

Processing high-volume stream queries on a supercomputer

Erik Zeitler and Tore Risch
Department of Information Technology, Uppsala University

{erik.zeitler,tore.risch}@it.uu.se

Abstract

Scientific instruments, such as radio telescopes, colliders,
sensor networks, and simulators generate very high vol-
umes of data streams that scientists analyze to detect and
understand physical phenomena. The high data volume
and the need for advanced computations on the streams
require substantial hardware resources and scalable
stream processing. We address these challenges by
developing data stream management technology to sup-
port high-volume stream queries utilizing massively
parallel computer hardware. We have developed a data
stream management system prototype for state-of-the-art
parallel hardware. The performance evaluation uses real
measurement data from LOFAR, a radio telescope
antenna array being developed in the Netherlands.

1. Background

LOFAR [13] is building a radio telescope using an
array of 25,000 omni directional antenna receivers whose
signals are digitized. These digital data streams will be
combined in software into streams of astronomical data
that no conventional radio telescopes have been able to
provide earlier. Scientists perform computations on these
data streams to gain more scientific insight.

The data streams arrive at the central processing facili-
ties at a rate of several terabits per second, which is too
high for the data to be saved on disk. Furthermore, expen-
sive numerical computations need to be performed on the
streams in real time to detect events as they occur. For
these data intensive computations, LOFAR utilizes an
IBM BlueGene supercomputer and conventional clusters.

High-volume streaming data, together with the fact
that several users wanting to perform analyses suggests
the use of a data stream management system (DSMS) [9].
We are implementing such a DSMS called SCSQ (Super
Computer Stream Query processor, pronounced cis-
queue), running on the BlueGene computer. SCSQ scales
by dynamically incorporating more computational re-

sources as the amount of data grows. Once activated,
continuous queries (CQs) filter and transform the streams
to identify events and reduce data volumes of the result
streams delivered in real time. The area of stream data
management has gained a lot of interest from the database
research community recently [1] [8] [14]. An important
application area for stream-oriented databases is that of
sensor networks where data from large numbers of small
sensors are collected and queried in real time [21] [22].
The LOFAR antenna array will be the largest sensor net-
work in the world. In difference to conventional sensor
networks where each sensor produces a limited amount of
very simple data, the data volume produced from each
LOFAR receiver is very large.

Thus, DSMS technology needs to be improved to meet
the demands of this environment and to utilize state-of-
the-art hardware. Our application requires support for
computationally expensive continuous queries over data
streams of very high volumes. These queries need to exe-
cute efficiently on new types of hardware in a heteroge-
neous environment.

2. Research problem

A number of research issues are raised when investi-
gating how new hardware developments like the
BlueGene massively parallel computer can be optimally
utilized for processing continuous queries over high-
volume data streams. For example, we ask the following
questions:
1. How is the scalability of the continuous query execu-

tion ensured for large stream data volumes and many
stream sources? New query execution strategies need
to be developed and evaluated.

2. How should expensive user-defined computations,
and models to distribute these, be included without
compromising the scalability? The query execution
strategies need to include not only communication
but also computation time.

3. How does the chosen hardware environment influ-
ence the DSMS architecture and its algorithms? The
BlueGene CPUs are relatively slow while the

communication is fast. This influences query
distribution.

4. How can the communication subsystems be utilized
optimally? The communication between different
CPUs depends on network topology and the load of
each individual CPU. This also influences query
distribution.

3. Our approach

To answer the above research questions we are de-
veloping a SCSQ prototype. We analyze the performance
characteristics of the prototype system in the target hard-
ware environment in order to make further design choices
and modifications. The analyses are based on a
benchmark using real and simulated LOFAR data, as well
as test queries that reflect typical use scenarios. These
experiments provide test cases for prototype
implementation and system re-design. In particular,
performance measurements provide a basis for designing
a system that is more scalable than previous solutions on
standard hardware.

The CQs are specified declaratively in a query
language similar to SQL, extended with streaming and
vector processing operators. Vector processing operators
are needed in the query language since our application
requires extensive numerical computations over high-
volume streams of vectors of measurement data. The
queries involve stream theta joins over vectors applying
non-trivial numerical vector computations as join criteria.
To filter and transform streams before merging and
joining them, the system supports sub-queries
parameterized by stream identifiers. These sub-queries
execute in parallel on different nodes.

A particular problem is how to optimize high-volume
stream queries in the target parallel and heterogeneous
hardware environment, consisting of BlueGene compute
nodes communicating with conventional shared-nothing
Linux clusters. Pre- and post-processing computations are
done on the Linux clusters, while parallelizable computa-
tions are likely to be more efficient on the BlueGene. The
distribution of the processing should be automatically
optimized over all available hardware resources. When
several different nodes are involved in the execution of a
stream query, properties of the different communication
mechanisms (TCP, UDP, MPI) substantially influence the
query execution performance.

4. The hardware environment

Figure 1 illustrates the stream dataflow in the target
hardware environment. The users interact with SCSQ on
a Linux front cluster where they specify CQs. The input
streams from the antennas are first pre-processed accor-

ding to the user CQs in the Linux back-end cluster. Next,
BlueGene processes the CQs over these pre-processed
streams. The output streams from BlueGene are then
post-processed in the front cluster and the result stream is
finally delivered to the user. Thus, three parallel
computers are involved and it is up to SCSQ to trans-
parently and optimally distribute the stream processing
between these.

The hardware components have different
architectures. The BlueGene features dual PowerPC 440d
700MHz (5.6 Gflops max) compute nodes connected by a
1.4 Gbps 3D torus network, and a 2.8 Gbps tree network
[3]. Each compute node has a local 512 MB memory. The
compute nodes run the compute node kernel (CNK) OS, a
simple single-threaded operating system that provides a
subset of UNIX functionality. Each compute node has
two processors, of which normally one is used for
computation and the other one for communication with
other compute nodes. MPI is used for communication
between BlueGene compute nodes, whereas communi-
cation with the Linux clusters utilizes I/O nodes that pro-
vide TCP or UDP. One important limitation of CNK is
the lack of support for server functionality (no listen(),
accept() or select() are implemented). Furthermore, two-
way communication is expensive and should be avoided
for time-critical code. Each I/O-node is equipped with a 1
Gbit/s network interface. In LOFAR’s BlueGene, there
are 6144 dual processor compute nodes, grouped in pro-
cessing sets, or psets, consisting of 8 compute nodes and
one I/O node. This I/O-rich configuration enables high
volumes of incoming and outgoing data streams.

The Linux front and back-end clusters are IBM JS20
computers with dual PowerPC 970 2.2GHz processors.

5. The SCSQ system

Figure 2 illustrates the architecture of the SCSQ com-
ponents running on the different clusters.

On the front cluster, the user application interacts with

 Input
streams

Back-end
cluster

Blue
Gene

Front
cluster User

Figure 1. Stream data flow in the target

hardware environment.

CNC

SP

SPSP

SP

idleidle

BlueGene

QM

FrontBack-end

Preparator

Preparator Client
managerFSP

Query
coordinator

Figure 2. The SCSQ components. Double
arrows indicate data streams.

a SCSQ client manager. The client manager is respon-
sible for i) interacting with the user application, ii) sen-
ding CQs and meta-data, such as client manager identi-
fication, to the query coordinator for compilation.

The query coordinator is responsible for i) compiling
incoming CQs from client managers, ii) starting one or
more front stream processors (FSP) to do the post pro-
cessing of the streams from the BlueGene, and iii)
posting instructions to the BlueGene components for
execution of CQs. When the query coordinator receives a
new CQ from a client manager, the query coordinator
initiates new FSPs for post-processing of that CQ. It also
maintains a request queue of CQs and other instructions
to be processed by the BlueGene. This queue is regularly
polled by the BlueGene compute node coordinator
(CNC) (single arrow in Figure 2).

The CNC is responsible for i) retrieving new CQs and
instructions from the query coordinator, ii) assigning and
coordinating stream processors on the compute nodes,
and iii) monitoring the execution of all stream processors.
The BlueGene processors to be used by SCSQ are initia-
ted once when the system is set up. The CNC is always
executing on a single node while all other nodes are
stream processors waiting for instructions from the CNC.
When the CNC retrieves a new CQ, it assigns one idle
stream processor to be the new query master for that
query.

A query master is responsible for i) compiling and
executing its stream query, ii) delivering the result to an
FSP on the front cluster previously initiated by the query
coordinator, iii) starting new stream processors of
subqueries if needed, iv) communicating with the back-
end cluster to retrieve input data, and v) monitoring the
execution of its stream query. When a query master
receives a CQ it is compiled and then the execution is
started. If the query master determines that additional
stream processors are needed for some stream subqueries,
it dynamically requests the CNC to assign new ones. The
query master then sends the subqueries to the new stream
processors for execution. Each stream processor may in
turn start new subqueries when so required. Stream
queries may be terminated either by explicit user
intervention or by some stop condition in the query.
Therefore, the stream processors also exchange control
messages to initialize and terminate stream queries.
Control messages are also used to regulate the stream
flow between the processors.

The only difference between a stream processor and a
query master is that the query master delivers its result to
an FSP in the front cluster using TCP, while a stream
processor delivers its result stream through MPI to the
stream processor or query master that initiated it.

Nodes participating in the processing of a stream are
called working nodes. Stream processors, query masters,
and FSPs are all working nodes.

When a working node needs measurements from an
input stream it initiates TCP communication for that
stream through its preparator. A preparator is a working
node running on the back-end cluster wrapping one or
more input streams.

The set-up of a stream query generates a distributed
query execution tree, as illustrated by the double arrows
in Figure 2.

We have implemented the first SCSQ prototype and
are evaluating it. All BlueGene and front node functiona-
lity for execution of single user queries have been
implemented. We have used this implementation to
analyze bandwidth properties of the I/O nodes and
strategies for efficient buffering in the MPI and TCP
communication subsystems.

The implementation of SCSQ nodes is based on Amos
II (Active Mediator Object System) [18] [19], which is
modified to allow execution of continuous queries over
streams in the target hardware environments. The SCSQ
modules are extensible by linking user-defined functions
written in compiled C. On the front and back-end
clusters, dynamic linking is allowed. However, only static
linking is allowed on BlueGene. As a consequence, all
user- defined stream operators written in C must be
statically linked with the stream processor executable for
the BlueGene. To configure dynamically the stream pro-
cessors at run-time we utilize a built-in Lisp interpreter to
communicate code between the front cluster and the
BlueGene. All time-critical code running on the
BlueGene is written in C and statically linked.

6. Related work

The SCSQ implementation is related to research in
DSMSs, parallel and distributed databases, continuous
query processing, and database technology for scientific
applications.

A promising approach to achieve the high perfor-
mance, flexibility, and expressiveness required is to de-
velop a distributed DSMS running on highly connected
clusters of main memory nodes [2] [7] [12], which is ex-
tensible through user-defined data representations and
computational models [10]. Most of the DSMS, e.g. [6]
[8] [14] [15] [20], are designed for rather small data items
and a relatively small cost of the stream operators per
item. In contrast, SCSQ is intended for a very high total
stream volume, large data item sizes, and computationally
expensive scientific operators and filters.

The use of extensible database technology where data-
base queries call user-defined functions in the database
engine have been shown very useful for astronomical

applications [17]. Parallelization of user-defined
functions has been studied in [16].

Distributed execution of expensive user-defined
stream query functions has been studied in the recently
proposed Grid Stream Data Manager (GSDM) [10] [11],
an object-relational DSMS for scalable scientific stream
query processing. GSDM features a framework for pre-
defined and customized parallelization schemes, which
distribute the execution of user-defined stream query
functions over the Grid. Like SCSQ, GSDM is intended
for scalable on-line analysis using expensive user-defined
stream query functions over high-volume scientific data
streams from instruments and simulations.

However, unlike all other DSMSs, SCSQ will be opti-
mized for a heterogeneous target hardware environment
including a BlueGene supercomputer.

7. Ongoing work

Query execution scalability is achieved by developing
query processing strategies able to utilize an increasing
number of compute nodes while optimally utilizing the
communication facilities.

To generate local query execution plans on each
stream processor we employ query optimization strategies
based on heuristics and a simple cost model.

Queries are distributed based on the need to execute
sub-queries in parallel. Currently, each stream processor
can execute only one sub-query. Any stream processor
can at run-time request idle stream processors from the
CNC to execute sub-queries. This allows dynamic
reconfiguration of the distributed query execution plan.

The performance monitoring subsystem in each stream
processor measures the performance of different phases
of stream query execution. It is currently used to evaluate
the characteristics of different execution strategies.
However, the same mechanism will also be used to
optimize the stream query distribution itself. Since our
system allows dynamic reassignment of stream
processors we will use the performance monitoring
subsystem for adaptive run-time query re-optimization.
This is necessary since sudden bursts in the measured
signals may require execution plans to be dynamically
reconfigured.

To analyze the system and understand the issues that
are relevant to the LOFAR application we are developing
a benchmark. The benchmark includes real and simulated
data as well as queries from the radio astronomy applica-
tion domain. We are initially concentrating on queries
that detect transients among a large number of incoming
streams. We scale the number of incoming streams and
optimize throughput and latency as the data volume
grows. Therefore, we scale not only the data volume but
also the computation time in our experiments.

A stream oriented communication protocol between
stream processors is developed based on MPI. We
measure the characteristics for different communication
methods between the stream processors. The
communication latency and bandwidth depend on the
topology and the load of the nodes. For example, nodes
far apart have long latency but may have a high
bandwidth, since there are many communication links
between them that can be used in parallel. On the other
hand, highly loaded intermediate nodes slow down
communication [5]. These characteristics will influence
query decomposition and distribution.

The query execution performance depends on the
utilization of each stream processor. The utilization of a
stream processor depends on the relation between its
stream rate and computational load. Each stream
processor is buffering its incoming and outgoing streams.
The buffer utilization of a stream processor indicates the
load balance between communication and processing.
Each stream processor monitors its buffer utilization and
adapts the flow rate by sending control messages
regularly. In an overflow situation, different policies can
be devised, for example: load shedding by dropping
incoming data [23], simplifying aggregation operators
[4], sending control messages that slow down sub query
stream processors, or asking CNC for more stream
processors.

It is also important to analyze the performance of
queries involving expensive operators. We investigate the
scalability over large numbers of high-volume input
streams that are merged by computationally expensive
stream combination functions from the benchmark. The
goal is to understand how to distribute the streams and
computations optimally in the heterogeneous target
hardware environment.

Acknowledgements

This work is supported by LOFAR.

References

[1] Daniel J. Abadi et al, “Aurora: a new model and archi-

tecture for data stream management”, The VLDB Jour-
nal, Springer, 12(2) 2003, pp 120–139.

[2] Daniel J. Abadi et al, “The Design of the Borealis
Stream Processing Engine”, in The Second Biennial
Conference on Innovative Data Systems Research
(CIDR), Asilomar, CA 2005, pp 277–289.

[3] George Almási et al, “Implementing MPI on the
BlueGene/L Supercomputer”, Lecture Notes in Com-
puter Science, Volume 3149, Jan 2004, pp 833–845.

[4] Brian Babcock, Mayur Datar, Rajeev Motwani, “Load
Shedding for Aggregation Queries over Data Streams”,
in Proc. of the International Conference on Data

Engineering (ICDE 2004), Boston, USA, pp 350–361.
[5] Gyan Bhanot et al, “Optimizing task layout on the Blue

Gene/L supercomputer”, IBM Journal of Research
and Development, Volume 49, Number 2/3, 2005, pp
489–500.

[6] Donald Carney et al, “Monitoring Streams – A New
Class of Data Management Applications”, in Proc. Of
the 28th Int’l Conf. on Very Large Databases (VLDB’02),
Hong Kong, China, 2002, pp 215–226.

[7] Mitch Cherniack et al, “Scalable distributed stream
processing”, in The First Biennial Conference on Inno-
vative Data Systems Research (CIDR), Asilomar, CA
2003.

[8] Chuck Cranor, Theodore Johnson, Oliver Spataschek,
and Vladislav Shkapenyuk, “Gigascope: A Stream Data-
base for Network Applications”, in Proc. Of the ACM
SIGMOD Conference on Management of Data, San
Diego, CA 2003, pp 647–651.

[9] Lukasz Golab and M. Tamer Özsu, “Issues in data
stream management”, SIGMOD Record, 32(2), 2003, pp
5–14.

[10] Milena Ivanova and Tore Risch, ”Customizable Parallel
Execution of Scientific Stream Queries”, in Proc. Of the
31st Int’l Conf. on Very Large Databases (VLDB’05),
Trondheim, Norway 2005, pp 157–168.

[11] Milena Ivanova, ”Scalable Scientific Stream Query Pro-
cessing”, in Uppsala Dissertations from the Faculty of
Science and Technology 66, Acta Universitatis Upsa-
liensis, Uppsala 2005,
http://user.it.uu.se/~udbl/Theses/MilenaIvanovaPhD.pdf.

[12] Bin Liu et al, “A Dynamically Adaptive Distributed Sys-
tem for Processing Complex Continuous Queries”, in
Proc. Of the 31st Int’l Conf. on Very Large Databases
(VLDB’05), 2005, pp 1338–1341.

[13] LOFAR, http://www.lofar.nl/.
[14] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein,

and Vijayshankar Raman, “Continuously adaptive con-
tinuous queries over streams”, in Proc. Of the ACM
SIGMOD Conference on Management of Data, Madi-
son, Wisconsin 2002, pp 49–60.

[15] Rajeev Motwani et al, “Query processing, approxima-
tion, and resource management in a data stream ma-
nagement system”, in The First Biennial Conference on
Innovative Data Systems Research (CIDR), Asilomar,
CA 2003.

[16] Kenneth W. Ng and Richard R. Muntz, “Parallelizing
user-defined functions in distributed object-relational
DBMS”, in International Database Engineering and
Applications Symposium (IDEAS), Montreal, Canada
1999, pp 442–450.

[17] María A. Nieto-Santisteban et al, “When Database Sys-
tems Meet the Grid”, in The Second Biennial Conference
on Innovative Data Systems Research (CIDR), Asilomar,
CA 2005, pp 154–161.

[18] Tore Risch and Vanja Josifovski, “Distributed Data Inte-
gration by Object-Oriented Mediator Servers”, in Con-
currency and Computation: Practice and Experience J.
13(11), John Wiley & Sons, September 2001, pp 933–
953.

[19] Tore Risch, Vanja Josifovski, and Timour Katchaounov,

[20] Elke A. Rundensteiner et al, “CAPE: A Constraint-
Aware Adaptive Stream Processing Engine”, in Nauman
Chaudhry, Kevin Shaw, and Mahdi Abdelguerfi (eds.):
Stream Data Management, Advances in Database Sys-
tems Series, Springer 2005, pp 83–111.

[21] Special Section on Sensor Network Technology and
Sensor Data Management, SIGMOD Record, 32(4),
December 2003.

[22] Special Section on Sensor Network Technology and
Sensor Data Management (Part II), SIGMOD Record,
31(1), March 2004.

[23] Nesime Tatbul, et al, “Load Shedding in a Data Stream
Manager”, in Proc. Of the 29th Int’l Conf. on Very Large
Databases (VLDB’03), Berlin, Germany, pp 309–320.

