
A Contextual Normalised Edit Distance

Colin de la Higuera
Laboratoire Hubert Curien
Université de Saint-Etienne

Colin.Delahiguera@univ-st-etienne.fr

Luisa Micó
Dpto. Lenguajes y Sistemas Informáticos

Universidad de Alicante
mico@dlsi.ua.es

Abstract

In order to better fit a variety of pattern recognition prob-
lems over strings, using a normalised version of the edit
or Levenshtein distance is considered to be an appropri-
ate approach. The goal of normalisation is to take into ac-
count the lengths of the strings. We define a new normalisa-
tion, contextual, where each edit operation is divided by the
length of the string on which the edit operation takes place.
We prove that this contextual edit distance is a metric and
that it can be computed through an extension of the usual
dynamic programming algorithm for the edit distance. We
also provide a fast heuristic which nearly always returns
the same result and we show over several experiments that
the distance obtains good results in classification tasks and
has a low intrinsic dimension in comparison with other nor-
malised edit distances.

1 Introduction

In pattern recognition, computational biology and other
fields where the data is represented by strings (but also trees
and even graphs), having a topology over the intended struc-
tures is clearly a reasonable approach. Most useful is the
edit or Levenshtein distance that counts the minimum num-
ber of modifications needed to get from the first string to
the second one [3, 7]. This distance has been thoroughly
studied from both a theoretical and a practical point of view
[2].

But a number of authors argues that in practice, having
to rewrite twice on a string of length 2 is not the same as
having to rewrite twice on a string of length 200. For such
reasons, several ideas have been proposed to try to relate
(in an inverse way) the lengths of the strings with the dis-
tance [8].

We propose in this work a new way of normalising the
edit distance, by dividing each edit operationlocally by the
length of the string on which it is applied. We argue that this
contextual edit distancereaches the following compromise:

• It is a metric, and respects the triangle inequality. It
can therefore be used for algorithms that rely on this
inequality in order not to explore the entire space;

• It corresponds to the nature of normalisations proposed
by different authors, as it is closely related with the
lengths of the strings [4];

• There exists a heuristic whose computation over-cost
is small;

• Preliminary experiments show that the distance dis-
criminates well (and therefore allows an acceleration
of fast nearest neighbour approaches), is pertinent, and
obtains good classification rates.

After recalling definitions concerning the mathematics
and algorithmics of the edit distance (Section 2), we de-
scribe in Section 3 this newcontextualedit distance, prove
its validity and provide two algorithms: one that computes
exactly the contextual distance and a fast heuristic which
reaches the same result in most cases. Experiments are re-
ported in Section 4:

We have compared this measure of distance with the
standard edit distance and other normalisations proposed by
Marzal and Vidal [4] or by Yujian and Bo [8]. The compar-
ison has been done over three benchmarks and taking into
account a variety of parameters: classification rate, speed,
capacity of accelerating neighbour search, etc. Finally, in
Section 5, we conclude.

2 Definitions

An alphabetΣ is a finite nonempty set of symbols. A
string x = x1 · · ·xn is any finite sequence of symbols. We
write Σ∗ for the set of all the strings overΣ andλ for the
empty string.|x| denotes the length ofx.

Definition 1 A distanced : X2 → R
+ is a metricoverX

if the following properties hold:

d(x, y) = 0 ⇐⇒ x = y



d(x, y) = d(y, x)

d(x, y) + d(y, z) ≥ d(x, z)

The advantages of the distance function being a metric
are that alternative algorithms and data structures can be
used for nearest neighbour algorithms [1]. The triangle in-
equality can be used to avoid certain computations, result-
ing in more cost-effective algorithms [6].

2.1 The edit distance

Definition 2 Given two stringsx and y in Σ⋆, x rewrites
into y in one step (x→ y) if one of the following correction
rules holds:x = uav → y = uv (single symbol deletion);
x = uv → y = uav (single symbol insertion);x = uav →
y = ubv (single symbol substitution). We have:u, v ∈
Σ⋆, a, b ∈ Σ.

We will consider the reflexive and transitive closure of
this derivation, andx →k y if x rewrites intoy by k op-
erations of single symbol deletion, single symbol insertion
and single symbol substitution. When needed we will write
x→i y (respectivelyx→s y andx→d y) to indicate thatx
rewrites intoy trough an insertion (respectively substitution
and deletion).

Given 2 stringsx and y, the Levenshtein distance be-
tweenx andy denoted bydE(x, y) is the smallestk such
thatx→k y.

Example 1 dE(abaa, aab) = 2. abaa rewrites intoaab via
(for instance) a deletion of the ‘b’ and a substitution of the
last ‘a’ by a ‘b’.

The well known algorithm [7] for the computation of the
edit distance doesn’t consider all possible rewriting paths
from one string to another (which is infinite), but rather
only internalpaths. To put it simply, each time an insertion
is done, the occurrence of the symbol must be iny, each
time a deletion takes place, this is of a symbol that was
already inx, and each time some symbola is substituted by
a symbolb, then thea must be fromx and theb from y. To
visualise and study the use of these internal operations, let
us mark each symbol appearing in a string by over-lining it
(a) or by underlining it (a).

Now we consider only internal edit operations of the fol-
lowing sort:

• deleting an over-lined symbol:uav → uv;

• inserting an underlined symbol:uv → uav;

• substituting an over-lined symbola by the same sym-
bol, underlined (a): uav → uav; This operation has
cost 0;

• substituting an over-lined symbola by a different sym-
bol, this time underlined (b): uav → ubv.

Definition 3 Let us denote bydI
E(x, y) theinternal edit dis-

tancebetweenx andy, equal to the distance used by a path
starting fromx and ending iny and only using internal edit
operations.

It can easily be checked that:dE(x, y) = dI
E(x, y).

Example 2 dE(abaa, baab) ≤ 3 since we have path
abaa → bbaa → baa → baab which is internal since it
can be marked in the following way:

abaa→ bbaa→ baa→0 baa→0 baa→ baab.

If π = (x = w0 → w1 → · · · → wk = y) is an edit path,
we will denote bydE(π) the edit weight of the path and by
lE(π) the length of the marked path corresponding to it.

Example 3 Following with Example 2, lE(abaa →
bbaa→ baa→ baab)=5.

2.2 How can we normalise?

The first ideas that have been proposed and tested by dif-
ferent authors in order to get a distance that might depend
on the length of the involved strings have been to divide this
distance by some function of the lengths of the strings. We
show in this section that the simple ideas used sometimes
do not allow the obtained distance to be a metric. Usually
the problem is with the triangle inequality.

First, if normalising by dividing by the sum of lengths of
the stringsdsum(x, y) = dE(x,y)

|x|+|y| you end up with some-
thing that is not a metric: Takex = ab, y = aba and
z = ba and dsum(ab, aba) + dsum(aba, ba) = 1

5 + 1
5

whereasdsum(ab, ba) = 2
4 . Therefore,dsum(ab, ba) >

dsum(ab, aba) + dsum(aba, ba) and the triangle inequality
no longer holds.

One can also prove that if one takesdmax(x, y) =
dE(x,y)

max(|x|,|y|) or dmin(x, y) = dE(x,y)
min(|x|,|y|) the distance is still

not a metric. In the first case the triangle inequality doesn’t
hold forx = ab, y = aba andz = ba as fordmax whereas
for dmin a counter example can be built withx = b, y = ba

andz = aa.
The well-known normalised edit distance introduced in

1993 by Marzal and Vidal [4] as

dMV (x, y) = min
π

=
dE(π)

lE(π)

uses the path with the lowest ratio between the number of
edit operations and the length of the path. The authors have
shown that this distance is not a metric in the generalised
case, but it is still unclear if it is one in the case where the
edit costs are 1.



Finally, a normalising process was recently introduced
by Yujian and Bo [8]:

dY B(x, y) =
2dE(x, y)

|x|+ |y|+ dE(x, y)
.

The authors prove thatdY B is a metric. The computation
follows simply from the computation of the edit distance.
Yet, if we rewritedY B as:

dY B(x, y) = 2−
2(|x|+ |y|)

|x|+ |y|+ dE(x, y)

the influence of the edit distance in the result seems insuf-
ficient, specially for very different strings. We give some
experimental results in Section 4 which confirm this.

On the other hand, it should be noticed that Yujian and
Bo’s method (and Marzal and Vidal’s) extends to the case
where the distance is generalised,i.e. where the edit op-
erations have different weights independently of the con-
text [8]. The complexity of their algorithm is quadratic, so
if an alternative distance is to do better order it may have
to compensate a possible higher computational cost of the
individual distances with the fact that less of these need to
be computed.

3 The contextual edit distance

The idea is to consider that the weight ofeachedit op-
eration iscontext dependent. If the operation is done in a
long string, it will cost less than if it is done in a short
string. If uv 6= λ, andu → v (elementary operation),
dC(u, v) = 1

max(|u|,|v|) .
More precisely, if the operation is a substitution or a

deletion the normalised weight is1|u| . If it is an insertion

it will be 1
|u|+1 .

Then we can define:

Definition 4 The normalised contextual edit distance for
path x = w0 → w1 → · · · → wk = y is
∑i=k

i=1 dC(wi−1, wi). If π is the path we will writedC(π).
Thenormalised contextual edit distance betweenx andy is
the minimum valuedC(π) over all possible pathsπ from x

to y.

Example 4 What isdC(ababa, baab)? Since we have path
ababa →d abaa →d baa →i baab, the weight of this path
is 1

5 + 2
4 = 7

10 , so dC(ababa, baab) ≤ 7
10 . An alterna-

tive path isababa →i ababab →d babab →d baab and it
follows thatdC(ababa, baab) is 8

15 .

3.1 Properties of dC

Most importantly, we wantdC to respect the conditions
from Definition 1: This will allow its use in fast nearest
neighbour algorithms.

Theorem 1 dC is a metric.

Proof.

1. dC(x, y) is well defined. Indeed it can be proved that
any path of length more than|x| + |y| has weight

more than
∑i=|x|+|y|

i=|x|+1
1
i

+
∑i=|y|+|x|

i=|y|+1
1
i

since the
cheapest way is always by using as long intermediate
strings as possible. ThereforedC(x, y) is chosen as
the minimum from a finite set and therefore exists.

2. The following are trivial: ∀x, dC(x, x) = 0.
dC(x, y) = 0 means that no operation has taken
place; hencex = y. dC(x, y) = dC(y, x).

3. The triangle inequality also holds:∀ x, y, z ∈ Σ⋆

dC(x, y) + dC(y, z) ≥ dC(x, z) holds since: (1) If the
‘best’ path fromx to z passes throughy, then equality
is reached, (2) if not, then (if the triangle inequality
didn’t hold) we would have a rewriting pathx −→∗ y −→∗

z whose weight would be less thandC(x, z), which is
absurd.

We next prove that insertions should be made first.

Lemma 1 Let Πk(x, y) be the set of all pathsπ from x to
y such thatdE(π) = k. Then the shortest path inΠk(u, v)
for dC is a pathπ whereπ =

(

x = w0 −→
ni

i wni
−→ns

s

wni+ns
−→nd

d wni+ns+nd
= y

)

with ni +ns +nd = k and
ni maximal.

Proof. It is easy to see that the distance is minimised for
a given path length by using as many long strings as possi-
ble. This is obtained by first making as many insertions as
possible and making the substitutions on the longest strings,
and finishing with the deletions.

We now prove that the contextual edit distance is equal to
the internal contextual edit distance,i.e. that we only have to
consider those paths that correspond to internal operations:

Proposition 1 dC(x, y) = dI
C(x, y).

Proof. Let us suppose for contradiction that this
is not true. Let π be a path fromx to y such
that dC(π) = dC(x, y) < dI

C(x, y). Let us sup-
pose that π is of minimal length between all those
paths such thatdC(π) = dC(x, y). We also make
use of Lemma 1: The pathπ is therefore of type
(

x = w0 −→
ni

i wni
−→ns

s wni+ns
−→nd

d wni+ns+nd
= y

)

.

We now consider the first edit operation inπ which is not
internal. There are three cases:

• The first non internal edit operation is a deletion. But
since Lemma 1 applies, it cannot be the deletion of
a symbol that will be reinserted later. Or it is a sym-
bol that (when marked) is neither over- nor underlined,



but that means that another non internal operation oc-
curred earlier.

• The operation is a substitution. Since it is the first non
internal operation, it is a substitution of some symbol
a into a symbolb which will be substituted (b→ c) or
erased later (b→ λ). Then we can build a cheaper path
where the substitutiona→ b does not appear at all and
where the substitutionb → c is replaced bya → c, or
the deletionb→ λ is replaced bya→ λ.

• The first non internal operation is the insertion of a
symbol that is not underlined. Then this symbol has to
be deleted later (or substituted). The path therefore is
x −→∗ i u1u2 →i u1au2 −→

k v1av2 →d v1v2 −→
∗

d y.
By eliminating both the insertion ofa and the deletion
of thea, the cost of the new path isdC(π)− k+2

m+1 + k
m

wherem + 1 is the length of the longest string used
in pathπ whereask is the number of substitutions in
pathπ (which is clearly at mostm). The new path is
therefore cheaper than the original one. If the inserted
symbola is in fact substituted by some other symbol
b (or b) then the initial insertion can be replaced by
λ→ b (or λ→ b).

Therefore the contextual edit distance can be computed
by

1. computing, for each valuek, the maximum number
ni(k) of insertions on a path of lengthk leading from
x to y, and

2. finding the minimum value

i=|x|+ni(k)
∑

i=|x|+1

1

i
+ ns(k) ·

1

|x|+ ni(k)
+

i=|y|+nd(k)
∑

i=|y|+1

1

i

with

• nd(k) = |x| − |y|+ ni(k), and

• ns(k) = k − ni(k)− nd(k).

3.2 The algorithm

The idea is to use the usual edit distance algorithm. We
need, for each pair of prefixes (x1 · · ·xi, y1 · · · yj), to com-
pute the maximum number of insertions (ni[i][j][k]) that we
can make in a path of lengthk, wherek has to take each
possible value of the edit length. Value−∞ for ni[i][j][k]
means that there is no internal pathπ from x1 · · ·xi to
y1 · · · yj with dE(π) = k. We then deducens. Algorithm 1
is therefore an extension of the usual algorithm to compute
the edit distance. Complexity is inO

(

|x| · |y| · (|x|+ |y|)
)

.
An alternative version making use of quadratic space can
easily be deduced by using standard techniques.

Algorithm 1 : Computing the contextual distance
Data: Two stringsx = x1 · · ·x|x| andy = y1 · · · y|y|
Result: B = dC(x, y)
for i : 0 ≤ i ≤ |x| andj : 0 ≤ j ≤ |y| do

for k : 0 ≤ k ≤ |x|+ |y| do ni[i][j][k]← −∞
end
for i : 1 ≤ i ≤ |x| do ni[i][0][i]← 0;
for j : 0 ≤ j ≤ |y| do ni[0][j][j]← j;
for i : 1 ≤ i ≤ |x| andj : 1 ≤ j ≤ |y| do

if xi = yj then
for k : 0 ≤ k ≤ |x|+ |y| do

ni[i][j][k]← ni[i− 1][j − 1][k]
else

for k : 1 ≤ k ≤ |x|+ |y| do
ni[i][j][k]← ni[i− 1][j − 1][k − 1]

for k : 1 ≤ k ≤ |x|+ |y| do
ni[i][j][k]← max

(

ni[i− 1][j][k − 1],

ni[i][j − 1][k − 1] + 1, ni[i][j][k]
)

end
B ← +∞;
for k : 0 ≤ k ≤ |x|+ |y| do

if ni[|x|][|y|][k] ≥ 0 then
Ni ← ni[|x|][|y|][k];
Nd ← |x| − |y|+ Ni;
Ns ← k − (Ni + Nd);
D ← 0;
for i : |x|+ 1 ≤ i ≤ |x|+ Ni do

D ← D + 1
i

D ← D + Ns

|x|+Ni
;

for i : |y|+ 1 ≤ i ≤ |y|+ Nd do
D ← D + 1

i

if D < B then B ← D

end

4 Experiments

In order to evaluate the behaviour of the new contex-
tual edit distance we provide experimental results on the
performance of the new normalised distance (dC ) by com-
paring it with other distance functions. We compare our
distance with the basic edit distance (dE), with the nor-
malisation proposed by Yujian and Bo (dY B) [8], and also
with the non-metric distance mentioned in Section 2.2,
dmax(x, y) = dE(x,y)

max(|x|,|y|) . Finally, comparison withdMV ,
the distance introduced by Marzal and Vidal [4] is also pro-
posed.

• The intrinsic dimension of the different metric spaces
has been analysed through histograms of distances [1];

• We have used a fast nearest neighbour search algo-
rithm to analyse in the new space the average number



of distance computations and search time;

• Using a labelled dataset we have analysed the error rate
in a classification task.

To perform these experiments, three datasets were used:

1. A Spanish dictionary with 86062 words (from
http://sisap.org);

2. A set of 20,660 DNA sequences of genes of Listeria
monocytogenes (fromhttp://sisap.org);

3. The contour strings of handwritten digits from the
NIST SPECIAL DATABASE 3 (from http://www.
nist.gov/srd/nistsd19.htm).

4.1 Using a heuristic to compute the con-
textual distance

Experimentally, the complexity of Algorithm 1 is a prob-
lem, but it can be shown that the minimum value is obtained
very often fork = dE(x, y). This allows to consider a
heuristic calleddC,h which is inO

(

|x| · |y|
)

: Instead of
computingni[i][j][k] for every value ofk, only compute it
for minimal values ofk for whichni[i][j][k] 6= −∞.

In experiments over the used benchmarks,
dC,h(x, y) = dC(x, y) in 90% of the cases, with
differences ranging from 0.03 for the dictionary to 0.008
for the contour strings.

An experiment comparing the histograms of distances
between both the contextual distancedC and the heuristic
dC,h was performed. Figure 1 shows that both distances
have a very similar behaviour (the intrinsic dimensionality
in both cases is similar).

For these reasons, the experiments described in the se-
quel were run withdC,h.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0  0.5  1  1.5  2

Histograms of dC and dC,h

dC,h
dC

Figure 1. Histograms of distances for the
Spanish dictionary using 8000 samples.

4.2 Analysis of the intrinsic dimensional-
ity

Several authors have used histograms of distances to
characterise the difficulty of searching in an arbitrary met-
ric space. A quantitative cheap and simple measure of this
difficulty was introduced by Chávezet al [1]. The intrinsic
dimensionalityof a distance is defined asρ = µ

2σ2 , where
µ andσ2 are the mean and variance of its histograms of
distances.

To obtain the intrinsic dimensionality for the datasets,
around 1000 strings were used in the case of handwritten
digits and genes, and 8000 for the Spanish dictionary.

In Figure 2 are shown the histograms of distances for the
genesdataset with the four normalised distances (top), and
the histogram of distances for the edit distance (bottom).
The same experiments have been performed with the Span-
ish dictionary dataset and the handwritten digits dataset (for
lack of space, histograms for the Spanish dictionary and
handwritten digits dataset are not shown).

 0

 50000

 100000

 150000

 200000

 0  0.5  1  1.5  2  2.5  3

Histograms of normalised distances

dYB
dC,h
dMV

dmax

 0

 10000

 20000

 30000

 40000

 50000

 0  500  1000  1500  2000  2500

Histogram of the Levenshtein distance

dE

Figure 2. Histograms of distances for genes.

In the three datasets, the histogram for the other nor-
malised edit distances appear to be more concentrated than
the contextual and Levenshtein distances. Moreover, this
result is consistent with the computation of the intrinsic di-



mension, which is shown in Table 1.

Table 1. Intrinsic dimensionality
Datasets

Distances Spanish D. hand. digits genes
dY B 40.57 18.81 8.43
dC,h 18.61 7.95 1.88
dMV 33.98 19.36 11.25
dmax 30.25 19.48 14.13
dE 8.75 4.91 0.99

We believe that the contextual edit distance reflects bet-
ter the fact that by computing the cost of each edit oper-
ation in the moment the operation takes place, strings of
different length are going to be further apart (different) than
with more global methods. This is usually considered to
be favourable to the distance which thereby discriminates
more.

4.3 Experiments with fast nearest neigh-
bour search algorithms

When the intrinsic dimensionality of the space increases,
the performance of fast nearest search algorithms decreases
dramatically. Many fast nearest neighbour methods are
based on the use of the triangle inequality property. When
the histograms of distances are concentrated, the distance
between two random distances are closer to zero and
the probability of discarding an element during search is
lower [1].

To analyse how the intrinsic dimensionality is related
with the difficulty of searching in a metric space, in the fol-
lowing experiments we used the nearest neighbour search
algorithm LAESA [5]. This algorithm is based on the use
of the triangle inequality to speed up the search of the near-
est neighbour. The main characteristics of the algorithm
are that it only requires linear preprocessing time and mem-
ory to find the nearest neighbour, with an average constant
number of distance computations. In preprocessing time,
the distance between the dataset and a selected subset of el-
ements (pivots) is stored to use during the search. In the
literature there exist other methods that also use the metric
properties of the distances to accelerate the search, and we
argue that our results will apply in similar cases.

To carry out the experiments of this section, test data
for the Spanish dictionary have been generated using the
programgenqueries (can be found in the Metric Spaces
Library from the SISAP Web site) with a perturbation of two
operations over the training dataset.

All the experiments were repeated with ten different pro-
totype sets (with 1000 training samples) and 1000 different
samples. Therefore, results were obtained as an average
over 10000 experiments. Deviations are shown in the fig-
ures. Results are shown in Figures 3 and 4. In these exper-
iments, only the average numbers of distance computations
and of the search times have been evaluated (all the exper-
iments have been performed with Intel Core 2 Duo proces-
sor, 2.4GHz with 1 GB RAM). It is interesting to see that
the average number of distance computations by the Lev-
enshtein and the contextual distance are similar with two
very different datasets (handwritten digits and Spanish dic-
tionary). The computation time of the contextual distance is
around twice the computation time of the Levenshtein dis-
tance, but this is compensated by a largely inferior number
of times the distance has effectively to be computed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300

di
st

an
ce

 c
om

pu
ta

tio
ns

number of pivots

Spanish dictionary

dYB
dC,h
dMV

dmax
dE

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  50  100  150  200  250  300

tim
e 

(in
 s

ec
on

ds
)

number of pivots

Spanish dictionary

dYB
dC,h
dmax
dMV

dE

Figure 3. Average number of distance com-
putations and search times using different
numbers of pivots in the fast algorithm for the
Spanish dictionary.



 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250  300

di
st

an
ce

 c
om

pu
ta

tio
ns

number of pivots

Handwritten digits

dYB
dC,h
dMV

dmax
dE

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200  250  300

tim
e 

(in
 s

ec
on

ds
)

number of pivots

Handwritten digits

dYB
dC,h
dMV

dmax
dE

Figure 4. Average number of distance com-
putations and search times using different
numbers of pivots in the fast algorithm for the
handwritten digits.

4.4 Application to a classification task

If the objects belonging to the training data are la-
belled, we can use nearest neighbour search for classifica-
tion: When a new unlabelled test sample is used as a query,
this object is classified with the same label as its nearest
neighbour in the training set. In the case where the true la-
bel of the sample and the predicted label don’t match, this
is counted as a mistake.

As the handwritten digits dataset is labelled, we have
used this data. There has been no preprocessing of the dig-
its: Orientation and sizes are therefore widely different from
scribe to scribe, as can be seen in Figure 5.

For this experiment, around 1000 digits (100 by class)
have been used as training, and a further 1000 digits (from
different writers) have been used as test. All the experi-
ments were repeated with ten different prototype sets and
1000 different samples. Therefore, results are given as an
average over 10000 experiments.

The results of the classification task are shown in
Table 2. As expected, all the normalisations (metric or

Figure 5. Different ‘8’ and ‘0’ from the NIST

database

not) obtain higher success rates than when normalisation
is not applied. It should be noted that the normalisation
with best results isdmax, but one should remember that,
as shown in Section 2.2, it is not a metric. Additional
experiments show that the same error rate is obtained when
the exact contextual distance algorithm is used instead of
the heuristic.

Table 2. Error rate using different distances
in a handwritten digits classification task.

handwritten digits
Distances LAESA Exhaustive search

dY B 5.19 5.22
dMV 5.04 5.04
dC 5.30 5.30
dC,h 5.30 5.30
dmax 4.85 4.86
dE 6.19 6.26

5 Conclusions and further works

To summarise, we have proposed a new extension of the
edit distance with the following properties:

• the contextual edit distance is able to take into account
the length of the strings;

• the contextual edit distance can be computed in cubic
time;

• the contextual edit distance is a metric.

The intrinsic dimension associated with this contextual
distance is low. On the other hand classification rates are
good and the nature of the distance allow to gain in tech-
niques where nearest neighbours are searched.

In future works, an adaptation of the technique to the
generalised edit distance should be considered. The naive



idea of using these proposals directly fails: It is easy to
build an example where the best path is reached by inserting
some symbol cheaply in order to have a long string in which
the necessary (expensive) substitutions take place; Then the
dummy symbols are erased.

An even more important open question concerns the cu-
bic complexity of Algorithm 1; This is clearly too high, and
further analysis is needed in order to better it.

6 Acknowledgements

The authors thank the Spanish CICyT for partial sup-
port of this work through projects DPI2006-15542-C04-01,
the IST Programme of the European Community, under
the PASCAL Network of Excellence, IST–2002-506778,
the program CONSOLIDER INGENIO 2010 (CSD2007-
00018), and the ANR (for program BLAN07-1_184534).

References

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Mar-
roquin. Searching in metric spaces.ACM Computing
Surveys, 33(3):273–321, 2001.

[2] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, 1997.

[3] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals.Doklady Akademii
Nauk SSSR, 163(4):845–848, 1965.

[4] A. Marzal and E. Vidal. Computation of normalized
edit distance and applications.IEEE Trans. Pattern
Anal. Mach. Intell., 15(9):926–932, 1993.

[5] L. Micó, J. Oncina, and E. Vidal. A new version of
the nearest-neighbour approximating and eliminating
search algorithm (aesa) with linear preprocessing time
and memory requirements.Pattern Recognition Letters,
15:9–17, 1994.

[6] J. R. Rico-Juan and L. Micó. Comparison of AESA and
LAESA search algorithms using string and tree-edit-
distances.Pattern Recognition Letters, 24(9-10):1417–
1426, 2003.

[7] R. Wagner and M. Fisher. The string-to-string correc-
tion problem.Journal of the ACM, 21:168–178, 1974.

[8] L. Yujian and L. Bo. A normalized Levenshtein dis-
tance metric. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(6):1091–1095, 2007.


