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Abstract

In this paper, we present a novel architecture to sup-
port large scale stream processing services in a widely
distributed environment. The proposed system, COSMOS,
distinguishes itself by its loose coupling and communica-
tion efficiency. To exploit the sharing of data transfer in-
curred by different queries and to break the tight coupling
of the distributed nodes, a new communication paradigm,
content-based network, is employed. We discuss the design
and the challenges of this system.

1. Introduction

There is an emerging interest from the database com-
munity to build large scale stream processing services in
a widely distributed environment [2, 4, 13]. In such sys-
tems, the communication cost can be very high as it may
involve inter-country and even intercontinental communica-
tion. Furthermore, streams are typically of a very high rate
and are transferred persistently. Hence, achieving commu-
nication efficiency should be an important objective in the
system design. To achieve this goal, we should carefully
design the communication substrate.

Unfortunately, existing systems do not pay much atten-
tion to this problem. They simply adopted the unicast com-
munication paradigm and focused on optimization algo-
rithms that allocate the operators of each user query along
the overlay path from the source to the end user [4, 13].
There are several problems with these existing systems.

First, it is hard to exploit users’ common data interest
to minimize the communication cost. For example, two
users in two nearby countries in Europe, respectively, may
be interested in the stock market of the New York Exchange
and submit their queries to two servers in their own coun-
tries respectively. One approach is to plan the two queries
separately. The requested source streams as well as the
intermediate result streams of these two queries would be
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transferred separately even though they may share a large
amount of common contents. This incurs unnecessary over-
heads because these streams may have similar transfer path
due to the proximity of their destinations. With a large num-
ber of user queries, such overhead would be overwhelming.
While performing multiple query optimization may allevi-
ate this problem, it impairs the system’s scalability. For ex-
ample, in [2], the authors proposed to generate a giant oper-
ator graph for all the queries submitted to the system. How-
ever, no scalable algorithm has been proposed to achieve
this goal so far.

Second, queries and stream sources are exposed to each
other. The sources not only have to transfer data for every
relevant query but also have to keep track of all of them.
Such tightly-coupled architecture is undesirable for a large-
scale system.

Looking from a different angle, these two problems can
be alleviated if we have a “smarter” communication sub-
strate that can automatically exploit the opportunities to
share communication among different queries and break the
tight-coupling between the sources and users.

The above observation brings our attention to Content-
based network (CBN) which is a multi-cast like networking
method emerging in recent years [8]. In a CBN, each data-
gram consists of several attribute-value pairs. A node in the
network can express its data interest as a few selection pred-
icates on the attributes of the datagram. The sources and the
destinations are not known to each other. The sources sim-
ply pass the datagrams to the CBN and the datagrams will
be routed by the network based on the data interest of the
receivers. One can see that a CBN has the merits of a mul-
ticast network (i.e., communication for common items is
shared, and the data sources and receivers are loosely cou-
pled) and achieves high communication efficiency by pro-
viding a powerful interface to express data interest.

In this paper, we propose the design of our scalable dis-
tributed stream processing system: COSMOS (COopera-
tive and Self-tuning Management of Streaming data). COS-
MOS provides an efficient stream query processing service
for a large number of users. Contrary to existing systems,
COSMOS employs a CBN as its communication substrate.



Processor

Processor

Processor

source

Broker

source

Broker
Broker

Broker

Broker

Processor

source

user

user

user

user

Figure 1. Overview of COSMOS

Figure 1 shows the overview of COSMOS. The service is
backed by a number of distributed servers interconnected
with a widely distributed overlay network. These servers
are autonomous and may join or leave the system anytime.
Furthermore, they have different capabilities due to their
different hardware and software configurations. Some of
these servers are only used to route data across the network
while others are equipped with stream processing engines
(SPE) and hence is able to process complex continuous
queries. We refer to the former type of servers as brokers
and the latter ones as processors. A number of data sources
continuously publish their data to the network through the
servers. User queries submitted to the system are spec-
ified in high level SQL-like language statements such as
CQL [16].

This paper mainly discusses the various issues to effi-
ciently employ CBN into a distributed stream processing
system. The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the COSMOS system. Sec-
tion 3 presents the data layer. Section 4 presents the query
layer. Section 5 presents some results from a preliminary
study. Finally, we conclude in Section 6

2. COSMOS System Overview

Figure 2 shows the architecture of a processor in the sys-
tem. There are two layers of modules in the architecture: the
query layer and the data layer. The “ordinary” brokers only
have the data layer module. Contrary to existing systems,
each processor in COSMOS can be under different admin-
istrations and run by different entities. Hence, COSMOS
allows different stream processing engines (SPE) or differ-
ent versions of the same SPE to be installed in different pro-
cessors. Existing single site SPEs such as TelegraphCQ [9],
STREAM [16] and Aurora [7] can be employed in COS-
MOS. For each type of SPE, a data wrapper and a query
wrapper can be plugged into the system to translate the data
and the queries between COSMOS and the SPE.

In COSMOS, a user first connects to a broker/processor
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Figure 2. Architecture of a processor

which works as the proxy for the user and is responsible for
retrieving the result stream from the network and sending it
back to the user. User queries are specified in an SQL-like
language similar to CQL. They are handled by the query
layer. A user query is first distributed to a processor, say
ni, by the load management service (provided by the Query
Distribution module in Figure 2) for processing. The query
management module of ni will analyze the query, and a new
query or a modification of an existing query is sent to the
SPE. The details of this procedure will be presented in the
following sections.

Source data are transferred around the system through
the data layer, which is mainly composed by a content-
based network. The data sources advertise the source
streams that they provide and the processors subscribe to
these source streams by submitting the data interest profiles
to the data layer. Furthermore, the processors would also
advertise the result streams that they generate and users will
subscribe to these result streams through the content-based
network.

The fault tolerance function of COSMOS is also divided
into two layers. The module at the query layer is respon-
sible for recovering the processing of queries from failures,
while the one at the data layer is targeted at providing highly
available data transmissions service. The former function
has already been extensively studied in existing stream sys-
tems [6, 11, 15]. Due to the adoption of different commu-
nication infrastructures, these literatures do not study the
latter function. However, we will not discuss the fault toler-
ance function further in this paper due to the space limit.

3. Data Layer

In most existing stream management systems, data
streams are modeled as relations that are continuously be-
ing appended. However, traditional CBN does not have the
notion of “relation”. Hence we have to first enhance the
CBN to be aware of streaming relations. Each stream is as-
signed a unique name in COSMOS. In our current system,
if the number of streams is small, the schema information



of the streams will be flooded to every node upon its ar-
rival. Otherwise, we use a DHT architecture to store the
schema information while using the unique stream name as
the hashing key.

3.1. Data Interest/Profile Subscription

Following traditional CBN, we can compose a data inter-
est profile as follows. Each profile is a disjunction of a few
datagram filters. Each filter is defined on one stream and
is only applicable to this stream. Furthermore, a filter is a
conjunction of constraints on the values of a set of attributes
from the stream that the filter is defined on. A datagram is
said to be covered by a filter, if the datagram is from the
data stream of the filter and satisfies all the constraints in
the filter. Furthermore, a datagram is covered by a profile if
it is covered by any filters in the profile.

To exploit more opportunities to reduce communication
cost, we extend CBN to perform projections. Early projec-
tion can save the cost of transmitting unnecessary attributes.
Hence, in addition to the filters mentioned above, each pro-
file also contains one set of attribute names for each of its
requesting streams. When a node receives a datagram, it
first finds out which stream the datagram is from and then
evaluates the corresponding filters on the datagram. For
each profile that has a filter being satisfied by the datagram,
the projecting attribute set of the corresponding stream is
retrieved and the projection operation is done on the data-
gram.

In summary, a profile pi is a triple 〈S,P,F〉, where S
is a set of stream names, P specifies the set of attributes
of streams in S that are of interest, and F is a set of fil-
ters applied to streams in S in a similar form as traditional
subscription profiles.

3.2. Overlay Network Optimizer

In a CBN, nodes are organized into an overlay network.
The structure of the overlay network is critical to the com-
munication efficiency. Its optimality depends on a lot of
system parameters such as the capability and workload of
the servers, overlay link delay, etc.

The overlay network optimizer periodically monitors the
status of the network and performs the reorganization of
the overlay network if necessary. Currently the nodes in
COSMOS are organized into multiple overlay dissemina-
tion trees. Each optimizer module at each node monitors
the workloads and connections of its neighbors in the over-
lay trees. By using a configurable cost function defined on
these parameters, it estimates whether a local reorganization
of the overlay trees is beneficial [18, 19].

4. Query Layer

As mentioned before, the query management module is
responsible for composing the data interest profiles for the
local processor to retrieve the data for processing and the
profiles for the users to retrieve the results.

For each query, a profile is composed for retrieving the
source data. The selection predicates applied to each indi-
vidual source stream are extracted to compose the filters of
the profile. Then a projection predicate is composed by us-
ing all the attributes in the query. Consider the following
query as an example:

SELECT R.A, S.C
FROM R [Now], S [Now]
WHERE R.B=S.B AND R.A>10

Then the profile 〈S,P,F〉 to retrieve the source data
can be composed as follows: S = {R,S}, P =
{R.A,R.B, S.B, S.C}, F = {R.A > 10}.

In existing stream processing engines, different result
streams are generated for different queries and transferred
to the users independently. This is because users are as-
sumed to be directly connected to the server in traditional
systems. Following this approach, we can also compose
one profile for each user to retrieve the result stream. First,
a unique stream name is assigned to the result stream. Then
a profile can be composed by using this unique stream name
without filter and projection predicates.

However, this approach does not exploit the sharing of
result stream delivery among different queries and may re-
sult in large communication overhead in our system as il-
lustrated by the following example.

Table 1 lists a few queries drawn from an auction stream
monitoring application specified using CQL [16]. The
schema of the two streams are:

• OpenAuction (itemID, sellerID, start price, times-
tamp)

• ClosedAuction(itemID, buyerID, timestamp)

Consider the join queries, q1 and q2, presented in Ta-
ble 1. We can see that the result tuples of q1 and q2 have
overlaps in their result streams (since the auctions closed
within five hours contain those closed within three hours).
Furthermore, their projection attributes also overlap. Con-
sider an overlay structure depicted in Figure 3(a). Nodes
n3 and n4 issue two queries q1 and q2 respectively. These
two queries are allocated to node n1 which is equipped with
a stream processing engine (SPE). Using traditional tech-
niques, their result streams, s1 and s2, will be transmitted
separately as shown in Figure 3(a). Hence the overlapping
contents of s1 and s2 will be transmitted twice over the link
between n1 and n2.
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Figure 3. Result Stream Delivery

Table 1. Example queries
q1: Report all auctions that closed within three hours of their
opening
SELECT O.*
FROM OpenAuction [Range 3 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID
q2: Report the items and buyers of auctions closed within five
hours of their opening
SELECT O.itemID, O.timetamp, C.buyerID, C.timestamp
FROM OpenAuction [Range 5 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID
q3: Report all auctions that closed within five hours of their
opening and their buyers
SELECT O.*, C.buyerID, C.timestamp
FROM OpenAuction [Range 5 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID

Note that existing multi-query optimization techniques,
such as [12, 5] also suffer from this problem. For example,
one shared join operator can be created for the above two
queries. However this join operator would still generate two
separate result streams for the two queries respectively.

To solve the problem, we should send one result stream
s3 to n2, which is the superset of both s1 and s2, and “split”
it into two streams s1 and s2 at node n2 (Figure 3(b)). To
implement this scheme, one approach is to re-engineer a
“specialized” SPE which can generate one result stream for
multiple queries. However, such an intrusive approach is
not desirable as it requires complex “low-level” software
development and tightly coupling interaction between the
SPE and the distributed system.

Instead, we propose a query reformulation approach. For
a group of queries that have overlapping results, our method
composes a new query q that contains all the queries in this
group, i.e. the result of q is a superset of the result of each
query in this group. For example, we can create a new query
q3 listed in Table 1 which contains q1 and q2 and issue q3
to the SPE at n1 instead of q1 and q2. The result stream

s3 will be “split” at n2 using the filtering mechanism of the
data layer. More specifically, the following two profiles are
sent to n2 by n3 and n4 respectively:
• p1: S = {s3},P = {O.∗},F = {−3(hour) ≤

O.timestamp
− C.timestamp ≤ 0}.
• p2: S = {s3},P =

{O.itemID,O.timetamp,C.buyerID,
C.timestamp},F = {−5(hour) ≤ O.timestamp −
C.timestamp
≤ 0}〉
Tuples that pass p1 will be sent to n3 and those that pass p2

will be sent to n4. The mechanism of composing of q3 and
the two profiles will be explained later.

In our approach, each processor maintains a number of
query groups such that queries inside each group have over-
lapping results and it is beneficial to rewrite these queries
into one query q which contains all the member queries
qi. Such a query q is called the representative query of the
query group. The benefit of the rewriting can be estimated
as

∑
i C(qi)−C(q), where C(q) is the estimated rate(bps)

of the result stream of q.
Query containment and equivalence is a fundamental

problem which has been extensively studied in the litera-
ture, e.g. [14]. We, however, need to extend these tech-
niques to the continuous stream query context. Some re-
lated literature studies the use of views to answer user
queries [10]. This direction studied how to rewrite a query
such that the given views of the underlying relations can be
utilized to answer the original query. However, our work is
kind of the other way round. We have to compose a “view”
of the streams that can be utilized to answer multiple queries
using the simple filtering mechanism in a CBN.

First of all, we should extend the query containment and
equivalence definition of traditional queries to continuous
stream queries. Traditionally, a query is said to contain an-
other query if its result data contains that of the other one.
However, in the continuous query context, the result data
are continuously generated and hence this traditional def-
inition is no longer applicable. To address this problem,
we assume there is an application discrete time domain T
where the timestamps of the input stream data are drawn
from. The temporal result data of a query q evaluated on a
stream instance S at the time instance τ ∈ T is denoted as
q(S, τ), which is the result of evaluating q over all the data
from S with timestamps smaller or equal to τ .

Definition 1 A continuous query q1 is contained by another
continuous query q2, denoted by q1 v q2, if for all stream
instances S, q1(S, τ) is a subset of q2(S, τ) at any applica-
tion time instance τ .

The second problem is how to determine the containment
relationship between two continuous queries. We assume



that there is an approach to determine such relationship be-
tween two traditional non-continuous queries. The major
difference between continuous stream query and traditional
query is the introduction of window semantics. In a typi-
cal continuous query over data streams, each source stream
is associated with a window predicate. In this paper, we
only consider the time-based sliding window predicate in-
troduced in CQL [16]. A window predicate w(T ) takes a
positive time-interval T as a parameter and defines a tem-
poral relation composed by tuples arrived within the last T
time units, where T ranges from zero to infinity. Note that
if all window predicates have a parameter T = ∞, we can
use the traditional approach to determine the containment
relationship by simply ignoring the window predicates.

For queries with window predicates, we have the follow-
ing lemma and theorems.

Lemma 1 For a query with only a window-based join op-
eration of two streams S1 and S2 with window sizes of T 1

and T 2 respectively, two tuples t1 from S1 and t2 from S2

generate a join result tuple t if and only if both the following
conditions are true:

(1) they satisfy the join predicates;

(2) −1 · T 1 ≤ t1.timestamp− t2.timestamp ≤ T 2.

Theorem 1 A select-project-join continuous query Q1 is
contained by another select-project-join continuous query
Q2 if both the following conditions are true:

(1) Q∞1 v Q∞2 , where Q∞i is a query resulted from setting
all the window sizes of Qi as∞;

(2) T i
1 ≤ T i

2, where T i
j is the window size of the ith stream

of query Qj .

Theorem 2 An continuous aggregate query Q1 is con-
tained by another continuous aggregate query Q2 if both
the following conditions are true:

(1) Q∞1 v Q∞2 , where Q∞i is a query resulted from setting
all the window sizes of Qi as∞;

(2) T 1
i = T 2

i , where T j
i is the window size of the ith stream

in query Qj .

With the above lemma and theorems, we can generate
the representative query for each group of queries. For sim-
plicity, queries in a group should involve the same set of
streams (i.e. with the same FROM clause in SQL) and the
same aggregation functions (if any) with the same grouping
conditions. The representative query is generated by merg-
ing the query predicates (selection predicates, join predi-
cates, window predicates, etc.).

Profiles are also generated for the users to retrieve their
query results from the result stream of the representative

query. It is actually to re-tighten the constraints that have
been “loosen” in the representative query.

The benefit of the grouping of queries is estimated as
the difference between the expected output data rate of the
representative query and the sum of the original queries. An
incremental greedy algorithm is used to optimize the query
grouping, where each new query is assigned to the query
group that can achieve the maximum benefit.

5. Preliminary Experiments

In this preliminary experiment, we examine our query
management techniques, i.e. the query merging techniques
presented in Section 4.1. The system is implemented in
Java. We adopt the stream processing system: GSN (Global
Sensor Network, http://gsn.sourceforge.net/),
as the underlying SPE. The experiment is conducted in a
Linux server with 2 Dual-Core 2.66GHz Intel CPU and 4G
memory.

We use the sensor dataset generated by the Sen-
sorScope project (http://sensorscope.epfl.ch),
which measures key environmental data such as air tem-
perature and humidity etc. In the experiments, we use 63
streams and emulate the streaming scenario by using their
timestamp information. Queries are generated by randomly
selecting the involved streams, their window sizes and the
filtering predicates based on a distribution (uniform or zip-
fian).

The CBN is simulated in the experiments. The topol-
ogy generator BRITE (http://www.cs.bu.edu/
brite/) is used to generate a power law network topol-
ogy with 1000 nodes. Then a minimum spanning tree is
constructed as the dissemination tree. All the experiments
are repeated 20 times with different random queries and the
average results are reported.

In Figure 4(a), we present the benefit ratio at the point
when a certain number of queries have been inserted. Bene-
fit ratio is computed as the percentage of communication
cost that is reduced by the query merging algorithms in
comparing to that without merging. The distribution used to
generate the queries varies from uniform to zipfian with dif-
ferent skew parameters. One can see that, with more num-
ber of queries added to the system, there are more opportu-
nities for the query merging approach to explore the sharing
of communication and hence a higher benefit ratio can be
achieved. Another interesting point is that query merging is
more beneficial with a skewed query distribution. The rea-
son is obvious. With more queries interested in the same
subset of data, the probability that we can merge the queries
would be higher. Figure 4(b) provides another perspective
on the experimental results. The grouping ratio is the ra-
tio of the number of query groups to the total number of
queries. Generally, the lower the grouping ratio, the higher
the benefit ratio could be.
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Figure 4. Query Grouping Performance

6. Conclusion

In this paper, we revisit the design of a scalable dis-
tributed stream processing system. The proposed novel ar-
chitecture leverages the recent work from the networking
community, CBN, to enhance the system’s scalability. The
new architecture can achieve both loose coupling and high
communication efficiency. The issues on how to efficiently
utilize CBN for stream processing are discussed. Prelim-
inary experimental result suggests that our techniques can
efficiently utilize the capability of CBN to optimize the sys-
tem performance.
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