
CREDENCE: Counterfactual Explanations for
Document Ranking

Joel Rorseth
University of Waterloo
jerorset@uwaterloo.ca

Parke Godfrey
York University

godfrey@yorku.ca

Lukasz Golab
University of Waterloo
lgolab@uwaterloo.ca

Mehdi Kargar
Toronto Metropolitan University

kargar@ryerson.ca

Divesh Srivastava
AT&T Chief Data Office
divesh@research.att.com

Jaroslaw Szlichta
York University

szlichta@yorku.ca

Abstract—Towards better explainability in the field of infor-
mation retrieval, we present CREDENCE, an interactive tool
capable of generating counterfactual explanations for document
rankers. Embracing the unique properties of the ranking prob-
lem, we present counterfactual explanations in terms of document
perturbations, query perturbations, and even other documents.
Additionally, users may build and test their own perturbations,
and extract insights about their query, documents, and ranker.

I. INTRODUCTION

With the rise of deep learning (DL), significant advances
have been made by the data science community, though
often at the cost of increased model complexity. For many
modern DL models, the underlying decision-making process is
nearly unintelligible for data scientists and users [1]. With the
growing adoption of data science in critical domains, such as
medicine and law, explainability has become a priority in many
deployment scenarios. In critical applications, explanations
build trust between models and their users, and enable auditing
that works to ensure regulation adherence, mitigation of bias,
and sufficient justification.

In recent years, researchers have developed a variety of
solutions that support explainable artificial intelligence (XAI),
which combat the increasing complexity that renders DL
models uninterpretable. Among different types of local expla-
nations, which aim to rationalize individual predictions (deci-
sions), counterfactual explanations [2] [3] have emerged as a
popular and pragmatic explanation format to impart behavioral
insight. Generally, counterfactual explanation methods identify
sets of minimal changes to the features of an input, such that
a change is observed in a model’s prediction.

In the field of information retrieval (IR), complex DL
models have been employed for a variety of tasks, most
notably for document ranking. Naturally, the decision-making
and ranking logic behind document ranking models (rankers)
is often unclear to their users [4]. Explainability for document
rankers has been limited to derivatives of saliency explanations
[5] [6] [7] [8], which attempt to approximate the relative
importance of model features (e.g., query or document terms).
To the best of our knowledge, counterfactual explanations
have not yet been adapted for document rankers. To fill this

gap, we demonstrate CREDENCE, the first tool for CREating
DocumEnt raNking explanations CountErfactually.1

Our interactive tool produces several types of counterfactual
explanations, which collectively expose the decision-making
logic behind a ranking model:
1) Counterfactual Documents. Explore minimal perturba-

tions to a given document that lower its rank (towards the
bottom of the ranking) beyond some threshold.

2) Counterfactual Queries. Explore minimal perturbations
to a search query that raise the rank of a given document
(towards the top of the ranking).

3) Instance-Based Counterfactual Documents. For a given
relevant document, discover similar documents that were
deemed non-relevant.

4) Build-Your-Own Counterfactual Documents. Interac-
tively edit a given ranked document, then compare the
resulting ranking against the original.

II. SYSTEM DESCRIPTION

A. Preliminaries
In the document ranking problem, a user poses a search

query q to a ranking model M . Given a set of indexed
documents D (i.e., the corpus), the ranking model M is tasked
with producing a ranking (i.e., an ordered list of documents)
DM such that, when treated like a set, DM ⊆ D. Naturally,
q, D, and M jointly contextualize the definition of DM . In
practice, it is often the case that |DM | � |D|, since many
rankers need only to identify and rank the top-k relevant
documents (i.e., |DM | = k for some parameter k).

Let R(q, d,D,M) denote the ranking function representing
a ranking model M . R returns the rank r ∈ [1, |D|] assigned
by M , corresponding to the predicted relevance of a document
d ∈ D to a search query q. R and M are defined generally,
such that the ranker (e.g., a machine learning model) is
considered a black box. However, we assume that R assesses
rank using only the body of each document. In future work,
we plan to explain ranking models that support richer sets of
features (e.g., user preferences).

1A video is available at https://vimeo.com/762787210.
The tool is available at http://lg-research-1.uwaterloo.ca:8091/credence.

ar
X

iv
:2

30
2.

04
98

3v
1

 [
cs

.I
R

]
 1

0
Fe

b
20

23

https://vimeo.com/762787210
http://lg-research-1.uwaterloo.ca:8091/credence

Fig. 1. The architecture behind the CREDENCE system.

B. System Architecture

CREDENCE is an interactive web application built with the
React framework, along with other JavaScript libraries, such as
Material UI to render user interface components. The backend
is implemented in Python 3.9.14, and ultimately runs as an
ASGI web server (via Uvicorn). Our server takes the form
of a REST API, built using the FastAPI framework, which
exposes endpoints to retrieve all data displayed in the web
application. Both applications are hosted on a server running
Ubuntu 22.04, with an AMD Opteron 6348 Processor, 128 GB
of DDR3 RAM, and GeForce RTX 2080 Ti GPU.

The architecture of CREDENCE is illustrated in Figure 1. To
facilitate all retrieval functionality, we create a Lucene index
using the Pyserini library [9], which is a Python interface for
the Anserini retrieval toolkit [10]. Although any compatible
ranker could be used to rank documents in our index, we utilize
the monoT5 neural ranker from the PyGaggle library.2 We
implement several counterfactual algorithms, each repeatedly
querying the ranker and index to develop understanding of
the relationships between documents, search queries, and their
rankings. Also, we offer a topic modeling module, allowing
users to browse clusters of terms found in selected documents,
for the purpose of discovering important terms that may
influence relevance. Topic modeling capabilities are enabled
through the scikit-learn implementation of the Latent Dirichlet
Allocation (LDA) model [11]. Using the FastAPI framework,
we expose REST endpoints to perform ranking, generate
counterfactual explanations, and discover topics.

C. Counterfactual Document Explanations

To generate counterfactual explanations in terms of a se-
lected document without corrupting its grammar, we consider
removing sentences. An explanation identifies a minimal sub-
set of sentences in a given instance document whose removal
lowers the rank of the document beyond k.

Intuitively, in any query-based retrieval setting, the removal
of search query terms from a document is likely to lower
document rank, at least more than non-query terms. Building
on this intuition, we propose an algorithm that calculates an
importance score for each sentence in the instance document
d, equal to the number of sentence terms that appear in the
search query q. The algorithm then iterates through expla-
nations in sorted order. Candidate documents are first sorted
by perturbation size (i.e., number of removed sentences) in
increasing order, then by their importance score (i.e., the sum

2http://pygaggle.ai.

of importance scores across removed sentences) in decreasing
order. In each iteration, the perturbed document is reranked,
then added to a final explanation set P if deemed non-
relevant. This process continues until |P | = n, where n is
a maximum number of desired explanations. This method
guarantees explanation minimality, as all perturbations with
j removals must be evaluated before those with j + 1.

D. Counterfactual Query Explanations

To generate counterfactual explanations in terms of a search
query, we append terms from the instance document to the
query, which intuitively increases the document’s relevance
with every addition. Although other terms and other types
of perturbation could be used, they are likely to identify
relevance-raising search query perturbations at a much slower
pace. In our specific formulation, a valid explanation identifies
a minimal set of terms that, when appended to the query, raises
the rank of a selected document beyond some threshold.

Once more, we propose an iterative algorithm to identify
n valid explanations quickly. Our algorithm builds a set of
candidate terms from the instance document, excluding terms
that do not already appear in the search query, and aims to
evaluate terms in order of their importance to the document.
Although other importance measures could be used, we choose
to score each candidate term using TF-IDF, which scores
terms based on their frequency in, and exclusivity to, the
instance document d (among the set of ranked documents
DM). All combinations of candidate terms are then iterated,
first in increasing order of perturbation size (i.e., the number
of appended terms), then in decreasing order of their TF-IDF
scores (summed over constituent terms). As with our algorithm
for counterfactual document explanations, iterating first by
perturbation size guarantees explanation minimality.

E. Instance-Based Counterfactual Explanations

To enable users to prioritize the plausibility of their coun-
terfactual explanations, we implement two instance-based
(document) counterfactual algorithms, which output actual
documents from the corpus rather than arbitrary perturbations.
In our formulation, a valid explanation for a relevant document
identifies a non-relevant document with a high degree of
similarity. Here, relevance is dictated by k.

The instance-based algorithm is a specialization of our
regular document counterfactual algorithm. To find a non-
relevant document d′ that is similar to the instance document
d, we implement two variations of the same counterfactual
algorithm, each employing different notions of similarity and
different document sampling techniques. In the first method,
we train a Doc2Vec embedding model [12]. In the second
method, we build numeric vector representations of each
corpus document using their BM25 scores, though any similar
collection statistic (e.g., TF-IDF scores) would suffice. In
either case, with numeric document vectors in hand, we
calculate similarity using a cosine similarity formula. In the
first method, we simply return the n most similar documents.
However, in the second method, we sample s non-relevant

http://pygaggle.ai

Fig. 2. A valid counterfactual perturbation for
the selected document.

Fig. 3. Seven counterfactual query explanations
augmenting the original query “covid outbreak”.

Fig. 4. A valid counterfactual document instance.

documents (ranked k + 1 and below), ideally where n � s,
then return the n documents with the highest similarity.

III. DEMONSTRATION PLAN

In this demonstration, conference participants will generate
minimal counterfactual document and search query explana-
tions, instance-based document explanations, and build their
own document explanations. Together, these components en-
able diverse explainability for individual ranking predictions.

A. Counterfactual Document and Query Explanations

On the Explanations page, the user is prompted to select a
supported corpus, type an arbitrary query, and select a value
of k. Once the Rank button has been clicked, a ranking of
the top-k documents appears beneath in a table. By clicking
individual documents in the table, the user spawns a new
Generate Explanation pane to the right, from which four
types of counterfactual explanation may be generated. In the
following example, we demonstrate and explain the motivation
behind the generation of these explanations.

Consider a scenario where a user is investigating a fake
news (misleading information) article that has ranked 3/10 in
their search for “covid outbreak”, while exploring the COVID-
19 Articles corpus. Seeking document counterfactual explana-
tions, the user selects the Sentence Removal type, requests
one explanation, then clicks GENERATE. As illustrated in
Figure 2, the resulting explanation renders the original body of
the document, crossing out sentences that the counterfactual
perturbation has removed. In this case, removing both sen-
tences mentioning covid and outbreak lowers the document
rank sufficiently to render it non-relevant (i.e., its rank of 11
surpasses k = 10). Our algorithm, which scores sentences by
the number of query terms present, assigns both the first and
last sentence a score of two. Thus, they are heavily prioritized
while exploring perturbations, until their combination (score
of four) is discovered to be a valid counterfactual. Using this
explanation, the user has quickly learned why this fake news
article has ranked among the top-k.

Seeking to discover terms that distinguish it from others, the
user now wonders which search queries would raise the rank
of this fake news article even higher. With this motivation, the
user selects the Query Augmentation explanation type, which

generates a search-query counterfactual explanation. Without
changing their query, the user selects this new explanation
type, and requests seven explanations with a threshold of two.
A table of queries appears, seen in Figure 3. In this case,
the user learns that the ranker would bestow the fake news
article a rank of 2/10 for the augmented query “covid outbreak
5G”, and 1/10 for “covid outbreak 5G microchip”. In our
algorithm, these distinguishing terms (e.g., 5G and microchip)
are assigned high (TF-IDF) scores, since they do not appear
in the other nine relevant documents, and therefore increase
the priority of query augmentations that contain them. By
highlighting these terms, these explanations yield insight into
the relevance of the document within the corpus. Moreover,
the user may continue reformulating their own search query,
perhaps using these insights to discover other fake news
articles.

B. Instance-Based Counterfactual Explanations

On the Explanations page, two instance-based counterfac-
tual methods are available in the Explanation Type dropdown:
Cosine Sampled and Doc2Vec Nearest. The cosine sampled
explanation requires a number of samples, which controls
the number of documents for which the cosine similarity is
calculated. In either case, each resulting explanation is a single
document, whose body is rendered beneath the prompt.

By evaluating the similarities and differences between a
selected document and counterfactual instance, a user may
gain insight into the behavior of a ranker. Continuing our ex-
ample for the query “covid outbreak”, the user selects Doc2Vec
Nearest type from the dropdown. Upon clicking GENERATE,
a valid counterfactual document instance is rendered beneath
the prompt, stating its numeric similarity to the document
being explained. The document presented in the user’s output
(Figure 4) is 75% similar to the fake news article being
explained, despite not being ranked among the original top-10.

The inconsistency between a document and its counter-
factual instance inherently delineates a decision boundary
respected by the ranker. Upon closer inspection of Figure
4, the user will notice that the instance document is a near
copy of the original fake news article, but likely ranked lower
due to absence of the terms covid and outbreak. By exploring
these instance-based explanations, the user may discover other

Fig. 5. The counterfactual builder page. By replacing all occurrences of ‘covid-19’ with ‘flu’, and removing occurrences of ‘outbreak’, the document no
longer ranks among the top-10. The green check mark verifies this fact, denoting the perturbation as a valid counterfactual.

fake news articles that were absent from the original ranking,
while deriving insights about the relevance of the original fake
news article. Moreover, presenting actual instances bypasses
the issues of finding perturbations that maintain grammar
or meaning. In the next subsection, we present one further
alternative to this perturbation issue: allow the user to build
perturbations interactively.

C. Build-Your-Own Counterfactual Documents
On the Builder page, users may build their own counterfac-

tual document perturbation, then test its counterfactual validity
against the other ranked documents. The user is prompted to
select a supported corpus, type an arbitrary search query, and
select a value of k. Upon clicking the RANK button, a ranking
of the top-k documents is obtained from the ranking model,
and displayed inside a table. Upon clicking a document in
the table, the document body is loaded into an interactive
text field, allowing the user to compose arbitrary edits. The
BROWSE TOPICS button can be clicked to spawn a modal,
allowing the user to generate and explore topics found across
all k documents. After finalizing document edits, clicking the
RE-RANK button obtains a new ranking from the ranking
model. Behind the scenes, the edited document is substituted
for the original, then re-ranked alongside the other top k + 1
documents. The new ranking of k+1 documents is displayed
in another table, with coloured arrows to indicate whether
the rank of each document has been raised, lowered, or left
unchanged. The originally hidden document with rank k + 1
is given an orange plus icon to distinguish itself.

In our running example, the user poses the usual “covid
outbreak” query for k = 10, then receives a familiar ranking
of top-10 documents. Clicking the fake news article at rank 3,
they create several counterfactual perturbations of their own.
As illustrated in Figure 5, the user chooses to replace covid and
covid-19 occurrences with an alternative term flu, and refactor

the term outbreak in favour of the flu. After re-ranking, the
green check mark confirms the counterfactual validity of the
perturbation, since its rank has been lowered from 3 to 11 (i.e.,
k+1). Using this interactive explanation format, the user tested
their own plausible perturbations, receiving valuable relevance
insights that transcend simple lexical manipulations. In this
example, the user quickly learned how to edit this fake news
document, so as to ensure it is not deemed relevant to their
query.

REFERENCES

[1] V. Dadvar, L. Golab, and D. Srivastava, “Poem: Pattern-oriented expla-
nations of CNN models,” PVLDB, vol. 15, no. 12, p. 3618–3621, 2022.

[2] T. Teofili, D. Firmani, N. Koudas, V. Martello, P. Merialdo, and
D. Srivastava, “Effective explanations for entity resolution models,” in
ICDE, 2022, pp. 2709–2721.

[3] R. Pradhan, A. Lahiri, S. Galhotra, and B. Salimi, “Explainable ai:
Foundations, applications, opportunities for data management research,”
in SIGMOD, 2022, p. 2452–2457.

[4] A. Gale and A. Marian, “Explaining monotonic ranking functions,”
PVLDB, vol. 14, no. 4, p. 640–652, 2020.

[5] J. Singh and A. Anand, “Exs: Explainable search using local model
agnostic interpretability,” in WSDM, 2019, pp. 770–773.

[6] M. Verma and D. Ganguly, “Lirme: Locally interpretable ranking model
explanation,” in SIGIR, 2019, pp. 1281–1284.

[7] Z. T. Fernando, J. Singh, and A. Anand, “A study on the interpretability
of neural retrieval models using deepshap,” in SIGIR, 2019, pp. 1005–
1008.

[8] I. Chios and S. Verberne, “Helping results assessment by adding
explainable elements to the deep relevance matching model,” arXiv
preprint arXiv:2106.05147, 2021.

[9] J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira, “Py-
serini: A Python toolkit for reproducible information retrieval research
with sparse and dense representations,” in SIGIR, 2021, pp. 2356–2362.

[10] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the use of lucene for
information retrieval research,” in SIGIR, 2017, pp. 1253–1256.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[12] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014, pp. 1188–1196.

	I Introduction
	II System Description
	II-A Preliminaries
	II-B System Architecture
	II-C Counterfactual Document Explanations
	II-D Counterfactual Query Explanations
	II-E Instance-Based Counterfactual Explanations

	III Demonstration Plan
	III-A Counterfactual Document and Query Explanations
	III-B Instance-Based Counterfactual Explanations
	III-C Build-Your-Own Counterfactual Documents

	References

