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Abstract—When doing private domain marketing with cloud
services, the merchants usually have to purchase different ma-
chine learning models for the multiple marketing purposes, lead-
ing to a very high cost. We present a unified user-item matching
framework to simultaneously conduct item recommendation and
user targeting with just one model. We empirically demonstrate
that the above concurrent modeling is viable via modeling the
user-item interaction matrix with the multinomial distribution,
and propose a bidirectional bias-corrected NCE loss for the
implementation. The proposed loss function guides the model
to learn the user-item joint probability p(u, i) instead of the
conditional probability p(i|u) or p(u|i) through correcting both
the users and items’ biases caused by the in-batch negative
sampling. In addition, our framework is model-agnostic enabling
a flexible adaptation of different model architectures. Extensive
experiments demonstrate that our framework results in signifi-
cant performance gains in comparison with the state-of-the-art
methods, with greatly reduced cost on computing resources and
daily maintenance.

Index Terms—Marketing, Matching, Item Recommendation,
User Targeting, Bias Correction.

I. INTRODUCTION

Nowadays, merchants commonly sell their products in mul-
tiple channels, such as the public platforms like Amazon,
Alibaba, and the private channels like their own websites,
offline shops, and exclusive customer groups on social medias
like Wechat, etc. The marketing on those public platforms,
managed by the e-commerce companies, has reached a limit
in recent years. As a result, merchants are paying more
attention to operate their businesses via the private channels,
i.e., conducting the private domain marketing. In order to
manage businesses more effectively, merchants utilize the
cloud services like Amazon Web Services and Alibaba Cloud,
to link all the private channels.

The cloud services not only manage data for merchants, but
also provide machine learning techniques for the intelligent
marketing. There are two common marketing directions of
the merchants: the item recommendation (IR) [33] and the
user targeting (UT). To be more specific, merchants try to
keep their high-value users active and loyal by periodically
sending them messages or emails with recommended items.
Meanwhile, merchants always look forward to discovering the
potential buyers for certain items, e.g., new releases or popular
products, etc. Then, they can send personalized promotion

content to those targeted users. Owing to the machine learning
techniques, both item recommendation and user targeting
contribute to the profit of merchants significantly.

However, merchants have to purchase a handful of machine
learning models for different marketing purposes. First, the
item recommendation usually requires one model. Then, the
user targeting usually requires more than one model, because
practitioners need to create multiple targeting lists according to
different promotion subjects, e.g., popular products or bundles
of items. It takes great efforts to conduct feature engineering,
model training and inference for each model. These practices
push up the cost dramatically.

This paper proposes a unified user-item matching frame-
work, named UniMatch, to serve for the item recommenda-
tion and user targeting with one model only. The previous
recommendation algorithms utilize the conditional probability
p(i|u) as the modeling objective [8], [23], while the user
targeting models are commonly optimized via the objective
p(u|i). In our UniMatch framework, the modeling objective
is the joint probability p(u, i), which is implemented with a
bidirectional bias-corrected NCE loss, named bbcNCE. When
applied for the item recommendation, p(u, i) = p(i|u)p(u)
will produce a similar item list compared to p(i|u) given
a specific user. The same logic holds for the user targeting
as well. Thus, our framework is able to reduce the cost of
computing resources and data storage, and relieve the burden
of the daily maintenance as well.

Different from the online recommendation on the e-
commerce platforms, merchants usually apply these intelli-
gent marketing models less frequently when doing private
domain marketing. For instance, they send promotion emails
or personalized messages weekly or even longer. To adapt
for this specific scenario, both the potential user and recom-
mended item lists are produced under a next-n-day prediction
setting. Conventionally, both the item recommendation and
user targeting tasks are solved by modeling the Bernoulli or
multinomial distribution on the user-item interaction matrix.
In this paper, we first theoretically prove that it is equivalent
to model with the Bernoulli and multinomial distribution since
they converge to the same optima in practice. Then, we
uncover that modeling with the multinomial distribution has
better efficiency in terms of the data preparation and model
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convergence. Therefore, we follow our discovery and propose
a bidirectional NCE loss with bias correction to model the
user-item joint probability p(u, i). Additionally, our framework
adopts a classical two-tower architecture which enables a
flexible utilization of different models.

Our framework has been implemented in the Alibaba cloud
product, QuickAudience(QA)1, for the intelligent marketing of
the merchants. Our contributions are summarized as follows:

• We present a unified user-item matching framework,
UniMatch, which trains only one model to serve both the
item recommendation and user targeting simultaneously.
To the best of our knowledge, this is the first work on
the topic.

• We theoretically prove the equivalence between modeling
the user-item interaction matrix with the Bernoulli and
multinomial distributions, and empirically demonstrate
that modeling with the multinomial distribution yields
more robust results with much less resources.

• We propose a bidirectional bias-corrected NCE loss,
bbcNCE, and train models with the joint probability of
u and i being the learning objective in theory. Also, we
empirically show that the bbcNCE loss will guide the
model to learn the joint distribution.

• Extensive experiments on two public datasets and two
real-world datasets demonstrate that the proposed frame-
work consistently yields improved performance, in com-
parison with the state-of-the-art methods on both item
recommendation and user targeting tasks. In addition, our
framework saves up to 94%+ of the total cost compared
to previous practices.

II. PRELIMINARIES

In this section, we first describe the characteristics of the
private domain marketing for merchants, and then introduce
how the previous research solves the tasks of IR and UT via
modeling the user-item interaction matrix separately with the
Bernoulli or multinomial distributions.

A. Problem Definition

For the private domain marketing, the merchants generally
carry out the IR and UT for marketing periodically via their
private channels. They send out messages or emails to their
active users or potential customers, and then expect them
to take actions, e.g., visiting offline shops, making inquiries
online, and placing an order, etc, some time later. It relatively
takes longer time for the merchants to achieve the private
domain marketing results.

To fit for this application scenario, we formulate both the
IR and UT as a next-n-day prediction problem. When a user u
purchases an item i at time t, a record (u, i, t) is logged. Given
the raw logs {(u, i, t)}, the following data-processing method
is applied for the next-n-day prediction: we create a dataset
D = {(xu,t, yu,t) : t ∈ {1, 2, ..., Tu}|u ∈ {1, 2, ..., N}},
where xu,t represents user u’s purchases prior to day t, i.e., a

1https://help.aliyun.com/document detail/136924.html

sequence of purchased items, and yu,t is any item purchased
during the next n days [t, t + n), and Tu = T is the number
of days.

The dataset D forms a user-item interaction matrix Sui, as
shown in Fig. 1, where the rows and columns represent xu,t

and yu,t, respectively. We call xu,t as the pseudo-user, and
all possible sequences of purchases form the pseudo-user set.
Without loss of generality, we use u to represent the pseudo-
user xu,t, and i to represent yu,t in the rest of the paper.
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Fig. 1. An illustration of the user-item interaction matrix Sui. We use s ∈
{0, 1} to denote whether there is an interaction between a user and an item,
and c ∈ N to count the interaction times, e.g., cui denotes the interaction
times between u and i. The row vector sr records the interactions between
one user and all the items, and the column vector sc contains the interactions
between one item and all the users. The ultimate goal is to solve the unknown
entries in the matrix Sui, but it is hard to model the whole matrix directly.
So conventionally we either model the vectors sr or sc with the multinomial
distribution or model the scalar s with the Bernoulli distribution.

In the matrix Sui, the entries are either the counts of (u, i)
interactions cui or unknown. We have all the users form the
set U = {u1, u2, ..., uM}, and all the items form the set
I = {i1, i2, ..., iK}. In IR, given a user u ∈ U, we generate
matched items from the item pool I. In UT, we shall find out
the potential users out of all the users U given an item i ∈ I.
See Fig. 1 for a detailed illustration.

B. Modeling with the Bernoulli and Multinomial Distributions

Both the tasks of IR and UT try to estimate the value of
the unknown entries in Sui with the probability. Traditionally,
they are modeled with either the Bernoulli distribution on the
scalar s [14], [18], [32], or the multinomial distribution on the
vectors sr [24] or sc, as depicted in Fig. 1.

1) The Bernoulli Distribution: To conduct the IR and UT,
we can model s as a binary random variable drawn from a
Bernoulli distribution. Then, we have s ∼ B(σ(ϕθ(u, i))),
which means p(s = su,i|u, i) = σ(ϕθ(u, i)), where σ(·) is the

https://help.aliyun.com/document_detail/136924.html


sigmoid function, ϕθ(u, i) is the scalar output of the model
parameterized by θ, and it will be further illustrated in Sec.
III-B1.

Conventionally, the training dataset is constructed with the
positive and negative samples with s ∈ {0, 1}. The likelihood
of the dataset is the product of probabilities of all the single
data point, i.e.,

∏
u∈U,i∈I,(u,i)∈Db

p(s = su,i|u, i). By maxi-
mizing the log-likelihood, we obtain the binary cross-entropy
(BCE) loss:

l = − 1

|Db|
∑

u∈U,i∈I,(u,i)∈Db

su,i log σ(ϕθ(u, i))

+ (1− su,i) log(1− σ(ϕθ(u, i))),
(1)

where su,i ∈ {0, 1}, and su,i = 1 are the positive pairs in
Sui, and su,i = 0 are the negative samples randomly sampled
from Sui with the probability pn(u, i), and Db is the training
dataset consisting of the positive and negative samples.

Many studies have employed the Bernoulli distribution for
the IR and achieved state-of-the-art (SOTA) results [14], [32].
Theoretically, it should also work for the UT, and it will be
further depicted in Sec. III-A1.

2) The Multinomial Distribution: Within the multinomial
distribution scope, the modeling objective can be either sr
and sc. Traditionally only sr is studied in the IR and UT
research area. To the best of our knowledge, we do not find
any research in the IR or UT that models sc.

When modeling sr, we assume that it is drawn from a
multinomial distribution Mult(Nu,pu) for a given user u.
Here the total number of interactions Nu =

∑
i∈I cu,i of

u, pu = (pu1, pu2, ..., puK)T is a K-dimensional probability
vector summing to 1 [24]. The puk := p(i = k|u) is the
conditional probability modeled as

puk =
expϕθ(u, k)∑
j∈I expϕθ(u, j)

, (2)

where ϕθ(u, i) is the scalar measuring the similarity between
u and i, output of the model parameterized by θ as in Fig. 2.
Although not explicitly discussed, many research works build
upon the modeling with the multinomial distribution [2], [8],
[23], [38].

When the modeling objective is sc, it is assumed to follow
the multinomial distribution Mult(Ni,pi) for a given item
i. Here the total number of interactions Ni =

∑
u∈U cu,i of

i, pi = (p1i, p2i, ..., pMi)
T is a M -dimensional probability

vector summing to 1, and pmi := p(u = m|i) is the conditional
probability.

By maximizing the multinomial loglikelihood [24], we have
the losses in Eqs. 3 and 4 for them respectively:

l = − 1

|Dm|
∑

u∈U,i∈I,(u,i)∈Dm

log
expϕθ(u, i)∑

i′∈I expϕθ(u, i′)
, (3)

l = − 1

|Dm|
∑

u∈U,i∈I,(u,i)∈Dm

log
expϕθ(u, i)∑

u′∈U expϕθ(u′, i)
, (4)

TABLE I
THE BCE LOSS WITH DIFFERENT NEGATIVE SAMPLING PROBABILITIES

pn(u, i) LEAD TO DIFFERENT OPTIMA.

pn(u, i) ∝ ϕθ(u, i) ∼

p̂data(u) log p̂data(i|u)
p̂data(i) log p̂data(u|i)
p̂data(u) · p̂data(i) log

p̂data(u,i)
p̂data(u)p̂data(i)

1 log p̂data(u, i)

where Dm is the training dataset consisting of only the positive
user-item pairs.

III. A UNIFIED USER-ITEM MATCHING FRAMEWORK

In this section, we first show that modeling with the
Bernoulli and multinomial distributions are theoretically
equivalent. We prove that in theory they can converge to
the same optima by properly selecting the negative sampling
methods for the Bernoulli distribution, and setting up the
configurations for the multinomial distribution.

Then, we elaborate on the proposed framework, UniMatch,
which consists of a bidirectional bias-corrected NCE loss,
bbcNCE, that models the sr and sc concurrently with the
multinomial distribution leading the model convergence to
p̂data(u, i), a two-tower architecture that can incorporate var-
ious models, and an incremental training procedure that is
tailored to the application of the private domain marketing.

The incremental training mechanism enables the model
training to avoid learning from highly biased user-item dis-
tributions. The bbcNCE loss allows us to train only one
model and then infer one set of user and item embeddings,
which can be used for both the IR and UT. We choose the
bbcNCE loss originating from the multinomial distribution
over the equivalent loss setup from the Bernoulli distribution,
because we empirically unveil the discovery that the former
produces better, more robust results, and saves training costs
dramatically as in Sec. IV.

A. The equivalence between modeling with the Bernoulli and
multinomial distributions

When modeling with the Bernoulli distribution, we deal
with p(s|u, i) directly, while we study p(i|u) or p(u|i) with
the multinomial distribution. In order to bridge the gap be-
tween modeling with these two distributions, we uncover the
theoretical connection between these two modeling strategies,
and prove that they can converge to the same optima.

1) Optima of modeling with the Bernoulli distribution: We
derive the optima of modeling with the Bernoulli distribution
for various negative sampling methods. Inspired by Noise
Contrastive Estimation (NCE) [12], we assume the positive
samples of the training dataset form the set X, and the negative
samples form the set Y. The negative samples are randomly
sampled based on a certain distribution pn(u, i).

Assume X = {x1,x2, ...,xL} contains L samples, and
Y = {y1,y2, ...,yF } contains F samples, and Z = X ∪ Y =
{z1, z2, ...,zL+F } contains all the L + F samples. Here



TABLE II
THE OPTIMA OF THE SSM LOSS AND LOSSES WITH DIFFERENT SETTINGS OF EQ. 10. WE PROPOSE TO USE THE BBCNCE AS THE LOSS OF OUR

UNIMATCH FRAMEWORK FOR BOTH ITEM RECOMMENDATION AND USER TARGETING.

Settings Objective ϕθ(u, i) ∼ Loss

N/A sr log p̂data(i|u) SSM [17]

α = 1, δα = β = δβ = 0 sr log
p̂data(u,i)

p̂data(u)p̂data(i)

InfoNCE [29]
α = β = 1, δα = δβ = 0 sr , sc SimCLR [5]

α = δα = 1, β = δβ = 0 sr log p̂data(i|u) row-bcNCE
α = δα = 0, β = δβ = 1 sc log p̂data(u|i) col-bcNCE
α = δα = β = δβ = 1 sr , sc log p̂data(u, i) bbcNCE

xl := (u, i), yf := (u, i) and zj := (u, i), where u ∈ U and
i ∈ I. We assign each sample zj a binary class Cj : Cj = 1 if
zj comes from X, and Cj = 0 if zj is from Y.

We assume the joint probability of the positive samples in
X is parameterized by θ̃ as pmodel(u, i; θ̃) = pmodel(z; θ̃). So
we have the conditional probabilities:

p(z|C = 1; θ̃) = pmodel(z; θ̃) p(z|C = 0; θ̃) = pn(z).
(5)

The posterior probabilities are:

p(C = 1|z; θ̃) = pmodel(z; θ̃)P (C = 1)

pmodel(z; θ̃)P (C = 1) + pn(z)P (C = 0)

=
1

1 + exp(−G(z; θ̃))
= σ(G(z; θ̃)),

(6)

where

G(z; θ̃) = log
pmodel(z; θ̃)P (C = 1)

pn(z)P (C = 0)
, (7)

and we also have

p(C = 0|z; θ̃) = 1

1 + exp(G(z; θ̃))
.

So the log-likelihood is:

l(θ̃) =

L+F∑
j=1

Cj logP (Cj = 1|zj ; θ̃)

+ (1− Cj) logP (Cj = 0|zj ; θ̃).

Through optimizing the binary classification using the sam-
ples in Z and the corresponding binary classes C, we are
actually recovering the modeling of s with the Bernoulli
distribution as in Eq. 1. The dot product ϕθ(u, i) of Eq. 1
is G(z; θ) in Eq. 7:

ϕθ(u, i) = log
pmodel(z; θ̃)P (C = 1)

pn(z)P (C = 0)
. (8)

It is shown that pmodel(z; θ̃) will converge to the empirical
distribution p̂data(z) in [12]. As z := (u, i), we will have the
following equation:

ϕθ(u, i) ≈ log
p̂data(u, i)

pn(u, i)
+ C ′, (9)

where C ′ denotes some constant.

Different negative sampling strategies pn(u, i) will lead to
very different optimal ϕθ(u, i). For example, if we randomly
sample ñ items for each positive (u, i) pair to form the
negative samples with the user u, then we have pn(u, i) =
p̂data(u) · 1/K, where p̂data(u) is the empirical marginal
probability of the u. Substitute pn(u, i) into Eq. 9, we have
ϕθ(u, i) ≈ p̂data(i|u). Similarly, we can derive the results
in Tab. I for other negative sampling methods. Specifically,
when sampling with the uniform probability, we would have
ϕθ(u, i) ∼ log p̂data(u, i), which could be used for both the
IR and UT.

2) Optima of modeling with the multinomial distribution:
When modeling sr or sc with the multinomial distribution, we
have the losses in Eqs. 3 and 4. The vocabularies of the user
set U and item set I are very large, so the calculation of the
partition functions in the losses are very time-consuming and
memory-exhausting, causing problems during the optimization
[17]. In practice, it can be solved by implementing with the
sampled softmax loss (SSM) [8], [17]. The InfoNCE loss [29]
provides an alternative implementation with the sampling bias
attached as in CLRec [39].

In our applications of the IR and UT, we propose to model
sr and sc concurrently by combining the two losses into one,
and implement it with the bias-corrected NCE loss inspired
by the InfoNCE loss. The resulting loss is shown in Eq. 10:

l = − 1

|Su,i|
∑

u∈U,i∈I,su,i=1

α · log h(u, i)

h(u, i) +
∑

i′∈Iu h(u, i′)

+ β · log o(u, i)

o(u, i) +
∑

u′∈Ui
o(u, i′)

, (10)

where h(u, i) = exp(ϕθ(u, i)− δα log p̂data(i)), and o(u, i) =
exp(ϕθ(u, i) − δβ log p̂data(u)), Iu ⊂ I and Ui ⊂ U contain
hundreds or thousands of in-batch negative samples as in
Tab. IV, and p̂data(i) and p̂data(u) are empirical marginal
distributions calculated using the training data. α, β, δα and
δβ are binary numbers. δα log p̂data(i) and δβ log p̂data(u) are
the bias correction terms, which ‘correct’ the biases caused by
the in-batch negative sampling.

We call the first part row loss and the second part column
loss (See Fig. 1). As shown in [29], the row loss can be
regarded as an approximation of the loss in Eq. 3, and the
column loss as an approximation of the loss in Eq. 4.
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Fig. 2. The model architecture of the UniMatch framework. Users’ behavior sequences and items’ features go through the encoders separately, and output the
d-dimensional representation vectors u and i. The two encoders share the same item embedding lookup table. Their l2-normalized dot product is rescaled
by the temperature hyperparameter τ to obtain ϕθ(u, i) as in Eq. 13, which is then passed to the loss functions, e.g., Eq. 1 and 10.

The InfoNCE and SimCLR losses are the special cases of
Eq. 10 when the bias correction terms are omitted, i.e., δα =
δβ = 0. Then we have the InfoNCE loss by setting α = 1, β =
0, and the SimCLR loss with α = 1 = β = 0 as in Tab. II.

Different settings will lead to different optima of ϕθ(u, i). It
has been shown that the setting for InfoNCE will have the op-
timum exp(ϕθ(u, i)) ∝ p̂data(i|u)

p̂data(i)
in [29]. It is straightforward

that the SimCLR loss has the same optimum.
In the cases that the bias terms are retained, i.e., δα =

δβ = 1, the optimum of ϕθ(u, i) would be different. It results
in an NCE loss with the bias-correction. Different from the
InfoNCE loss that converges at the point where the mutual
information between users and items is maximized, the bias-
corrected NCE losses (bcNCE) converge when the conditional
probability is fitted by ϕθ(u, i). For example, when α = 1, β =
0, the loss degenerates to the row loss in Eq. 10, and the
optimum is exp(ϕθ(u,i))

p̂data(i)
∝ p̂data(i|u)

p̂data(i)
. Then we have ϕθ(u, i) ∝

log p̂data(i|u). Analogously, we have ϕθ(u, i) ∝ log p̂data(u|i)
for the setting α = 0, β = 1 as in Tab. II.

When α = β = δα = δβ = 1, the optimum is not trivial to
derive. The proof is given as follows:

In this setting, we have ϕθ(u, i) ∝ log p̂data(i|u) for the
row loss of Eq. 10 at its optimum, so we can assume

ϕθ(u, i) = log p̂data(i|u) + f(u)

= log p̂data(u, i)− log p̂data(u) + f(u),
(11)

for a given u and any i ∈ I, where f(·) is an arbitrary function
depending on u only. Similarly, in the optimum of the column
loss, we have

ϕθ(u, i) = log p̂data(u, i)− log p̂data(i) + g(i) (12)

for a given i and any u ∈ U, and g(·) is an arbitrary function
depending on i only.

Thus, from the equivalence of Eq. 11 and 12, we have the
equation that always holds for any u and i: − log p̂data(u) +
f(u) ≡ − log p̂data(i) + g(i), so it must be some constant.
Then we have ϕθ(u, i) = log p̂data(u, i) + C ′, where C ′

is some constant that is independent of u and i. When
ϕθ(u, i) converges to log p̂data(u, i), both parts in Eq. 10 can
reach their optima, so it is at least one of the solutions of
the whole loss. We name the resulting loss bbcNCE, short
for bidirectional-bias-corrected NCE. It is employed in our
framework for the IR and UT, as further illustrated in Sec.
III-B.

As proved in the above sections, the optima of different
settings of modeling with the Bernoulli and multinomial
distributions are listed in Tab. I and II. We can see that they
can guide the parameterized models to converge at the same
optima. Therefore, we can conclude that they are equivalent
on modeling the user-item interactions depicted in Fig. 1.



B. The UniMatch Framework

We propose to model the IR and UT jointly in the UniMatch
framework. In details, the UniMatch consists of the classical
two-tower architecture, the bbcNCE loss proposed in the
previous section and the incremental training procedure.

1) Architecture: We choose this architecture for two rea-
sons. The first is that the users and items can be processed
equivalently, while the other one is that there is no feature
crossing occurring before the final logits ϕθ(u, i), as shown
in Fig. 2. As a result, users’ and items’ embeddings can be
inferred separately, and then the approximate nearest neighbor
(ANN) search algorithm can be applied during serving [25].

The output of two towers are d-dimensional vectors u =
fθ(u) ∈ Rd and i = gθ(i) ∈ Rd, where θ is the model
parameter. The dot product ⟨u|i⟩, or the function of it is
used as the sufficient statistics of the probability distributions
defined in Sec. III-A. We find that l2-normalizing u and i and
then rescaling the dot product by the temperature τ lead to
better and robust results:

ϕθ(u, i) =
1

τ

⟨u|i⟩
||u||2||i||2

. (13)

• User Encoder. In this work, users’ behavior sequences
are used as the features of the user encoder, so any
sequential model can be adopted here. For example, the
CNN [21], [22], RNN (GRU [7], LSTM [10]), Trans-
former [37] and their enormous variants can be used
here. In fact, they have been widely applied in the item
recommendation, such as Caser [35], GRU4Rec [15]
SASRec [19], and etc.
We abstract the user encoder into 3 parts, embedding
lookup layer, context extraction layer and aggregation
layer. Through the lookup layer, item-ids are turned into
vectors. In the context extraction layer, we extract and
fuse the contextual information for each item in the
behavior sequence with CNN/RNN/Transformer. Finally,
we aggregate all the sequential item embeddings with
max/mean/last/attention pooling methods. Here the last
pooling means picking the last embedding in the se-
quence, and the attention pooling means summing over
all the embeddings with learned attention weights.

• Item Encoder. The item encoder takes item features as
the input and outputs a representative vector. In this work,
we obtain the item vectors directly from the lookup table.

Our framework is model agnostic, and in case that other
formats of data is taken as the input, the corresponding models
can be used to replace the sequential models.

2) Loss Function: As illustrated in Sec. II, we can choose
to model Sui with either the Bernoulli or multinomial distri-
butions to do the IR and UT simultaneously. And we have
proved that they could lead to the same optima in Sec. III-A.
This implies that we can employ either the BCE loss in Eq. 1
or the NCE loss in Eq. 10 in our framework.

Both the BCE loss with the uniform negative sampling
and the bbcNCE converge at the joint probability p̂data(u, i).
Theoretically, the two losses with the corresponding settings
should perform well in both IR and UT. Our experiments show
that the bbcNCE loss yields better and more robust results
across all 4 datasets. In addition, bbcNCE requires 1/10 ∼ 1/5
of the training time of the BCE, thus reduce the cost very
much. So we choose the bbcNCE as the loss of our UniMatch
framework.

3) Incremental training: Incremental training feeds the
training data sequentially based on the absolute time. It has
two advantages compare to feeding all the training data
randomly instead. First, in this setting, we train the model
every month from the saved checkpoint using the latest 1-
month training data. This will save lots of cost compare to
training with all the data in the past dozens of months that
are shuffled randomly. The other is that the results are much
better. When trained with the latest 1-month data, the model
parameters will shift to fit the updated user-item distribution,
and thus boost the results on predicting the near future.

IV. EXPERIMENTS

We verify whether the proposed framework is able to yield
the SOTA results for the IR and UT tasks on two public
datasets and two real-world datasets. Comprehensive exper-
iments are designed to compare the two modeling strategies
of the Bernoulli and multinomial distributions, and different
losses within the multinomial distribution scope are evaluated.
In addition, we show that our UniMatch framework is model
agnostic. It can adopt different models and produce better
results consistently. Finally, we show that the incremental
training is necessary for our applications.

A. Experimental Setup

1) Datasets: We use two public datasets, the Amazon
books and electronics data2 as well as two real-world datasets

2http://jmcauley.ucsd.edu/data/amazon/index.html

TABLE III
THE STATISTICS OF THE EXPERIMENTAL DATASETS, INCLUDING TWO OPEN DATASETS AMAZON BOOKS AND ELECTRONICS AS WELL AS TWO

REAL-WORLD DATASETS FROM OUR QA CLIENTS.

Data # users # items # interaction time-span avg. #actions/user avg. #actions/item

Books 536,409 338,739 6,132,506 31 months 11.4 18.1
Electronics 3,142,438 382,246 5,566,859 31 months 1.8 14.6
QA e comp 237,052 15,168 1,350,566 47 months 5.7 89.0
QA w comp 867,107 507 2,762,870 24 months 3.2 5449.4

http://jmcauley.ucsd.edu/data/amazon/index.html


TABLE IV
THE TRAINING DATA SAMPLES OF THE LOSSES DERIVED FROM MODELING

WITH MULTINOMIAL DISTRIBUTIONS, e.g., SSM, INFONCE, BBCNCE
AND ETC.

user id item seq item id log(p(u)) log(p(i))

406690 27886 755 4609 1319 19273 -11.83447 -9.34957
357729 8926 42571 9499 39415 -9.63725 -10.91818
392972 14172 6887 177888 21632 -11.42901 -11.83447
354500 85014 850 16291 176520 -11.42901 -10.73586
15839 10528 690 173 17 272267 -11.42901 -12.52762

TABLE V
THE TRAINING DATA SAMPLES OF THE BCE LOSS DERIVED FROM

MODELING WITH BERNOULLI DISTRIBUTIONS.

user id item seq item id label

406690 27886 755 4609 1319 19273 1
357729 8926 42571 9499 39415 1
394560 60076 5568 186 11 7 274408 16751 0
392972 14172 6887 177888 21632 1
391953 70 20167 171 6493 0

collected from two QuickAudience clients. The statistics of
the data is shown in Tab. III.

• Amazon. We choose two commonly used datasets,
Amazon books and electronics from Amazon.com. The
datasets span from May 1996 to July 2014. We utilize
the data from January 2012 to July 2014 in our experi-
ments. For Amazon books and electronics, each sample’s
behavior sequence is truncated at the length of 20 and
36, respectively.

• QuickAudience clients. We use e comp and w comp to
represent the two merchant clients, and these two datasets
span 47 and 24 months. Compared to Amazon datasets,
they have comparable number of users and interactions,
but the number of items are significantly less, so they
are less sparse as in Tab. III. We truncate the samples
at the length of 29 and 18 for e comp and w comp,
respectively.

In our experiments, the next-n-day prediction is set to
predict for the next month. With the whole dataset spanning
T months, we split the the data into train, validation and test
data as (0, T − 1], (T − 2, T − 1] and (T − 1, T ].

In the train/validation/test data, we filter out the users/items
who interact with less than 3 items/users. To train the model,
we adopt the incremental training method, and consume the
data consecutively according to the date t. In other words, we
feed data of t = 1 first and train for some epochs, and then
followed by t = 2, 3, .., T − 1.

The losses derived from the multinomial and Bernoulli dis-
tributions require different input data formats. The differences
are shown in Tab. IV and V with data samples. To be more
specific, the losses like bbcNCE require the bias-correction
terms pre-calculated from the empirical distributions of users
and items in the training data, as illustrated in Eq. 10. Each
record is the positive user-item pair, and the in-batch negative
sampling use the users or items in the same batch to form

the negative user-item pairs. On the other hand, for the BCE
loss derived from modeling with the Bernoulli distribution,
the records with label 1 are positive samples, and label 0 are
negative samples that are sampled with certain distributions
pn(u, i) as in Tab. I. The ratio between positive and negative
samples is 1 : 1.

The test data of the IR and UT are prepared separately.
The statistics of the 4 experimental datasets after splitting to
train and test are shown in Tab. VI. We describe the table
using the Amazon Books dataset as an example. Its train data
contains 2,985,163 records as the positive samples. For the IR,
the number of test users is 43,867. Each user has 1 positive
item and 99 negative items that is sampled randomly from the
item pool of 67967 items in total. Our experimental models
predict top 10 items out of the 100 candidates for each user,
and the results are evaluated using the metrics Recall@10 and
NDCG@10 depicted in the following section. The same logic
applies in the UT.

2) Hyperparameters: We have three hyperparameters to be
tuned in the experiments, i.e., temperature τ , batch-size and
the number of epochs, and choose the hyperparameters based
on the validation data through grid search. Different datasets
modeled with different distributions have their own specific
hyperparameters, and the grid search results are listed in Tab.
VII. The dimension d = 16 is adopted for all the datasets in
the experiments.

3) Evaluation Metrics: We employ two commonly used
metrics, Recall and Normalized Discounted Cumulative Gain
(NDCG), and report Recall@N and NDCG@N to evaluate
the top-N ranked items/users in the IR and UT. Another
popular metric HitRate@N is the same as Recall@N when
there is only 1 positive in the candidate pool, so we will not
repeat its results here.

For the IR, the two metrics are defined as follows:

Recall@N =
1

|U|
∑
u∈U

|Îu,N ∩ Iu|
Min(|Iu|, N)

, (14)

NDCG@N =
1

|U|
∑
u∈U

1

Zu

N∑
n=1

δ(̂iu,n ∈ Iu)
log2(n+ 1)

, (15)

where Îu,N denotes the top-N ranked items for u, îu,n is n-th
recommended item, Iu is the set of ground-truth items, and
δ(·) is the indicator function. Zu is the normalization constant
denoting the best possible discounted cumulative gain (DCG)
for the user u, which means that all the ground-truth items
are ranked at the top. For the UT the metrics are defined
symmetrically.

In the experiments, we use Recall/NDCG@10 for the IR and
UT across all the datasets except for QA w comp. We measure
QA w comp with Recall/NDCG@5 due to its small number of
items as in Tab. III. The NDCG measures the ranking status of
the recommended items or targeted users, and contains more
subtle information of the results, therefore we use it to select
the hyperparameters as well.



TABLE VI
THE STATISTICS OF THE 4 EXPERIMENTAL DATASETS AFTER SPLITTING INTO TRAIN AND TEST.

Amazon Books Amazon Electronics QA e comp QA w comp

train data 2,985,163 451,283 504,500 328,770

IR # test users 43,867 7,916 4,685 29,168
# item pool 67,967 14,118 1,943 221
# top-n items 10 10 10 5
# negatives 99 99 99 49

UT # test items 27,541 4,708 1,324 203
# user pool 317,667 207,060 30,439 171,354
# top-n users 10 10 10 5
# negatives 99 99 99 49

TABLE VII
THE HYPERPARAMETERS OF ALL THE DATASETS MODELED WITH BERNOULLI OR THE MULTINOMIAL DISTRIBUTIONS.

Amazon books Amazon Electronics QA e comp QA w comp
Hyperparameters Bernoulli Multinomial Bernoulli Multinomial Bernoulli Multinomial Bernoulli Multinomial

Batch-size 128 64 256 64 128 64 128 64
Temperature 0.1667 0.1667 0.5 0.5 0.25 0.125 0.125 0.1
Epochs 8 3 6 2 6 2 10 2

4) Experimental Comparisons: First, we compare the re-
sults between modeling with the multinomial and Bernoulli
distributions, Then, the losses derived from modeling with
the multinomial distribution are compared, and finally we
study distinct model architectures. The detailed comparisons
are listed as follows:

• The bbcNCE versus the BCE. Our proposed bbcNCE
loss (Eq. 10) and the BCE loss with the specific negative
sampling are the practical realizations of modeling the
user-item interaction matrix with the multinomial and
Bernoulli distributions, respectively. We experiment and
evaluate their performance in both IR and UT of all the
four datasets.

• The bbcNCE versus other losses in the multinomial
distribution scope. When modeling the interaction ma-
trix with the multinomial distribution, there are various
implementations using different losses. We compare the
bbcNCE loss with other well-applied losses like SSM to
show its effectiveness.

• The model-agnostic characteristic of the UniMatch
framework. We demonstrate that our framework is ca-
pable of integrating various models, including Youtube-

DNN [8], CNN used in Caser [35], RNN employed in
GRU4Rec [15] and Transformer utilized in SASRec [19],
and show that they produce consistent results in the IR
and UT tasks.

• The effectiveness of the incremental training. We setup
the training procedure as the incremental training month
by month. By this way, the model can adapt to the latest
distribution of user-item interactions, and produces much
better results, particularly in the case that the item trends
and users’ interests shift quickly.

• Cost Saving. We summarize how the concurrent model-
ing of the IR and UT tasks by our framework saves the
total cost up to 94%+.

5) Implementations: The code of our experiments is imple-
mented with TensorFlow 1.12 [1] in Python 2.7, running on
Nvidia GPU Tesla T4. We use the existing CNN and RNN
modules in TensoFlow, and implement the Transformer based
on this github repository3.

3https://github.com/Kyubyong/transformer

TABLE VIII
RESULTS OF IR AND UT OBTAINED BY THE BCE LOSS WITH DIFFERENT NEGATIVE SAMPLING STRATEGIES VERSUS THE BBCNCE. THE METRIC IS

NDCG@10 FOR AMAZON BOOKS, AMAZON ELECTRONICS, E COMP AND NDCG@5 FOR W COMP. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD,
THE SECOND BEST IS UNDERLINED. THE % IS OMITTED.

Amazon Books Amazon Electronics QA e comp QA w comp
losses NS: pn(u, i) IR UT AVG IR UT AVG IR UT AVG IR UT AVG

BCE p̂data(u) 53.07 41.95 47.51 24.43 10.50 17.46 36.99 4.98 20.98 35.73 20.59 28.16
BCE p̂data(i) 42.85 44.77 43.81 13.68 11.47 12.58 6.44 7.35 6.90 24.29 22.24 23.27
BCE p̂data(u)p̂data(i) 44.67 43.76 44.21 13.66 11.81 12.73 6.08 6.41 6.25 24.78 21.57 23.17
BCE 1/MK 52.79 42.46 47.63 24.34 9.81 17.08 36.51 6.70 21.60 35.55 23.42 29.48
bbcNCE - 57.20 47.67 52.44 24.39 12.77 18.58 37.65 8.25 22.95 36.48 24.30 30.39

https://github.com/Kyubyong/transformer


TABLE IX
RESULTS OF IR AND UT OF BBCNCE LOSS VERSUS OTHER LOSSES MODELING sr OR sc WITH THE MULTINOMIAL DISTRIBUTION ON AMAZON

DATASETS. THE % IS OMITTED. THE DETAILS OF THE LOSSES CAN BE FOUND IN TAB. II. ‘SSM W. N’ IS THE SSM LOSS WITH THE USERS’ AND ITEMS’
REPRESENTATIONS BEING L2-NORMALIZED. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, THE SECOND BEST RESULT IS UNDERLINED.

Amazon Books Amazon Electronics
IR UT AVG IR UT AVG

loss Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

SSM w. n. 77.07 56.88 58.01 35.85 67.54 46.36 48.78 25.82 13.14 6.06 30.96 15.94

InfoNCE 70.73 48.12 68.78 46.67 69.76 47.39 28.19 15.83 24.54 13.35 26.36 14.59
SimCLR 71.53 49.35 69.24 47.64 70.38 48.50 27.97 15.83 22.96 12.68 25.46 14.26

row-bcNCE 78.56 58.71 66.71 44.44 72.64 51.58 49.54 28.88 20.13 11.00 34.83 19.94
col-bcNCE 68.23 46.03 71.12 50.42 69.67 48.23 25.68 14.33 21.57 11.95 23.63 13.14
bbcNCE 77.43 57.20 69.18 47.67 73.31 52.44 41.89 24.39 22.55 12.77 32.22 18.58

B. Experimental Results

1) The bbcNCE versus the BCE: The backbone model is
the Youtube-DNN with mean pooling for all the losses. As
shown in Tab. VIII, we have these observations:

i). We compare different negative sampling methods with
the BCE loss. Negative sampling with pn(u, i) ∝ p̂data(u)
gives consistent good results in the IR, while pn(u, i) ∝
p̂data(i) performs well in the UT. The uniform sampling with
pn(u, i) = 1/MK gives equally good results for both the IR
and UT.

Particularly, the negative sampling with p̂data(u) outper-
forms p̂data(i) by 51.2% on average for the IR task on the
Amazon datasets. On our QA datasets, the difference is more
significant. The NDCG@10 is almost 5 times higher on the
QA e comp dataset. In contrast, the results obtained from the
negative sampling with p̂data(i) surpasses p̂data(u) for the UT
task. On the QA e comp dataset, the metric result is about
48% relatively higher.

The above comparisons show that the IR and UT tasks
require different sampling methods for the BCE loss to achieve
competing results.

ii). The proposed bbcNCE loss obtains the best or second
best results for both IR and UT across all the datasets.
This verifies that in theory modeling the user-item interaction
matrix Sui with Bernoulli and multinomial distributions makes
no difference, but in practice the bbcNCE can reach better and
robust results.

We hypothesize that it is due to the comparison mechanism
rooted in the loss. In the BCE loss, the model parameter θ
is optimized to push the sample’s sigmoid towards 1 or 0.
With the bbcNCE loss, the positive items/users are forced to
compare with other items/users in the same batch as detailed
in Tab. IV, and the model is optimized to allow the positive
item/user to surpass all the others.

iii). The bbcNCE loss costs much less than the BCE loss
during training. As illustrated in Tab. VII, the losses derived
from the multinomial modeling paradigm requires much less
training epochs to converge. For the Amazon books dataset,
the BCE loss reaches the best results with 8 epochs, while
bbcNCE converges in 3 epochs. In addition, the BCE loss
processes 2 times of data due to the 1 : 1 sampling of

negatives per epoch as illustrated in Tab. IV and V. Therefore,
the computation cost of training is about 5 times. For other
datasets, the computation cost is about 6 ∼ 10 times, which
is calculated from the epochs in Tab. VII.

We conjecture that the comparison mechanism stated above
applies here: in each epoch, a sample in the BCE loss does not
provide additional information except for its divergence from
the true label 1 or 0. According to the information theory, it
provides no more than 1 bit information. On the contrary, a
sample in the bbcNCE loss is employed to differentiate one
positive item/user from the rest of the items/users in the same
batch as in Tab. IV, so it can offer at most log2 64 = 6
bits of information if the batch-size is 64. To conclude, the
bbcNCE can utilize much more information per-epoch during
the training, and thus speeds up the convergence and reduce
the cost by a large amount.

2) The bbcNCE versus other losses in the multinomial
distribution scope: In comparison with other losses that
modeling either sr or sc or both, the bbcNCE guides the
model to learn the joint probability p(u, i) from the empirical
distribution p̂data(u, i). The experimental results in Tab. IX
and X are in alignment with our theoretical proof. We analyze
the experiments from the following three aspects.
i). We can use only one model trained with the bbcNCE loss

to serve for both IR and UT in our applications. For IR, the
bbcNCE is on par with the losses that model sr and lead to the
convergence at p̂data(i|u), i.e., SSM and row-bcNCE. For UT,
its results match with the col-bcNCE loss that models sc and
converges at p̂data(u|i) as in Tab. II. For both IR and UT, the
bbcNCE loss produces the best or second best results robustly,
which makes it the best choice for our QA applications.
ii). The bias correction plays the key role on lifting the

results in IR. As shown in Tab. IX and X, the bbcNCE and
row-bcNCE losses always produce much better results than
the InfoNCE and SimCLR losses that have no bias correction.
The SSM loss is implemented with negative sampling and
bias correction so that it converges to p̂data(i|u) in theory.
However, its performance is usually inferior than the bbcNCE
and row-bcNCE. The SSM loss draws negative samples from
the whole item vocabulary, while in contrast the bbcNCE
samples negatives from in-batch training data. Therefore, in



TABLE X
RESULTS OF IR AND UT OF THE BBCNCE LOSS VERSUS OTHER LOSSES MODELING sr OR vsu WITH THE MULTINOMIAL DISTRIBUTION ON

QUICKAUDIENCE DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, THE SECOND BEST IS UNDERLINED. THE % IS OMITTED.

QA e comp QA w comp
IR UT AVG IR UT AVG

loss Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

SSM w. n. 58.22 35.57 15.37 6.85 36.79 21.21 49.17 36.54 34.95 23.95 42.06 30.25

InfoNCE 15.82 7.33 14.62 7.29 15.22 7.31 38.14 28.63 27.59 18.09 32.87 23.36
SimCLR 16.25 7.19 15.30 7.18 15.77 7.18 36.56 27.26 35.36 24.10 35.96 25.68

row-bcNCE 62.37 38.49 15.98 7.27 39.17 22.88 50.17 37.10 31.53 20.92 40.85 29.01
col-bcNCE 25.62 12.61 18.09 8.35 21.86 10.48 34.32 24.24 38.42 24.87 36.37 24.56
bbcNCE 61.35 37.65 17.63 8.25 39.49 22.95 49.54 36.48 35.47 24.30 42.50 30.39

TABLE XI
STATISTICS OF THE POPULARITY/ACTIVENESS OF ITEMS/USERS RETRIEVED BY DIFFERENT LOSSES. WE MEASURE THE MEDIAN AND AVERAGE OF

ITEMS’ POPULARITY AND USERS’ ACTIVENESS. THE POPULARITY AND ACTIVENESS ARE DEFINED AS THE NUMBER OF INTERACTIONS OCCURRED IN
THE PAST ONE YEAR. HERE ‘MED’ AND ‘AVG’ STANDS FOR MEDIAN AND AVERAGE RESPECTIVELY.

Amazon Books Amazon Electronics QA e comp QA w comp
IR UT IR UT IR UT IR UT

losses med avg med avg med avg med avg med avg med avg med avg med avg

SSM w. n. 25 72 6 13.6 232 491 4 4.8 94 187 4 6.4 11969 15176 5 7.1

InfoNCE 16 46 6 13.6 34 139 4 5.1 52 104 4 6.3 2332 5815 4 6.3
SimCLR 16 47 6 13.3 33 125 4 5.1 55 113 4 6.5 2294 5961 5 7.1

row-bcNCE 27 78 6 12.9 236 496 4 4.9 138 245 4 6.6 11969 15189 5 6.7
col-bcNCE 16 47 6 14.7 39 150 4 5.2 96 173 4 7.2 3063 6456 5 7.8
bbcNCE 23 69 6 14.1 160 400 4 5.1 138 246 5 7.4 12837 15320 5 7.1

our monthly incremental training setting, the bbcNCE only
encounters negative items within the current month, and the
SSM compares the positive items to the negative items sam-
pled from the whole vocabulary. This brings the advantage
of the bbcNCE on fitting on the latest data distribution, thus
makes the results better.

In UT, the performance of bbcNCE and col-bcNCE does
not always surpass other losses by a large margin. This
implies that the bias correction from the users’ empirical
distribution is not that effective anymore when the data is
sparse. We speculate that the marginal distribution calculated
from the sparse dataset is not reliable. Because most users
only have very few interactions, the p̂data(u) computed will
not be statistically significant. On the contrary, if the user
behavior data is relatively rich, the col-bcNCE and bbcNCE
that correct the users’ distribution bias produce much better
results compared to the InfoNCE and SimCLR loss, as shown
on the Amazon Books, QA e comp and w comp datasets.
iii). The experiment results in Tab. IX and X show that

the SimCLR and InfoNCE losses yield very close results.
This is in align with our claim that they both converges at
p̂data(u, i)/(p̂data(u)p̂data(i)) as in Tab. II. As shown in [29],
the InfoNCE loss converges when the mutual information
between the two matching variables is maximized. When
it is applied in IR, it will tend to recommend users with
unpopular items, because those items usually have high point-
wise mutual information with the users.

We use the number of historical interactions to measure

the popularity/activeness of items/users as in Tab. XI. For
example, if an item is purchased 100 times in the past 1
year, then its popularity is 100. For all the top-n items/users
retrieved by the model, we calculate the median and average
popularity/activeness. Taking the Amazon Books dataset as
an example, the median item popularity from the InfoNCE
and SimCLR losses is 16, which means that 50% of the
recommended items have less or equal than 16 interactions
in the past 1 year. In contrast, the median popularity of the
bbcNCE, row-bcNCE and SSM losses ranges from 23 to 27.
In all the datasets in Tab. XI, the InfoNCE and SimCLR losses
always tend to recommend unpopular items. In UT, the two
losses prefer inactive users in general, but it is not that evident
because most users do not have many interactions.

3) The model-agnostic characteristic of the UniMatch
framework: We implement 5 types of context extractors,
i.e., Youtube-DNN4, 1-layer CNN, GRU, LSTM, and 1-layer
Transformer, and 4 types of aggregators, i.e., mean pooling,
last pooling, max pooling and attention pooling. So we have 20
models in total. We report the results of QA w comp dataset
in Tab. XII. The results of Max pooling are always worse than
other aggregators, so we omit them.

In general, the results from different models under the same
loss does not differ notably. This suggests that the complicated
context extraction methods that thrive in processing the text
sequence are not superior when dealing with users’ sequential

4Youtube-DNN represents no context extractor here, i.e., the lookup item
embeddings are directly passed to the aggregation layer.



TABLE XII
RESULTS OF IR AND UT OF BBCNCE LOSS VERSUS OTHER LOSSES EVALUATED USING VARIOUS MODELS ON OUR QA W COMP DATASETS. THE METRIC

IS NDCG@5. EACH COLUMN REPRESENTS ONE KIND OF MODEL, AND ‘CEX’ MEANS THE CONTEXT EXTRACTOR OF THE MODEL, AND ‘AGG’ IS THE
SEQUENCE AGGREGATOR. ‘MEAN’, ‘LAST’, ‘ATTN’ ARE MEAN, LAST AND ATTENTION POOLING RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD, THE SECOND BEST IS UNDERLINED. THE % IS OMITTED.

CEX Youtube-DNN CNN-l1 GRU LSTM Transformer-l1
AGG mean last attn mean last attn mean last attn mean last attn mean last attn

IR

SSM w. n. 36.54 27.51 36.62 35.67 30.61 36.05 36.85 35.21 36.40 35.93 35.92 35.59 35.27 34.89 37.06

InfoNCE 28.63 19.84 27.58 27.82 23.38 27.12 28.13 27.58 27.12 27.12 27.98 28.39 27.91 25.67 26.22
SimCLR 27.26 20.45 27.17 27.48 23.96 26.59 27.46 27.32 26.95 26.47 26.89 27.49 26.02 24.92 25.87

row-bcNCE 37.10 28.35 36.61 36.86 31.08 37.01 36.27 36.22 35.87 36.69 36.47 36.53 36.81 33.95 36.79
col-bcNCE 24.24 9.10 26.25 24.76 11.66 23.52 19.93 19.02 18.80 16.90 12.72 16.58 15.89 17.73 24.99
bbcNCE 36.48 28.52 36.77 36.26 31.39 37.12 37.05 36.31 35.70 36.11 35.85 35.98 36.02 34.78 36.43

UT

SSM w. n. 23.95 13.61 23.88 25.17 14.97 23.65 22.01 24.49 25.61 24.49 26.02 24.02 20.53 20.15 23.25

InfoNCE 18.09 13.91 19.92 24.21 13.35 22.85 23.91 23.78 24.08 26.24 24.07 24.31 19.21 19.66 20.24
SimCLR 24.10 13.73 23.57 23.89 14.86 25.12 25.72 26.23 25.43 26.41 24.54 26.01 25.68 20.69 23.40

row-bcNCE 20.92 13.63 20.61 23.04 16.86 22.42 24.66 24.39 24.96 23.89 25.09 25.09 22.33 20.23 21.09
col-bcNCE 24.87 14.64 26.54 26.53 18.65 26.72 26.82 28.50 25.81 25.79 24.44 28.02 24.03 24.02 25.93
bbcNCE 24.30 13.33 24.29 25.67 18.35 26.79 27.64 29.47 26.63 27.85 27.93 28.88 25.44 22.64 24.06

behavior data, e.g., the Amazon and QA datasets. It further
implies that the contextual information is not very important
on understanding users’ single interaction with an item. In
contrast, a word’s exact meaning is defined by its context in
natural language processing (NLP). This finding motivates us
to adopt the Youtube-DNN with mean pooling as our default
model for QA to save the computation cost in practice.

Across all the models, the proposed bbcNCE loss gives best
or close to the best results in both tasks. For IR, the bbcNCE
and row-bcNCE are the top two in almost all the models, while
the bbcNCE and col-bcNCE are the best for UT. The results
further verify our statements on the losses’ optima as in Tab.
II, regardless of the choice of models.

4) The effectiveness of the incremental training: In our
UniMatch framework, we train the model incrementally month
by month. We adopt this training setup for our specific
applications in QA, because IR and UT campaigns are usually
organized monthly in private domain marketing. In addition,
the incremental training can save cost, and improve the pre-
diction results as depicted in Fig. 3.

We observe that the gain of the incremental training is
crucial on the Amazon Books and QA e comp datasets. The
NDCG metric of the model trained till 1 months before the
test date is much higher than trained till 2 or 3 months before.
We speculate that their items are very sensitive to time. For
example, users prefer to buy new and popular books, which
may vary quickly. So we have to keep training the model
with the latest data to adapt for the trend. On the other
hand, the results of the Amazon Electronics and QA w comp
datasets are relatively stable during the incremental training.
This implies their items are more stable over time, and their
users’ interests are relatively static.

5) Cost Saving: We demonstrate that the flexibility of our
framework and the proposed bbcNCE loss enable a significant
cost saving in practice.

i). We choose the bbcNCE instead of the BCE loss to

reduce the data consumption during the training as in Sec.
IV-B1. Thus we reduce the cost to 1/10 ∼ 1/5. Our theoretical
analysis and experimental results show that the performance
is on par or better.
ii). We propose the bbcNCE so that we can train only one

model to do both IR and UT without performance decline
as depicted in Sec. IV-B2. We can reduce both the training
and prediction cost to 1/2. At the same time, the underlying
management cost of multiple models is also saved.
iii). We analyse various popular models and choose the

simplest Youtube-DNN with mean pooling as our default
model. Experiments in Sec. IV-B3 show that it can generate
SOTA comparable results on all the datasets. Therefore, we do
not have to choose too complex models and relieve ourselves
from the large computation burden.
iv). We adopt the incremental training setup as illustrated

in Sec. IV-B4. With the conventional training strategy, we
use past 1 year data to train from scratch monthly. Using the
incremental training, we can just utilize the past 1 month data
and train from the latest model checkpoint. By this way, we
can reduce the training cost to 1/12.

To conclude, in the applications of QA, our UniMatch
framework can reduce the training cost up to 1/240 ∼ 1/120
while keeping the SOTA comparable performance. The predic-
tion cost is reduced to 1/2 and eliminate the management cost
of multiple models. The training cost is usually about 90% of
total cost, so we can save up to 94%+.

V. RELATED WORK

A. Item Recommendation

Item recommendation (IR) have been studied in both
academia and industry for decades. The collaborative filtering
(CF) and its variants are widely adopted in the early years
[34]. Later its descendant, the matrix factorization (MF) [9],
is proposed to solve the problem more elegantly with higher
accuracy. Then, the Probabilistic Matrix Factorization (PMF)
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Fig. 3. The intermediate results from the incremental training setup for the Amazon and QA datasets. The y-axis is the NDCG metric, and x-axis represents
the number of months ahead of the date of the test data. The metric increases steadily as newer data is feed into training.

[27] builds a solid theoretic foundation for the MF models
based on the probability theory, i.e., PMF models s with
Gaussian distributions. Later, the Bernoulli distribution is
shown to be superior in modeling s [14].

In recent years, the neural networks have become a sig-
nificant component for the recommendation algorithms [14],
[32], and contributed greatly for the recommender systems
in industry. There are two common stages in an large-scale
industrial recommendation application, i.e., the candidate gen-
eration stage and the ranking stage. The former stage is usually
formulated as a multi-class classification problem to quickly
select a small set of item candidates from a vast number
of items [2], [8], [23]. In the ranking stage, the problem is
formulated as a binary classification to rank all the selected
candidates [6], [28], [40]. Although not directly declared in
many of these research, the underlying probability theory
for the candidate generation stage is to model sr with the
multinomial distribution [24], and is to model s with the
Bernoulli distribution for the ranking stage [14].

In the candidate generation stage, the huge number of items
causes problems on calculating the partition function of the
loss during the optimisation (as in Eq. 3). The sampled softmax
(SSM) loss [17] is widely employed to solve the problem
[8], [23]. Recently, the InfoNCE loss is exploited in item
recommendation to suppress popular items during candidate
generation [39].

B. User Targeting

User targeting (UT) mines the potential users for given
items. The item could be anything that users can interact with,
e.g., an insurance product [20], a company/business [26], [30],
[31], a specific message (e.g., tweets) on social medias [11],
[36] and even another user [13], etc. UT is usually formulated
as a binary classification problem, and solved with models like
SVM, LR and neural networks, etc [3], [4], [16].

In an e-commerce company, the item could be a product, a
brand, a product category, and a merchant, etc. The number of
the items ranges from thousands to hundreds of millions. It is
impractical to model each item respectively, so we commonly
model the items all together via binary classification like [32].

In the above applications, researchers implicitly model s
with the Bernoulli distribution, and the negative samples are
generated with probability pn(u, i) ∝ p̂data(i).

VI. CONCLUSIONS

In this work, we propose the UniMatch framework that can
be applied in both IR and UT to help merchants conduct the
private domain marketing. Our framework is model agnostic
and consists of a two-tower architecture as well as the incre-
mental training setup and the proposed bbcNCE loss. Through
comprehensive comparisons with different losses, models and
training procedures, we show that our framework can generate
SOTA comparable results theoretically and experimentally.
Our framework reduces more than 94% of the total cost,
making it affordable for merchants to do private domain
marketing with the SOTA performance.
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