

Delft University of Technology

Amalur
Data Integration Meets Machine Learning
Hai, Rihan; Koutras, Christos; Ionescu, Andra; Li, Ziyu; Sun, Wenbo; van Schijndel, Jessie ; Kang, Yan;
Katsifodimos, Asterios
DOI
10.1109/ICDE55515.2023.00301
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023

Citation (APA)
Hai, R., Koutras, C., Ionescu, A., Li, Z., Sun, W., van Schijndel, J., Kang, Y., & Katsifodimos, A. (2023).
Amalur: Data Integration Meets Machine Learning. In Proceedings of the 2023 IEEE 39th International
Conference on Data Engineering, ICDE 2023 (pp. 3729-3739). (Proceedings - International Conference on
Data Engineering; Vol. 2023-April). IEEE. https://doi.org/10.1109/ICDE55515.2023.00301
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICDE55515.2023.00301
https://doi.org/10.1109/ICDE55515.2023.00301

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Amalur: Data Integration Meets Machine Learning

Rihan Hai Christos Koutras Andra Ionescu Ziyu Li Wenbo Sun
Jessie van Schijndel Yan Kang∗ Asterios Katsifodimos

Delft University of Technology, ∗WeBank

{initial.lastname}@tudelft.nl, yangkang@webank.com

Abstract—Machine learning (ML) training data is often scat-
tered across disparate collections of datasets, called data silos.
This fragmentation poses a major challenge for data-intensive
ML applications: integrating and transforming data residing in
different sources demand a lot of manual work and computa-
tional resources. With data privacy and security constraints, data
often cannot leave the premises of data silos, hence model training
should proceed in a decentralized manner. In this work, we
present a vision of how to bridge the traditional data integration
(DI) techniques with the requirements of modern machine learn-
ing. We explore the possibilities of utilizing metadata obtained
from data integration processes for improving the effectiveness
and efficiency of ML models. Towards this direction, we analyze
two common use cases over data silos, feature augmentation
and federated learning. Bringing data integration and machine
learning together, we highlight new research opportunities from
the aspects of systems, representations, factorized learning and
federated learning.

I. INTRODUCTION

The accuracy of an ML model heavily depends on the

training data. In real world applications, often the data is not

stored in a central database or file system, but spread over

different data silos. Take, for instance, drug risk prediction:

the features can reside in datasets collected from clinics, hos-

pitals, pharmacies, and laboratories distributed geographically

[1]. Another example is training models for keyboard stroke

prediction: training requires data from millions of phones [2].

Data integration systems enable interoperability among mul-

tiple, heterogeneous sources, and provide a unified view for

users. Notably, they allow us to describe data sources and

their relationships [3]: i) mappings between different source

schemata, i.e., schema matching and mapping [4], [5] and

ii) linkages between data instances, i.e., data matching (also

known as record linkage or entity resolution) [6]. Yet, a data

integration system’s goal is to facilitate query answering or

data transformation over silos, and not to directly support ma-

chine learning applications. As a result, practitioners nowadays

tackle silos with DI systems and ML tooling separately, as

shown in the following.

Running example. Consider the feature augmentation ex-

ample in Figure 2, where the downstream ML task is to

predict the mortality (binary classification) of patients based

on information scattered across tables maintained by different

departments in the same hospital. Data from the ER depart-

ment are stored in a base table S1(m,n,a,hr), which has the

label column m (mortality), and feature columns a (age) and

hr (resting heart rate). To improve the model’s accuracy,

DBML Machine
Learning

Data
Management

Our
Focus

Data
Integration

Federated
Learning

Data Silos

Figure 1: Scope of this line of work

a data discovery system is employed to discover a related

table S2(m,n,a,o,dd) (Figure 2b), with information coming

from the pulmonary department. This table brings information

about a new feature column o (oxygen), which shows the

blood oxygen level. The label column and the selected feature

columns constitute the schema of the table for downstream ML

models, i.e., T(m, a, hr, o), which we refer to as the target table
schema or mediated schema.

Data integration, data management and ML. Figure 1

illustrates our problem scope. Recent advances of in-database
machine learning [7]–[9], mainly consider a single database

instead of data silos1. Traditional data integration solves the

data management issues of data silos [19]. In a similar way,

federated learning (FL) studies machine learning with training

data residing in data silos [20]. In this paper, we argue that

when data management, data silos, and machine learning meet,

there is a new set of challenges and opportunities for research

and optimization.

Issues with the separation of DI and ML. As shown in

Figure 2c-d, to use the data from the two tables S1 and

S2, a data scientist would need to rely on a data integration

system, or else manually find the schema mapping and entity

resolution between the two given tables. We elaborate on the

explanation of schema mappings in Section III-A. Then, a data

integration system can integrate these source tables by merging

the mapped columns and linked entities (i.e., matched rows).

1The intersection of data management and ML (DBML) is two-fold: ML
for DB, and DB for ML. Machine learning has been applied to improve key
operations of data integration such as schema matching [10], [11], and data
matching [11]–[14]. In this paper we focus on data management for machine
learning. Except for data cleaning [15]–[17], little has been discussed in terms
of using the key DI operations to facilitate machine learning [18].

3729

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00301

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

30
1

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

Finally, it materializes the data instances of the target table T
and exports it to downstream ML applications. Such a process

usually involves massive manual work and computation over-

head, e.g., joining tables. Meanwhile, it assumes that users

are aware of the data sources, know the principles of data

integration, and/or are familiar with DI tools. In other words,

there is great potential to utilize DI techniques to reduce the

human burden and automate ML pipelines.

Research vision & question. Data integration is a well-

studied research area with mature logic-based theoretical

frameworks, techniques, and systems [19], [21], [22]. We

envision novel systems that combine DI techniques (schema

matching, schema mapping, entity resolution, query refor-

mulation, etc.) and ML pipelines (e.g., feature selection and

augmentation, model training), while also expanding to more

ML philosophies (e.g., federated learning). As the starting

point, we ask a fundamental question:

Q: Can we use data integration metadata to improve the
effectiveness and efficiency of ML model training?

With this line of work, we aim to investigate whether

the metadata obtained from data integration, specifically the

output of schema matching and entity resolution, can benefit

downstream ML tasks. To this end, we present new research

challenges that arise when we design a novel data integration

system, which extends the concepts of query rewriting and data

transformations for the needs of ML model training, and saves

costs associated to intermediate result materialization and the

exporting of target tables.

In this paper we focus on these challenges in four aspects:

system-design, metadata representation, performance, and pri-
vacy. The contributions of this paper go as follows:

• System-design (Section II). We demonstrate the design of

Amalur, a novel data integration system, which supports

end-to-end, scalable machine learning pipelines over data

silos. We elaborate on the research challenges of building

such a system.

• Metadata representations (Section III). We propose matrix-

based representations for data integration metadata, which

capture i) column matches, ii) row matches, and iii)
redundancies between data sources and the target table.

We also discuss and compare other available alternatives

as representations for DI metadata.

• Performance. (Section IV) We highlight the new opportu-

nities for utilizing DI metadata to improve the time-wise

efficiency of ML model training over data silos.

• Privacy (Section V). We discuss the research challenges of

improving vertical federated learning with data integration

metadata.

II. AMALUR: AN ML-ORIENTED DATA INTEGRATION

SYSTEM

In this section, we introduce our proposed system Amalur.

We explain the challenges of two common ML use cases,

namely feature augmentation and federated learning, and dis-

cuss how Amalur can tackle these challenges.

Figure 2: Traditional integration of data silos for ML

A. Amalur overview

We are currently developing Amalur, a model lake system

that is based on our work on data lakes [23] and model

zoos [24]. With DI metadata, Amalur features solving the

challenges of scalable training of ML models over data silos,

reducing the manual work of integrating the data and speeding

up model training. Figure 3 provides a high-level overview of

Amalur with key components relevant to this paper.

User inputs. Amalur allows users (e.g., physicians, data

scientists) to train models on data silos. The user may already

have an ML model, e.g., defined in Python scripts. There might

also be constraints specific to a user and silos, e.g., data privacy

regulations such as GDPR [25].

Hybrid metadata catalog. One of the fundamental com-

ponents of Amalur is the metadata catalog. It stores the

metadata of data and ML models. Data-related metadata

includes the basic metadata and data integration metadata.

Collected from the silos, the basic metadata describes each

data source, e.g., source table schema, data types, integrity

constraints, data provenance information such as silo location.

In this work, by data integration metadata we refer to the

metadata generated during the data integration process, e.g.,

column relationships from schema matching and row match-

3730

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

Metadata Management

Data
Integration

Metadata
Catalog

DI Metadata

Schema
Matching

Entity
Resolution

Data
Discovery

Input

S1 S2 S3

Orchestration

Factorization

Optimizer

Cost Estimation

Materialization Federated
Learning

S4 S5
Data Sources

ML Model
Constraints

(e.g., data privacy

Trained ML Model

Source
Selection

Feature
Selection

…

Amalur
Optimization & Execution

User

Figure 3: An overview of Amalur

ing from entity resolution. Model-related metadata include

the model execution environment, configurations (e.g., hyper-

parameters), input/output (e.g., prediction class), evaluation

performance (e.g., model accuracy), etc. The metadata catalog

also keeps track of the connections between the model and

its training datasets. We have addressed the representations of

basic metadata of source tables [26] and ML models [24]. In

this work, we focus on data integration metadata and explain

their matrix-based representation in Section III.

Optimization and coordination. Another essential compo-

nent is the optimizer. Given the input ML model, constraints

and metadata from the metadata catalog, the optimizer esti-

mates the cost and decides how the ML model training will

be performed over silos: 1) the ML model is decomposed and

the computation is pushed down to the source tables stored in

the silos, i.e., factorization; 2) the source tables are joined and

the generated target table is exported for model training, i.e.,

materialization; 3) the learning process is split given privacy-

preservation constraints, i.e., federated learning. We elaborate

on the details in Section IV and Section V.

Compilation, orchestration and distribution. Finally, the

execution plan from the optimizer is compiled into concrete

programs according to the execution environment (e.g., Ten-

sorFlow, PyTorch, Spark, ONNX). The compiled binaries are

executed either in a central orchestrator or multiple remote

orchestrators. Specifically, for factorized executions, the ex-

ecutables are shipped to the different data silos and return

results needed in a centralized computation.

B. Silos problem: ML use cases and DI formulation

In Table I, we provide two representative ML use cases

where training data could come from silos, i.e., feature aug-

mentation and federated learning. Existing solutions for factor-

ization over joins [27]–[29] mostly tackle inner joins. In this

work, we also deal with left joins, full outer joins, and unions.

As shown in Table I, for the use cases of feature augmentation

and federated learning (and possibly many more), the dataset

relationships between source tables and desired target table,

can be captured by a class of well-studied data dependencies,

i.e., tuple-generating dependencies (tgds) [30], [31], which are

the commonly used formalism in data integration studies.

Use case 1: Feature augmentation is the exploratory process

of finding new datasets and selecting features that help im-

prove the ML model performance [32]–[34]. Figure 2b shows

an example: starting from a base table S1, we augment the

features by introducing the table S2 and selecting the new

feature o (oxygen).
Use case 2: Federated learning [20] studies how to build

joint ML models over data silos (e.g., enterprise data ware-

houses, edge devices) without compromising privacy, which

follows a decentralized learning paradigm. Similar to the

problem setting of virtual data integration [3], FL assumes

that the source data is not collected and stored at a central

data store but stays at the local data stores. According to

how the feature space and sample space are partitioned among

the data sources, FL can be categorized as vertical federated

learning (VFL) and horizontal federated learning (HFL) [35].

For VFL, data sources share the overlapping data instances,

but the feature columns partially overlap or not. For HFL, data

sources share the overlapping feature columns, while the data

instances may overlap.

Example 1 (full outer join) is explained for feature augmen-

tation in Figure 2 and Example III.1. It can also be seen as a

general case of federated learning, where sources have similar

schemas, and data instances (entities) that may, or may not

overlap with each other.

Example 2 (inner join) represents the DI scenario where only

overlapped rows in two sources will be transformed, i.e., an

inner join between S1 and S2 followed by a projection on

columns m, a, hr, o. It can be used to describe the feature

augmentation processes where fewer missing values are pre-

ferred. Such dataset relationships also reside in a VFL use

case, where data sources share the sample space (overlapped

rows) but not necessarily the feature space (overlapped feature

columns).

Example 3 (left join) shows a left join between S1 and S2.

Compared to Example 1, we slightly change the schema of S2

by dropping the label column m. Example 3 describes another

typical feature augmentation scenario for supervised learning:

only the base table S1 contains the label column. Thus, when

adding features from the new table S2, only rows overlapped

with S1 will be selected. Example 3 can be used to describe

the VFL cases where not all but specific sources hold the labels

for supervised model training.

Example 4 (union) is a special case of Example 1, where

S1 and S2 do not share any rows. We modify the schemas

of S1 and S2 such that they share the same set of feature

columns which are mapped to the target schema T . Example

3731

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

Table I: Four example data integration scenarios for feature augmentation and federated learning

No. Dataset Schema mappings Example use casesRelationship

1 Full outer join
m1 : ∀m,n, a, hr, o, dd (S1(m,n, a, hr) ∧ S2(m,n, a, o, dd)→ T (m, a, hr, o))
m2 : ∀m,n, a, hr (S1(m,n, a, hr)→ ∃o T (m, a, hr, o))
m3 : ∀m,n, a, o, dd (S2(m,n, a, o, dd)→ ∃hr T (m, a, hr, o))

Feature augmentation,
Federated learning, . . .

2 Inner join m1 : ∀m,n, a, hr, o, dd (S1(m,n, a, hr) ∧ S2(m,n, a, o, dd)→ T (m, a, hr, o))
Feature augmentation,
(Vertical) federated learning, . . .

3 Left join
m1 : ∀m,n, a, hr, o, dd (S1(m,n, a, hr) ∧ S2(n, a, o, dd)→ T (m, a, hr, o))
m2 : ∀m,n, a, hr (S1(m,n, a, hr)→ ∃o T (m, a, hr, o))

Feature augmentation,
(Vertical) federated learning, . . .

4 Union
m2 : ∀m,n, a, hr, o (S1(m,n, a, hr, o)→ T (m, a, hr, o))
m3 : ∀m,n, a, hr, o, dd (S2(m,n, a, hr, o, dd)→ T (m, a, hr, o))

Data sample augmentation,
(Horizontal) federated learning, . . .

4 can represent the scenario when a new table is selected to

bring more data samples. Alternatively, it can describe the

HFL scenario where data sources share feature columns but

not data samples.

C. Amalur workflows for the two ML use cases

Amalur workflow for feature augmentation. When there

is no privacy constraint, Amalur determines the computation

mechanism based on cost estimation. If the computation is

performed in a factorized manner, the model is decomposed

and pushed down to silos. If the computation is performed in a

materialized manner, Amalur will integrate the source datasets

and generate the target table.

Amalur workflow for federated learning. In the existence

of privacy constraints, Amalur will conduct privacy-preserving

data integration operations over the silos [36], and split the

learning process over the silos. The central orchestrator will

coordinate communication between silos, and the encryp-

tion/decryption during aggregating the results and updating the

weights.

III. REPRESENTATION: A TALE OF THREE MATRICES

In this section, we discuss the representations that capture

the metadata of data integration, which enable optimizing ML

tasks. When combining the functions of data integration and

machine learning in one system such as Amalur, one core task

is how to represent the DI metadata. By DI metadata, we refer

to the information that describes i) the selected data sources,

e.g., table schemas and the number of rows, and the number

of selected sources; ii) the relevance and overlap between

data sources, e.g., column matching between source tables

(schema matching), schema-level correspondences between

source tables and the target table (schema mapping), and

row matching between source tables (entity resolution). The

challenge is that the representation needs to be expressive
enough to capture the DI metadata, while bringing little
overhead for model training.

We define three logical-level representations: mapping ma-
trix for preserving the column mapping (Section III-A), indi-
cator matrix for row matching (Section III-B), and redundancy
matrix for data redundancy (Section III-C). We choose matrix-

based representations, as they facilitate direct computation

with linear algebras without the need of additional trans-

formation, which we illustrate in Section IV. Finally, in

Table II: Notations used in the paper
Notation Description
T /Sk Target table/the k-th source table
Dk Processed k-th source table in matrix form
cT /cSk Number of mapped columns in T/Sk

rT /rSk Number of mapped rows in T /Sk

Mk/CMk Full/compressed mapping matrix for Sk

Ik/CIk Full/compressed indicator matrix for Sk

Rk Redundancy matrix for Sk

Section III-D, we inspect the implementation of such matrix-

based representations at the physical level.

A. Mapping matrix

Preliminaries. Schema mappings lay at the heart of data inte-

gration and data exchange. Let S and T be a source relational

schema and a target relational schema sharing no relation

symbols. A schema mapping M between S and T is a triple

M = 〈S,T,Σ〉, where Σ is a set of dependencies over 〈S,T〉.
The dependencies Σ can be expressed as logical formulas

over source and target schemas. One of the most commonly

used mapping languages is source-to-target tuple generating
dependencies (s-t tgd) [30], [31], which are also known as

Global-Local-as-View (GLAV) assertions [21]. An s-t tgd is a

first-order sentence in the form of ∀x (ϕ(x) → ∃y ψ(x,y)),
where ϕ(x) is a conjunction of atomic formulas over the

source schema S, and ψ(x,y) is a conjunction of atoms over

the target schema T.

Example III.1. In Figure 2c, m1, m2, and m3 are all tgds.

We represent mapped attributes with the same variable names,

e.g., S1.m and S2.m. The tgd m1 specifies that the overlapped

rows of S1 and S2 are added to T (∧ denotes a natural join

between S1 and S2); m2 and m3 indicate that all rows of

S1 and S2 will be transformed to generate new tuples in T ,

respectively. Among the three tgds, it is the union relationship.

The three tgds together, describe that the instances in T are

obtained via a full outer join between the datasets S1 and S2.

Gaps. Tgds are first-order sentences specifying schema map-

pings. A DI system often generates schema mappings as exe-

cutable data transformation scripts, e.g., SQL, which transform

the source data instances and materialize the target table T .

In contrast, the fundamental language of ML models is linear

algebra. To embed schema mappings in an end-to-end ML

pipeline, we need a novel representation for schema mappings,

3732

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Mapping, indicator, and redundancy matrices of the running example

which is compatible with algebraic computation in ML model

training.

Matrix-based representation for schema mappings. Schema

mappings contain the information about the mapped columns

between source and target tables. We define the mapping
matrix to preserve such column mappings. As a preparation

step, we add ID numbers to mapped columns as shown in

Figure 4a. In Table II we summarize the notations used in

this paper. We abuse the notation a little and refer to both a

target/source table name and its schema with T/Sk.

Definition III.1 (Mapping matrix). Mapping matrices between

source tables S1, S2, ..., Sn and target table T are a set of

binary matrices M = {M1, ...,Mn}. Mk (k ∈ [1, n]) is a

matrix with the shape cT × cSk
, where

Mk[i, j] =

⎧⎪⎨
⎪⎩
1, if jth column of Sk is mapped to

the ith column of T

0, otherwise

Intuitively, in Mk[i, j] the vertical coordinate i represents

the target table column while the horizontal coordinate j
represents the mapped source table column. A value of 1
in Mk specifies the existence of column correspondences

between Sk and T , while the value 0 shows that the current

target table attribute has no corresponding column in Sk.

Figure 4a shows the mapping matrices M1 for S1, and M2

for S2 of the running example.

It is easy to see that the binary mapping matrices are often

sparse. Because each attribute in the source table Sk is mapped

to only one attribute in T . Thus, in each row of Mk at most

one element is 1, while the rest are 0. Moreover, if an attribute

of T does not have a mapped attribute in Sk, the corresponding

row of the mapping matrix has only values of 0. For example,

T.o (column ID: 3) does not have a mapped column in S1,

thus, the last row of M1 has only zeros, i.e., M1[3] = [0, 0, 0].
To solve the sparsity problem we apply a more compressed

form of mapping matrices as follows.

Definition III.2 (Compressed mapping matrix). Compressed

mapping matrices between source tables S1, S2, ..., Sn and tar-

get table T are a set of row vectors CM = {CM1, ..., CMn}.

CMk (k ∈ [1, n]) is a row vector of size cT , where

CMk[i] =

⎧⎪⎨
⎪⎩
j, if jth column of Sk is mapped to

the ith column of T

−1, otherwise

We continue with the running example. Figure 4a illustrates

the compressed mapping matrices CM = {CM1, CM2}.

They can be directly generated from schema mappings without

the generation of the mapping matrices M = {M1,M2}.

B. Indicator matrix

We use the indicator matrix [27] (denoted as Ik) to preserve

the row matching between each source table Sk and the target

table T . Similar to the mapping matrix, a binary indicator

matrix could be very sparse and its compressed form is

preferred. Due to space restriction, we directly define the

compressed indicator matrix.

Definition III.3 (Compressed indicator matrix). Compressed

indicator matrices between source tables S1, S2, ..., Sn and

target table T are a set of row vectors CI = {CI1, ..., CIn}.

CIk (k ∈ [1, n]) is a row vector of size rT , where

CIk[i] =

⎧⎪⎨
⎪⎩
j, if the jth row of Sk is mapped to

the ith row of T

−1, otherwise

Notably, for the downstream ML algorithms, not all but

only partial data of an original source table will participate

in the computation as features or labels. Thus, we transform

the original tables S1 and S2 in Figure 2a-b to their matrix

forms D1 and D2 in Figure 4b, which only include the mapped

columns. Figure 4b shows the row matching of the running

example and the compressed indicator matrices, CI1 for S1

and CI2 for S2.

C. Redundancy matrix

Data integration systems often need to handle data re-

dundancy when multiple sources have overlapping values.

Consider the example in Figure 2, when a user query asks

how many patients aged above 30 are in S1 and S2, the

correct answer is three instead of four. That is, the overlapped

row of Jane should be counted only once. Such redundancy

resides in the projection of shared rows on the overlapped

3733

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

columns. Similarly, to support ML models we also need to

detect redundancy to avoid repeated computation, which might

lead to erroneous results. Thus, we propose a declarative

representation to capture redundancy, i.e., redundancy matrix.

To prepare for its definition, we first discuss how each source

table contributes to the target table materialization. With the

mapping matrix Mk and indicator matrix Ik, we can transform

a source table Dk to an intermediate matrix with the same

shape as T , denoted as Tk.

Tk = IkDkM
T
k

Figure 4c shows T1 and T2 of the running example. The red

values in T2 are the repeated values that already appeared in

T1. It is easy to see that Tk indicates the contribution from each

source Sk. However, due to the aforementioned redundancy

issue (red values in T2), we cannot make a simple matrix

addition to obtain the target table. For instance, T1 + T2 	= T
in Figure 4b-c. This is why we need the redundancy matrix,

which is defined below.

Definition III.4 (Redundancy matrix). A redundancy matrix

Rk of source table Sk is a binary matrix with the shape of

rT × cT , where

Rk[i, j] =

{
0, if Tk[i, j] is redundant

1, otherwise

Note that before we say the data of a source table is

redundant, we first need to specify which source table is

the base table. For instance, in Example 1-3 of Table I,

if we specify S1 as the base table, then we consider the

overlapped values in S2 are redundant, and only need to

generate a redundancy matrix for S2. For completeness we

can consider that the redundancy matrix for the base table is

an all-ones matrix, which has all the element values equal to

one. Figure 4c shows R2 for S2 given the running example,

which is computed based on mapping and indicator matrices

of S1 and S2.

D. Metadata representation as tensors

The three proposed types of matrices offer a novel perspec-

tive on the data processing pipeline, where we can describe

data, and data integration processes with linear algebra. Aside

from the intuitive 2-dimensional matrix representation, we can

use high-dimensional tensors to integrate data and metadata.

For example, the data matrix Dk can be expanded to a third

dimension where Mk and Ik adhere along values and primary

keys respectively. As such, we can represent the data and data

integration metadata with a more expressive data structure

compatible with tensor algebra and recent advances in data

processing [37]–[43].

As the fundamental language of machine learning, tensor

algebra and the benefits it brings in efficiency [37]–[39] have

attracted the considerable attention of the ML and DB research

communities. Many recent works [40]–[43] have started con-

sidering the integration of data processing and ML pipeline

in unified tensor runtimes. Such a combination enables cross-

optimizations between data processing and ML pipelines, a

vital part of the Amalur system.
Furthermore, as dedicated tensor processing modules keep

emerging, the tensor representation exhibits compatibility with

new hardware. Google TPUs [44] and recent Nvidia GPUs

[45] have built-in tensor cores where matrix multiplication can

be computed in one single clock cycle, improving parallelism

from the array-level of SIMD instructions to the matrix-level.

The High Performance Computing community [46], [47] has

started optimizing numeric algorithms for tensor cores. It is

foreseen that the tensor-represented data processing can be

significantly accelerated with co-evolving tensor algorithms,

runtime, and dedicated tensor computing hardware.

Summary & Opportunities

– DI metadata can be preserved in matrix represen-
tation.
– Representing DI metadata as tensors offers cross-
optimization opportunities between DI and ML, and
can help us leverage emerging tensor processing meth-
ods and hardware for speedup.

IV. ALGEBRAIC COMPUTATION OVER SILOS

In this section, we dive into the research opportunities

of conducting arithmetic computations over silos with data

integration metadata. In the following, we first discuss the new

challenges of generalizing the existing factorization techniques

from a single database to data silos (Section IV-A), and

cost estimation for choosing factorization or materialization

(Section IV-B).

Factorization vs. materialization. The training process of an

ML model requires complex arithmetic computations. Simi-

lar to data warehousing and virtual data integration2, these

computations during model training can be conducted in a

materialized or factorized manner. Materialization requires

joining the source tables and obtaining the instances of the

target table before exporting it for model training, as depicted

in Figure 2. Another option is learning over factorized joins
[50], also known as factorized learning [51]. Given an ML

model and joinable tables of a database, factorized learning

requires reformulating the ML model and pushing down

the computation to each table. Compared to materialization,

factorized learning does not affect model training accuracy but

often helps to improve the training efficiency [27]–[29], [50]–

[57]. Notably, similar to traditional DI systems, materialization

is not possible in some cases due to privacy constraints

and other reasons, which we address in Section V. In this

section, we focus on the performance implications of these

two strategies.

2We can classify the architectures of most traditional data integration sys-
tems as data warehousing or virtual data integration [3]. In data warehousing,
the target table is materialized and the materialization often requires an extract,
transform, load (ETL) process. In a virtual data integration system, the target
table is not materialized, and the user can pose queries against the target
schema, also known as global schema or mediated schema. The user query
needs to be rewritten according to the underlying source schemas, e.g., view-
based query rewriting [48], [49].

3734

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

A. Computation challenge: DI metadata for factorization

In the following, we explain how the data integration meta-

data can be used to generalize existing factorization techniques

over silos (cf. Table I), and the new challenges. The existing

factorization either tackles the model as a whole [50], [51] or

at the linear algebra level [27], for linear or non-linear models

[27]–[29], [51]–[56]. To simplify the discussion, here we use

the example of LA operator left matrix multiplication (LMM)
and its rewrite rule from [27].

New algebraic rewriting rules. Given a matrix X with the

size cT × cX , the LMM of T and X is denoted as TX .

For better understanding, we use mapping/indicator matrices

Mk/Ik below, although we generate and utilize their com-

pressed forms CMk and CIk in practice. Equations below

present an example of transforming an existing LMM rewriting

[27] with our proposed rule.

TX → I1(D1X[1 : cS1 ,]) + I2(D2X[cS1 + 1 : cT ,]) [27]

(1)

⇓
TX → I1D1M

T
1 X + ((I2D2M

T
2) ◦R2)X [Amalur] (2)

1 Local result generation. We first compute IkDkM
T
k for

each source table. In this step, to reduce computation overhead,

we reorder the matrix multiplication sequence, similar to the

join-order optimization in databases.

2 Local result assembly. The main task here is to detect and

remove duplicate computations by applying the redundancy

matrices. For instance, we continue with the running example.

Consider D1 as the base table while D2 is redundant. To

obtain the correct final LMM result, here we can perform a

Hadamard Product ◦ (element-wise multiplication) between

I2D2M
T
2 and the redundancy matrix R2. This way, we drop

the redundant intermediate results indicated by the redundancy

matrix R2. Figure 4c shows the results of T1X and (T2◦R2)X .

It is easy to verify that their addition is the same as TX .

DI metadata & factorization. First, to compute the local

LMM result, in the above rule (1) [27], X is partitioned as

X[1 : cS1] and X[cS1 +1 : cT ,] because the columns of T are

assumed to be two disjoint sets from D1 and D2. To tackle

the overlapping columns, in our modified rule (2), mapping

matrix Mk brings more flexibility in choosing the columns of

Sk. Second, to compute the final result, in the original rule (1),

two local LMM results (i.e., D1X[1 : cD1 ,] and D2X[cD1+1 :
cT ,]) are simply added up via indicator matrices I1 and I2.

However, as we have shown, we need to handle redundancy

when generalizing the LA factorization problem.

Challenges. Based on the process we described, we showed a

simple example of how DI metadata can be used in ML factor-

ization. Nonetheless, such processes might be less straightfor-

ward due to more complex schema or row mappings, produced

by the corresponding DI processes. For example, consider the

cases where we have 1 : n mappings among the schema

attributes of the source tables and the one of the target table

(e.g. fullname mapping to first name and last name), or the

Factorize Materialize

Area I Area II

Area III

Figure 5: An abstraction of different decision areas (fac-
torize/materialize) and their boundaries

cases where source tables contain duplicated information (i.e.,

repeated entities) and require dedicated solutions. Embedding

such DI metadata into factorization techniques is part of our

future directions.

B. Cost estimation challenge: to factorize or to materialize

Problem analysis. Factorization has been shown to be effec-

tive at increasing the efficiency of model training [27]–[29],

[50], [50]–[57]. However, the question of when to factorize,

is not fully answered. We illustrate the problem intuitively in

Figure 5. Let us assume that there exists a borderline (the

curvy purple line), between the cases where factorization is

faster and the cases where materialization is faster. Areas I and

II cover the cases when it is easy to decide on factorization or

materialization, respectively, while area III covers the harder

cases. The state-of-the-art solution [27] only resolves the cases

in Area I, missing many potential cases in Area III where

factorization is faster.

Essentially, cost estimation depends on four factors: the ML

model, LA operators, hardware and underlying data. Given a

model, its architecture and algebraic computations are fixed; it

is known which LA operators are affected by factorization and

which are not [27]. To examine the relative speedup of fac-

torization, we mainly need to inspect the interactions between

physical data transfers (e.g., network and memory bandwidth)

[58], and data redundancy [27], [50]. In general terms, if by

joining the source tables we obtain a target table with more

instance redundancy than source tables, factorization may be

faster than materialization. In the following, we explain why

data silos bring more challenges and research opportunities.

Cost estimation depends on data relationships. To differ-

entiate area I from the rest in Figure 5, two heuristic rules are

proposed based on tuple ratio and column ratio (i.e., feature

ratio) between source tables and target tables [27]–[29] . How-

ever, when we come to complex data integration scenarios,

there are more parameters to consider. Before materializing

the target table, among silos there are parameters relevant for

the redundancy, source description (e.g., number of sources,

number of columns and rows in each source, null value ratio

per table), source correspondences (column matching and row

matching between sources), etc. It is challenging to calculate

3735

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

Redundancy in source tables
Yes No

Redundancy in the target table
Yes

Morpheus: 70%

Amalur: 70%

Morpheus: 70%

Amalur: 70%

No
Morpheus: 20%

Amalur: 80%
Morpheus: 30%

Amalur: 70%

Table III: Percentage of correct factorization decisions of
Amalur vs Morpheus [27]

the borderline in Figure 5 and to design an accurate cost model

taking such data integration metadata into account. From the

preliminary experimental results in Table III3, we observe that,

by combining these parameters, in certain cases Amalur’s cost

estimation process can lead to better decisions than the state-

of-the-art solution Morpheus [27]. In future work, we plan

to cover a wide range of DI scenarios with more parameter

combinations and rigorously test our approach.

DI metadata as cost model parameters and pruning rules.
Data integration metadata is relevant in two cases. First, as

discussed above, some of DI metadata could be used as

parameters of a cost model. The data integration principles

could also potentially affect how these parameters should be

combined. Second, data integration is a topic with mature

logic-based theoretical frameworks. A natural question is: can
we use these logic rules in cost estimation?
Example IV.1. Consider Example 2 in Table I. m1 is a full

tgd, i.e., m1 does not contain existentially quantified variables.

All the attributes of target schema T come from at least one

source schema. In such a case, the number of columns in

T is less than or equal to the total number of columns in

S1 and S2 participating in factorization. In the use cases of

feature augmentation and VFL, the number of rows in T is

usually less than or equal to the total number of rows in S1 and

S2. That is, the materialized target table T does not contain

more redundancy than the source tables. Thus, factorization

will not bring performance improvement, which makes it a

case in area II of Figure 5. In similar cases, we can make a

straightforward decision on choosing materialization. A tgd is

a first-order sentence, which can be easily implemented and

evaluated, e.g., a datalog program. In future work, we plan to

study how to utilize such logical rules for cost estimation.

The above example is one of the simplest applications

of mapping formalism in the context of cost estimation for

factorization. There are more types of tgds describing more

complicated dataset relationships, e.g., nested tgds [59], and

plain SO tgds [60]. The discussion could also be expanded

to more types of metadata, e.g., expand the existing entity

resolution approaches [61] and come up with other pruning

rules. In short, utilizing DI metadata in factorization still

needs more effort from data integration theoreticians and

practitioners.

3Experiment setting: cS1
= 1, cS2

= 100; we set the values of
rS1 as {10, 50, 100, 500, ..., 1000000, 5000000}, and rS2 as 0.2 × rS1 ,
respectively. We tested ten scenarios in each of the four cases in Table III.
We computed the percentage of times that the cost estimation procedures
correctly predicted factorization.

Summary & Opportunities

– Data integration metadata is useful for factorization
over silos, and it requires much more research.
– The more complicated dataset relationships call
for new cost models to tell apart factorization from
materialization.

V. DATA INTEGRATION AND FEDERATED LEARNING

A. Challenge I: Automate data transformation for FL

In federated learning, a crucial prerequisite is establishing

alignments among data silos, i.e., obtaining their column and

row matching. This typically requires ML engineers to prepare

a subset of local data by adding or removing feature and

instance candidates from different data silos. It costs massive

workforce or programming efforts to collect, prepare and

transform data from the sources, which also involves tiresome

re-engineering. With our proposed mapping and indicator

matrices, the subsets of local data can be represented and

embedded in the federated models, which has great potential to

automate the whole process. In what follows, we explain our

intuition with the vertical federated linear regression (FLR)

algorithm from [35] and Example 2 in Table I. The FLR

training objective is:

min
ΘA,ΘB

∑

i

∥∥∥ΘAX
(i)
A +ΘBX

(i)
B − Y (i)

∥∥∥
2

,

where XA and XB are feature spaces of S1 and S2 respec-

tively, Y is the label space of S1, ΘA, and ΘB are the local

FLR model parameters of S1 and S2. i denotes the row index

of data instances in the matrix.

The performance of trained FLR models depends on the

quality of XA and XB , which are prepared before training and

fixed during training. Refining the performance of FLR models

typically requires regenerating XA and XB . With our mapping

and indicator matrices, we can integrate the generation of XA

and XB into the FLR training as an end-to-end optimization

procedure. By denoting XA as I1D1M
T
1 and XB as I2D2M

T
2 ,

we rewrite the FLR objective as:

min
ΘA,ΘB ;

I1,M1,I2,M2

∑

i

∥∥∥ΘA(I1D1M
T
1)(i) +ΘB(I2D2M

T
2)(i) − Y (i)

∥∥∥

Optimization and automation opportunities. The new FLR

objective can be optimized by alternatively training ΘA,ΘB

and I1,M1, I2,M2. While ΘA,ΘB can be trained by follow-

ing the secure federated learning procedure [35], efficiently

and effectively training I1,M1, I2,M2 are challenging prob-

lems. For one thing, the conventional centralized data selection

approaches cannot be directly applied to the decentralized

federated training because they impose heavy communication

overheads. Therefore, communication-efficient data selection

solutions are required to favor a fast search for optimal

I1,M1, I2,M2. For another, I1,M1, I2,M2 contain metadata

of different data sources, and therefore they should be trained

3736

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

in a privacy-preserving manner. These challenges open up new

research directions that incorporate multiple disciplines involv-

ing data integration, federated learning, and cryptography.

B. Challenge II: privacy-preserving DI+FL pipeline

Problem setting in existing FL frameworks. In existing

vertical federated learning frameworks for tabular data [62]–

[65], the common assumption is that entity resolution and

federated learning are two isolated tasks, and entity resolution

can be seen as a preprocessing step of federated learning.

Moreover, they assume that the two data sources, party A and

party B, do not have overlapping feature columns, as shown

in the below example:

Party A: S1(r,m, a)
Party B: S2(r, o), and the schema mapping is

m1 : ∀r,m, a, o (S1(r,m, a) ∧ S2(r, o) → T (m, a, o))

Source table S1 of party A and source table S2 of Party B,

share a row id column r, which is not a feature. The row id

matching is given to the VFL framework as inputs.

However, such a problem setting is too ideal for real-life

use cases. First, the results from an entity resolution approach

often need to be verified by a human being. The separation

between entity resolution and federated learning means that a

third party is needed. She or he is trustworthy and will not

leak information. Such a third party is not always available in

a privacy-preserving use case. Second, as shown in Table I, the

dataset relationships can be more complicated than the above

example. The columns between silos could overlap, which

requires a more sophisticated protocol to exchange gradients

and model weights between different parties. Thus, the natural

question is: how to seamlessly apply the machine-generated
ER results to jointly train models while preserving privacy?

New challenges. The challenges of building an end-to-end

entity resolution and federated learning pipeline are three-fold.

First, we need to define the representation for the machine-

generated ER results, which are most likely approximate. Then

the question is how to use such ER results in federated learning

without affecting model accuracy significantly. Second, such

a representation should not leak information about private

data. Intuitively, we can understand privacy preservation as:

each party will not learn new information about other parties

during learning process, which they did not know before.

The common techniques for privacy-preserving in federated

learning and data integration include homomorphic encryption

[66], [67], secret sharing [68], [69] and differential privacy

[70]. In a system like Amalur where both entity resolution and

federated learning are supported, we need to encrypt the data

and also the data integration metadata. Third, there are new

opportunities for time-wise efficiency improvement. It is well-

known that encryption often brings tremendous computation

overhead. Now besides the data, we have more to encrypt

and decrypt, i.e., the metadata. The DI metadata is generally

smaller, compared to data instances. However, it is unclear

how much overhead the encryption of DI metadata will bring,

which requires further study.

Summary & Opportunities

– Data integration metadata is promising for im-
proving ML model accuracy, and automating data
transformation pipelines and federated learning.
– More complicated dataset relationships bring more
practical FL use cases, but also more challenges for
encryption.

VI. CONCLUSION

In this work, we have explored the possibilities of bringing

data integration and machine learning together. Towards this

direction, we have proposed a novel data integration system

Amalur, which supports data integration and machine learning

over silos. We have inspected the promising challenges of

representing data integration metadata, and utilizing it for

factorized learning and federated learning. We envision this

work as one of the first steps towards bridging the recent

advances in machine learning with the well-studied traditional

data integration field.

ACKNOWLEDGMENT

This work is co-funded by the European Union Horizon

Programme call HORIZON-CL4-2022-DATA-01, under Grant

Agreement No. 101093164 (ExtremeXP).

REFERENCES

[1] J. M. Bos, G. A. Kalkman, H. Groenewoud, P. M. van den Bemt,
P. A. De Smet, J. E. Nagtegaal, A. Wieringa, G. J. van der Wilt, and
C. Kramers, “Prediction of clinically relevant adverse drug events in
surgical patients,” PloS one, vol. 13, no. 8, p. e0201645, 2018.

[2] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[3] A. Doan, A. Halevy, and Z. Ives, Principles of data integration.
Elsevier, 2012.

[4] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[5] R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and
Y. Velegrakis, “Clio: Schema mapping creation and data exchange,” in
ER. Springer, 2009, pp. 198–236.

[6] D. G. Brizan and A. U. Tansel, “A. survey of entity resolution and record
linkage methodologies,” Communications of the IIMA, vol. 6, no. 3, p. 5,
2006.

[7] N. Makrynioti and V. Vassalos, “Declarative Data Analytics: a Survey,”
TKDE, p. 1, 2019.

[8] X. Zhou, C. Chai, G. Li, and J. Sun, “Database meets artificial
intelligence: A survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3,
pp. 1096–1116, 2022.

[9] M. Schleich, D. Olteanu, M. Abo-Khamis, H. Q. Ngo, and X. Nguyen,
“Learning Models over Relational Data: A Brief Tutorial,” in Scalable
Uncertainty Management, N. Ben Amor, B. Quost, and M. Theobald,
Eds. Cham: Springer International Publishing, 2019, pp. 423–432.

[10] A. Alserafi, A. Abelló, O. Romero, and T. Calders, “Keeping the Data
Lake in Form: Proximity Mining for Pre-Filtering Schema Matching,”
ACM Trans. Inf. Syst., vol. 38, no. 3, pp. 26:1–26:30, 2020.

[11] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating Embed-
dings of Heterogeneous Relational Datasets for Data Integration Tasks,”
in Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 1335–1349.

[12] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

3737

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

[13] S. Das, P. S. GC, A. Doan, J. F. Naughton, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, and Y. Park, “Falcon: Scaling up hands-off
crowdsourced entity matching to build cloud services,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
2017, pp. 1431–1446.

[14] Z. Wang, B. Sisman, H. Wei, X. L. Dong, and S. Ji, “Cordel: A
contrastive deep learning approach for entity linkage,” in 2020 IEEE
International Conference on Data Mining (ICDM), 2020, pp. 1322–
1327.

[15] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “Active-
clean: Interactive data cleaning for statistical modeling,” Proceedings of
the VLDB Endowment, vol. 9, no. 12, pp. 948–959, 2016.

[16] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu, “Boostclean:
Automated error detection and repair for machine learning,” arXiv
preprint arXiv:1711.01299, 2017.

[17] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang, “Cleanml:
A study for evaluating the impact of data cleaning on ml classification
tasks,” in 2021 IEEE 37th International Conference on Data Engineer-
ing (ICDE), 2021, pp. 13–24.

[18] X. L. Dong and T. Rekatsinas, “Data integration and machine learning:
A natural synergy,” in Proceedings of the 2018 international conference
on management of data, 2018, pp. 1645–1650.

[19] A. Y. Halevy, A. Rajaraman, and J. J. Ordille, “Data Integration: The
Teenage Years,” in VLDB. ACM Press, 2006, pp. 9–16.

[20] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning. Morgan & Claypool Publishers, 2019.

[21] M. Lenzerini, “Data integration: A theoretical perspective,” in PODS.
ACM, 2002, pp. 233–246.

[22] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W.-C. Tan, “Data
Integration: After the Teenage Years,” in PODS, 2017, pp. 101–106.

[23] R. Hai, S. Geisler, and C. Quix, “Constance: An Intelligent Data Lake
System,” in SIGMOD. ACM, 2016, pp. 2097–2100.

[24] Z. Li, R. Hai, A. Bozzon, and A. Katsifodimos, “Metadata representa-
tions for queryable ML model zoos,” 2022.

[25] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[26] C. Quix, R. Hai, and I. Vatov, “Metadata Extraction and Management
in Data Lakes With GEMMS,” CSIMQ, no. 9, pp. 67–83, 2016.

[27] L. Chen, A. Kumar, J. Naughton, and J. M. Patel, “Towards linear
algebra over normalized data,” PVLDB, vol. 10, no. 11, 2017.

[28] S. Li, L. Chen, and A. Kumar, “Enabling and Optimizing Non-Linear
Feature Interactions in Factorized Linear Algebra,” in Proceedings of
the 2019 International Conference on Management of Data, 2019, pp.
1571–1588.

[29] Z. Cheng, N. Koudas, Z. Zhang, and X. Yu, “Efficient Construction of
Nonlinear Models over Normalized Data,” Apr. 2021, pp. 1140–1151.

[30] C. Beeri and M. Y. Vardi, “A proof procedure for data dependencies,”
JACM, vol. 31, no. 4, pp. 718–741, 1984.

[31] R. Fagin, Tuple-Generating Dependencies. Boston, MA: Springer US,
2009, pp. 3201–3202.

[32] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and
D. Karger, “Arda: automatic relational data augmentation for machine
learning,” VLDB, vol. 13, no. 9, pp. 1373–1387, 2020.

[33] M. Esmailoghli, J.-A. Quiané-Ruiz, and Z. Abedjan, “Cocoa: Correlation
coefficient-aware data augmentation.” in EDBT, 2021, pp. 331–336.

[34] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?
thinking twice about joins before feature selection,” in Proceedings of
the 2016 International Conference on Management of Data, 2016, pp.
19–34.

[35] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, jan 2019.

[36] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid, “Privacy
preserving schema and data matching,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007. ACM, 2007, pp. 653–664.

[37] A. Sabne, “XLA : Compiling machine learning for peak performance,”
2020, SIGMOD workshop DEEM, industry keynote.

[38] H. Vanholder, “Efficient inference with tensorrt,” in GPU Technology
Conference, vol. 1, 2016, p. 2.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, 2019, pp. 8024–8035.

[40] D. He, S. C. Nakandala, D. Banda, R. Sen, K. Saur, K. Park, C. Curino,
J. Camacho-Rodrı́guez, K. Karanasos, and M. Interlandi, “Query pro-
cessing on tensor computation runtimes,” Proc. VLDB Endow., vol. 15,
no. 11, pp. 2811–2825, 2022.

[41] Y.-C. Hu, Y. L. Li, and H.-W. Tseng, “TCUDB: Accelerating database
with tensor processors,” in Proceedings of the 2022 International Con-
ference on Management of Data, 2022.

[42] M. Kim and K. S. Candan, “Tensordb: In-database tensor manipulation
with tensor-relational query plans,” in Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management, 2014, pp. 2039–2041.

[43] D. Koutsoukos, S. Nakandala, K. Karanasos, K. Saur, G. Alonso, and
M. Interlandi, “Tensors: An abstraction for general data processing,”
Proceedings of the VLDB Endowment, vol. 14, no. 10, pp. 1797–1804,
2021.

[44] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[45] NVIDIA, “Nvidia tesla v100 gpu architecture,” 2017. [Online].
Available: http://images.nvidia.com/content/volta-architecture/ pdf/volta-
architecture-whitepaper.pdf

[46] A. R. Benson and G. Ballard, “A framework for practical parallel fast
matrix multiplication,” ACM SIGPLAN Notices, vol. 50, no. 8, pp. 42–
53, 2015.

[47] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with rein-
forcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[48] A. Deutsch, L. Popa, and V. Tannen, “Query reformulation with con-
straints,” ACM SIGMOD Record, vol. 35, no. 1, pp. 65–73, 2006.

[49] R. Chirkova, J. Yang et al., “Materialized views,” Foundations and
Trends® in Databases, vol. 4, no. 4, pp. 295–405, 2012.

[50] M. Schleich, D. Olteanu, and R. Ciucanu, “Learning Linear Regression
Models over Factorized Joins,” in Proceedings of the 2016 International
Conference on Management of Data, 2016, pp. 3–18.

[51] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear
models over normalized data,” in SIGMOD, 2015, pp. 1969–1984.

[52] A. Kumar, M. Jalal, B. Yan, J. Naughton, and J. M. Patel, “Demonstra-
tion of Santoku: optimizing machine learning over normalized data,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1864–1867,
Aug. 2015.

[53] R. Alotaibi, B. Cautis, A. Deutsch, and I. Manolescu, “Hadad: A
lightweight approach for optimizing hybrid complex analytics queries,”
in SIGMOD, 2021, pp. 23–35.

[54] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schle-
ich, “AC/DC: In-Database Learning Thunderstruck,” in Proceedings of
the Second Workshop on Data Management for End-To-End Machine
Learning. Houston TX USA: ACM, Jun. 2018, pp. 1–10.

[55] J. V. D’silva, F. De Moor, and B. Kemme, “AIDA: abstraction for
advanced in-database analytics,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1400–1413, Jul. 2018.

[56] J. V. D’silva, F. De Moor, and B. Kemme, “Making an RDBMS
data scientist friendly: Advanced in-database interactive analytics with
visualization support,” Proc. VLDB Endow., vol. 12, no. 12, pp. 1930–
1933, 2019.

[57] M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, and X. Nguyen,
“A layered aggregate engine for analytics workloads,” in Proceedings of
the 2019 International Conference on Management of Data, 2019, pp.
1642–1659.

[58] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Komu-
ravelli, J. Pan, T. Bao, H. Lu, S. Narayanan, J. Langman, K. Wilfong,
H. Rastogi, C.-J. Wu, C. Kozyrakis, and P. Pol, “Understanding data
storage and ingestion for large-scale deep recommendation model train-
ing,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture. ACM, jun 2022.

[59] P. G. Kolaitis, R. Pichler, E. Sallinger, and V. Savenkov, “On the
language of nested tuple generating dependencies,” TODS, vol. 45, no. 2,
pp. 1–59, 2020.

3738

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

[60] M. Arenas, J. Pérez, J. Reutter, and C. Riveros, “The language of plain
SO-tgds: Composition, inversion and structural properties,” Journal of
Computer and System Sciences, vol. 79, no. 6, pp. 763–784, 2013.

[61] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Ste-
fanidis, “An overview of end-to-end entity resolution for big data,” ACM
Computing Surveys (CSUR), vol. 53, no. 6, pp. 1–42, 2020.

[62] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and
Q. Yang, “Secureboost: A lossless federated learning framework,” IEEE
Intelligent Systems, vol. 36, no. 6, pp. 87–98, 2021.

[63] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “BlindFL: Vertical federated
machine learning without peeking into your data,” in SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. ACM, 2022, pp. 1316–1330.

[64] F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, VF2Boost:
Very Fast Vertical Federated Gradient Boosting for Cross-Enterprise
Learning. Association for Computing Machinery, 2021, pp. 563–576.

[65] W. Fang, D. Zhao, J. Tan, C. Chen, C. Yu, L. Wang, L. Wang,

J. Zhou, and B. Zhang, “Large-scale secure XGB for vertical federated
learning,” in Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 443–452.

[66] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007,
pp. 1–10, 2007.

[67] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[68] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[69] A. Beimel, “Secret-sharing schemes: A survey,” in International confer-
ence on coding and cryptology. Springer, 2011, pp. 11–46.

[70] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

3739

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2023 at 06:30:59 UTC from IEEE Xplore. Restrictions apply.

