersection of
the sets (of files in each partitions) and the total length of
each partition (sum of the size of the files, maintained as
file meta data). The heap construction followed by G-PART
merging and heapifying would take O(m2 logm). This can
adapt dynamically to changing query workloads. For each
new query family observed in the workload, we create an
initial partition, by labeling the query family with the accessed
files. This results in a new node in the graph. If the current
number of merged partitions is m′ ≪ m, at most O(m′) new
edges get added. This can result in O(m′ logm′) operations
for heapifying followed by merging operations.

B. Special Case: Ordered Partitions

Consider an inherent ordering between the files, such as
that arising for time series data. Let us assume that the data is
time stamped. Each query, and hence partition Pi has a fixed
start time s(Pi) and a fixed end time e(Pi). Let us order the
partitions by their end times. We only consider distinct queries.
Let this ordered set be P , where |P| = N . Partition Pi ∈ P ,
has the ith latest end time and P1 has the first end time.

Since the main motivation in merging is exploiting the
overlap between partitions or segments, we only consider
combinations of adjacent segments in the order in which
they occur in the ordered list. More specifically, consider
partitions {Pi, Pi+1, Pi+2} ∈ P . The possible set of (merged)
segments corresponding to these are: (i) {Pi}, {Pi+1}, {Pi+2},
or, (ii) {Pi, Pi+1}, {Pi+2}, or, (iii) {Pi}, {Pi+1, Pi+2}, or, (iv)
{Pi, Pi+1, Pi+2}, but not [{Pi, pi+2}, {pi+1}].

The number of possible merges, that is, |M| is O(N2).
Without loss of generality, we assume that for every Pi, with
end time e(Pi), the start time of Pi+1, s(Pi+1) < e(Pi). (For
any pair of i and i+1 where this does not hold, we can consider
the set of partitions {P1, . . . , Pi} and {Pi+1, . . . , PN} to be
disjoint and solve the merging separately for each set.)

We define a dynamic program here. Consider the sub-
problem of covering partitions [P1, . . . , Pi]. Define the set
of feasible merges containing partition Pi as Fi. As defined



earlier, Fi = {[P1, P2, . . . , Pi], [P2, . . . , Pi], . . . , [Pi]}. Any
feasible solution on partitions [P1, . . . , Pi] must include a
merge in Fi. For ease of analysis, WLOG, we add a dummy
partition P0 of Sp(P0) = 0 and ρ(P0) = 0.

Let us denote the merge [Pi−k, . . . , Pi] as Mk
i for k ∈

{0, 1, . . . , i− 1}. We define the parent of Mk
i as P (Mk

i ) :=
Pi−k−1 for k ≤ i−1 (P0 for k = i−1). The notion of parent
simply implies that if a feasible solution choosesMk

i , then (i)
it must include additional merges to cover [P0, . . . , P (Mk

i )],
and such a solution must fit within the remaining cost budget
after the choice of Mk

i . The recurrence relations are:
For i = 0, ALG[P0, C] = 0 ∀C ≥ 0.
For i > 0 and 0 ≤ C ≤ Cthresh,

ALG[Pi, C] = mink∈[0,...,i−1]|C(Mk
i )≤C ALG[(P (Mk

i )), C−
C(Mk

i )] + Sp(Mk
i ) ∀ i ∈ [N ], ∀ 0 < c ≤ C.

Theorem 5. ALG(PN , Cthresh) minimizes the overall space
given a budget Cthresh on the total (expected) read cost .

Proof omitted due to lack of space, however it follows by
induction, based on induction hypothesis, after proving the
optimality of base cases. The time complexity of ALG is
O(N2Cthresh), which makes it pseudo-polynomial solution
because of the dependence on Cthresh. To get a polynomial
approximation scheme, we bucket the range of Cthresh.

Theorem 6. Let the optimal solution for N partitions with a
cost threshold COPT require space OPT [N,COPT ] = SOPT .
Then there exists a polynomial algorithm that finds a solution
of space ≤ SOPT , within a cost at most (1 + Nϵ)COPT in
O(N2(N + 1

ϵ )) time for any fixed ϵ > 0. For ϵ = 1
N , we get a

(1, 2) bi-criteria approximation of (SOPT , COPT ) in O(N3).

Proof is omitted due to lack of space. The main idea is
to discretize the range of cost values by rounding up by ϵ,
extending the cost threshold by Nϵ, and solving ALG on this
setting. It can be argued that extending the cost threshold by
Nϵ would ensure a feasible solution exists. By optimality of
ALG, the space required by ALG would be minimum, hence
≤ SOPT , and by feasibility of ALG, the total cost would be
bounded by ≤ (1 + Nϵ)COPT . For ϵ ≤ 1/N , the cost is
≤ 2COPT , giving the (1, 2) bi-criteria solution.

Fig. 7: Space cost tradeoffs in partitioning. Each dot in the
scatterplot represents a table. We consider 3 cases - (i) no
merging, (ii) G-PART heuristic, and (iii) merging all partitions.
Left: TPC-H 1GB, Right: TPC-H 100GB.

VII. UNIFIED PIPELINE SCOPE

Here we present the unified pipeline SCOPe that combines
all the modules OPTASSIGN, COMPREDICT and G-PART to
optimize the overall costs, while maintaining performance
guarantees. We use TPC-H 100GB, TPC-H 1TB datasets and
Enterprise datasets I for these experiments. The pipeline is as
follows. First we generate initial partitions using query logs.
These are merged using G-PART to generate final partitions.
After this, COMPREDICT predicts the compression ratio and
decompression speeds for each partition. Finally, OPTASSIGN
finds optimal tier and compression scheme assignment for the
partitions, minimizing the overall costs, including storage and
read costs, subject to capacity constraints and latency SLAs.

Comparison with Baselines: To the best of our knowledge,
SCOPe as a pipeline is unique, and there are no direct base-
lines we could compare with. However, by tuning the param-
eters of OPTASSIGN, we can choose to optimize either only
tiering and no compression (K = 0), or, only compression
and no tiering (L = 0), or, minimize the latency due to read
costs and decompression costs (α = 0). These variants would
map to an adaption of existing storage optimization approaches
like HCompress [14] (focused on reducing latency), Hermes
[21] (focused on multi-tiering), and Ares [15] (focused on
compression), which were originally designed for different
settings with I/O workloads. Hence, these can be thought of as
our baselines, adapted to our setting. We can see that overall,
SCOPe performs very well and minimizes the costs while
maintaining good trade-offs on the different costs and latency.
Moreover, we show that applying G-PART to generate data
partitions before applying the baseline methods, significantly
improves the performance of baselines9. The optimization
takes about 47.4 ms on average (min 35 ms, max 470 ms)
for optimization given one set of hyperparameters. Tuning the
hyperparameters for optimization takes ≈ 18.9s.

All costs of Tables IX, X and XI are calculated over a 5.5
month duration using Azure cost parameters. We considered
the cost savings opportunity by only considering Premium,
Hot and Cool Layers (and not Archive, since that has an early
deletion period of 6 months. We have examined Archive ben-
efits in our Enterprise Data I experiments described earlier).
Next we explain the structure of the tables and the results.
The rows refer to policies. The column (’Other methods ...’)
refers to the closest baseline in the literature. The last column
‘Tiering Scheme’ refers to the to the number of partitions (or,
datasets) assigned to tiers [Premium, Hot, Cool] respectively.
The other columns are self-explanatory.

The first 4 rows of the table focus on standard approaches
that are generally followed and these typically have higher to-
tal costs. Row 1 and 2 store everything on premium, generally
incurs low read costs and high storage costs. Row 3 ‘Multi-
Tiering’ refers to optimal multi-tiering and incurs much lower
storage costs, but read costs and read latencies are higher.
Since there is no compression, there is no decompression cost

9All results are generated using ground truth compression data ensuring a
fair comparison.



TABLE IX: Results for Enterprise Data II.

Variants we can support Other methods P T C Storage Decomp. Read Total Read Latency Expected Decomp. Tiering
we can adapt Cost Cost Cost Cost (TTFB, s) Latency (ms) Scheme

Default (store on premium) - - - - 150.1 0.0 18.74 168.9 0.024 0.0 [3, 0, 0]
Compress & store on premium Ares - - Y 138.8 0.1 18.5 157.4 0.024 0.016 [3, 0, 0]

Multi-Tiering Hermes - Y - 20 0.0 62 82 0.281 0.0 [0, 2, 1]
Latency time focused HCompress - Y Y 49.6 0.0 49.4 98.9 0.165 0.0 [2, 1, 0]

Partition & store on premium - Y - - 102.7 0.0 1.2 103.9 0.024 0.0 [23, 0, 0]
Partitioning + Tiering Hermes + G-PART Y Y - 36.3 0.0 26.7 62.9 0.281 0.0 [0, 4, 19]

Partitioning + Compression Ares + G-PART Y - Y 130.1 0.8 2.3 133.1 0.024 0.170 [23, 0, 0]
SCOPe (Latency time focused) HCompress + G-PART Y Y Y 94.9 0.0 26.4 121.2 0.164 0.0001 [16, 3, 4]

SCOPe (No capacity constraint) - Y Y Y 22.7 0.6 7.0 30.3 0.216 0.131 [2, 11, 10]
SCOPe (Read+Decomp. cost focused) - Y Y Y 75.5 0.5 5.2 81.2 0.084 0.110 [6, 15, 2]

SCOPe (Total cost focused) - Y Y Y 22.7 0.6 7.0 30.3 0.216 0.131 [2, 11, 10]

TABLE X: Results for the TPC-H dataset (100GB).

Variants we can support Other methods P T C Storage Decomp. Read Total Read Latency Expected Decomp. Tiering
we can adapt Cost Cost Cost Cost (TTFB, s) Latency (ms) Scheme

Default (store on premium) - - - - 8741.9 0.0 3828.5 12570.4 0.18 0.0 [8, 0, 0]
Compress & store on premium Ares - - Y 7138.2 121.1 3387.5 10646.8 0.18 3.61 [8, 0, 0]

Multi-Tiering Hermes - Y - 8741.8 0.0 3828.5 12570.4 0.18 0.0 [5, 3, 0]
Latency time focused HCompress - Y Y 3288.4 0.0 22805.0 26093.4 0.68 0.0 [7, 0, 1]

Partition & store on premium - Y - - 8702.6 0.0 117.3 8819.9 0.18 0.0 [137, 0, 0]
Partitioning + Tiering Hermes + G-PART Y Y - 1397.0 0.0 415.3 1812.4 2.06 0.0 [0, 94, 43]

Partitioning + Compression Ares + G-PART Y - Y 5480.4 32.1 60.9 5573.4 0.18 0.96 [137, 0, 0]
SCOPe (Latency time focused) HCompress + G-PART Y Y Y 5178.1 0.0 544.5 5722.6 0.48 0.0 [108, 0, 29]

SCOPe (No capacity constraint) - Y Y Y 691.4 29.9 219.3 940.6 2.06 0.89 [0, 94,43]
SCOPe (Read+Decomp cost focused) - Y Y Y 4733.9 17.4 80.9 4832.1 0.35 0.52 [103, 34, 0]

SCOPe (Total cost focused) - Y Y Y 679.2 31.1 242.4 952.7 2.06 0.93 [0, 82, 55]

TABLE XI: Results for TPC-H dataset (1TB), (K refers to a multiplicative factor of 103.)

Variants we can support Other methods P T C Storage Decomp. Read Total Read Latency Expected Decomp. Tiering
we can adapt Cost Cost Cost Cost (TTFB, s) Latency (ms) Scheme

Default (store on premium) - - - - 89.23K 0.0 39.13K 128.36K 0.18 0.0 [8, 0, 0]
Compress & store on premium Ares - - Y 73.79K 3.36K 34.85K 112.01K 0.18 100.31 [8, 0, 0]

Multi-Tiering Hermes - Y - 89.11K 0.0 38.94K 128.05K 0.18 0.0 [5, 3, 0]
Latency time focused HCompress - Y Y 41.58K 0.0 242.47K 284.05K 1.07 0.0 [6, 2, 0]

Partition& store on premium - Y - - 81.37K 0.0 3.16K 84.53K 0.18 0.0 [212, 0, 0]
Partitioning + Tiering Hermes + G-PART Y Y - 26.77K 0.0 7.51K 34.28K 2.91 0.0 [0, 148, 64]

Partitioning + Compression Ares + G-PART Y - Y 47.05K 2.20K 1.13K 50.38K 0.18 65.68 [212, 0, 0]
SCOPe (Latency time focused) HCompress + G-PART Y Y Y 64.68K 0.0 4.76K 69.44K 1.44 0.0 [101, 77, 34]

SCOPe (No capacity constraint) - Y Y Y 17.93K 1.03K 6.46K 25.42K 2.91 30.89 [0, 176, 36]
SCOPe (Read+Decomp cost focused) - Y Y Y 61.30K 0.78K 1.66K 63.74K 1.15 23.32 [89, 123, 0]

SCOPe (Total cost focused) - Y Y Y 15.14K 0.12K 4.53K 19.79K 3.20 36.63 [0, 155, 57]

or latency. Row 4 ‘Latency time focused’ aims at minimizing
the storage costs with a focus on keeping total latency low.
Rows 5-7 employ G-PART on top of Rows 1, 3 and 2. We can
see that the total costs are significantly lower now, while the
latencies remain comparable. Also note that the total number
of partitions has increased from the original number of datasets
(as observed from the last column). The last 4 rows illustrate

TABLE XII: Parameters for ILP Optimization on TPC-H.
Parameters Premium Hot Cool Archive
Storage cost Cs

ℓ (cents/GB) 15 2.08 1.52 0.099
Read cost Cr

ℓ (cents/GB) 0.004659 0.01331 0.0333 16.64
Layer capacity Sℓ (GB) 0.163 0.326 0.4891 inf
Read latency or TTFB (Time to first byte) Bℓ (sec) 0.0053 0.0614 0.0614 3600
compute cost Cc (cents/sec) 0.001

the different variants of the entire pipeline SCOPe (with parti-
tioning, multi-tiering and compression). These highlight how
SCOPe can be tuned based on user requirements. We can see
SCOPe optimizes the respective objectives while maintaining
a very good trade-off on other metrics. SCOPe consistently
performs well across all datasets at different scales, namely,
enterprise, TPC-H 1GB (not shown here), 100GB and 1TB.
‘SCOPe (Total cost focused)’ is consistently within 8 - 18%

of the ‘Default’ (platform baseline), and incurs the lowest
cost among all the other baselines and variants. Read latency
(Time to First Byte) does not change significantly since it is
independent of size (Table XII). The expected decompression
latency (average across accesses) and other costs grow with
the size of partitions.

VIII. CONCLUSION AND FUTURE WORK

We present SCOPe: a tunable framework that optimizes
storage and access costs on the cloud while maintaining
latency guarantees. It is substantially better than baselines and
works extremely well across different types and scales of data,
giving cost benefits of the order of 50% or greater. Going
forward, we want to extend SCOPe to optimize compute costs,
including recommending optimal configurations.
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