A Contextual Normalised Edit Distance

Colin de la Higuera Luisa Mico
Laboratoire Hubert Curien Dpto. Lenguajes y Sistemas Informaticos
Université de Saint-Etienne Universidad de Alicante
Colin.Delahiguera@univ-st-etienne.fr mico@dlsi.ua.es
Abstract e It is a metric, and respects the triangle inequality. It
can therefore be used for algorithms that rely on this
In order to better fit a variety of pattern recognition prob- inequality in order not to explore the entire space;

lems over strings, using a normalised version of the edit
or Levenshtein distance is considered to be an appropri-
ate approach. The goal of normalisation is to take into ac-
count the lengths of the strings. We define a new normalisa-
tion, contextual, where each edit operationis divided B/ th There exists a heuristic whose computation over-cost
length of the string on which the edit operation takes place. is small:

We prove that this contextual edit distance is a metric and

that it can be computed through an extension of the usual e Preliminary experiments show that the distance dis-
dynamic programming algorithm for the edit distance. We criminates well (and therefore allows an acceleration
also provide a fast heuristic which nearly always returns of fast nearest neighbour approaches), is pertinent, and
the same result and we show over several experiments that ~ obtains good classification rates.

the distance obtains good results in classification tasks an
has a low intrinsic dimension in comparison with other nor-
malised edit distances.

e It corresponds to the nature of normalisations proposed
by different authors, as it is closely related with the
lengths of the strings [4];

After recalling definitions concerning the mathematics
and algorithmics of the edit distance (Section 2), we de-
scribe in Section 3 this neaontextualedit distance, prove
its validity and provide two algorithms: one that computes
) exactly the contextual distance and a fast heuristic which
1 Introduction reaches the same result in most cases. Experiments are re-

ported in Section 4:

In pattern recognition, computational biology and other ~ We have compared this measure of distance with the
fields where the data is represented by strings (but alss treestandard edit distance and other normalisations propgsed b
and even graphs), having a topology over the intended strucMarzal and Vidal [4] or by Yujian and Bo [8]. The compar-
tures is clearly a reasonable approach. Most useful is theison has been done over three benchmarks and taking into
edit or Levenshtein distance that counts the minimum num-account a variety of parameters: classification rate, speed
ber of modifications needed to get from the first string to capacity of accelerating neighbour search, etc. Finally, i
the second one [3, 7]. This distance has been thoroughlySection 5, we conclude.
studied from both a theoretical and a practical point of view
[2]. _ _ 2 Definitions

But a number of authors argues that in practice, having
to rewrite twice on a string of length 2 is not the same as An alphabets is a finite nonempty set of symbols. A

having to rewrite twice on a string of length 200. For such string z = z1 - -, is any finite sequence of symbols. We
reasons, several ideas have been proposed to try to relate

. . . . -~ Write X* for the set of all the strings ovet and \ for the
E;nngg [lg]verse way) the lengths of the strings with the dis- empty string.z| denotes the length af.

We propose in this work a new way of normalising the pefinition 1 A distancel : X2 — R is ametricover X
edit distance, by dividing each edit operationally by the if the following properties hold:
length of the string on which itis applied. We argue that this
contextual edit distanceeaches the following compromise: dlz,y) =0 <= x=y

dz,y) = d(y,z) ¢ substituting an over-lined symbeby a different sym-
dz,y) +dy,z) > dz,z2) bol, this time underlinedy: vav — ubv.

The advantages of the distance function being a metricPefinition 3 Letus denote by, (z, y) theinternal edit dis-
are that alternative algorithms and data structures can béancgbetweeim andy, e_quz_il to the d'Stam?e u_sed by a p{;\th
used for nearest neighbour algorithms [1]. The triangle in- Sta”'”g fromz and ending iry and only using internal edit
equality can be used to avoid certain computations, result-CPerations.

ing in more cost-effective algorithms [6]. It can easily be checked thati; (z, y) = dL (z,).

2.1 The edit distance Example 2 dg(abaa,baab) < 3 since we have path
abaa — bbaa — baa — baab which is internal since it

Definition 2 Given two stringse andy in X*, x rewrites can be marked in the following way:

intoy in one step{ — y) if one of the following correction abaa — bbaa — baa % baa * baa — baab.

rules holds:x = uav — y = wwv (single symbol deletion); , .

& = uww — y = uav (single symbol insertion); = uav — if m=(z=wy —wi —--- —w =y)isan edit path,

y = ubv (single symbol substitution). We have;v € we will denote bydg (7) the edit weight of the path and by
S abey. Ip () the length of the marked path corresponding to it.

Example 3 Following with Example 2,lg(abaa —

We will consider the reflexive and transitive closure of
bbaa — baa — baab)=5.

this derivation, and: £ y if = rewrites intoy by k& op-
erations of single symbol deletion, single symbol insertio
and single symbol substitution. When needed we will write
x —; y (respectivelyr —, y andz — y) to indicate that:
rewrites intoy trough an insertion (respectively substitution
and deletion).

Given 2 stringse andy, the Levenshtein distance be-
tweenx andy denoted bylg(z,y) is the smallesk such
thatz £ 4.

2.2 How can we normalise?

The first ideas that have been proposed and tested by dif-
ferent authors in order to get a distance that might depend
on the length of the involved strings have been to divide this
distance by some function of the lengths of the strings. We
show in this section that the simple ideas used sometimes
do not allow the obtained distance to be a metric. Usually

Example 1 dg(abaa, aab) = 2. abaa rewrites intoaabvia ~ the problem is with the triangle inequality.

(for instance) a deletion of thé*and a substitution of the First, if normalising by dividing by the sum of lengths of
last ‘a’ by a ‘b'. the stringsdsum (z,y) = % you end up with some-

thing that is not a metric: Take = ab, y = aba and

The well known algorithm [7] for the computation ofthe = = ba and dgum (ab, aba) + dsum(aba,ba) = 1 + £

edit distance doesn’t consider all possible rewriting path whereasdg,, (ab, ba) = %_ Therefore,dsym (ab, ba) >
from one string to another (which is infinite), but rather d.,,, (ab, aba) + dsum (aba,ba) and the triangle inequality

only internal paths. To put it simply, each time an insertion no longer holds.

is done, the occurrence of the symbol must bey,irrach One can also prove that if one takég,..(v,y) =
time a deletion takes place, this is of a symbol that was _de(z.%) §p g (z,y) = _de(@Y) the distance is still
max(|z[,|y]) AT min([z[,[y[)

already inz, and each time some symhois substituted by not a metric. In the first case the triangle inequality doesn’
a symbol, then thez must be fromr and theb from y. To hold forz = ab, y = aba andz = ba as ford,,,, whereas

visualise and study the use of these internal operations, lefor ¢, a counter example can be built with= b, y = ba
us mark each symbol appearing in a string by over-lining it gnd = aa.
(@) or by underlining it). The well-known normalised edit distance introduced in

1993 by Marzal and Vidal [4] as
Now we consider only internal edit operations of the fol-

lowing sort: dary (2,y) = min = dg(r)
T lg(m)
uses the path with the lowest ratio between the number of
edit operations and the length of the path. The authors have
e substituting an over-lined symbalby the same sym- shown that this distance is not a metric in the generalised
bol, underlined ¢): vav — wav; This operation has case, but it is still unclear if it is one in the case where the
cost 0; edit costs are 1.

e deleting an over-lined symboliav — uv;
¢ inserting an underlined symbaly — uawv;

Finally, a normalising process was recently introduced
by Yujian and Bo [8]:

|z + |yl + dp(z,y)
The authors prove thaly 5 is a metric. The computation

follows simply from the computation of the edit distance.
Yet, if we rewritedy g as:

dYB (IL’, y)

2(J| + ly])
|z + [yl + de(z,y)

the influence of the edit distance in the result seems insuf-
ficient, specially for very different strings. We give some
experimental results in Section 4 which confirm this.

On the other hand, it should be noticed that Yujian and
Bo’s method (and Marzal and Vidal's) extends to the case
where the distance is generalisé@, where the edit op-
erations have different weights independently of the con-
text [8]. The complexity of their algorithm is quadratic, so
if an alternative distance is to do better order it may have

dyp(z,y) =2 —

Theorem 1 d¢ is a metric.
Proof.

1. de(z,y) is well defined. Indeed it can be proved that
any path of length more thajx| + |y| has weight
more than Zimﬂy'% + Zijg}i‘f‘% since the

cheapest way is always by using as long intermediate

strings as possible. Therefode (x,y) is chosen as
the minimum from a finite set and therefore exists.

The following are trivial: Vz, do(z, x) 0.

de(z,y) 0 means that no operation has taken

place; hence: y. do(z,y) = de(y, x).

The triangle inequality also hold§: z,y,z € X*

de(z,y) +dc(y, 2) > de(z, z) holds since: (1) If the

‘best’ path fromz to z passes through, then equality

is reached, (2) if not, then (if the triangle inequality

didn’t hold) we would have a rewriting path—*—y =—

z whose weight would be less thdg (z, z), which is

absurd.]

3.

to compensate a possible higher computational cost of the

individual distances with the fact that less of these need to
be computed.

3 The contextual edit distance

The idea is to consider that the weightezchedit op-
eration iscontext dependentf the operation is done in a
long string, it will cost less than if it is done in a short
string. Ifuv # A, andu — v (elementary operation),
do(u,v) = ——br.

’ m@w(\ul,lv_P L S

More precisely, if the operation is a substitution or a

deletion the normalised weight %' If it is an insertion

L 1
it will be SR

Then we can define:
Definition 4 The normalised contextual edit distance for
path x wo y is
S do(wi1,w;). If wis the path we will writelc (7).
Thenormalised contextual edit distance betweeandy is
the minimum valud¢ (7) over all possible paths from x
toy.

- w; — — Wk

Example 4 What isd¢(ababa, baab)? Since we have path
ababa —4 abaa —4 baa —; baab, the weight of this path
is + + 2 = L, sodc(ababa,baab) < . An alterna-
tive path isababa —; ababab —4 babab —4 baab and it
follows thatdc (ababa, baab) is <.

3.1 Properties of do
Most importantly, we wantlc to respect the conditions

from Definition 1: This will allow its use in fast nearest
neighbour algorithms.

We next prove that insertions should be made first.

Lemmal LetIli(x,y) be the set of all paths from = to
y such thatdg (w) = k. Then the shortest path i (u, v)
for dc is a patht wherer = (z = wy 25, wy,, 2=,
Wnign, —2 5 Wnidna4ng = y) withn; +n,+ng = kand
n; maximal.

Proof. It is easy to see that the distance is minimised for
a given path length by using as many long strings as possi-
ble. This is obtained by first making as many insertions as
possible and making the substitutions on the longest string
and finishing with the deletiona

We now prove that the contextual edit distance is equal to
the internal contextual edit distanée, that we only have to
consider those paths that correspond to internal opegation

Proposition 1 dc(z,y) = d&(z,y).

Proof. Let us suppose for contradiction that this
is not true. Letw be a path fromz to y such
that do(n) = de(z,y) < db(z,y). Let us sup-
pose thatw is of minimal length between all those
paths such thatlc () de(z,y). We also make
use of Lemma 1: The pathr is therefore of type
(x = Wo %z‘ Wr,; 55 Wn,tn, ﬂ’gl Wni4+ns+ng = y)

We now consider the first edit operationimnwhich is not
internal. There are three cases:

e The first non internal edit operation is a deletion. But
since Lemma 1 applies, it cannot be the deletion of
a symbol that will be reinserted later. Or it is a sym-
bol that (when marked) is neither over- nor underlined,

but that means that another non internal operation oc-~Algorithm 1: Computing the contextual distance

curred earlier.

The operation is a substitution. Since it is the first non
internal operation, it is a substitution of some symbol
@ into a symbob which will be substitutedy — c¢) or
erased later{—). Then we can build a cheaper path
where the substitutiom — b does not appear at all and
where the substitutioh — c is replaced byz — ¢, or
the deletiorb — X is replaced byr — .

The first non internal operation is the insertion of a
symbol that is not underlined. Then this symbol has to
be deleted later (or substituted). The path therefore is
T =, Uil —4 U1GU £ piave —g v109 T Y.

By eliminating both the insertion of and the deletion

of thea, the cost of the new path i (r) — ££2 4 £
wherem + 1 is the length of the Iongest strlng used
in pathw whereask is the number of substitutions in
pathz (which is clearly at mostn). The new path is
therefore cheaper than the original one. If the inserted
symbola is in fact substituted by some other symbol
b (or b) then the initial insertion can be replaced by
A—=b(orax —b). |

Data: Two stringsz = x1 - - -
Result B = d¢(z,y)

Tig andy = y1 - ypy)

fori: 0<i<|z|andj: 0<j <|y|do

| fork: 0<k<|z|+]|y|do n;[{][j][k] — —oc0
end

fori: 1 <4 <|z| don;[][0][i] < ;

for .0 < j < Iyl do i]
fori: 1<i<|zlandj: 1<}
if Ty =Yj then
‘ for k: 0 <k <|z|+ |yl do

n;ld] [j][k] < nili — 1][j — 1][K]
else

fork:1<k<|z|+ |yl do
nli][j][k] — nali = 1[5 = 1][k — 1]

fork:1<k<|z|+|yldo

ngli][j][k] — max (ni[i — 1][5][k — 1,
nalillj — 1k — 1] + 1, ni[][][+])

7]

—
§||do

end

B «— +o0;

for k: 0 <k <|z|+ |yl do
if n;[|2|][|y[][k] = 0then
Ni — ng[|z|][ly[][%];

Ng — || = [y| + Ni;

Therefore the contextual edit distance can be computed

by

1. computing, for each valuk, the maximum number
n;(k) of insertions on a path of lengthleading from
xtoy, and

2. finding the minimum value

i=|z|+n; (k) 1 1 i=|yl+nqg(k) 1
) R — -
D O i s D DI
i=lel1 i<l 41
with

o na(k) = 2] — [y] + ni(k), and
e ny(k) =k —n;(k) —nq(k).

3.2 The algorithm

Ns <k — (Ni + Na);

D —0;

for i : |x|+1§i§|x|+Nid0
D<—D+—

DHD+|x|+N’

fori: |y|+1<i<]|y|+ Nqgdo
D«—D+1

if D < BthenB «— D

end

4 Experiments

In order to evaluate the behaviour of the new contex-
tual edit distance we provide experimental results on the

performance of the new normalised distande)(by com-

paring it with other distance functions. We compare our

The idea is to use the usual edit distance algorithm. Wedistance with the basic edit distancéz], with the nor-

need, for each pair of prefixesi(- - - z;, y1 - - - y;), to com-
pute the maximum number of insertions (] [j][k]) that we
can make in a path of length, wherek has to take each
possible value of the edit length. Valuex for n;[i][7][k]
means that there is no internal pathfrom z; ---z; to
y1 -+ y; wWith dg(m) = k. We then deduce,. Algorithm 1

malisation proposed by Yujian and Bdy(z) [8], and also

with the non-metric distance mentioned in Section 2.2,

Aoz (T,y) = mi’f(z’y) Finally, comparison withiy,

the distance mtrocluced by Marzal and Vidal [4] is also pro-
posed.

is therefore an extension of the usual algorithm to compute

e The intrinsic dimension of the different metric spaces

the edit distance. Complexity is @(|z| - |y| - (|z| + |y|))-

An alternative version making use of quadratic space can

easily be deduced by using standard techniques.

has been analysed through histograms of distances [1];

e We have used a fast nearest neighbour search algo-

rithm to analyse in the new space the average number

of distance computations and search time;

e Using a labelled dataset we have analysed the error rate

in a classification task.

4.2 Analysis of the intrinsic dimensional-
ity

Several authors have used histograms of distances to

To perform these experiments, three datasets were used¢haracterise the difficulty of searching in an arbitrary met

1. A Spanish dictionary with 86062 words (from
http://sisap.org);

A set of 20,660 DNA sequences of genes of Listeria
monocytogenes (fromt t p: / / si sap. or g);

The contour strings of handwritten digits from the
NIST SPECIAL DATABASE 3 (from ht t p: / / wwww.

ni st.gov/srd/ ni st sd19. ht m.

2.

4.1 Using a heuristic to compute the con-
textual distance

Experimentally, the complexity of Algorithm 1 is a prob-
lem, but it can be shown that the minimum value is obtained
very often fork = dg(x,y). This allows to consider a
heuristic calleddc;, which is in O(|z| - |y|): Instead of
computingn;[é][j][k] for every value oft, only compute it
for minimal values of for which n;[é][j][k] # —oo.

In experiments over the wused benchmarks,
den(x,y) do(z,y) in 90% of the cases, with
differences ranging from 0.03 for the dictionary to 0.008
for the contour strings.

An experiment comparing the histograms of distances
between both the contextual distante and the heuristic
dc.n, was performed. Figure 1 shows that both distances
have a very similar behaviour (the intrinsic dimensioryalit
in both cases is similar).

For these reasons, the experiments described in the se-

quel were run withic .

Histograms of d and d¢ 1,

6e+06

5e+06

4e+06

3e+06

2e+06

le+06

Figure 1. Histograms of distances for the

Spanish dictionary using 8000 samples.

ric space. A quantitative cheap and simple measure of this
difficulty was introduced by Chaveat al[1]. Theintrinsic
dimensionalityof a distance is defined as= 4=, where

1 ando? are the mean and variance of its histograms of
distances.

To obtain the intrinsic dimensionality for the datasets,
around 1000 strings were used in the case of handwritten
digits and genes, and 8000 for the Spanish dictionary.

In Figure 2 are shown the histograms of distances for the
genedataset with the four normalised distances (top), and
the histogram of distances for the edit distance (bottom).
The same experiments have been performed with the Span-
ish dictionary dataset and the handwritten digits datdset (
lack of space, histograms for the Spanish dictionary and
handwritten digits dataset are not shown).

Histograms of normalised distances

200000 T T T T T
dyg
dch
150000 - Ay -
i dmax B
100000 —
50000 —
0 4 |
0 2 25 3
Histogram of the Levenshtein distance
50000 T T T T
de
40000 [—
30000 —
20000 —
10000 —
0 1 1 1
0 500 1000 1500 2000 2500

Figure 2. Histograms of distances for genes.

In the three datasets, the histogram for the other nor-
malised edit distances appear to be more concentrated than
the contextual and Levenshtein distances. Moreover, this
result is consistent with the computation of the intringic d

mension, which is shown in Table 1.

Table 1. Intrinsic dimensionality

All the experiments were repeated with ten different pro-
totype sets (with 1000 training samples) and 1000 different
samples. Therefore, results were obtained as an average
over 10000 experiments. Deviations are shown in the fig-
ures. Results are shown in Figures 3 and 4. In these exper-
iments, only the average numbers of distance computations
and of the search times have been evaluated (all the exper-
iments have been performed with Intel Core 2 Duo proces-
sor, 2.4GHz with 1 GB RAM). It is interesting to see that
the average number of distance computations by the Lev-
enshtein and the contextual distance are similar with two

Datasets
Distances| Spanish D.| hand. digits| genes
dyp 40.57 18.81 8.43
dep 18.61 7.95 1.88
dyry 33.98 19.36 11.25
dmaz 30.25 19.48 14.13
dg 8.75 491 0.99

very different datasets (handwritten digits and Spanish di
tionary). The computation time of the contextual distarsce i

around twice the computation time of the Levenshtein dis-

_ o tance, but this is compensated by a largely inferior number
We believe that the contextual edit distance reflects bet-of times the distance has effectively to be computed.

ter the fact that by computing the cost of each edit oper-
ation in the moment the operation takes place, strings of
different length are going to be further apart (differehgn
with more global methods. This is usually considered to
be favourable to the distance which thereby discriminates
more.

4.3 Experiments with fast nearest neigh-
bour search algorithms

When the intrinsic dimensionality of the space increases,
the performance of fast nearest search algorithms decrease
dramatically. Many fast nearest neighbour methods are
based on the use of the triangle inequality property. When
the histograms of distances are concentrated, the distance
between two random distances are closer to zero and
the probability of discarding an element during search is
lower [1].

To analyse how the intrinsic dimensionality is related
with the difficulty of searching in a metric space, in the fol-
lowing experiments we used the nearest neighbour search
algorithm LAESA [5]. This algorithm is based on the use
of the triangle inequality to speed up the search of the near-
est neighbour. The main characteristics of the algorithm
are that it only requires linear preprocessing time and mem-
ory to find the nearest neighbour, with an average constant
number of distance computations. In preprocessing time,
the distance between the dataset and a selected subset of el-
ements (pivots) is stored to use during the search. In the
literature there exist other methods that also use the enetri
properties of the distances to accelerate the search, and we
argue that our results will apply in similar cases.

To carry out the experiments of this section, test data
for the Spanish dictionary have been generated using the
programgenquer i es (can be found in the Metric Spaces
Library from the SsAp Web site) with a perturbation of two
operations over the training dataset.

Spanish dictionary
800 T T T

T T
2 700 gYB —— |
o ch ——
= 600 ddmv bt o
= - e R
é. 500 ff\‘ m(?é e
S 400 'y o
(&)
g 300
g 200
2 100
0 1 1 1 1 1
0 50 100 150 200 250 300
number of pivots
Spanish dictionary
0.012 T T T T T
—_ 0.01
(2]
2
§ 0.008
®
» 0.006
£
o 0.004
E *
= 0.002 -

0 50 100 150 200 250 300
number of pivots

Figure 3. Average number of distance com-
putations and search times using different
numbers of pivots in the fast algorithm for the

Spanish dictionary.

Handwritten digits
1400 T T T T T
- dyg —— 8 8 o 0
& 1200 | dep —+—
'g ddMV i
é 1000 |- e e T
8 800 -
3 e Figure 5. Different ‘8" and ‘0’ from the NisT
B R e o T Tt et etk Jei
é 600 ok database
T 400
0 50 100 150 200 250 300 o o
number of pivots hot) obtaln_ higher success rates than when normgl|sgt|on
is not applied. It should be noted that the normalisation
Handwritten digits with best results isl,,.., but one should remember that,
1 T T T S T as shown in Section 2.2, it is not a metric. Additional
0.9 - dgﬁ 7 experiments show that the same error rate is obtained when
o) 8'3 EN Ay =+ the exact contextual distance algorithm is used instead of
S o6l By dm&*] the heuristic.
2 o5l 0 FEEEFrgiaerord
S i
[¢3] -
= i
S — Table 2. Error rate using different distances
in a handwritten digits classification task.
100 150 200 250 300
number of pivots handwritten digits
Figure 4. Average number of distance com- Distances| LAESA | Exhaustive search
putations and search times using different dy s 5.19 5.22
numbers of pivots in the fast algorithm for the dyv 5.04 5.04
handwritten digits. do 5.30 5.30
de,n 5.30 5.30
dmaz 4.85 4.86
dg 6.19 6.26

4.4 Application to a classification task

If the objects belonging to the training data are la-
belled, we can use nearest neighbour search for classifica-5
tion: When a new unlabelled test sample is used as a query,
this object is classified with the same label as its nearest
neighbour in the training set. In the case where the true la-
bel of the sample and the predicted label don't match, this
is counted as a mistake.

As the handwritten digits dataset is labelled, we have
used this data. There has been no preprocessing of the dig-
its: Orientation and sizes are therefore widely differeotf
scribe to scribe, as can be seen in Figure 5.

For this experiment, around 1000 digits (100 by class)
have been used as training, and a further 1000 digits (from
different writers) have been used as test. All the experi- The intrinsic dimension associated with this contextual
ments were repeated with ten different prototype sets anddistance is low. On the other hand classification rates are
1000 different samples. Therefore, results are given as argood and the nature of the distance allow to gain in tech-
average over 10000 experiments. nigues where nearest neighbours are searched.

The results of the classification task are shown in In future works, an adaptation of the technique to the
Table 2. As expected, all the normalisations (metric or generalised edit distance should be considered. The naive

Conclusions and further works
To summarise, we have proposed a new extension of the
edit distance with the following properties:

o the contextual edit distance is able to take into account
the length of the strings;

¢ the contextual edit distance can be computed in cubic
time;

o the contextual edit distance is a metric.

idea of using these proposals directly fails: It is easy to
build an example where the best path is reached by inserting
some symbol cheaply in order to have a long string in which
the necessary (expensive) substitutions take place; Heen't
dummy symbols are erased.

An even more important open question concerns the cu-
bic complexity of Algorithm 1; This is clearly too high, and
further analysis is needed in order to better it.

6 Acknowledgements

The authors thank the Spanish CICyT for partial sup-
port of this work through projects DP12006-15542-C04-01,
the IST Programme of the European Community, under
the PASCAL Network of Excellence, 1ST-2002-506778,
the program CONSOLIDER INGENIO 2010 (CSD2007-
00018), and the ANR (for program BLANOQO7-1_184534).

References

[1] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Mar-
roquin. Searching in metric spaceBCM Computing
Surveys33(3):273-321, 2001.

[2] D. Gusfield. Algorithms on Strings, Trees, and Se-
guencesCambridge University Press, 1997.

[3] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversaBBoklady Akademii
Nauk SSSR.63(4):845—-848, 1965.

[4] A. Marzal and E. Vidal. Computation of normalized
edit distance and applicationslEEE Trans. Pattern
Anal. Mach. Intell, 15(9):926-932, 1993.

[5] L. Micd, J. Oncina, and E. Vidal. A new version of
the nearest-neighbour approximating and eliminating
search algorithm (aesa) with linear preprocessing time
and memory requirementBattern Recognition Letters
15:9-17,1994.

[6] J. R. Rico-Juan and L. Mic6. Comparison of AESA and
LAESA search algorithms using string and tree-edit-
distancesPattern Recognition Letter24(9-10):1417—
1426, 2003.

[7] R. Wagner and M. Fisher. The string-to-string correc-
tion problem.Journal of the ACM21:168-178, 1974.

[8] L. Yujian and L. Bo. A normalized Levenshtein dis-
tance metric. IEEE Transactions on Pattern Analysis
and Machine Intelligence29(6):1091-1095, 2007.

