
On Potential Validity of Document-Centric XML Documents

Ionut E. Iacob∗

University of Kentucky
Dept. of Computer Science

Lexington, KY 40506
eiaco0@cs.uky.edu

Alex Dekhtyar†

University of Kentucky
Dept. of Computer Science

Lexington, KY 40506
dekhtyar@cs.uky.edu

Michael I. Dekhtyar‡

Tver State University
Dept. of Computer Science

Tver 170000, Russia
michael.dekhtyar@tversu.ru

Abstract

Document-centric XML document creation is a process
of marking up textual content rather than typing text in a
predefined structure. It turns out that, although the final
document has to be valid with respect to the DTD/Schema
used for the encoding, the “in-progress” document is al-
most never valid. At the same time, it is important to ensure
that at each moment of time, the editor is working with an
XML document that can be enriched with further markup to
become valid. In this paper we explain the notion of poten-
tial validity of XML documents, which allows us to distin-
guish between XML documents that are invalid because the
encoding is incomplete and XML documents that are invalid
and no further encoding will make the document valid. We
show that the set of potentially valid XML documents with
respect to any DTD is context-free and we give a linear-time
algorithm for checking potential validity for documents and
document updates.

1 Introduction

The notion of potential validity of an XML document in-
troduced in [11] arose from the study of the needs of human
editors of document-centric XML documents. As it hap-
pens, the editorial process for document-centric XML doc-
uments stands in contrast with that of data-centric XML. In
majority of applications, data-centric XML is used to rep-
resent semistructured information transported between ap-
plications or between a database and an application. Indi-
vidual subcomponents of the data-centric XML documents
may be created at different times - by different means, only
to be later merged into a single document as a result of ex-
ecuting a query or passing information from one place to

∗Work supported, in part, by the NEH grant RZ-20887-02.
†Work supported, in part, by the ITR grant 0325063.
‡Work supported, in part, by the RBRF grant #04-01-00015

<!ELEMENT r (a+)>
<!ELEMENT a (b?, (c | f), d)>
<!ELEMENT b (d | f)>
<!ELEMENT c #PCDATA>
<!ELEMENT d (#PCDATA | e)*>
<!ELEMENT e EMPTY>
<!ELEMENT f (c, e)>

Figure 1. A sample DTD.

another. Even when parts of such XML are authored by hu-
mans, this is typically done by filling the blanks in specially
prepared forms found in specific applications or data-centric
XML editors [5].

For document-centric XML, the author is almost invari-
ably a human. In many applications yielding document-
centric XML (such as, for example building document col-
lections in digital libraries projects), the content of the
document-centric XML document exists long before any
markup is introduced. Human editors then use various ad-
hoc methods and procedures1to introduce markup on top of
this existing text.

One similarity, however, remains. In most cases, edit-
ing a document-centric XML document is guided by a spe-
cific XML schema, which specifies the rules and constraints
on the occurrence of elements in the XML encoding. But
for document-centric XML, the differences between various
ways of representing the schema: DTD, XML Schema[7],
Relax-NG [13] are less important – typically all content in
document-centric XML documents is treated as strings.

The key reason for the notion of potential validity be-
comes clear when we observe that in the editorial process,
in which markup is gradually and manually added over an
extended period of time on top of existing content, the inter-
mediate XML documents are almost never valid. In [11]
we point at two possible sources of such invalidity: (i) in-
completeness of the encoding and (ii) direct violation
of a schema rule. This is shown in the following example.

1In [10] we have reported on a document-centric XML editor which
incorporates algorithms described in this paper.

r

a

b e c

A quick brown fox jumps over a lazy dog

r

a

b c e

A quick brown fox jumps over a lazy dog

Figure 2. DOM Trees for Example 1

Example 1. Consider the phrase “A quick brown
fox jumps over a lazy dog” encoded with ele-
ments from the DTD in Figure 1 in the following two ways:
w = "<r><a>A quick
brown<e></e><c> fox jumps over a
lazy</c> dog</r>"
s = "<r><a>A quick brown<c>
fox jumps over a lazy</c>
dog<e></e></r>"
Is there a difference between these two XML fragments
with respect to our DTD? And if yes, then, what is this
difference?

Figure 2 depicts the DOM trees [4] for both XML frag-
ments. By comparing the encodings with the structure re-
quired by the DTD (Figure 3), it is easy to notice that both
XML fragments are not valid [2] with respect to it. The first
fragment is not valid because the order in which the tags
<c> and <e> are found in the text contradicts the DTD. At
the same time, we can see that the second XML fragment
does not contain any “hard” violations of the DTD. Rather,
it is simply an incomplete encoding that can be converted
into a valid XML document by adding the two <d> to pro-
duce the encoding:
<r><a><d>A quick brown</d><c> fox

jumps over a lazy</c><d> dog<e></e></d>
</r>

The documents of the second type, which can be made
valid by adding more markup were called potentially valid
in [11]. In that paper, together with formulating the defini-
tion, we have shown that the set of potentially valid XML
documents w.r.t. a given DTD 2 is context-free. While this

2Because potential validity concerns only structural properties of the
XML document, any schema definition method, DTD, XML Schema or
Relax-NG can be used. Without loss of generality we concentrate on the

A quick brown fox jumps over a lazy dog

r

a

b c

e

d

d

Figure 3. Extending encoding to obtain valid
XML.

result implies immediately, that there exists a polynomial
algorithm for determining potential validity[6], we showed
in [11] that because the language of potentially valid doc-
uments is highly ambiguous, such standard CFG parsing
algorithms as Earley’s are not practical. In [11] we have
began our search for an efficient algorithm for checking po-
tential validity by offering a linear-time algorithm that cor-
rectly works on a subclass of DTDs – DTDs without recur-
sive elements. While most standard examples of document-
centric XML markup rarely have recursive elements, the
DTDs often allow them - e.g., in XHTML and <i>
elements can be nested in any way, and thus require ap-
propriate DTD/XSchema structures, despite the fact that we
rarely see a <i><i> combination.

In this paper, we complete the work started in [11]. We
formally show that the class of potentially valid XML docu-
ments is closed under markup and content deletions and that
checking for potential validity on content updates is O(1)
time. We distinguish three classes of DTDs, non-recursive,
PV-weak recursive, and PV-strong recursive and we pro-
pose a new efficient linear-time complexity algorithm for
recognizing potential validity for any DTD.

The rest of the paper is organized as follows. In Section 2
we formally define the notion of potential validity. We show
how to construct a context-free grammar for checking po-
tential validity in Section 3. Our linear-time algorithm for
checking potential validity is described in Section 4.

2 Potentially Valid XML Documents

As in [11], we can specify potential validity of an XML
document as follows.

Definition 1 (informal potential validity [11]). An XML
document is potentially valid w.r.t. a given DTD if either
the document is valid w.r.t the given DTD or it can be made

DTDs in this paper as well.

valid by inserting more markup tags, from the given DTD,
at some positions.

We make the observation that the potential validity defi-
nition above can be straightforward generalized to any other
XML schema language (XML Schema [7], Relax NG [13],
etc.). Our particular choice for DTD is rather related to the
solution we propose in this article for the potential validity
problem than how the XML schema language is specified.

As informally described in Section 1, we want to de-
cide (given a specific DTD) whether or not a given XML
document (presumably not valid) can be transformed into
a valid XML document instance using only markup inser-
tions. This assumption is consistent with a typical pro-
cedure of introducing XML markup into an existing text.
Moreover, we want to determine whether or not an update
operation on a potentially valid document yields a poten-
tially valid document. We emphasize that we do not ex-
clude markup deletion operations. However, a potentially
valid document is either valid or it can become valid us-
ing only markup insertions, whereas a non potentially valid
document requires also markup deletions (or renaming) to
make the document valid.

We can, however, make Definition 1 more formal. First,
we introduce some notation. Consider a DTD T = 〈Γ, T 〉,
where Γ is the set of Element Type Declarations3 [2] and T
is the set of all element types defined in the DTD (i.e., the
set of all left-hand sides of the element type declarations
from Γ). In addition, we assume that one element r ∈ T
will be the root element of XML documents to be encoded
in T .

Given an XML string w, we let content(w) be the con-
catenation of all character data of w, taken in w’s docu-
ment order [2]. To make distinction between element types
in DTD and element tags in document, we use tag to denote
an element tag and element to denote an element type. We
let root(w) denote the root element in w and elements(w)
denote the set of all elements in w. For a tag x in w we
let element(x) be the element of x in T . For an element
a ∈ T we employ XML syntax to denote start tag by <a>
and end tag by . We can now formalize the notion of
potential validity of an XML document w w.r.t. DTD T .

Definition 2 (XML string extension [11]). Let w be an
XML string with elements(w) from DTD T = 〈Γ, T 〉. The
set of extension strings of w with respect to the set of ele-
ments T , denoted Ext(w, T), is defined recursively as fol-
lows:
(1) w ∈ Ext(w, T);
(2) a string ω ∈ Ext(w, T) if there exists an element δ ∈ T
and there exist three strings w1, w2, and w3 such that:

3Potential validity is affected by the structure of the DTD described in
the element type declarations (one per element type). We need not consider
attribute declarations: their presence or absence does not affect in any way
our consideration of the problem presented in this paper.

(a) w1w2w3 ∈ Ext(w, T);

(b) ω can be written as: ω = w1<δ>w2</δ>w3 and

(c) ω is an XML string.

Intuitively, Ext(w, T) is the set of all possible XML
strings obtained by tagging w with elements of T . Then,
we can say that w is potentially valid if at least one of its
extensions is a valid XML document. We formalize this
after introducing some more notations.

For a DTD T , we let D(T, r) denote the set of all strings
which represent well-formed XML encodings valid with re-
spect to the DTD T , whose root element is r ∈ T .

Definition 3 (potential validity [11]). Let T = 〈Γ, T 〉 be a
DTD and r ∈ T . An XML string w with elements(w) ⊆ T
and root(w) = r is called potentially valid with respect to
T and r if (∃ω ∈ Ext(w, T))(ω ∈ D(T, r)).

Let now D∗(T, r) denote the set of all potentially valid
XML documents w.r.t. T , with and root r.

Example 2. Consider again the DTD T in Figure 1 and
the XML documents instances w and s in Example 1. So
T = {r, a, b, c, d, e, f}, the root element is r, and let a
character data string "A quick brown fox jumps
over a lazy dog".
We let
w’= "<r><a><d>A quick
brown</d><c> fox jumps over a
lazy</c><d> dog<e></e></d></r>".
Since w′ ∈ D(T, r) and w′ ∈ Ext(w, T) it follows that
w ∈ D∗(T, r).

We have s 6∈ D∗(T, r) because we cannot get the order
b, e, and c of elements contained by element a, no matter
what further markup we introduce in s.

3 Checking potential validity

We define the problem of checking potential validity of
XML documents as follows ([11]):

Problem PV: Given a DTD T = 〈Γ, T 〉, and
an XML string w with elements(w) ⊆ T and
root(w) = r ∈ T , output ”yes” if w ∈ D∗(T, r)
and ”no” otherwise.

In this section we consider a given DTD T = 〈Γ, T 〉,
and a root element r ∈ T and we show that the set of all
XML strings w for which PV (T, r, w) = ”yes” is context-
free. We do this by constructing an extended context-free
grammar (ECFG)4 that recognizes potentially valid XML

4Extended context-free grammars (ECFGs) enhance the syntax of
context-free grammars by allowing regular expressions on the right-hand
sides of productions. Languages recognized by ECFGs are context-free.

documents with root r. For the rest of the paper we use
the CFG grammar notations as in [1]. The empty string is
denoted by ε and for a grammar G, we denote by L(G) the
language accepted by G.

Intuitively the problem solution consists of a set of rules
(for accepting strings which represent XML documents) de-
rived from the rules in Γ by relaxing the requirements for
the presence of start tag and end tag markups. That is, the
start tag and end tag of an element might be present or not
during the marking up process, however, the element con-
tent must be derived according to the rules in Γ.

3.1 The ECFG for checking validity

The extended context-free grammar for recognizing
XML strings with root r valid w.r.t. T follows straightfor-
ward from Γ5. More formally, we let GT,r = (N, Σ,R, S)
be the ECFG representation of T , where N is the set of non-
terminals, Σ is the set of terminals, R is the set of grammar
rules, and S is the start symbol. The set N of nonterminals
contains a nonterminal, PCDATA, corresponding to the
#PCDATA keyword in the Element Type Definition and,
for each element x ∈ T , there are two corresponding non-
terminals, X, X̂ ∈ N . In particular, R, and R̂ correspond
to the root element r.

N = {S, PCDATA} ∪ {X, X̂|x ∈ T }
Σ contains a terminal σ, corresponding to any string of non-
markup characters of length at least one (a non-empty data
character string). For each element x ∈ T there are two
corresponding terminals, one for its start tag, <x> and the
other for its end tag, </x>.

Σ = {σ} ∪ {<x>,</x>|x ∈ T }
For each element x ∈ T , we denote by rx the right-

hand side of the Element Type Definition in Γ for x and we
denote by rX the transcription of rx where every element y
in rx is replaced by its corresponding nonterminal Y . For
an element z ∈ R of which the Element Type Definition
rule in Γ contains the keyword “ANY” [2], the rule rZ is
rewritten as:

(Z1|Z2| . . . |Zn|PCDATA)∗,
where Z1, Z2, . . . , Zn are the nonterminals for all elements
in T .

Then:
R = {S → R,PCDATA → σ, PCDATA → ε} ∪

{X → <x>X̂</x>, X̂ → rX |x ∈ T }.
Example 3. For the DTD T in Figure 1, let GT,r =
(N, Σ,R, S):

N = {S, PCDATA, R, R̂, A, Â, . . . , F, F̂}
Σ = {σ,<r>,</r>, <a>,, . . . , <f>, </f>}
R = {S → R,PCDATA → σ | ε}∪

{R → <r>R̂</r>, R̂ → A+,

5The DTD’s Element Type Definitions are ECFG productions [2].

A → <a>Â, Â → B?, (C|F), D,
B → B̂, B̂ → (D|F),
C → <c>Ĉ</c>, Ĉ → PCDATA,
D → <d>D̂</d>, D̂ → (PCDATA | E)∗,
E → <e>Ê</e>, Ê → ε,
F → <f>F̂</f>, F̂ → C,B, E}

For the purpose of checking validity, we need to con-
vert XML strings into strings recognized by the ECFGs de-
scribed above. We introduce an operator,

δT :
⋃
{w|w is an XML string, elements(w) ⊆ T } → Σ∗

defined recursively as follows:
• For any (possibly empty) character data content C,

δT (C) =
{

σ, if C is not the empty string
ε, otherwise

. • For any a ∈ T , δT (< a/ >) = <a>.
• Let w be an XML string with elements(w) ⊆ T and
w = w1<a>w2w3, where w2 is an XML string. Let
δT (w1) = d1, δT (w2) = d2, and δT (w3) = d3. Then
δT (w) = d1<a>d2d3.

This procedure results in replacing all consecutive
character data in the input XML string with a single σ
terminal, while preserving the XML markup structure:
δT (<a>A quick brown<c> fox jumps over

a lazy</c><d> dog<e></e></d>) =
<a>σ<c>σ</c><d>σ<e></e></d>

3.2 The ECFG for checking potential validity

The grammars GT,r described above are useful for val-
idating XML documents as soon as the markup process is
finished. In order to accept intermediate stages of the XML
document during the encoding process (check for potential
validity) the grammar GT,r needs to be enhanced.

To represent all potentially valid XML documents (actu-
ally, document structures) for the given DTD T and root r ∈
T , we define an extended grammar G′T,r = (N, Σ,R′, S).
In this grammar, N , Σ and S are the same as in GT,r defined
above. The new set of rules R′ is defined as follows:
R′ = R∪ {X → X̂|x ∈ T }.
The intuition behind this extension of GT,r is as follows.

Given a valid (w.r.t. DTD T) XML document w with root
r, we can construct potentially valid XML documents from
it by selecting one or more tags in w and removing them
to produce document ω ∈ D∗(T, r). In the derivation of
S ⇒∗

G δT (w), the ”open tag” and ”close tag” terminals
are derived via the rules of the form X → <x>X̂</x>.
By inserting the new rule X → X̂ for each XML ele-
ment x ∈ T , we are allowing the grammar G′T,r to mimic
the derivation of δT (w), and convert it into the derivation

of δT (ω) by electing not to derive the XML tag terminals
where needed.

We are now ready to state the main result of this section.

Theorem 1. Given an XML string w, w ∈ D∗(T, r) ⇔
δT (w) ∈ L(G′T,r).

The following result shows that character data up-
dates and markup deletions preserve potential validity.
Markup insertion or deletion means insertion or deletion
of pairs of start and end tags so that the XML document
remains well-formed. We say we have a character data
update when it refers to a change (deletion or insertion
of characters) in an existent text node of the XML doc-
ument. Character data insertion refers only on text node
creation. For instance, let us consider the XML document
string: <a>XML<space></space>string.
Then the XML string <a>an
XML<space></space>string is obtained
by a character data update whereas the XML string
<a>XML<space>-</space>string represents
a character data insertion.

Theorem 2. The class of potentially valid documents
D∗(T, r) is closed under character data updates and
markup deletions.

3.3 Properties of the ECFG for checking potential
validity

Extended context free grammars (or regular right part
grammars) were defined a long time ago [15, 9] and many
parsers and recognizers have been proposed for them ([14,
3], just to name two). It is important to note that, however,
some parsers work not for general ECFGs but for certain
restricted cases.

Most of the grammars in the family of grammars G′T,r

we construct for solving the problem PV are highly am-
biguous, which precludes the use of well-known linear-time
parsers that require unambiguity of grammars. In general,
we can always use an unrestricted CFG parsing algorithm
to recognize potential validity but they exhibit poor perfor-
mances for practical applications of checking potential va-
lidity.

As it turns out, however, the family G′T,r of grammars
for recognizing potential validity, possesses a number of
properties, that allow us to develop a fast, linear-time pars-
ing algorithm.

In practice, it might be the case that a DTD is constructed
with not much care, or modifications to the DTD lead to
cases when some elements cannot be used in any real (valid)
XML document instance (they lead to infinite loops in de-
riving their content). An element x ∈ T is called usable
if ∃z ∈ L(G) and a derivation S ⇒∗

G z that contains the

nonterminal X [1]. It is known that given a CFG, the set of
its usable nonterminals can be efficiently constructed [8].
From now on we consider that all XML elements in the
DTD T are usable.

The following property of grammar G′T,r is important
for us.

Theorem 3. For any X ∈ N , X ⇒∗
G′T,r

ε.

Immediate consequences of Theorem 3 allow us to sim-
plify the grammar G′T,r.

Corollary 3.1. Let T ′ = 〈Γ′, T 〉 be a DTD obtained from
T by removing all occurrences of the “?” and replacing
“+” operators by “*” operators in Γ. Then L(G′T,r) =
L(G′T ′,r).

While the grammar G′T,r can be processed by general
CFG parsers, the complex structure of the right-hand sides
of the grammar rules, which can contain almost arbitrary
regular expressions6, makes general parsing algorithms too
inefficient. Corollary 3.1 allows us to reduce G′T,r com-
plexity without altering the grammar language.

For the rest of this article we consider that the DTD T
has no “?” operators and that “+” operators were replaced
by “*” operators.

Definition 4 (star-group). For any element x ∈ T a star-
group is a subexpression of rx so that all of the following
apply:
(i) each expression of form a∗ or (. . .)∗ is either a star-
group or a subexpression of a star-group (a ∈ T and the no-
tation (. . .) corresponds to any parenthesized expression);
(ii) no star-group is a subexpression of a star-group.
We call the elements contained by a star-group the star-
group elements.

For instance, in rx = (a, (b ∗ |(c, d∗, e)∗)), the expres-
sions b∗ and (c, d∗, e)∗ are star-groups, but d∗ is not a star-
group.

The following result states the independence of the
grammar language from the expression in a star-group.

Proposition 1. Let T ′ = 〈Γ′, T 〉 be a DTD obtained
from T by replacing each star-group containing elements
a1, . . . , an ∈ T with a star-group of form (a1, . . . , an)∗.
Then L(G′T,r) = L(G′T ′,r).

In other words, Proposition 1 establishes that a star-
group is matched by rules depending on star-group elements
but independent on the star-group expression. Given that
the #PCDATA keyword appears alone or in a mixed content
of an element type declaration ([2]), it follows that checking

6The only restrictions on the syntax of regular expressions found on
the right-hand sides of the DTD rules concern combining together XML
elements and #PCDATA.

for potential validity on character data insertion reduces to
checking whether or not an element type declaration con-
tains #PCDATA keyword (hence, O(1) time complexity).

4 Algorithms for checking potential validity

It has been shown in the previous section that the Prob-
lem PV is equivalent to deciding whether or not a given
input string (representing an XML document instance) be-
longs to a language recognized by a specific ECFG. As
pointed out earlier, a general ECFG parser algorithm is
not the most appropriate solution for recognizing strings in
L(G′T,r).

We make the observation that we can solve the potential
validity problem incrementally, for each document node, by
considering only node’s children. To formalize this we in-
troduce a new operator, ∆T , that transforms an XML string,
rooted at some node a, into a sequence of symbols corre-
sponding to the children of node a (in the document order
[4]). We define

∆T :
⋃
{w|w is an XML string, elements(w) ⊆ T } → Σ∗

as follows:
• For any (possibly empty) character data content C,
∆T (C) = δT (C)
• Let <r>w</r> be any XML string and let
<r>w′</r> be the XML string obtained from
<r>w</r> by removing all descendants but chil-
dren of its root node. Then ∆T (<r>w</r>) =
δT (<r>w′</r>).

For instance, for the XML string w = "<a>A
quick brown<e></e><c> fox jumps
over a lazy</c> dog" we have ∆T (w) =
<a><e></e><c></c>σ.

We emphasize at this point that, although we employ
the document tree model, the operator ∆T (or δT) can be
equally implemented for a document string model as well
as for a document tree model.

We formally define the problem of checking potential va-
lidity for an XML node as follows.

Element Content Potential Validity (Problem ECPV):
Given an XML string w with elements(w) ⊆ T
and root(w) = a ∈ T , output ”yes” if
∆T (w) ∈ L(G′T,a) and ”no” otherwise.

We observe that checking potential validity for markup
insertion into a potentially valid document reduces to solv-
ing twice Problem ECPV: for the node inserted and for its
parent. In this section we develop an efficient algorithm for
solving Problem ECPV. Solving Problem PV can be then
performed by checking the potential validity of every node
in the document (Problem ECPV) and the algorithm for this

is given in [11]. We also make the observation that for any
DTD element of which the Element Type Declaration con-
tains the keyword “ANY” [2] the ECPV problem presents
no practical interest. For all XML documents instances the
content of a such element is potentially valid.

4.1 Element Content Recognizer

We start by observing that, for any terminal symbol
x ∈ Σ in an XML string and any nonterminal Y ∈ N ′

the derivation Y ⇒∗
G′T,r

x depends only on the grammar
G′. Therefore, given the grammar G′T,R (i.e. the DTD), we
can pre-compute whether or not a given symbol x ∈ Σ can
be derived from a given nonterminal Y ∈ N ′.

Symbols reachability pre-computation gives immedi-
ately a ”no” answer to Problem ECPV of an element x if
some symbol in the input string is not reachable from X .

Definition 5 (reachability graph). The reachability graph
of T is the directed graph RT = (V, E), V = T , E =
{(t1, t2) : t1, t2 ∈ T , t2 appears in rt1}.

We say that an element x or PCDATA is reachable
from another element y, denoted y ; x, if there is a path
from y to x in RT .

The reachability graph of T tells us whether or not the
markup of a given element t2 ∈ T may be found in the
markup content of another element t1. With RT con-
structed, the reachability relation between its nodes can be
pre-computed in a form of a lookup table, LT , such that
LT (t1, t2) = true if t1 ; t2 in RT , and LT (t1, t2) =
false otherwise.

The following results allow us to implement an efficient
recognizer for G′T,r.

Proposition 2. 1. For any a, b ∈ T , A ⇒∗
G′T,r

B iff b ;
a in RT .

2. For any star-group expression gx in T and for any
XML string w we have gX ⇒∗ ∆T (w) if:

(a) ∀<a>, ∈ ∆T (w) : ∃y an element of gx

such that y ; a in RT .
(b) σ ∈ ∆T (w) : ∃y an element of gx such that y ;

PCDATA in RT .

Due to DTD syntax, namely the keyword PCDATA ap-
pears alone in an Element Type Declaration or in a mixed-
content [2], the following property is immediate:

Proposition 3. Let w ∈ D∗(T, r) and let w′ the XML string
obtained from w by inserting character data as text node
for some element node x. Then w′ ∈ D∗(T, r) iff x ;
PCDATA.

It follows that checking potential validity for character
data insertion into a potentially valid document is O(1) us-
ing a lookup table.

4.2 A DAG model for DTD

For the DTD T we describe now a Directed Acyclic
Graph model (DAGT) that allows us to efficiently solve
Problem ECPV. DAGT model is a collection of directed
acyclic graph components. For each element x ∈ T
an element DAG (DAGx) is constructed, and DAGT =
∪x∈T DAGx.

An element DAGx has a root node, labelled x. Its other
nodes are of two types: simple element nodes and star-
group nodes. A simple element node ny of DAGx cor-
responds to each element y in rx, y not in any star-group of
rx. The node is labelled y and we denote element(ny) = y.
For each star-group expression in rx there is a correspond-
ing star-group node g. The node is labelled as the list of
all elements in the star-group expression. We denote by
elements(g) the set of all elements in g’s corresponding
star-group expression. A graph edge connects a node cor-
responding to an element or star-group expression to the
node corresponding to the adjacent element or expression
(i.e., comma separated). An “or” operator (“|”) introduces
branching. As a result, any path in the graph of an element
x, from root to a leaf, completely describes a production
alternative from X → X̂ .

The DAGs of two elements of the DTD in Figure 1 are
given in Figure 4. In the figure, star-group nodes are rep-
resented as boxes and the root and simple nodes as circles.
The nodes are labeled as described above. We observe that,
for instance, all paths in DAGa (a → b → c → d and
a → b → f → d) correspond to production alternatives
A → BCD and A → BFD respectively.

The reason of having a graph for each element instead
of unique, bigger graph for the whole DTD is one of stor-
age requirements: the bigger graph might contain multiple
element graph copies as an element can appear in many pro-
ductions. Instead, we store a small graph for each element
and a bigger graph is constructed as needed for a specific
element content recognizer.

4.3 Algorithm ECRecognizer

Checking potential validity for an element content re-
quires checking all possible derivations of the correspond-
ing element nonterminal in the grammar G′. Intuitively, this
operation is expensive due to backtracking: once a deriva-
tion fails to produce the element content, other derivations
need to be checked. In order to produce fast algorithms for
checking potential validity, we need to reduce backtracking
at a minimum. We do this by using a greedy approach:

For a given DTD there are two possible causes for back-
tracking: (i) the star-groups and (ii) recursive elements (el-
ements for which the corresponding nonterminals derive
themselves). Proposition 2 (1) resolves the star-group case:

a

b

c

d

f

d

PCDATA, e

Figure 4. DAGs for Elements Type Declaration
of elements a and d in the DTD in Figure 1

it is enough to check for reachability (which can be precom-
puted).

The case of DTDs with recursive elements require a
more careful examination. Although recursive elements can
be eliminated in many cases by carefully defining the DTD,
they might occur in practice. We start the discussion by for-
mally defining the recursive elements.

Definition 6 (recursive). An element x ∈ T is called a re-
cursive element if there exist a derivation X ⇒∗

G′T,r
X . A

DTD with recursive elements is said to be recursive, other-
wise it is said to be non-recursive.

We observe that, in some situations, recursion may oc-
cur through the elements of a star-group. In this situation,
the Proposition 2 (1) is still applicable, so we need to dis-
tinguish these cases.

Definition 7 (PV-strong recursive). A recursive element
x ∈ T is called a PV-strong recursive element if there ex-
ist a derivation X ⇒∗

G′T,r
X such that each non-empty em-

ployed production corresponds to a non star-group element.
A DTD with at least one PV-strong recursive element is said
to be PV-strong recursive.

A trivial example of a strong recursive element would be
the element a with the following Element Type Definition:

<!ELEMENT a ((a | c), b*)>

Definition 8 (PV-weak recursive). A recursive element
x ∈ T which is not PV-strong recursive is called a PV-weak
recursive element. A recursive DTD with no PV-strong re-
cursive elements is said to be PV-weak recursive.

In the following, we give an algorithm for solving the
Problem ECPV any DTD, which extends the algorithm in
[11] for solving the Problem ECPV for non recursive DTDs
and PV-weak recursive DTDs.

4.3.1 PV-strong recursive DTDs

The element content recognizer algorithm (ECRecognizer),
presented in Figure 5, solves the Problem ECPV for any
DTD. The algorithm builds an ECRecognizer object from

class ECRecognizer
(1) DAG DAGT , integer depth
(2) lookup table LT
(3) Set activeNodesSet = empty

(4) ECRecognizer(DAG D, lookup table L, Element e, integer d){
(5) DAGT = D, depth = d
(6) LT = L
(7) r = root(DAGT (e))
(8) append children(r) to activeNodesSet
(9) }
(10) method: validate(Element x) {
(11) result = ”reject”
(12) foreach node n in activeNodesSet
(13) if type(n) = “star-group”
(14) matched = false
(15) foreach element y in elements(n)
(16) if x = y or lookup(x, y) = true
(17) matched = true
(18) break

(19) if matched
(20) result = ”accept”
(21) continue
(22) else
(23) if lookup(x, element(n)) = true
(24) if n.recognizer = null
(25) n.recognizer =

new ECRecognizer(DAGT , LT ,element(n), depth-1)
(26) if n.recognizer.depth > 0

and n.recognizer.validate(x) = ”accept”
(27) result = ”accept”
(28) continue
(29) if element(n) = x
(30) result = ”accept”
(31) remove n from activeNodesSet
(32) pre-pend children(n) to activeNodesSet
(33) continue

(34) remove n from activeNodesSet
(35) append children(n) to activeNodesSet

(36) return result
(37) }
(38) method: recognize(Element x1, x2, . . . , xn) {
(39) foreach x in {x1, x2, . . . , xn}
(40) if validate(x) = “reject”
(41) return “reject”
(42) return “accept”
(43) }

Figure 5. The ECRecognizer algorithm for any
DTD

DAGT , lookup table LT , and the element e whose content
is to be recognized. To solve Problem ECPV for a given
markup node t, the method recognize() is used on all chil-
dren nodes of t (transformed into a sequence of elements
and PCDATA using ∆T operator). The algorithm’s core is
the method validate() that is able to recognize the element
content as the input symbols are read. Starting with DAGe,
the validate() method executes a greedy search, on all
branches, of each symbol in the tokenized input. The search
for the current symbol corresponding to an element (or PC-
DATA) x performs only if LT (element(e), x) = true and
stops in one of the following two situations:
(i) When the simple element node n, label(n) = x,
is encountered. However, if element(n) 6= x but

A. ECRecognizer on string w: b, e, c, PCDATA

a

b

c

d

f

a

b

c

d

f

a

b

c

d

f

a

b

c

d

f

f

c

e

(3) search for PCDATA

a

b

c

d

f

f

c

e

d

PCDATA, e

a

b

c

d

f

c

PCDATA

(4) found PCDATA

d

PCDATA, e

a

b

c

d

f

f

c

e

(5) found e: "accept"

(1) search for b (2) search for c

B. ECRecognizer on string s: b, c, PCDATA, e

d

PCDATA, e

a

b

c

d

f

f

c

e

(4) found e

a

b

c

d

f

(5) search for c: "reject"

a

b

c

d

f

f

c

e

(1) search for b (2) search for e (3) search for e

Figure 6. ECRecognizer on content of <a> in
XML strings w (A) and s (B) from Example 1

LT (element(n), x) = true then the current graph is aug-
mented by plugging in DAGelement(n) and the search con-
tinues based on the new graph configuration (greediness).
The graph augmentation corresponds to using a grammar
production X → X̂ . Otherwise, the search continues with
the next node in the current graph configuration.
(ii) When a star-group node c occurs, such that either x ∈
elements(c) or ∃y ∈ elements(c), LT (y, x) = true.

The nodes where the search for the current input symbol
stops are saved in an active nodes set in order to be used as
starting nodes of searching for the next input symbol.

The correctness of the greedy approach (i) is ensured
by Theorem 3: if there are other unmatched nonterminals
and the input sequence ends, they can derive empty strings.
In addition, greediness ensures that a current input symbol
cannot match “behind” the current searching point. For sit-
uation (ii), correctness follows directly from Proposition 2.

We explain first how the algorithm performs for a non-
PV-strong recursive DTD, then we discuss potential prob-
lems for PV-strong recursive DTDs and how the algorithm
in Figure 5 solves those problems.

Example 4. Figure 6 (A. and B.) shows how ECRecognizer
algorithm performs on the content of markup <a> in the
XML strings w and s in Example 1. In the figure, the ac-
tive nodes (nodes in the activeNodesSet of ECRecognizer
algorithm) are represented with solid thick line; the dotted
rectangles represent additional ECRecognizer object cre-
ated for deep search in an element DAG (see lines 25, 26 of
the algorithm in Figure 5; the corresponding element points
through an arrow to the ECRecognizer object).
For the first input (A), the element b is the only active node
(as initialized in line 8 of ECRecognizer algorithm). So
searching for b is successful (line 29 of the algorithm) and
c, f are the current active nodes and the search continues
for the second input symbol, e. Note that b is not found in
the lookup table of b in line 23, neither for this DTD in-
stance nor for other non PV-strong recursive DTDs. This
condition is important here to avoid an infinite loop in the
algorithm. Since e is not reachable from c, c is removed
from the active node set and the next node, d is added (lines
34 and 35). New ECRecognizer objects are created for el-
ements d and f , then e is found by these recognizers (steps
3, 4). At this point, f is removed from the active node set as
its last element was matched. The algorithm rejects in step
5, as from the active node d no element c can be reached.
For the second input (B), searching for each input symbol is
successful and the algorithm returns “accept”.

In the example above we left out of discussion the pa-
rameter depth. The novelty of the algorithm in Figure 5
consists in solving recursive elements related problems by
taking the document depth into account. We can understand
better the impact of having recursive elements by analyzing

a

a b

a

a b

a

a b

a

a b

a

a b

a

a b

...

Figure 7. ECRecognizer on content of <a> in
the XML string <a>
and DTD T1 from Example 5

the following example.

Example 5. Let us consider the following DTD T1:

<!ELEMENT a (a | b*)>
<!ELEMENT b EMPTY>

The element a is clearly a PV-strong recursive element.
Then let us consider the following valid XML

instance (with respect to the DTD T1 above):
<a>

Let us use the ECRecognizer algorithm on the input
above and to ignore any bound for the document depth (that
is, depth is set to infinity): few steps of the algorithm are
given in Figure 7 (we use the same representation as in Ex-
ample 4 and Figure 6). We observe that the algorithm enters
in an infinite loop (a is the first node in the activeNodesSet
therefore an infinite number of recognizers are created in
line 25).

The infinite loops in the ECRecognizer algorithm [11]
are a consequence of the greedy approach: the algorithm
matches as many input symbols as possible before moving
to the next node, in order to avoid backtracking. Loop de-
tection and breaking can be done, however, this may affect
the algorithm performances. For instance, in Example 5 we
can detect the PV-strong recursive element a and force the
algorithm to match on the right branch (star group node b)
of a’s DAG (Figure 7) while keeping a pointer on node a
(for backtracking). In that case no backtracking occurs: all
input symbols match in the star group node b. However, this
is not always the case.

Example 6. Let us consider the PV-strong recursive DTD
T2:

<!ELEMENT a ((a | b), b)>
<!ELEMENT b EMPTY>

Then let us consider the XML instance:
<a>. This is a poten-
tially valid XML string since it can be obtained
from the valid XML string (with respect to T2)
<a><a> by removing
the inner <a> tags. It is clear that, in this case, taking one
recursive step (line 25) is absolutely necessary.

We observe that each execution of line 25 of the algo-
rithm is equivalent to using a production A → Â of gram-
mar G′. This means that the possibility of missing tag <a>
is taken into account, hence considering the corresponding
valid XML string having the depth one unit more than the
actual input XML string.

To overcome the problem of infinite loops for some
XML instances in the case of PV-strong recursive DTDs
we impose an upper bound on the depth of the input docu-
ment to be checked for potential validity. This approach has
a strong practical motivation: it is known that, in practice,
most XML documents’ depths are of one digit magnitude
[12]. For flexibility, the document depth upper bound is
a parameter of ECRecognizer algorithm: the fist instance
of an ECRecognizer object takes the upper bound value as
input, whereas the subsequent ECRecognizer objects cre-
ated in line 25 (Figure 5) take as input the parent’s depth
upper bound minus one. The major changes of the algo-
rithm in [11] are in lines 25 and 26. The depth decreases
one unit each time the algorithm generates a new recog-
nizer (line 25), and the maximum depth (that is, whether or
not the depth decreased from maximum depth up to zero) is
checked in line 26.

4.4 Complexity of ECRecognizer

In general, the time it takes to solve an instance of Prob-
lem PV depends on the size (number of tokens) in the input
XML document w and on the properties of the input DTD
T . Let n be the number of symbols in δT (w), m = |T | be
the number of XML elements in T , and let k be the number
of element occurrences in all rx expressions, x ∈ T . We
observe that k is an appropriate measure for T since k ≥ m
and it takes O(k) steps to read all DTD’s rules.

The essential step in solving the Problem PV is using
the algorithm ECRecognizer for checking potential validity
for each node of the input XML document. The following
result establishes the time complexity of ECRecognizer al-
gorithm for non PV-strong recursive DTDs.

Theorem 4. For any DTD T and a maximum acceptable
documents depth D, the method recognize() of ECRec-
ognizer algorithm in Figure 5 decides Problem ECPV in
O(kD · n) time, where n is the number of input tokens.

We note, that for a fixed DTD, k, D, and m are constants,
and therefore Algorithm ECRecoginizer runs in linear time

of the size of the input XML file. The constant factors kD

and km are also very conservative estimates, as in practice,
the branching factor for DTDs is much smaller.

5 Conclusions

In this paper, we complete the work started in [11]. We
formally show that the class of potentially valid XML docu-
ments is closed under markup and content deletions and that
checking for potential validity on content updates is O(1)
time. We distinguish three classes of DTDs, non-recursive,
PV-weak recursive, and PV-strong recursive, and we pro-
pose a new efficient linear-time complexity algorithm for
recognizing potential validity for any DTD.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1988.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau(Eds.). Extensible Markup Language (XML)
1.0 (Third Edition). http://www.w3.org/TR/2004/REC-xml-
20040204/, Feb 2004. W3C Recommendation.

[3] A. Brüggemann-Klein and D. Wood. On predictive parsing
and extended context-free grammars, 2003.

[4] M. Champion, S. Byrne, G. Nicol, and L. Wood(Eds.).
Document Object Model (DOM) Level 1 Specifica-
tion. http://www.w3.org/TR/REC-DOM-Level-1/, Oct 1998.
W3C Recommendation, REC-DOM-Level-1-19981001.

[5] J. Clark. Incremental XML Parsing and Validation in a
Text Editor, December 2003. Presentation at XML 2003,
Philadelphia.

[6] J. Earley. An Efficient Context-Free Parsing Algorithm
(Reprint). Communications of the ACM (CACM), 26(1):57–
61, January 1983.

[7] D. C. Fallside and P. Walmsley(Eds.). XML Schema (Second
Edition). http://www.w3.org/TR/xmlschema-0/, Oct 2004.
W3C Recommendation.

[8] S. Ginsburg. The mathematical theory of context-free lan-
guages. McGraw-Hill, 1966.

[9] S. Heilbrunner. On the definition of ELR(k) and ELL(k)
grammars. Acta Informatica, 11:169–176, 1979.

[10] I. E. Iacob and A. Dekhtyar. xTagger: a new approach to
authoring document-centric XML. In JCDL ’05, pages 44–
45, New York, NY, USA, 2005. ACM Press.

[11] I. E. Iacob, A. Dekhtyar, and M. I. Dekhtyar. Checking Po-
tential Validity of XML Documents. In WebDB, pages 91–
96, 2004.

[12] L. Mignet, D. Barbosa, and P. Veltri. The XML web: a first
study. In WWW ’03, pages 500–510, New York, NY, USA,
2003. ACM Press.

[13] OASIS. Relax NG. http://www.relaxng.org/, Sep 2003.
[14] H.-C. Shin and K.-M. Choe. An improved LALR(k) parser

generation for regular right part grammars. Information Pro-
cessing Letters, 47(3):123–129, September 1993.

[15] J. W. Thatcher. Characterizing derivation trees of context-
free grammars through a generalization of nite automata the-
ory. Journal of Computer and System Science, 1(4):317–322,
December 1967.

