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Abstract—Many patients with chronic diseases resort to mul-
tiple medications to relieve various symptoms, which raises
concerns about the safety of multiple medication use, as severe
drug-drug antagonism can lead to serious adverse effects or even
death. This paper presents a Decision Support System, called
DSSDDI, based on drug-drug interactions to support doctors
prescribing decisions. DSSDDI contains three modules, Drug-
Drug Interaction (DDI) module, Medical Decision (MD) module
and Medical Support (MS) module. The DDI module learns
safer and more effective drug representations from the drug-
drug interactions. To capture the potential causal relationship
between DDI and medication use, the MD module considers
the representations of patients and drugs as context, DDI and
patients’ similarity as treatment, and medication use as outcome
to construct counterfactual links for the representation learning.
Furthermore, the MS module provides drug candidates to doctors
with explanations. Experiments on the chronic data collected
from the Hong Kong Chronic Disease Study Project and a public
diagnostic data MIMIC-III demonstrate that DSSDDI can be a
reliable reference for doctors in terms of safety and efficiency
of clinical diagnosis, with significant improvements compared
to baseline methods. Source code of the proposed DSSDDI is
publicly available at https://github.com/TianBian95/DSSDDI.

Index Terms—Decision Support System, Drug-Drug Interac-
tions, Causal Inference

I. INTRODUCTION

Due to physiological changes, increased risk of disease
and decreased drug clearance, problematic polypharmacy has
become a significant factor in the increased risk of severe Ad-
verse Drug Events (ADEs), hospital admissions, and death in
chronic patients [1]. This issue is especially prominent during
critical times, such as the epidemic of coronavirus disease
(COVID-19). With the shortage of clinical resources, med-
ication for chronic patients lacks guidance from professional
doctors and presents unique challenges. Further, polypharmacy
increases the potential for drug-drug interactions (DDI), in-
cluding potentially inappropriate drug combinations present in
prescription medications [2], which accelerates the imbalance
between the complex needs of the chronic patients and the
problems caused by the multiple medications. A systematic
approach is required to efficiently support doctors in tailoring
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of medication regimens to extricate the chronic patients from
the dilemma.

Advanced technologies nowadays have been applied to
develop more effective decision support systems for better-
informed decisions [3]. However, some methods [4], [5] that
learn from association between patients and drugs, mainly
rely on patient and drug features, but ignore the impact of
DDI on medical decisions. Some other methods [6] make
use of DDI to learn drug embeddings but fail to capture the
causal relationship between drug embeddings and medication
suggestions. Therefore, our goal in this paper is: (1) leverag-
ing DDI to avoid severe ADEs in medication suggestions,
and (2) employing the causal model [7], [8] to learn the
potential causal relationships between DDI and medication
suggestions to improve the accuracy.

We studied the chronic patients through the Hong Kong
Chronic Disease Study Project, including their personal fea-
tures, clinical history, psychological assessment and medica-
tion use. We propose a decision support system, DSSDDI, that
can provide explainable medication suggestions for chronic
diseases. A bipartite graph can be naturally formed on the
patients and drugs, and then DSSDDI applies link prediction
on the bipartite graph for medication suggestions. With the
help of an external DDI knowledge graph, the decision support
system inputs patient features and outputs medication sug-
gestions and the corresponding DDI explanations to doctors
as clinical diagnostic references. The design of DSSDDI is
depicted in Fig. 1.

There are three modules in DSSDDI: the Drug-Drug Inter-
action (DDI) module, the Medical Decision (MD) module and
the Medical Support (MS) module. The function and merit of
each module are described as follows.
• The DDI module uses our proposed Drug-Drug Interac-

tion Graph Convolutional Network (DDIGCN) to learn
drug representations from synergistic or antagonistic ef-
fects between drugs. The DDI module can alleviate severe
adverse drug events, which is crucial to ensure safe and
effective medical decisions.

• The MD module uses a Medical Decision Graph Con-
volutional Network (MDGCN) to suggest drugs. We
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Fig. 1. Our proposed decision support system uses external knowledge of
DDI. Given patient features as input, a doctor can obtain the medication
suggestions from the system, as well as the corresponding DDI explanations.

construct counterfactual links to augment the training data
for MDGCN based on the causal model that considers the
representations of patients and drugs as context, DDI and
patients’ similarity as treatment, and medication use as
outcome. This can learn the causal relationship between
DDI and medication use.

• After obtaining the suggested drugs, the MS module
extracts coherent subgraphs with DDI knowledge as
explainable factors for doctors’ reference. Such subgraphs
illustrate the synergistic and antagonistic effects between
drugs.

Experiments on data from Hong Kong Chronic Disease Study
Project and public diagnostic data MIMIC-III [9] demonstrate
the superior performance of DSSDDI in medication suggestion
and its explainability.

II. DATA COLLECTION

Our study focuses on the patients participating in the Hong
Kong Chronic Disease Study Project, who may require mul-
tiple medications because they have multi-chronic diseases.
We collect data from questionnaire interviews and laboratory
results to predict what medications they would need to take.
Since drug-drug interactions are the primary consideration for
doctors when prescribing medications, DSSDDI is designed to
avoid the inclusion of drugs that contain antagonistic effects
between each other and suggest drugs that have synergistic
effects. In this section, we first introduce the participants
enrolled in this project, then describe the drugs we use for
the decision support system, followed by a further description
of the drug-drug interactions used in this paper.

A. Participants

This project was initiated by Prince of Wales Hospital1

in 2001. Subjects aged 65 years and older were recruited
under the project. The cohort was invited for a questionnaire
interview and measurement of physical performance for 1 – 4
times during 2001 – 2017. We extracted 2254 male and 1903
female interview records. The distribution of the diseases
suffered by these subjects is shown in Fig. 2. Hypertension,

1https://www3.ha.org.hk/pwh/index e.asp
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Fig. 2. The proportion of patients with various diseases.
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Fig. 3. The distribution of medications for common chronic diseases.

cardiovascular diseases, diabetes, digestive diseases and arthri-
tis are the chronic diseases they commonly suffer.

The questionnaire interview contains three types of subject
information. The first type is the personal information about
the participants such as gender and age. The second type is the
clinical history of participants. For example, participants were
asked whether they had prostatitis before or had taken taken
the Alpha-blocker. It is important to note that the questionnaire
only mentions the clinical history of the family of drugs, but
not the specific drugs. The third type is a psychological assess-
ment of the participants, including the Geriatric Depression
Scale (GDS) Score and some emotional questions, such as
whether they had felt downhearted in the last four weeks. The
physical examination included the participants’ blood pressure,
Body Mass Index (BMI), etc. Combining the three types of
information, we collected a total of 71 features.

B. Medication Use

In total, the participants took 86 medications that are
commonly used to treat chronic conditions. For example,
Doxazosin, a medication commonly used by the participants,
is an alpha-1 adrenergic receptor used to treat mild to moderate
hypertension and urinary obstruction due to benign prostatic
hyperplasia. Fig. 3 shows the distribution of these 86 drugs
for various diseases. As there is usually more than one drug
available for treating a chronic disease such as diabetes,
gastrointestinal diseases, and arthritis, the choice of the most
appropriate drug is a significant consideration for doctors,
and our proposed DSSDDI is designed to help doctors make
decisions more efficiently. We collect pre-trained embedding
of each drug in the Drug Repurposing Knowledge Graph
(DRKG) [10] as the original feature of the drug for the
medication suggestion prediction. Each pre-trained embedding
is trained using a classical knowledge representation learning
method named TransE [11] with a dimension size of 400.



C. Drug-Drug Interactions

DrugCombDB [12] is a database containing drug-drug in-
teractions obtained from various sources, including external
databases, manual curations from PubMed literature and ex-
perimental results. We take the drug-drug interactions that have
been classified as exhibiting synergistic or antagonistic effects
from DrugCombDB2. For the 86 drugs used for suggestion,
we extract 97 drug pairs classified as having synergistic effects
and 243 drug pairs classified as having antagonistic effects
from the DrugCombDB database. Based on these drug-drug
interactions, the proposed decision support system obtains
better effectiveness by avoiding pairs with antagonistic effects
and promoting pairs with synergistic effects in medication
suggestions.

III. PROBLEM FORMULATION

In this paper, we design three modules for the proposed
decision support system: Drug-Drug Interaction (DDI) mod-
ule, Medical Decision (MD) module and Medical Support
(MS) module. In this section, we will first introduce the
generalized decision support system, then define the DDI
graph constructed in the DDI module, and give the definitions
of medical decision and medical support.

Definition 1 (Decision Support System): Given a set of drug
candidates denoted as V = {D1, D2, · · · , D|V |}, the decision
support system is designed to suggest a list of appropriate
drugs from V to a patient Si based on the patient features xi.

Definition 2 (Drug-Drug Interaction (DDI) Graph): We
define the drug-drug interaction (DDI) graph as G = (V,E),
where the node set V = {D1, D2, · · · , D|V |} denotes the
drugs and the edge set E denotes the synergistic or antagonis-
tic effects between drugs. An edge euv = 1 in E represents
a synergistic effect between drugs Du and Dv , and an edge
euv = −1 in E represents an antagonistic effect.

Definition 3 (Medical Decision): The target of medical
decision is to identify the most effective combination of drugs
for the patients from a set of drug candidates. By representing
the relationship between patients and drugs as a bipartite
graph, we formulate the medical decision problem based on
the results of link prediction and further use the drug-drug
interactions as constraints to identify the appropriate drugs.
Specifically, suppose that we are given a set of observed
patients’ data denoted as O = {xi,yi}mi=1, yi is a vector with
yiv = 1 if patient Si is taking drug Dv and yiv = 0 otherwise,
m is the number of observed patients. The set of unobserved
patients’ data is denoted as U = {xj ,yj}nj=m+1, where n
is the number of all patients. Given the patient features xj ,
the target of medical decision is first to predict the score
of each drug and then to suggest the most k reliable drugs
Q = {Dq1, Dq2, · · · , Dqk} to the unobserved patient Sj based
on drug-drug interactions.

Definition 4 (Medical Support): The target of medical
support is to find explainable factors through drug-drug inter-

2http://drugcombdb.denglab.org/download/

actions for the k suggested drugs Q = {Dq1, Dq2, · · · , Dqk}.
Specifically, given Q and the DDI graph G, we can find
a subgraph Gsub of G containing all drug-drug interactions
associated with the suggested drugs, and thus can act as
medical support for the Medical Decision module.

IV. THE PROPOSED DSSDDI

Fig. 4 depicts the overall architecture of DSSDDI which
consists of three modules: Drug-Drug Interaction, Medical
Decision and Medical Support. In Drug-Drug Interaction, we
learn the drug relation representations. In Medical Decision,
we capture the causal relationship between DDI and medi-
cation use. In Medical Support, we generate the explanation
of the suggested drugs. In this section, we elaborate on each
module.

A. Drug-Drug Interaction Module

In the Drug-Drug Interaction (DDI) module, we first de-
velop a model, DDIGCN, to learn the drug representations.
The main idea is to learn drug relation features through
synergistic or antagonistic effects between drugs. In the fol-
lowing, we first describe how to construct the DDI graph, then
illustrate how to update the drug representations by DDIGCN,
and finally describe the model training process.

1) DDI Graph Construction: As described in Definition 2,
we construct the DDI graph G = (V,E) based on the data
collected from DrugCombDB [12] with Drug ID embedding
vectors zv for Dv ∈ V . To better capture the relation features
among drugs, we use one-hot ID embeddings instead of
pre-trained embeddings as the original features in this DDI
module. Besides synergistic and antagonistic effects, we add
the third type of edges between drugs in the DDI graph to
explicitly indicate that they have no interactions. Specifically,
we randomly sample drug pairs, denoted as Du and Dv , from
V with no synergistic or antagonistic effect, and create an
edge euv = 0 to represent the lack of interactions between
them. In this manner, DDIGCN can capture synergistic and
antagonistic drug-drug interactions as well as no interactions
in drug embeddings.

2) DDIGCN: In this step, we design a DDIGCN to update
the drug representations. We use Graph Isomorphism Network
(GIN) [13] as the backbone. The graph convolutional operation
is defined as:

z(t)v = f
(t)
Θ1

(
(1 + ε(t)) · z(t−1)v +

∑
u∈Nv

z
(t−1)
u

|Nv|

)
, (1)

where z
(t)
v denotes the updated hidden representation of drug

Dv after t layers propagation, f (t)Θ1
denotes the multi-layer

perceptrons (MLP) with parameters Θ1, ε(t) is a learnable
parameter of the t-th graph convolutional layer, Nv denotes
the set of drugs that have interactions with drug Dv .

Besides GIN, we also consider signed graph-based models,
such as SGCN [14], SiGAT [15] and SNEA [16] as alternative
backbones, as there are both positive and negative edges in the
DDI graph G. Take SGCN as an example, we denote Bv(t) =
{Du|euv = 1} and Uv(t) = {Du|euv = −1} for drug Dv .
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Fig. 4. The proposed decision support system (DSSDDI) consists of three modules: DDI module, MD module and MS module. (a) In the DDI module, we
construct the drug-drug interaction matrix where the entries of the matrix represent the synergistic effects (blue) or antagonistic effects (red) among drugs.
Through a proposed DDIGCN, we obtain drug relation representations shared with the MD module. (b) In the MD module, we first construct a bipartite graph
from the medication use (black lines) and counterfactual links (yellow dashed lines). Then, we obtain the suggested drugs through the proposed MDGCN.
(c) In the MS module, the explanation of the suggested drugs is extracted through a subgraph querying algorithm.

The synergistic and antagonistic hidden representations of drug
Dv , denoted by h

B(t)
v and h

U(t)
v respectively, are updated as:

hB(t)
v = σ(WB(t)[

∑
eiv=1

h
B(t−1)
i

|B(t)|
,
∑

ejv=−1

h
U(t−1)
j

|U(t)|
,hB(t−1)

v ])

(2)

hU(t)
v = σ(WU(t)[

∑
eiv=1

h
U(t−1)
i

|U(t)|
,
∑

ejv=−1

h
B(t−1)
j

|B(t)|
,hU(t−1)

v ])

(3)
Finally, z

(t)
v is obtained by concatenating h

B(t)
v and h

U(t)
v :

z(t)v = [hB(t)
v ,hU(t)

v ], (4)

where σ is a non-linear activation function, WB(t) and WU(t)

are the linear transformation matrices responsible for the
synergistic and antagonistic interactions, respectively.

3) Model Training: By treating DDIGCN as an edge re-
gression model, we train the model through the Mean Squared
Error (MSE) loss function [17]. The score of each edge is
calculated by the inner product of two drug representations:

êvu = z(t)>v z(t)u . (5)

The MSE loss is defined as:

LM =
1

|Etrain|
∑

v,u∈Etrain

(êvu − evu)2, (6)

where Etrain denotes all edges involved in training.

B. Medical Decision Module

In the Medical Decision (MD) module, we construct a
bipartite graph based on the observed patients’ medication use
and develop a Medical Decision Graph Convolutional Network
(MDGCN) to provide medical suggestion. To capture the
causal relationship between DDI and patient medication use,

we augment the graph data with a causal model to generate
counterfactual links for training MDGCN. Correspondingly,
this MD module can be described in three parts: Counter-
factual Links for Medical Decision, MDGCN and Model
Training.

1) Counterfactual Links for Medical Decision: The target
of counterfactual causal inference methods is to capture the
causal relationship between treatment and outcome by explor-
ing the counterfactual questions like “would the outcome be
different if the treatment was different?” [18]. Thus, given
the context, treatments, and corresponding outcomes, we can
infer the causal relationship by finding the effect of different
treatments on the outcomes.

We describe the idea of link prediction with causal model
which is an analogy of making medical decision with causal
model. Fig. 5(a) illustrates link prediction with the causal
model [19], in which the context xv and xu are representations
of node v and node u, the treatment T is defined based
on the graph structure information, the outcome yvu is the
link existence between node v and node u. By learning from
both factual outcomes Y and the counterfactual outcomes
YCF obtained from the factual treatment T and counterfactual
treatment TCF , the causal relationship between graph structure
and link existence is captured to improve node representations.

The target of the proposed medical decision problem is to
explore “will patients in the same group take drugs with
antagonistic effects?”. As shown in Fig. 5(b), we consider the
representations of patients X and drugs Z as context and med-
ication use Y as outcome, where X denotes the matrix formed
by the combination of all patient features {x1,x2, · · · }>, Z
denotes the matrix formed by the combination of all drug
features {z1, z2, · · · }> and Y denotes the matrix formed by
the combination of patients’ medication use {y1,y2, · · · }>.
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Fig. 5. Causal model improves patient and drug representation learning.

Since the treatment between patient Si and drug Dv may be
influenced by the medical decision of other similar patients
as well as the DDI with other drugs, we define treatment Tiv

based on the representations of all the patients X and drugs Z.
In summary, the treatment T is defined in three steps. Firstly,
we define the treatment matrix T as Tiv = 1 if patient Si

and drug Dv have a link in the observed data, and Tiv = 0
otherwise. Then we cluster the patients by a clustering method
such as K-means [20] denoted as c : X → N that outputs
the index of cluster that each patient belongs to, where the
number of clusters is determined by the number of chronic
diseases in the observed data. We set the treatment Tjv = 1
if c(Si) = c(Sj) and Tiv = 1 in the second step. In the
final step, we assume that treatment Tiu = 1 if evu = 1 and
Tiv = 1 according to the DDI graph in Section IV-A1.

Then we find the nearest neighbor with the opposite treat-
ment for each patient-drug pair and use the nearest neighbor’s
outcome as a counterfactual link. Formally, ∀(Si, Dv) ∈
S × V , its counterfactual link (Sj , Du) is defined as

(Sj , Du) = arg min
Sj∈S,Du∈V

{dis(xi,xj) + dis(zv, zu)|

Tju = 1−Tiv,dis(xi,xj) < γp,dis(zv, zu) < γd},
(7)

where dis(·, ·) is specified as Euclidean distance, xi ∈ Rd1

and xj ∈ Rd1 denote the original feature of patient Si and
patient Sj , zv ∈ Rd2 and zu ∈ Rd2 denote the original feature
of drug Dv and drug Du, γp and γd are hyperparameters
that define the maximum distance that two patients and two
drugs are considered as similar, respectively. Finally, we define
the counterfactual treatment matrix TCF and counterfactual
adjacency matrix YCF as

TCF
iv , yCF

iv =

 1−Tiv, yju , if ∃(Sj,Du) ∈ S×V
satisfies Eq. (7);

Tiv, yiv , otherwise.
(8)

Different from traditional link prediction that only takes
the observed outcomes Y as the training target, we take
counterfactual outcomes YCF as the augmented training data
for MDGCN training.

2) MDGCN: We divide MDGCN into an encoder and a
decoder. The encoder is used to update patient and drug
representations, and the decoder is used to predict patients’
medication use.

MDGCN Encoder: In the initial step, each patient and drug
is associated with an original feature. Then two fully connected

layers (FC) are leveraged to map the feature representations
of all patients and drugs respectively to the same feature
dimension as follows:

hi = σ(W1xi + b1), i = 1, 2, · · · ,m, (9)

hv = σ(W2zv + b2), v = 1, 2, · · · , |V |, (10)

where hi and hv denote the hidden representations of patient
Si and drug Dv , respectively; σ(·) denotes an element-wise
activation function, W1 ∈ Rd3×d1 , W2 ∈ Rd3×d2 and b1 ∈
Rd3 , b2 ∈ Rd3 are learnable parameters of the fully connected
layers.

After mapping the original features of patients and drugs
to the same dimension, we use MDGCN to update the hidden
representations of drugs. In MDGCN, the feature transforma-
tion and nonlinear activation functions are abandoned, it only
adopts the simple weighted sum aggregator to update the node
features. The graph convolutional operation is defined as:

h
(t)
i =

∑
v∈Ni

1√
|Ni|

√
|Nv|

h(t−1)
v , (11)

h(t)
v =

∑
i∈Nv

1√
|Nv|

√
|Ni|

h
(t−1)
i , (12)

where h
(t)
i and h

(t)
v respectively denote the updated hidden

representation of patient Si and drug Dv after t layers prop-
agation, h

(0)
i is equal to hi calculated by Eq. (9) and h

(0)
v is

equal to hv calculated by Eq. (10), Ni denotes the set of drugs
that are taken by patient Si, Nv denotes the set of patients that
are taking drug Dv .

After T ′ layers of graph convolutional operation, the hidden
representations obtained at each layer are combined to form
the final representation of drug Dv:

h′v =

T ′∑
t=0

βth
(t)
v , (13)

where βt ≥ 0 is a hyperparameter to represent the importance
of the t-th layer representation in constituting the final repre-
sentation. Note that the target node’s feature will be added at
t = 0, so we don’t need to add the target node’s feature in
Eq. (11) and (12). Since representations at different layers cap-
ture different semantics, e.g., the first layer smooths patients
and drugs that have interactions, the second layer smooths
drugs that have overlap with interacted patients, and higher-
layers capture higher-order proximity [21]. Hence, this layer
combination operation will make the drugs’ representations
more similar to those of patients with their corresponding
diseases.

MDGCN Decoder: As shown in Fig. 3, there are many
drugs to treat the same type of disease, for example, Doxa-
zosin, Terazosin and Prazosin can all be used to treat hyper-
tension, so how to personalize and suggest more appropriate
drugs according to the features of the patient is the challenge
to be solved in this paper. To obtain personalized medication
suggestions, we adopt the hidden representation hi obtained
from Eq. (9) of the patient Si to predict his/her medication
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use. Compared with the patient representations obtained after
MDGCN, the patient representations before MDGCN are more
differentiated because there is no over-smoothing of patient
representations resulting from aggregation of similar drug
representations. In Section V-B, we compare the personal-
ization of patient representations before and after MDGCN
experimentally.

Next, we add DDI relation representations shared in Eq. (1)
to the final drug representation h′v , i.e., h′v = h′v + zv . Based
on MLP, the encoder of MDGCN is defined as:

ŷiv = f
(t)
Θ2

([h>i � h′v,Tiv]), (14)

ŷCF
iv = f

(t)
Θ2

([h>i � h′v,T
CF
iv ]), (15)

where f (t)Θ2
denotes the MLP with parameters Θ2, [·, ·] rep-

resents the concatenation of vectors, � represents Hadamard
Product.

System Output: At last, we combine the medical suggestion
and the corresponding medical explanations obtained through
the MS module, thus constructing the system output to be
displayed to the doctors.

3) Model Training: The training process of MDGCN is
shown in Fig. 6. During the model training, we predict factual
links and counterfactual links and optimize towards Y and
YCF , respectively. We adopt 1:1 negative sampling to sample
negative edges for training, and then train the model by the
cross-entropy loss functions defined as:

LC = −
m∑
i

∑
v∈Ni

[yivlog(ŷiv) + (1− yiv)log(1− ŷiv)], (16)

LCF = −
m∑
i

∑
v∈Ni

[yCF
iv log(ŷCF

iv ) + (1− yCF
iv )log(1− ŷCF

iv )].

(17)
The overall training loss of our model is:

L = LC + δLCF , (18)

where δ is a hyperparameter to control the weight of counter-
factual outcome estimation loss.

C. Medical Support Module

Given a set of suggested drugs to a patient by the decision
support system, we may want to know further why the
system suggests these drugs to him/her, or to what extent this

suggestion makes sense. To this end, in the Medical Support
(MS) module, we utilize a subgraph querying algorithm to find
the closest dense subgraph containing the suggested drugs in
DDI. With this subgraph, we define a Suggestion Satisfaction
measurement, analyze the synergistic and antagonistic interac-
tions between the suggested drugs and explain our suggestions.
In this module, we first introduce the definition of the closest
dense subgraph, then illustrate the algorithm to find the closest
dense subgraph in DDI. At last, we define the Suggestion
Satisfaction measurement to explain the suggestions.

1) Problem Definitions: While there are many choices of
closeness on graphs, in this work, we use the closest truss
community definition [22] based on triangles to find the closest
dense subgraph first.

Definition 5 (p-truss): A triangle in G is a cycle of length 3.
Let Du, Dv, Dw ∈ V be the three vertices on the cycle, and we
denote this triangle by 4uvw. Then the support of an edge euv
∈ E in G, denoted by sup(euv, G), is defined as the number
of triangles in G containing euv , i.e., |{4uvw : Dw ∈ V }|. A
subgraph is p-truss if the support number of all the edges is
no less than (p− 2). The truss number of an edge is defined
as the maximum value of p that this edge can contain in the
p-truss subgraph.

Then the closest truss community is formally defined as:

Definition 6 (Closest Truss Community (CTC)): Given
a graph G and a set of query nodes Q, G′ is a closest
truss community (CTC), if G′ satisfies the following two
conditions: (1) Connected p-Truss: G′ is a connected p-truss
containing Q with the largest p, i.e., Q ⊆ G′ ⊆ G and
∀e ∈ E(G′), sup(e,G′) ≤ (p − 2); (2) Smallest Diameter:
G′ is a subgraph of smallest diameter satisfying condition (1).
That is, @G′′ ⊆ G′, such that diam(G′′) ≤ diam(G′), and G′′

satisfies condition (1), where diam(G′) denotes the diameter
of G′.

In our task, given a set of suggested drugs Q =
{Dq1, Dq2, . . . , Dqk}, we find the closest truss community
in the DDI graph which contains all the suggested drugs, and
these drugs in the subgraph connect densely through either
synergistic or antagonistic interactions. In such a discovered
subgraph, we can analyze the drug interactions and explain
why we suggest these drugs.

2) Subgraph Querying: To find out this closest dense
subgraph, we use the community search algorithms in [22].
In particular, it first computes a Steiner tree and then extends
the Steiner tree into a dense subgraph. In this subgraph, we
find a closest dense subgraph. The main algorithms used
in this process include Steiner Tree Computation and Truss
Decomposition. We briefly describe them below.

a) Steiner Tree Computation: Given a graph G and query
nodes Q, it firstly constructs a complete distance graph G′ of
query nodes where the distance is the truss distance defined
in [22]. It then finds a minimum spanning tree Ts of G′ , and
then constructs another graph H by replacing each edge of
tree Ts by its corresponding shortest path in G′, and finally



Algorithm 1 Subgraph Querying
Input: DDI graph: G = (V,E),

suggested drugs: Q = {Dq1, Dq2, . . . , Dqk}
Output: related subgraph of suggested drugs: Gsub = {D1, D2, . . . }.

1: Do truss decomposition on G
2: Compute the Steiner Tree Ts containing suggested drugs
3: G′0 ← Ts

4: p′ ← mine′∈Ts
truss(e′):

5: while size of G′0 < n0

6: if (e is an adjacent edge to G′0 and truss(e) ≥ p′)
7: G′0 ← G′0 ∪ e
8: Do truss decomposition on G′0
9: Find maximum connected p-truss subgraph containing Q in G′0

10: i← 0
11: while (connected(Q))
12: G′i+1 ← delete the furthest nodes of G′i
13: Maintain p-truss property of G′i+1
14: i← i+ 1
15: return Gsub ← argminG′∈{G′

0,G
′
1,...}

dist(G′, Q)

finds a minimum spanning tree of H and deletes leaf edges.
The detailed algorithm can be found in [23].

b) Truss Decomposition: To compute the truss number
of each edge, we use the truss decomposition algorithm [24]. It
first computes the support number for each edge and sorts all
the edges in ascending order of their support. Then it deletes
the edges with the smallest support and updates other edges’
support. The truss number of one edge is the updated support
number when it is deleted. After all the edges are deleted, the
truss number of each edge is computed.

The entire algorithm is listed in Algorithm 1. We first do
truss decomposition [24] on the DDI graph G (line 1), then
use the truss distance function [22] to compute the Steiner
Tree Ts [23] (line 2). Based on Ts, we extend it to a dense
subgraph G′0 that the truss number of each edge is no less than
the minimum truss number of Ts (line 3-7). On this dense
subgraph G′0, we do truss decomposition (line 8) and find
the connected p-truss community with maximum p it can find
(line 9). Then we iteratively shrink the subgraph by deleting
the furthest nodes while maintaining the truss property (line
10-14). The final closest related subgraph is the subgraph with
the smallest diameter during the iterations (line 15).

3) Measurement: For a suggestion with k drugs, we use
Suggestion Satisfaction (SS) to measure its rationality.

Definition 7 (Suggestion Satisfaction (SS)): Let the closest
dense subgraph of the DDI graph w.r.t. the suggested drugs
be Gsub with n′ nodes. rinpos and rinneg denote the number of
synergistic edges and antagonistic edges between the k sug-
gested drugs respectively. routneg is the number of antagonistic
edges between the k suggested drugs and n′−k non-suggested
drugs. SS is defined as follows:

SS = α
2(rinpos + 1)

(rinneg + 1)(k(k − 1) + 2)
+ (1−α)

routneg

k(n′ − k)
, (19)

where the first term explains the synergistic effect between the
suggested drugs, while the second explains the antagonistic
effect between the suggested drugs and the non-suggested
drugs. α ∈ (0, 1) is a hyperparameter that balances the two

terms. We expect better synergy between the suggested drugs
and greater antagonism with the non-suggested drugs, so a
larger SS can denote a more appropriate drug suggestion.

The MS module explains the medication suggestions from
a visual perspective (subgraphs) and a numerical perspective
(SS), giving the doctors a more reliable, easier to understand
and more visual explanation of the suggestion.

V. EXPERIMENTS

In our experiments, we first evaluate the performance of
DSSDDI for personalized drug suggestions and compare it
with baseline methods. Then we conduct ablation study to
prove the superiority of DDIGCN. Next, we demonstrate
the explainablility of DSSDDI with the measurement of SS.
Finally, we validate the model’s effectiveness on a public
diagnostic data set MIMIC-III [9].

A. Experimental Setup
1) Baselines: We compare DSSDDI with the following

baselines.
Traditional Methods:
• UserSim: Given the problem formulation of our decision

support system, we evaluate the effectiveness of the sys-
tem by predicting the medication use of the unobserved
patients, who are not involved in the model training
process. Hence, we design a naive baseline method,
called User Similarity (UserSim). The suggestion scores
of each drug for unobserved patients are obtained by
weighting the medication use of each observed patient
using the similarity between each observed patient and
unobserved patients as weights, and calculated by the
following equation:

YU = cosine similarity(XU ,XO) ·YO, (20)

where YU denotes the prediction score matrix for unob-
served patients, XO and XU denote the feature matrix
of observed patients and unobserved patients, and YO
denotes the medication use of observed patients.

• ECC [25]: Ensemble Classifier Chain (ECC) is a popular
multi-label classification method that models the correla-
tion between labels by feeding both input and prediction
by the previous classifier into the next classifier. We em-
ploy Logistic Regression (LR) [26] as binary classifiers
for each label.

• SVM [27]: Bao et al. [28] demonstrate the good perfor-
mance of support vector machine (SVM) as a traditional
machine learning method for medication suggestion.

Graph Learning-based Methods:
• GCMC [29]: A recommendation system organizes his-

torical user behaviors as a holistic interaction graph and
employs a GCN encoder to generate representations.
GCMC focuses on explicit feedback, constructs multiple
adjacency matrices according to the type of score, and
uses different weight matrices to decode different types
of edges.



• LightGCN [21]: This method simplifies the embedding
propagation process by eliminating the nonlinear activa-
tion function and feature transformation matrix to obtain
a light GCN model.

• SafeDrug [6]: A model equipped with a global Message
Passing Neural Network (MPNN) module to capture
drugs’ molecule structures and a local bipartite learning
module to explicitly model drug-drug interactions. It
employs Gated Recurrent Unit (GRU) [30] to encode
patients’ features from patients’ past visits.

• Bipar-GCN [4]: This method is specifically designed
for bipartite graph. The patient embeddings and drug
embeddings are obtained by training two structurally
identical neural networks called patient-oriented NN and
drug-oriented NN with different parameters, respectively.

• CauseRec [5]: A causal recommendation model that
learns patient representations by generating counterfac-
tual patient behavior sequences from patients’ past visits.

Variants of DSSDDI:
• DSSDDI(GIN): DSSDDI with a common GCN model

GIN [13] as backbone.
• DSSDDI(SGCN): DSSDDI with a signed GCN model

SGCN [14] as backbone.
• DSSDDI(SiGAT): DSSDDI with an attention-based

signed GCN model SiGAT [15] as backbone.
• DSSDDI(SNEA): DSSDDI with an attention-based

signed GCN model SNEA [16] as backbone.

2) Metrics: We split all patients into training set, validation
set and test set in the ratio of 5:3:2, the hyperparameter selec-
tion is based on the prediction performance on the validation
set. We adopt SS@k (top-k Suggestion Satisfaction) defined
in Eq. (19) to assess the explainability of drug suggestions
for each method. We also use Precision@k, Recall@k and
NDCG@k (Normalized Discounted Cumulative Gain) [31] to
measure the effectiveness of all methods:

(1) Precision@k and Recall@k are defined as:

Precision@k =

∑
j |P (j) ∩Q(j)|∑

j |P (j)|
, (21)

Recall@k =

∑
j |P (j) ∩Q(j)|∑

j |Q(j)|
, (22)

where P (j) represents the set of the k drugs suggested to the
patient Sj , Q(j) represents the set of drugs that the patient Sj

is taking.
(2) NDCG@k is defined as:

NDCG@k =
1

|U|
∑
j∈U

DCGj@k

IDCGj
, (23)

where DCGj@k is the Discounted Cumulative Gain of the
k drugs suggested to the patient Sj , and IDCGj is the ideal
DCG for the patient Sj . DCGj@k is defined as:

DCGj@k =

k∑
s=1

2rels − 1

log2(s+ 1)
, (24)

where rels is the graded relevance of the result at position
s. NDCG@k takes a value between 0 and 1, and the larger
the value the greater the suggestion scores for those drugs the
patient is taking.

3) Implementation Details: We use Adam [32] optimizer
to minimize the overall loss L of MDGCN and MSE loss LM

of DDIGCN. The learning rates used to optimize MDGCN
and DDIGCN are 0.01 and 0.001, respectively. The training
epochs for MDGCN and DDIGCN are set to 1000 and 400.
The hidden representation size is fixed to 64. For MDGCN,
LeakyReLU [33] activation is used after the fully connected
layers. The size of the graph convolution layer we set for
MDGCN is 2. We set the hyperparameters βt = 1/(t + 2)
and δ = 1. For DDIGCN, we set the layer sizes as 3 for the
graph convolution. Batch normalization [34] and ReLU [33]
activation are applied after each layer.

B. Experimental Results of Medication Suggestion

The experimental results for medication suggestions are
shown in Table I. We observe that DSSDDI achieves the best
results for almost all k values in 1, . . . , 6. When compared
with the graph learning-based methods, we find that traditional
methods perform much worse. This is because traditional
methods cannot capture latent patient features, making them
difficult to provide effective suggestions based only on the
patients’ numerical features.

In addition, we observe that DSSDDI performs better than
the graph learning-based methods. The reason is that the
graph convolution process smooths the patient representations.
Specifically, DSSDDI employs the patient representations
before the graph convolution layer to predict the patient’s
medication use, which ensures that the patient representations
during model training will not be affected by similar drug
representations. However, in graph learning-based methods,
patient representations are updated through graph convolution,
resulting in similar representations of most patients. To vali-
date this speculation, we sample 100 patients in the test set and
calculate the cosine similarity between patient representations
by DSSDDI and LightGCN and plot the heat map in Fig. 7(a).
As we can see, the similarity between the patient representa-
tions obtained by LightGCN is extremely high. Such similar
representations make it difficult for LightGCN to identify
feature differences between patients. In contrast, the patient
representations obtained by DSSDDI are more distinguishable,
which indicates that MDGCN avoids the over-smoothing of
patient representations. Due to the high similarity between
patient representations, some drugs with high similarity to
patient representations will be suggested frequently, making
it difficult for LightGCN to personalize the suggestions.

In addition, we calculate the cosine similarity between
drug representations by DSSDDI and LightGCN and plot the
heat map in Fig. 7(b). The drug representations obtained by
DSSDDI are more reasonable because many drugs are related
as they treat the same type of disease such as cardiovascular
disease, arthritis and diabetes as shown in Fig 3. In contrast, all
drug representations learned by LightGCN have low similarity.



TABLE I
MEDICATION SUGGESTION PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND BASELINE METHODS ON CHRONIC DATA SET (THE

BEST RESULTS ARE IN BOLD AND THE SECOND RESULTS ARE UNDERLINED).

Method Precision@6 Recall@6 NDCG@6 Precision@5 Recall@5 NDCG@5 Precision@4 Recall@4 NDCG@4

UserSim 0.0982 0.2227 0.1432 0.0971 0.2209 0.1426 0.0977 0.2181 0.1418
ECC 0.0214 0.0537 0.0328 0.0252 0.0519 0.0321 0.0060 0.0108 0.0127
SVM 0.0670 0.2166 0.2062 0.0635 0.1681 0.1847 0.0787 0.1653 0.1838

GCMC 0.1362 0.5310 0.3652 0.1447 0.4541 0.3181 0.1638 0.4057 0.3146
LightGCN 0.2073 0.7348 0.6012 0.2358 0.7245 0.5681 0.2581 0.6509 0.5436
SafeDrug 0.0863 0.3098 0.2267 0.1000 0.2952 0.2227 0.1250 0.2952 0.2233
Bipar-GCN 0.1741 0.6267 0.4817 0.1952 0.5911 0.4667 0.2172 0.5363 0.4418
CauseRec 0.1707 0.1025 0.5117 0.1124 0.4492 0.3030 0.3186 0.2468 0.1799

DSSDDI(SiGAT) 0.2214 0.8215 0.6482 0.2514 0.7834 0.6323 0.2876 0.7266 0.6076
DSSDDI(SNEA) 0.2192 0.7854 0.5949 0.2447 0.7364 0.5744 0.2740 0.6684 0.5442
DSSDDI(GIN) 0.2272 0.8407 0.6836 0.2534 0.8104 0.6873 0.2900 0.7704 0.6575
DSSDDI(SGCN) 0.2348 0.8521 0.6850 0.2670 0.8153 0.6717 0.3077 0.7746 0.6680

Method Precision@3 Recall@3 NDCG@3 Precision@2 Recall@2 NDCG@2 Precision@1 Recall@1 NDCG@1

UserSim 0.0970 0.1970 0.1324 0.1370 0.1348 0.1033 0.0889 0.0088 0.0108
ECC 0.0072 0.0098 0.0123 0.0108 0.0098 0.0135 0.0192 0.0094 0.0204
SVM 0.1050 0.1649 0.1863 0.1575 0.1639 0.1970 0.3029 0.1552 0.2536

GCMC 0.1791 0.3437 0.2898 0.1971 0.2392 0.2406 0.1815 0.1428 0.2344
LightGCN 0.2925 0.5854 0.5436 0.3347 0.4021 0.4187 0.4231 0.2605 0.3786
SafeDrug 0.1206 0.2182 0.1872 0.1280 0.1536 0.1609 0.1406 0.0902 0.1406
Bipar-GCN 0.2484 0.4671 0.4118 0.2861 0.3672 0.3734 0.3377 0.2197 0.3377
CauseRec 0.2122 0.1595 0.1064 0.1665 0.1250 0.2494 0.1484 0.1484 0.1484

DSSDDI(SiGAT) 0.3361 0.6519 0.5745 0.3912 0.5261 0.5214 0.4531 0.3206 0.4531
DSSDDI(SNEA) 0.3133 0.5795 0.5059 0.3365 0.4242 0.4375 0.4038 0.2667 0.4038
DSSDDI(GIN) 0.3554 0.6918 0.6256 0.4261 0.5926 0.5842 0.4916 0.3989 0.5565
DSSDDI(SGCN) 0.3670 0.7027 0.6378 0.4297 0.5903 0.5933 0.5300 0.3743 0.5300

(a) Cosine similarity between patient representations. (b) Cosine similarity between drug representations.
Fig. 7. Comparison of cosine similarity between patient (drug) representations obtained from DSSDDI and LightGCN. Closer to red means that the
representations are more similar and closer to blue means that they are less similar. (a) We sample 100 patients in the test set of patients. (b) 86 drugs
are included in the comparison of their similarity to each other.

When comparing DSSDDI with different backbones, DSS-
DDI(SGCN) performs best, showing that SGCN can learn
better drug embeddings from synergistic and antagonistic in-
teractions. DSSDDI(GIN) performs slightly worse than DSS-
DDI(SGCN). The attention-based models DSSDDI(SiGAT)
and DSSDDI(SNEA) are less effective.
C. Superiority of DDIGCN

We conduct an ablation study to demonstrate the superiority
of DDIGCN. We create the following variants by replacing the
drug embedding learned by DDIGCN with three alternatives:
• Without DDI: Without adding DDI relation embeddings

to the final drug embeddings h′v .
• One-hot: One-hot embeddings.
• KG: Pre-trained embeddings obtained from DRKG [10].

The results are reported in Table II. DDIGCN performs the
best, which indicates that DDIGCN learns drug embeddings
from the DDI relationship that is more useful for medication
suggestions. DDIGCN outperforms the system without DDI
module, due to its consideration of drug-drug interactions,
thus avoiding numerous inappropriate suggestions. As DRKG
contains many different types of entities such as genes and
proteins, KG per-trained embeddings may contain much too
complex information, such as the relationship between drug
and genes which affect the drug suggestion performance.

D. Explainability of DSSDDI

Table III compares the proposed method with baseline
methods in terms of Suggestion Satisfaction (SS) with med-
ication suggestions. DSSDDI has a significant improvement



TABLE II
ABLATION STUDIES WITH DIFFERENT DRUG EMBEDDINGS ON CHRONIC DATA SET (THE BEST RESULTS ARE IN BOLD). HERE, WE USE SGCN, THE BEST

PERFORMING BACKBONE MODEL IN TABLE I, AS THE BACKBONE IN DDIGCN.

Method Precision@6 Recall@6 NDCG@6 Precision@5 Recall@5 NDCG@5 Precision@4 Recall@4 NDCG@4

w/o DDI 0.2185 0.7974 0.6427 0.2490 0.7694 0.6301 0.2891 0.7256 0.6089
One-hot 0.2095 0.7952 0.6063 0.2365 0.7537 0.5891 0.2638 0.6830 0.5574
KG 0.2135 0.8170 0.6489 0.2411 0.7761 0.6319 0.2758 0.7187 0.6067
DDIGCN 0.2348 0.8521 0.6850 0.2670 0.8153 0.6717 0.3077 0.7746 0.6680

Method Precision@3 Recall@3 NDCG@3 Precision@2 Recall@2 NDCG@2 Precision@1 Recall@1 NDCG@1

w/o DDI 0.3413 0.6499 0.5788 0.4032 0.5277 0.5292 0.4796 0.3204 0.4796
One-hot 0.2984 0.5904 0.5150 0.3462 0.4715 0.4635 0.4147 0.2855 0.4147
KG 0.3297 0.6609 0.5810 0.3918 0.5425 0.5304 0.4591 0.3338 0.4591
DDIGCN 0.3670 0.7027 0.6378 0.4297 0.5903 0.5933 0.5300 0.3743 0.5300

TABLE III
SUGGESTION SATISFACTION COMPARISON BETWEEN THE PROPOSED

METHOD AND BASELINE METHODS ON k MEDICATION SUGGESTIONS.

k 2 3 4 5 6

UserSim 0.4987 0.2506 0.0743 0.0470 0.0220
ECC 0.5000 0.2500 0.0952 0.0455 0.0339
SVM 0.5044 0.2695 0.1050 0.0469 0.0278

GCMC 0.4979 0.2533 0.1443 0.0491 0.0634
LightGCN 0.5046 0.2544 0.1631 0.0882 0.0575
SafeDrug 0.4412 0.1812 0.0741 0.0477 0.0329
Bipar-GCN 0.5139 0.2788 0.1735 0.1183 0.0866
CauseRec 0.4957 0.2462 0.0996 0.0482 0.0299

DSSDDI(SiGAT) 0.5683 0.3237 0.2043 0.1400 0.1042
DSSDDI(SNEA) 0.5522 0.2916 0.1811 0.1253 0.0899
DSSDDI(GIN) 0.5392 0.2767 0.1743 0.1227 0.0997
DSSDDI(SGCN) 0.5427 0.3267 0.2158 0.1478 0.1083

compared to other methods. In particular, compared with the
best-performing baseline, DSSDDI improves SS@6 by 25%,
SS@5 by 24% and SS@4 by 24%. Because SS takes into
account not only the synergy between the k suggested drugs
but also the antagonism between the suggested and non-
suggested drugs, we can conclude that DSSDDI is able to sug-
gest drugs with more synergistic effects, while being able to
avoid drugs with antagonistic effects from being included. By
extracting these relevant drug-drug interactions as subgraphs
in the DDI graph, it provides an effective explanation for the
drugs suggested by the Medical Decision module.

We then show a case of medication suggestion for a patient
with cardiovascular disease in Fig. 8 to highlight the more reli-
able medication suggestions of DSSDDI compared to baseline
methods from an explainable perspective. All these subgraphs
were obtained according to the subgraph querying algorithm
proposed in the MS module. As shown in Fig. 8(a), DSSDDI
suggests Simvastatin (Drug ID (DID) 46), Atorvastatin (DID
47) and Isosorbide (DID 59). There is a synergistic effect
between Simvastatin (DID 46) and Atorvastatin (DID 47) as
indicated by the blue line between them. Using these two
drugs is indeed beneficial in lowering lipids and improving
cardiovascular disease. The suggestion by DSSDDI can also
avoid antagonistic effects. For example, it does not suggest
Gabapentin (DID 61) because there is an antagonistic effect
between Gabapentin (DID 61) and Isosorbide (DID 59) as
indicated by the red line between them. This shows that
DSSDDI considers synergistic effects between the suggested

drugs and avoids antagonism benefiting from the combination.
In contrast, the three drugs suggested by LightGCN, GCMC

and SVM, respectively (in Figs. 8(b)-8(d)) do not have any in-
teractions. The drugs suggested by ECC even have antagonistic
interactions, i.e., Gabapentin (DID 61), a drug for epilepsy, is
antagonistic to Doxazosin (DID 1) as shown in Fig. 8(e).

From this experiment, we can see that DSSDDI outputs
such explainable DDI subgraphs through the Medical Support
module, which can provide more convincing support for
DSSDDI’s medical suggestions and make doctors’ decisions
more efficient.

E. Validation on Public Diagnostic Data

In this experiment, we evaluate medication suggestion per-
formance using a public, real diagnostic data set, MIMIC-
III [9]. It is a database comprising de-identified health-related
data associated with patients who stayed in critical care
units of the Beth Israel Deaconess Medical Center between
2001 and 2012. This data set includes 6350 patients, each
with at least two visits. Each visit includes three types of
information: medicine, diagnosis and procedure. To fit our
problem setting, we use the medicine information of the last
visit as the medication suggestion label to be predicted, and the
diagnosis and procedure information of previous visits as the
patient features. The medication suggestion performance of the
proposed method and the baselines is shown in Table IV. Since
only antagonistic interactions between anonymous drugs are
included in the downloaded data, we cannot use signed graph-
based models as the backbone, so only GIN-based results
are reported in Table IV. DSSDDI outperforms all baselines,
demonstrating the significant effects that the DDI brings to
medical suggestions.

VI. SYSTEM APPLICATION

In this section, we present four cases to further illustrate the
superiority of DDI in Fig. 9.
Case 1. The patient 2417 took medications DID 10, 2, 5 (in
the “Label” column). LightGCN without using DDI ranks DID
10, 2 and 5 at the first, second and fifth positions, respectively.
As there is a synergistic interaction between Indapamide (DID
10) and Perindopril (DID 5), our model can rank Perindopril
at the fourth position (instead of the fifth) due to this synergy.



(a) DSSDDI (b) LightGCN (c) GCMC (d) SVM (e) ECC
Fig. 8. A case of medication suggestion for a patient with cardiovascular disease. We use dark orange nodes to denote suggested drugs and light orange nodes
to denote non-suggested nodes in the subgraph output by the MS module, red lines to indicate the antagonism between drugs, and blue lines to indicate the
synergy between drugs. We make the edges between the non-suggested drugs transparent to highlight the interactions associated with the suggested drugs.

Case 1 Drug-Drug Synergistic Interaction Case 2 Drug-Drug Antagonistic Interaction Case 3 Indirect Drug-Drug Interaction Case 4 Deviation from Ground Truth
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Fig. 9. Four case studies that demonstrate the superiority of DDI. The red numbers in the Label column indicate the drugs the patient took, the blue (red)
line indicates the drug-drug synergistic (antagonistic) effect, the blue (red) arrow indicates an upward or downward movement brought by the synergistic
(antagonistic) effect.

TABLE IV
MEDICATION SUGGESTION PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND BASELINE METHODS ON MIMIC-III DATA SET

(THE BEST RESULTS ARE IN BOLD).

Method Precision@8 Recall@8 NDCG@8 Precision@6 Recall@6 NDCG@6 Precision@4 Recall@4 NDCG@4

UserSim 0.5396 0.2349 0.6203 0.5699 0.1869 0.6534 0.7006 0.1551 0.7557
ECC 0.6957 0.3014 0.7360 0.7786 0.2562 0.7904 0.8116 0.1795 0.8111
SVM 0.7645 0.3343 0.7829 0.8234 0.2703 0.8182 0.8313 0.1833 0.8210

GCMC 0.7924 0.3283 0.8156 0.8186 0.2656 0.8208 0.8360 0.1764 0.8392
LightGCN 0.8099 0.3548 0.8252 0.8310 0.2738 0.8378 0.8449 0.1872 0.8495
SafeDrug 0.8038 0.3549 0.8215 0.8172 0.2701 0.8308 0.8434 0.1869 0.8494
Bipar-GCN 0.7939 0.3510 0.8135 0.8172 0.2718 0.8281 0.8327 0.1856 0.8390
CauseRec 0.1218 0.1428 0.1346 0.1196 0.1130 0.1238 0.1157 0.0818 0.1162

DSSDDI(GIN) 0.8134 0.3611 0.8266 0.8352 0.2808 0.8408 0.8530 0.1932 0.8553

Thus our model provides a more accurate suggestion by using
DDI information.
Case 2. The patient 2341 took medications DID 2 and 5.
LightGCN without using DDI ranks DID 2 and 5 at the first
and fifth positions, respectively. It also suggests Theophylline
(DID 83) and Enalapril (DID 3) at the third and fourth
position. However, there is an antagonistic interaction between
them, as indicated by the red line. In contrast, our model ranks
DID 2 and 5 at the first and third position, and ranks DID 3
and 83 at a lower position. This suggestion is more accurate
than that by w/o DDI.
Case 3. The patient 3117 took medication DID 32. LightGCN
w/o DDI ranks DID 32 at the eighth position. We find
Amlodipine (DID 8) and Felodipine (DID 32) are antagonis-
tic to four common drugs, including Phenytoin, Doxazosin,
Terazosin, and Prazosin. Therefore, these two are considered
as similar drugs by DSSDDI. Indeed both of them are for
treating hypertension. Benefiting from the message passing of
DDIGCN, these two drugs can have similar representations
due to interactions with many common drugs, although they do
not have direct drug-drug interactions. As a result, our model

ranks these two drugs at the second and fourth positions,
respectively.
Case 4. In practice, we observe that some patients are taking
some drugs with antagonistic effects, probably because they
were facing severe medical conditions, thus had to neglect
the drug-drug interactions. For instance, the patient 6 took
Isosorbide (DID 58) and Metformin (DID 48) which may
cause adverse drug reactions such as cholecystitis and dizzi-
ness, so DSSDDI downgrades Metformin to the sixth position.
Although this suggestion is not consistent with the ground
truth, it appears more reasonable from the perspective of DDI
due to the antagonistic effect between the two drugs.

VII. RELATED WORK

This work is related to decision support system, graph
learning-based recommendation systems, causal models with
graph learning and Drug-Drug Interaction models.

A. Decision Support System
Decision Support System is a computer software that pro-

vides a reference for medical practitioners in their clinic



decision-making [35]. Recent decision support systems can be
divided into knowledge-based and data-driven methods [3].

Knowledge-based methods are mainly developed based on
medical guidelines and medical knowledge, for example, rule-
based methods [36], semantic or associative networks [37] and
Bayesian Networks [38]. These methods are generally limited
in scale, due to the lack of evidence in some domains.

With the development of Machine Learning (ML), more and
more decision support systems are shifting from knowledge-
based methods to data-driven methods [3]. ML models such
as Ensemble Classifier Chain (ECC) [25], Support Vector
Machines (SVM) [39] have been widely applied to develop
decision support systems. However, they rely on the quality
and quantity of data provided. When there is a bias in the
data used to train the ML model, this bias is captured by the
model and therefore biased predictions are made which can
influence human decisions. Therefore, the aim of this paper
is to propose an explainable decision support system that can
provide explanations for the suggested medication, which will
be more beneficial for medical practitioners to make decisions.

B. Graph Learning-based Recommendation Systems
Since the data in most recommendation systems is es-

sentially a graph structure, more and more graph learning
methods have been applied to learn the inter-object relations
in recommendation systems [40]. Random walk based recom-
mendation system [41] has been widely adopted to capture
complex, higher-order and indirect relations among a variety
of nodes on the graph [42]. Graph representation learning-
based recommendation system [43] encodes each node into a
latent representation and then analyzes the complex relations
between them. Another class of recommendation systems are
built on the knowledge graph (KG) to explore latent relations
among users or items connected as a heterogeneous graph [44].

Benefiting from the strength of Graph Neural Networks
(GNN), a lot of GNN based recommendation systems [21],
[45] are developed. GCMC [29] leverages matrix completion
to obtain the latent node representations. LightGCN [21]
simplifies the graph convolution by eliminating the nonlinear
activation function and feature transformation matrix. Bipar-
GCN [4] learns user representations and drug representations
by training user-oriented and item-oriented neural networks
respectively. However, these methods have the problem of
over-smoothing of patient representations because many pa-
tients take similar medications. The proposed DSSDDI solves
this problem by using the patient representations before the
graph convolutional operation. SafeDrug [6] combines the
drug molecular graph and DDI graph to predict safe med-
ication combinations. However, this method is difficult for
new patients because it relies on medication information from
patient’s past visits to generate patient features.

C. Causal Models with Graph Learning
As causal models capture the causal relationship between

outcomes and inputs, a series of studies have focused on
using causal models to enhance the inference stage of ML
models [7], [8], [46]. Recently, several causal models with

graph learning have gained increasing attention [47]–[49].
Based on causal models, counterfactual causal inference [18]
aims to find out the causal relationship between treatments
and outcomes by exploring whether the outcomes would be
different if the treatment is different. Zhao et al. [19] employ
the counterfactual causal model to improve graph represen-
tation learning. CauseRec [5] generates counterfactual patient
behavior sequences to learn patient representations. However,
it relies mainly on medication information from patients’ past
visits, making it difficult to cope with many new patients on
their first visit. In this paper, we explore the application of the
counterfactual causal model to medical decision.

D. Drug-Drug Interaction Models
Recently, a lot of methods have been proposed for learning

low-dimensional drug embeddings which are then used for
downstream tasks such as Drug-Drug Interaction (DDI) pre-
diction or drug classification [50]. These approaches can be
mainly classified into relational-based approaches and network
structure-based approaches.

Relational-based approaches use knowledge graph to cap-
ture multi-relational information from different edge relations
[51]. For example, Zitnik et al. [52] employ a multi-relational
network to identify the relation between drugs by regrading
each relation as a matrix. TransE [11] and TransH [53] are also
commonly used knowledge representation learning models
being used to learn drug embeddings and the relations [10].

Unlike the relational-based approaches, network structure-
based approaches employ Graph Neural Networks to learn the
drug embeddings through aggregating the information of their
neighbors [54]. For instance, Feng et al. [55] apply GCN to
capture the network structure information for drugs in the DDI
network. Wang et al. [56] develop a dual-attention model to
extract features from the molecular and the DDI graphs.

VIII. CONCLUSION

In this paper, we design a decision support system called
DSSDDI for assisting doctors in making clinical decisions
for patients with chronic diseases. Based on the external
knowledge of drug-drug interactions, DSSDDI is able to
obtain not only reliable medication suggestions through causal
relationships in the Medical Decision module, but also the
explanations for the suggestions through the Medical Support
module. DSSDDI achieves superior performance to the base-
line approaches for medication suggestion. In addition, it also
provides explanation to the suggestions. In future work, we
plan to complement the decision support system with some
medical image features and to enable the search for etiological
and explainable factors on the images.
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