Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Matthias Béhm, Dirk Habich, Uwe Wloka, Wolfgang Lehner

DIPBench: An independent benchmark for Data-Intensive Integration
Processes

Erstveréffentlichung in / First published in:

IEEE 24th International Conference on Data Engineering Workshop. Cancun, 07.-
12.04.2008. IEEE, S. 214-221. ISBN 978-1-4244-2161-9

DOI: https://doi.org/10.1109/ICDEW.2008.4498321

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-803972

TECHNISCHE
il SLUB UNIVERSITAT Oucosa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-803972
https://doi.org/10.1109/ICDEW.2008.4498286

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

DIPBench: An Independent Benchmark for
Data-Intensive Integration Processes

Matthias Bohm #*, Dirk Habich *?, Wolfgang Lehner **, Uwe Wloka #*

Database Group, Dresden University of Applied Sciences
01069 Dresden, Germany
'mboehm@informatik.htw-dresden.de
4wloka@informatik.htw—dresden.de

*Database Technology Group, Dresden University of Technology
01187 Dresden, Germany
2dirk.habich@inf.tu-dresden.de
3wolfganq .lehner@inf.tu-dresden.de

Abstract— The integration of heterogeneous data sources is
one of the main challenges within the area of data engineering.
Due to the absence of an independent and universal benchmark
for data-intensive integration processes, we propose a scalable
benchmark, called DIPBench (Data Intensive Integration Process
Benchmark), for evaluating the performance of integration sys-
tems. This benchmark could be used for subscription systems, like
replication servers, distributed and federated DBMS or message-
oriented middleware platforms like Enterprise Application Inte-
gration (EAI) servers and Extraction Transformation Loading
(ETL) tools. In order to reach the mentioned universal view for
integration processes, the benchmark is designed in a conceptual,
process-driven way. The benchmark comprises 15 integration
process types. We specify the source and target data schemas
and provide a toolsuite for the initialization of the external
systems, the execution of the benchmark and the monitoring
of the integration system’s performance. The core benchmark
execution may be influenced by three scale factors. Finally, we
discuss a metric unit used for evaluating the measured integration
system’s performance, and we illustrate our reference benchmark
implementation for federated DBMS.

I. INTRODUCTION

The integration of heterogeneous data sources is still one of
the main challenges in the area of data engineering. This fact is
caused by the tendency towards distributed system infrastruc-
tures with the simultaneous requirement of the availability of
integrated data. Therefore, a lot of work has been conducted
regarding integration concepts and systems. The integration
concepts can be classified as follows [1]: information inte-
gration (data integration and function integration), application
integration, process integration and even GUI integration.

Although there are several papers presenting individual
performance experiments in order to confirm the impact of
the respective integration systems, a standardized benchmark
is not available. This lack may be explained by the diversity
of integration systems. However, a standardized benchmark
for integration systems is sorely required, both by industrial
vendors and by academic research groups in order to compare
and evaluate products and prototypes. The necessity of such a
benchmark was even explicitly mentioned in [2], [3], [4].

1

Based on this motivation, we present our developed Data-
Intensive Integration Process Benchmark (DIPBench) in this
paper. The focus of the benchmark is on the physical data
integration within the context of ETL processes. These pro-
cesses, comprising the integration tasks, are initiated either
by business transactions in the source systems or based on
a time schedule. Obviously, we focus on data-manipulating
integration systems rather than on read-only information sys-
tems. With the classification of integration concepts in mind,
the DIPBench addresses the information integration as well as
the application integration.

With this specification, we want to contribute to the def-
inition of a standardized integration benchmark. Fundamen-
tally, and in awareness of the number of different available
integration systems, there are several challenges ahead. First,
the specific functionalities of the different systems require
a benchmark that is restricted to well-chosen source and
target systems. Second, the comparability of benchmark results
over different integration systems is also a major challenge.
Finally, a platform-independent description of the benchmark
is required in order to be able to map the benchmark to the spe-
cific systems. This platform-independent view on integration
processes is achieved using our process-based Message Trans-
formation Model (MTM) [5] conceptual description model.

Aside from the above-presented challenges, we try to ac-
complish the approved benchmark design principle of [6]. The
following list shows these principles and requirements, and it
illustrates how they are tackled by the DIPBench specification:

o Domain-specific: The benchmark must be relevant within
the domain of heterogeneous systems integration. Thus,
it has to comprise typical integration processes within an
application scenario and all types of heterogeneities.

e Portable: Portability has to be reached by providing a
platform-independent benchmark description. This prin-
ciple addresses the integration system as well as the used
source and target systems.

e Scalable: The benchmark should be scalable in order
to be executed on small as well as on large computer
systems. Therefore, a set of scale factors must be defined.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

e Simple: Finally, the simplicity of the benchmark should
be kept. Although this is quite a hard requirement dealing
with complex integration systems, a toolsuite is provided
to ensure a simple benchmark execution and analysis.

Based on the importance of such integration benchmark, we
would like to invite industrial as well as research participants
to contribute to this discussion in order to define the best
suitable benchmark for integration systems. Therefore, the
presentation of the main aspects of our defined benchmark
is structured as follows: In Section 2, we distinguish our
DIPBench approach from existing benchmarks, none of which
addresses the actual integration system’s performance. Af-
terwards, we introduce the domain-specific ETL scenario in
Section 3. The actual benchmark description in Section 4
includes the process type definitions. Furthermore, in Section
5, we discuss the benchmark execution schedule as well
as the impact of the three defined scale factors. Section
6 illustrates the performance metrics used for benchmark
analysis and explains its computation. Based on the benchmark
description and the performance metrics, we present our first
reference benchmark implementation in Section 7, including
experiments with different scale configurations. For that, we
have examined a federated DBMS to prove the benchmark
realizability and to show the first performance measurements.
Finally, in Section 8, we conclude our discussion and give a
short outlook on future work.

II. RELATED WORK

The Lowell Report [2] already points out the need for
further work on the optimization of information integrators. In
this report, the authors encourage the generation of a testbed
and a collection of integration tasks. In their opinion, this
would allow the comparison of solutions and it would certainly
help generate interest in this research area. The testbed and
benchmark THALIA [7], [8] was a direct response to the
Lowell Report. Tt provides a testbed and a benchmark for
information integration. Using THALIA, however, integration
systems can be evaluated based on the number of correctly
answered benchmark queries and the amount of integration
effort. Thus, it rather addresses the integration functionalities
than the processing performance of integration systems. As
mentioned within our introduction, there is little work related
to benchmark integration systems. However, selected research
groups illustrate performance experiments [4], [9] using self-
defined queries in order to prove their own results.

Trying to keep it simple, we define the DIPBench similar
to well-known benchmarks. The XMach benchmark [10],
[11] is positioned as a multi-user benchmark for evaluating
the query performance of XML Data Management Systems,
while the TPC-H benchmark is used to determine the ad-hoc
decision support performance of a DBMS. Even our toolsuite
[12] was designed in analogy to the Workload Driver of
the TPoX benchmark [13]. There are benchmarks available
which partly contribute to heterogeneous systems integration.
First, the newly standardized TPC-DS benchmark [14], [15],
[16] includes a server-centric ETL process execution. In order

2

to separate DIPBench from this, it should be noticed that
only flat files are imported into the data warehouse. Thus, it
rather addresses the DBMS performance than the performance
of a real integration system. Second, there are very specific
ETL benchmarks available which mainly address the raw data
throughput and which are thus not sufficient for a universal
benchmarking of integration systems. An example of such
a specific benchmark is the so-called “RODIN High Perfor-
mance Extract/Transform/Load Benchmark* [17]. Further, also
an ETL Benchmark with quality metrics was already dis-
cussed in [18]. Additionally, the Data Warehouse Engineering
Benchmark (DWEB) [19], [20] and the MOM Benchmark
SPECjms2007 [21] should be mentioned. Unfortunately, the
latter addresses JMS implementations only.

III. BENCHMARK SCENARIO

In this section, we give an overview of our chosen bench-
mark application scenario comprising a full Extraction, Trans-
formation, Load (ETL) process but also OLTP integration
processes between the source systems. This complex technical
context contains different types of integration tasks which are
characteristic for physical integration processes. We have veri-
fied the practical relevance during several industry projects in
the field of information integration and application integration.
So, in contrast to functional integration benchmarks, we rather
focus on a real-life scenario instead of covering all possible
types of syntactic and semantic heterogeneities.

The business context consists of a group of companies
(GP). The sub-companies are located in Europe, Asia and
America. This regional separation is also used for the dif-
ferentiation of special cost centers. Thus, movement data—
in the form of sales data—but also master data has to be
integrated from the numerous source systems into a global

@@Eﬂ

DM ’Europe’ DM 'United States’ DM 'Asia’

=

"Sales’

S

> Sales ,_Cleaning’ ™
\P10

A
P09
Ws Appllcatlon @
Hongkong San Diego’ | 'US-Eastcoast’
ws
Beijing

PO1 e @gé
Seoul

"Chicago’ ‘Baltimore’ 'Madison’
Region 'Asia’ Region 'America’

Data Marts
(partitioned by
location)

P14

Data Warehouse
(consolidated and
cleaned data)

P13
P12

Consolidated
Database
(staging area)

"Vienna’ o
Paris’
P02
MDM
"Europe’

"Trondheim’
Region 'Europe’

P04

"Berlin/

Fig. 1. DIPBench ETL Scenario

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

data warehouse and finally into cost-center-specific data marts.
The whole integration scenario is illustrated in Figure 1. All
necessary integration processes within this scenario should be
realized using one integration system. The DIPBench, which
is described in detail in the following sections, addresses the
performance evaluation of the used integration system.

A. Data Flow Description

In order to support a wide range of integration systems, the
external system types are limited to RDBMS, Web services
and XML-based flat files. The whole system infrastructure is
basically divided into four logical layers.

The first logical layer represents all source systems, includ-
ing the mentioned applications, Web services and different
kinds of RDBMS. As Figure 1 shows, these source systems
are grouped by their locations. Thus, the three regional groups
Europe, Asia and America are defined. Within the regional
group Europe, there are four physical source systems. There, a
specific MDM (Master Data Management) application is used.
The proprietary application Vienna sends XML messages—
driven by business transactions—to the consolidated database,
where these messages have to be enriched with master data.
There are two databases—for the three locations Berlin, Paris
and Trondheim—which have to be loaded into the consolidated
database using a time-based schedule. If master data changes
occur during OLTP transactions, these master data have to
be replicated to the mentioned databases. The regional group
Asia comprises three Web services. Each of them manages
its master data locally. Thus, there is a local master data
consolidation between the Web service Beijing and Seoul.
Concerning the data consolidation process, there are two
integration types to be distinguished. While the Web service
Hongkong sends its data to the consolidated database—driven
by business transactions—the data from Beijing and Seoul
are explicitly queried and merged in order to load them
into the consolidated database. In contrast to the previously
mentioned regional groups, the region America is part of a
two-phase consolidation process. First, the data from the data
sources Chicago, Baltimore and Madison are loaded into a
local consolidated database, called US_Eastcoast; second, they
are loaded into the global consolidated database. Additionally,
there is a proprietary application San Diego, that sends XML
messages directly to the global consolidated database. It is as-
sumed that this application is very error-prone, which requires
a detailed validation process when receiving such messages.

The second layer consists of a consolidated database. It is
used for the physical source data integration of all different
source system types. Due to the different source data schemas,
several schema mappings and the data cleaning of master and
movement data have to be processed. Thus, the consolidated
database represents the staging area of the whole ETL bench-
mark scenario. During this staging process, the data quality
increases and the accuracy decreases.

Layer three represents the actual data warehouse system. In
order to minimize the system load of this layer, only clean
and consolidated data is loaded into this system, based on a

defined time schedule. Thus, the accuracy is even lower than
the accuracy of data residing within the consolidated database.
In contrast to this, the data quality is much higher because an
integrated view on all data is provided.

In order to realize physical optimizations, workload re-
duction and a location-based partitioning, the fourth layer
comprises three independent data marts. After the data is
loaded into these region-specific data marts, the materialized
views have to be refreshed.

B. Schema Descriptions

The source and target systems exhibit heterogeneous data
schemas. First, there are syntactic heterogeneities, which refer
to structural differences between the data schemas. Examples
for that type are normalized and denormalized tables but also
relational data in contrast to hierarchically structured XML
files. Second, there are also semantic heterogeneities (e.g.,
there are different meanings of priority flags and order states).

Company

C

N

Fig. 2. Region Europe Data Schema

According to the regional differentiation, the region Europe
mostly uses a self-defined, normalized data schema, which is
illustrated in Figure 2. However, the applications Vienna and
MDM _Europe use specific deep-structured XML schemas. The
region Asia follows a generic approach, where all schemas
are expressed with default result set XSDs. This implicates
that these three Web services are simply data sources hid-
den by Web services. Finally, there is the region America,

| Materialized View OrdersMV

Day()
Month()
Year()

N 1 1
}—&1

Dimension Customer
(denormalized)

N
Orders

Orderline }N—<>—1{

LA

1 [
‘ Product ‘ ‘ City ‘

o e

ProductGroup ‘ Nation ‘

1o e

‘ ProductLine

Dimension Time
(built-in functions)

‘ Region ‘

Dimension Location
(normalized)

Dimension Product
(normalized)

Fig. 3. Data Warehouse Data Schema

3

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

[Group [ID [Name
A PO1 Master data exchange Asia
A P02 | Master data subscription Europe
A P03 | Local data consolidation America
B P04 | Receive messages from Vienna
B PO5 | Extract data from Berlin
B P06 | Extract data from Paris
B P07 | Extract data from Trondheim
B PO8 | Receive messages from Hongkong
B P09 | Extract wrapped data from Beijing and Seoul
B P10 | Receive error-prone messages from San Diego
B P11 Extract data from CDB America
C P12 | Bulk-loading data warehouse master data
C P13 | Bulk-loading data warehouse movement data
D P14 | Refreshing data mart data
D P15 | Refreshing data mart materialized views

TABLE I
BENCHMARK PROCESS TYPES OF GROUPS A, B, C AND D

whose schema follows exactly the normalized TPC-H schema.
However, the application San Diego uses a different deep-
structured XML schema. Note that the detailed relational
models and XML schemas can be found in the full benchmark
specification and are thus not explicitly illustrated in this paper
due to the lack of space.

In contrast to the heterogeneous source system schemas,
the schema definitions of the consolidated database, the data
warehouse, and the region-specific data marts are quite homo-
geneous. However, in detail, there are structural differences
caused by the specific usage of these systems. Figure 3 illus-
trates a data warehouse’s snowflake schema as the central point
of this scenario. The single data mart schemas are derived from
this. The data mart Europe comprises denormalized product
and location dimensions, while the data mart Asia only has
the product dimension denormalized and United_States has a
denormalized location dimension. In contrast to these read-
optimized schemas, the schema of the consolidated database
is equal to the data warehouse schema, except for the materi-
alized view OrdersMV.

IV. PROCESS TYPE DEFINITIONS

In this section, we define several integration process types
for each of our four logical layers. The definitions include
the two main event types: (E1) incoming messages and (E2)
time-based scheduling events. Moreover, we explicitly point
out that the modeled processes are suboptimal. This leaves
enough space for optimizations as described in [22].

A. Group A: Source System Management

The process type POl addresses the master data exchange
between the Web service Beijing and the Web service
Seoul. Thereby, an XML message, conforming to the defined
XSD _Beijing, is received, translated to XSD_Seoul using a
given STX [23], [24] translation, and finally sent to Beijing. In
P02, an XML message is received from the MDM application
and translated to the data schema Europe. Subsequently,
a SWITCH operator evaluates the given Customer identifier

msg1

Recel /I receive XML message from client
DM Europe
msg2
msg2
Custkey< 1000 000
msg2 Assign) (Assign) (Assign)
msg3

megs 1 ! '

‘ Invoke ‘ ‘ Invoke ‘ ‘ Invoke ‘

else

Service = trondheim

iService = berlin/paris
Operation = ,update”

Operation = ,update”

Service = berlin/paris
Operation = ,update”

Fig. 4. Example Process Type P02

(Custkey). Depending on the evaluation result, the message is
sent to either Berlin, Paris or Trondheim. This process type is
illustrated by Figure 4.

The group of source system management is completed by
P03. This process type is not initiated by incoming messages
but based on a time schedule. It first extracts the data sets
from Chicago, Baltimore, and Madison. After that, a UNION
DISTINCT is processed for the tables Orders, Customer and
Part. Finally, the resulting data set is loaded into the local
consolidated database US_Eastcoast. The whole process type
is shown in Figure 5.

B. Group B: Data Consolidation

The process type P04 deals with receiving Vienna XML
messages and their enrichment with extracted master data.
After that, the messages are translated in a standardized way
and sent to the consolidated database. The process types POS,
P06 and P07 are technically very similar. So, a dataset is
extracted from the data sources Berlin/Paris or Trondheim. In
case of Berlin/Paris, a selection is processed for filtering the
right location. Furthermore, a projection is executed in order
to rename the attributes. Finally, the query is prepared for
inserting the dataset. Note that they are executed on a time-
based schedule.

The data flow between the regional group Asia and the
consolidated database comprises the process types P08 and

(Assign) (Assign) (Assign)
! !

msg1 msg3 msg5

Service = chicago,

msg ‘ msg baltimore,
madison

Invoke ‘ ‘ Invoke ‘ ‘ Invoke
msg4! msgb!
Operation = ,query”

msg2
msg2, msg4, msgb UNION_DISTINCT, Ordkey

msg7 UNION_DISTINCT, Custkey

UNION_DISTINCT, Prodkey
msg7

msg8

msg5,

Service = us_eastcost
Operation = ,update”

Fig. 5. Example Process Type P03

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

P09. There, POS8 is initiated by incoming messages received
from the Web service Hongkong. After a schema translation
has been performed, the messages are loaded into the consol-
idated database. In contrast to that, PO9 is initiated in a time-
based manner. Thereby, large XML result sets are extracted
from the Web services Beijing and Seoul. After that, these
different result sets are translated to the CDB schema using
two different STX style sheets. Before they can be loaded
into the CDB, a UNION DISTINCT concerning the Orderkey,
Custkey and Productkey has to be processed.

Finally, group B also includes the process types P10 and
P11 concerning the American data flow. The process type P10
addresses the reception of error-prone messages from the ap-
plication San Diego. There, the messages are first validated. In
case of an error, the data is inserted into special destinations for
failed data. Otherwise, the message is translated to the CDB
schema and finally inserted into the consolidated database.
P11 is more data-centric. Thus, it addresses the extraction of
all data consolidated within the local consolidated database
US_Eastcoast and its loading into the global consolidated
database Sales_Cleaning. Between the extraction and load
phases, several projections have to be processed, realizing a
simple schema mapping.

C. Group C: Data Warehouse Update

Complementary to groups A and B, the groups C and
D address data-intensive process types exclusively. Group C
deals with the data warehouse delta update. So, P12 invokes a
stored procedure sp_-runMasterDataCleansing in order
to eliminate master data duplicates and error-prone master
data within the consolidated database. After that, it extracts
the clean master data from the CDB, validates it, and if the
validation succeeds, loads this data set into the data warehouse.
Finally, the master data within the consolidated database is
flagged as integrated but not physically removed.

The process type P13 is very similar to P12. It also invokes
a stored procedure sp_runMovementDataCleansing in
order to eliminate the movement data errors. Furthermore,
it also extracts, validates and loads the movement data to
the data warehouse. At this point, the differences in data set
sizes should be noticed. Finally, two invocations are processed.
First, the materialized view OrdersMV has to be refreshed by
a stored procedure call. Second, the loaded movement data
has to be removed from the consolidated database for simple
delta determination in the following integration processes.

D. Group D: Data Mart Update

In addition to that, group D comprises a high degree of par-
allelism. The process type P14 consists of a main process and
four subprocesses. First, subprocess P14_S1 is invoked in order
to load all master and movement data from the data warehouse
and return it. Second, three concurrent threads are processed
in parallel. Such a thread consists of a selection operator and
the invocation of a subprocess. The called subprocess realizes
the schema mapping from the DWH schema to the special DM
schema and finally loads the data into the chosen data mart. At

5

the end of the whole ETL process scenario, the materialized
views of all data marts have to be refreshed. Since there are
no dependencies between the physical data marts, these could
be processed in parallel.

Finally, be aware of the full platform-independent bench-
mark specification, which is available in [25], including de-
tailed descriptions, the toolsuite and the reference benchmark
implementation for federated DBMS.

V. BENCHMARK EXECUTION SCHEDULE AND
PERFORMANCE METRIC

The DIPBench is executed using a defined environment
setup. Therefore, three independent computer systems are
needed. First, there is computer system 1 (ES), where all
external systems, for instance DBMS and application servers,
are installed. Second, the computer system 2 (IS) represents
the integration system installation (system under test). Finally,
there is computer system 3 (CS), where all single tools of the
DIPBench toolsuite reside.

This toolsuite is provided in order to minimize the time and
effort, needed for benchmarking a special integration system.

e Initializer: First, it creates the different database schemas
and XML files. Second, several distribution functions are
available to generate synthetic source system test data
sets.

e Client: The client application mainly includes an exe-
cution schedule. By sending messages and time-based
scheduling events to the integration system, it ensures
the correct scheduling. Furthermore, the client provides
the autonomic benchmark execution.

e Monitor: The collected statistics and performance metrics
are handled and stored by the Monitor. In addition to
that, it also provides plotting functions for the generation
of performance diagrams from the measured integration
system performance.

As illustrated in Figure 6, the benchmark realization is
divided into three main phases: initialization (pre), execution
(work) and verification (post). Here, only the phase work
is relevant for performance measurements, while the other
phases are used for initializing the source and target systems,
verifying the functional correctness of the integrated data and
analyzing the measured performance events.

S

Fig. 6. Benchmark Phases

Phase pre Phase work Phase post

Benchmark
Performance
Plot

Benchmark

Execution Verification

Initialization

error error error

Due to its relevance, we now restrict our discussion to the
phase work. This benchmark execution is composed of 100
benchmark periods, where each period comprises the uninitial-
ization of all external systems, the test data initialization of the
source systems and, of course, the four streams, as illustrated
in Figure 7. These streams are correlated to the introduced

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

with 0<k<99

‘ uninitialize all external systems ‘

‘ initialize source systems ‘

Stream A[k]

Y 1

Stream C [k]

Y

A: Source System Management

Stream B [k]
B: Data Consolidation

C: Data Warehouse Update

Y

Stream D [k]

Fig. 7.

D: Data Mart Update

Benchmark Execution Period

process type groups. So, such a stream should be understood
as a serialized sequence of process-initiating events. These
events consist of the process type ID, an execution timestamp
and, in case of event type El, an input message. Thereby,
streams A and B are concurrent streams, while stream C and
stream D are serialized.

The internal processing of the four benchmark streams may
be influenced by specific scale factors. Basically, the three
scale factors: datasize (d”), time (t?) and distribution (fY),
are distinguished within a three-dimensional scale space.

The continuous scale factor datasize (d”) allows for scaling
the amount of data to be integrated. Thus, the dataset size of
the external systems as well as, in case of event type El, the
number of process instances depend on it. In this second case,
the scale factor datasize (d*) influences the scheduling time
series for the specific benchmark stream, as shown in Figure 8
on the left side. Thereby, the number of executed processes m
depends on the specific benchmark period k and on the scale
factor datasize (d*). The decreasing number of executed P01
process instances was designed with the intent to achieve a
realistic scaling of master data management.

Additionally, the continuous scale factor time (t*) also
influences the scheduling time series. This is realized by using
abstract time units (tu) for specifying the benchmark schedule
series. A scale factor t* implies ltu = %milliseconds. The
defined scheduling series A, B, C and D define deadlines in
tu for integer ranges m. The impact of this scale factor is
shown in Figure 8 on the right side. An increasing t* reduces
the time interval between two successive schedule events for

t
00000000000

number of executed
processes m

T20 [T'e0 T's0 T00 It I 2 I s f
benchmark period k scheduled event time e

Fig. 8. POl - Impact of Scale Factors datasize and time

[Group [ID [Series
A POl | Tp (Stream{) +2(m — 1)
. (100—k)*d
with 1 <m < = +1[ty]
A P02 | Tp (Stream{) +2(m)
Withlﬁmﬁ%—l—l[tu]
A P03 | 71 (PO1) A T1 (P02)
B P04 [Tp (StreamP) +2(m —1)
with 1 <m <1100 xd + 1 [tu]
B P05 | 71 (P04)
B P06 | 71 (P05)
B P07 | 71 (P06)
B P08 | Tp (Stream?P) + 2000 + 3 (m — 1)
with 1 < m <900 * d + 1 [tu]
B P09 | 71 (P0S)
B P10 | Tp (StreamP) + 3000 + 2.5 (m — 1)
with 1 < m <1050 * d + 1 [tu]
B PIl | Tp (Stream?)
C P12 | Ty (Streamg)
C P13 | T (Stream{) + 10
D P14 | Ty (StreamkD)
D P15 | T (P14)
TABLE II

BENCHMARK SCHEDULING SERIES OF STREAMS A, B, C AND D

this process type. A shorter interval further reduces the time
for self-management and thus reduces the performance of the
system. Due to the concurrent streams A and B, a shorter
interval also influences the degree of parallelism.

The discrete scale factor distribution (fY) is used to provide
different data characteristics from uniformly distributed data
values to specially skewed data values.

Note that PO1 and P02 are executed in a concurrent fashion,
while P03 is only executed once. Furthermore, the number of
executed POl and PO2 instances depends on the number of
already executed benchmark periods. In order to understand
the characteristics of stream B, note the regional separation.
So, there is a time shift between the European, Asian and
American process type executions. However, the execution
times overlap. With this schedule, real-world businesses could
be modeled, where most of the business transactions take place
during the core working hours. In contrast to the concurrent
streams A and B, the streams C and D are serialized in order
to ensure the correct results.

With the numerous different integration systems in mind, we
see one of the biggest challenges in the universal comparison
of benchmark performance. Therefore, we use the cost model
defined in [22], where the costs of integration processes consist
of the following three cost categories.

o Communication costs C.(p): Time; waiting for external

systems (network delay and external processing costs)

o Internal management costs Cy,(p): Time; not correlated
to a concrete process instance execution (plan creation
and internal reorganization)

e Processing costs Cp(p): Time; used for integration pro-
cessing (all control flow oriented and data flow oriented
processing steps)

Although the best suitable performance evaluation would be

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

a) event type: message stream

INSERT INTO P02_Queue

VALUES (@msg)

'

<<TABLE>> P02_Queue

TID

BIGINT PRIMARY KEY

MSG

cLoB

<<TRIGGER for INSERT>>

/

invoke
external
systems

https://doi.org/10.1109/ICDEW.2008.4498321

b) event type: external and
scheduled time events

EXECUTE P03

!

X

<<PROCEDURE>>
P03

S
| <<TABLE>> |

| <<TABLE>>
| tmp,

tmps

.
temporary tables [<<TABLE>> |

[<<TABLE>> |
(local materialization points) | tmp, | !

Fig. 9. Event Type Implementation

based only on the internal management cost and the processing
costs, we define that all cost categories (C.(p),Cp,(p) and
Cp(p)) are included in the performance evaluation. This is
acceptable because a user would rather be interested in the
overall integration time than in the core processing time of
the integration system. We define the benchmark performance
metrics NAV G (p,). This metric unit represents the ex-
tended normalized average costs of a specific process type
and is defined as follows:

NAVG* (p,) = NAVG (NC (p) + 0y, (NC (p.)) .

Thus, this extended metric unit is computed as the sum
of the average of the normalized costs of a specific process
instance and of the positive standard deviation. The standard
deviation is included in this metric unit in order to reward
integration systems with predictable system performance.

The main problem when computing this metric unit is the
determination of the normalized costs of a specific process
instance. This problem is caused by (1) the parallelism of
concurrent integration processes and (2) the parallelism of
operator instances and subprocesses. Thus, the effective pro-
cessing time could not be used to determine the costs of
one single process. In order to make the costs comparable
and independent of concurrent process executions, the cost
normalization must be realized.

VI. REFERENCE IMPLEMENTATION EXPERIMENTS

In order to prove the realizability of the DIPBench spec-
ification, we experimented with a reference implementation.
When we did so, we evaluated a commercial federated DBMS
(called System A). In this section, we now want to point out
special realization aspects and illustrate the performance plots
generated by the DIPBench Toolsuite.

As already mentioned, the experimental setup for the
benchmark execution comprises three independent computer
systems. On the first system (ES [Athlon64 1800+, 2GB
RAM]), all external systems reside. This includes one DBMS
installation with eleven database instances (each with disk
size 1000 MB, log size 100 MB) and one application server
installation for the management of the used Web services.

On the second system (IS [Athlon64 1800+, 2GB RAM]),
the integration system, and thus, the system under test is
located. Finally, the DIPBench Toolsuite is located on the
third system (CS [Dual Genuine Intel T2400, 1.5GB RAM]).
For both experiments, we used a timescale of 1.0f and
uniform-distributed datasets. Furthermore, the three
computer systems were connected using a wireless network.
The reference implementation of the federated DBMS was
realized by using System A’s proprietary integration services,
XML functionalities and Web service access methods. Actu-
ally, the used system was homogeneous with regard to the
used external database systems. Now, we will point out the
major implementation aspects only. Basically, two different
event types of integration processes have to be distinguished.
Figure 9 illustrates the core realization concepts. In case of
the event type message stream (a), where processes are

DIPBench Perfornance Plot [sfTime=1.8, sfDatasize=0.85]
2p888

AVG+ —
NAVG ===

16000 -
16888 -
14080 -
12888 [

10080 -

NAVG+ [in tul

8eea

6888

4808 [

2800 -
izez
i
B

13 14 15 16

k=
4
ek

7 8 a 18 11 L
Process Types

=
2l
.

@
-
n
w
a
o
@
&)

Fig. 10. Reference Implementation Performance Results (d* = 0.05)
DIFBench Performance Plot [sfTine=1.8, sfDatasize=8,11
35000 :
Eﬂ\lﬁi- —
NAVG E~mmA
30800 |
25000
2 oeeee [
=
5
+
o
Z 15600 -
=
1800600 [
5000 |
k33 =
o L= 4 . B &

a 1 2 3 4 5 6 7 8 9 18 11 12 13 14 15 16
Process Types

Fig. 11. Reference Implementation Performance Results (d* = 0.1)

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE 24th International Conference on Data Engineering Workshop. Cancun, 2008". S. 214-221. ISBN 978-1-4244-2161-9

https://doi.org/10.1109/ICDEW.2008.4498321

initiated in a data-driven way, a set of components is used.
First, a simple table is used for queuing incoming messages.
Second, the actual integration process is implemented as an
insert-trigger, evaluating the logical table inserted. Notice
that all integration processes starting with a RECEIVE op-
erator are realized in such a way. In case of the event type
time events (b), the integration process could be realized
as a stored procedure because no data input—except for global
configuration parameters—is needed.

Figure 10 shows the DIPBench performance plot for the
discussed federated DBMS reference implementation using a
datasize of d® = 0.05. There are some results which have to
be explained. First, the large NAVGP difference between the
serialized, data-intensive processes and the highly concurrent
processes should be noticed. Furthermore, the data-intensive
processes have a higher standard deviation. This is caused by
a smaller number of executed process instances but also by
internal optimization techniques. The data-intensive processes
are realized with relational operators and thus could be well-
optimized. In contrast to this, the concurrent processes are
realized using proprietary XML functionalities, which are
apparently not included in the optimizer. Figure 11 illustrates
the second experiment using a datasize d” = 0.1. In particular,
the influence on the process types initiated by event type
El should be noticed. In contrast to these, the process types
following event type E2, were only executed more often and
thus show a decreased standard deviation rather than higher
normalized costs.

VII. SUMMARY AND FUTURE WORK

Basically, the need for an independent integration bench-
mark was the motivation for the development of the discussed
DIPBench. The initial situation comprised several challenges
and problems, which have caused the lack of such a bench-
mark. The different integration system types, the different
event models and functional properties, but also the need
for an adequate performance evaluation of highly concurrent
scenarios belong to these challenges. Starting from this point,
we first defined a benchmark scenario, including several
systems and schemas. Second, a realistic and well-balanced
process mix was specified in a platform-independent manner.
In this context, a set of 15 process types as well as an
execution schedule was described in detail. Third, a perfor-
mance metric unit for evaluating the benchmark performance
was also introduced. Fourth, this metric unit was used to
determine the performance of the reference implementation,
based on a federated DBMS. Finally, we want to point out
that the whole benchmark description is available in [25].
In order to minimize the time and effort for executing the
benchmark, a sophisticated toolsuite [12] is provided. To
summarize this paper, it remains to be said that we defined
the first integration process performance benchmark, called
DIPBench. We hope that it will be used by research groups and
system vendors in order to provide comparability concerning
the system performance. Since we believe in the importance

8

of such a benchmark, we would like to discuss open issues,
problems and challenges related to this benchmark.

Our future work, correlated to this benchmark, comprises
further reference benchmark implementations. For example,
we currently realize experiments with EAI servers and ETL
tools. In addition to that, we want to enhance the benchmark
by integrating quality and semantic issues as well as further
types of functional challenges.

REFERENCES

S. Dessloch, A. Maier, N. Mattos, and D. Wolfson, “Information
integration - goals and challenges,” Datenbank-Spektrum, vol. 3, no. 6,
pp. 7-13, 2003.

S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri, W. B.
Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D. Gawlick,
J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis,
M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J. F. Naughton, H.-J.
Schek, T. K. Sellis, A. Silberschatz, M. Stonebraker, R. T. Snodgrass,
J. D. Ullman, G. Weikum, J. Widom, and S. B. Zdonik, “The lowell
database research self assessment,” CoRR, vol. ¢s.DB/0310006, 2003.
A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka, “Enterprise information integration: suc-
cesses, challenges and controversies.” in SIGMOD, 2005, pp. 778-787.
Z. G. Ives, A. Y. Halevy, and D. S. Weld, “Adapting to source properties
in processing data integration queries.” in SIGMOD, 2004, pp. 395-406.
M. Bohm, U. Wloka, D. Habich, J. Bittner, and W. Lehner, “A messsage
transformation model for data centric integration processes,” University
of Applied Sciences Dresden,” Technical Report, 2007.

J. Gray, Ed., The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann, 1993.

J. Hammer, M. Stonebraker, and O. Topsakal, “Thalia : Test harness for
the assessment of legacy information integration approaches,” University
of Florida,” Technical Report, 2005.

——, “Thalia: Test harness for the assessment of legacy information
integration approaches.” in /CDE, 2005, pp. 485-486.

Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld,
“An adaptive query execution system for data integration.” in SIGMOD,
1999, pp. 299-310.

T. Bohme and E. Rahm, “Xmach-1: A benchmark for xml data man-
agement.” in BTW, 2001, pp. 264-273.

, “Multi-user evaluation of xml data management systems with
xmach-1.” in EEXTT, 2002, pp. 148-158.

M. Bohm, D. Habich, W. Lehner, and U. Wloka, “Dipbench toolsuite:
A framework for benchmarking integration systems (demo),” in ICDE,
2008.

M. Nicola, I. Kogan, and B. Schiefer, “An xml transaction processing
benchmark.” in SIGMOD Conference, 2007, pp. 937-948.

R. Othayoth and M. Poess, “The making of tpc-ds.” in VLDB, 2006, pp.
1049-1058.

M. Péss, B. Smith, L. Kolldr, and P--A. Larson, “Tpe-ds, taking decision
support benchmarking to the next level.” in SIGMOD, 2002, pp. 582—
587.

TPC-DS - ad-hoc, decision support benchmark, Transaction Processing
Performance Council, 2007.

High Performance Extract/Transform/Load Benchmark, RODIN Data
Asset Management, 2002.

P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis, “Towards a
benchmark for etl workflows,” in QDB, 2007, pp. 49-60.

J. Darmont, O. Boussaid, and F. Bentayeb, “Dweb: A data warehouse
engineering benchmark,” in DaWaKk, 2005, pp. 85-94.

J. Darmont, F. Bentayeb, and O. Boussaid, “Benchmarking data ware-
houses,” vol. 2, no. 1, 2007, pp. 79-104.

SPECjms2007 Benchmark, http://www.spec.org/jms2007/, 2007.

M. Bohm, D. Habich, U. Wloka, J. Bittner, and W. Lehner, “Towards
self-optimization of message transformation processes,” in ADBIS, 2007.
0. Becker, “Extended sax filter processing with stx.” in Extreme Markup
Languages, 2003.

, “Streaming transformations for xml-stx.” in XMIDX, 2003, pp.
83-88.

DIPBench, Dresden University of Technology, Database Technology
Group, http://wwwdb.inf.tu-dresden.de/research/gcip, 2007.

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

	DIPBench_Proceedings of the 24th [5] International Conference on Data Engineering_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Matthias Böhm, Dirk Habich, Uwe Wloka, Wolfgang Lehner
	DIPBench: An independent benchmark for Data-Intensive Integration Processes

	DIPBench_An_independent_benchmark_for_Data-Intensive_Integration_Processes.pdf

