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Abstract— Autonomous index management in native XML
DBMSs has to address XML’s flexibility and storage map-
ping features, which provide a rich set of indexing options.
Change of workload characteristics, indexes selected by the query
optimizer’s “magic”, subtle differences in the expressiveness
of indexes, and tailor-made index properties ask—in addition
to (long-range) manual index selection—for rapid autonomic
reactions and self-tuning options by the DBMS. Hence, when
managing an existing set of indexes (i.e., a configuration), its
cost trade-off has to be steadily controlled by observing query
runtimes, index creation and maintenance, and space constraints.

I. INTRODUCTION

Autonomous database management is still a hot topic in
DBMS research [1], [2]. Fundamental progress was made
in the area of physical design tuning, e.g., [3], [4], and is
continued in the XML field, too [5], [6]. However, self-
tuning features for indexing, the most effective optimization
area, have not fully proven their merit, notably, in XML
databases. So far, almost all approaches are limited to a subset
of XML index types—primarily simple path indexes [7]–[10]
and do hardly exploit the flexible mechanisms provided by
native XML storage engines such as [6]. But, utilizing this
flexibility leads to enhanced indexing options, aggravating the
yet-complex index selection problem even more.

In addition to clustering and structure-specific compression,
tailor-made XML storage mappings [11] provide a variety
of options for XML-specific indexing. Manually managing
transactional XML databases, the admin is confronted with
alternatives, allowing for fine-grained specification, scope
overlapping, query-dependent clustering, and reconfiguration
needs due to workload shifts. On the other hand, proper index
selection is heavily dependent on the query optimizer, its
statistics and its cost estimation. To support the admin’s index
selection beyond the simple but coarse ones, e.g., content
and element indexes, self-tuning of XML indexes has to 1)
consider all types of indexes, 2) understand the cost-based
selection of an optimizer to provide good-enough statistics,
and 3) manage a cost-based workload-dependent index con-
figuration meeting a given size limit.

II. XML INDEXING

Current DBMSs usually support two major index types:
1) pure text-oriented indexes, i.e., content indexes, and 2)
structure-oriented indexes, i.e., path indexes [9]. A third group
of hybrid indexes combines structural and content predicates.

To exploit indexing capabilities in a native way, we built
our indexing framework on two cornerstones for native XML
storage. First, prefix-based node labeling, e.g., OrdPaths or
DeweyIDs depicted in Figure 1a) for an XML fragment, pro-
vides flexible storage maintenance, query support, and stable
addressing in case of updates [12]. Second, a DataGuide [13]
or Path Synopsis [6] summarizes the document structure (see
Figure 1b)) irrespective of an XSD and enables space-saving
XML mapping [11], thereby virtualizing the structure part, i.e.,
the inner nodes of the document tree. Furthermore, each node
of our path synopsis is equipped with a label used as path
class reference (PCR); when combined with any document
node, a PCR identifies its entire path to the root node. The
interplay of DeweyIDs and PCRs greatly accelerates many
tasks of XML processing and, in particular, storage mapping
and index matching during query processing.

A. XML Index Types

According to our prototype DBMS XTC [6], we distinguish
at least between four index types:

• Element Index The logical structure of an element index
is comparable to a 1-index [9], where each distinct XML
name tag is associated with a list of node labels carrying
this tag. Access is limited by a name tag filter, delivering
node sequences of different path classes, but requiring
false-positive removal.

• Content Index It typically indexes the whole content
of an XML document. Usually, its operations distinguish
between text and attribute nodes and optionally observe
typed values (e.g., integer, double, string, etc.).

• Path Index It can be specified by one or more XPath
expressions. All nodes addressed by these expressions
are indexed independently if they are attribute or element
nodes. It is easy to map an XPath expression to a set of
path classes and to find index matches.

• CAS Index A content and structure index extends the
path index by combining value-based and path-based
indexing to directly assist specific XQuery predicates.
In contrast to path indexes, the CAS index contains text
values which also may serve as keys and may be typed,
too (e.g., integer, string, etc.).

Most of these index types provide various kinds of clustering
(i.e., based on PCRs or DeweyIDs) and allow for efficient
prefix-based key compression.
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Fig. 1. Sample XML document in a) carrying prefix-based node labels (DeweyIDs) and b) related path synopsis

The so-called twig index is yet another kind of index tailor-
made for complex twig queries. However, dealing with update
queries causes clearly more maintenance cost compared to
the afore mentioned types. An index-defining twig, i.e., a
tree-pattern query, may need to be executed decoupled from
the actual query, only to decide whether the index needs
maintenance or not. In contrast, maintenance in case of the
four simpler index types can always be decided using a simple
set matching to detect path-class inclusion.

B. Variety of Index Use

All index types introduced in Section II-A serve certain
XML query specifics. For instance, depending on the avail-
ability of such an index variety, XMark query 01 [15]

let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]
return $b/name/text()

can be processed with increasing sophistication:
• Without secondary index: Query evaluation plan (QEP) in

Figure 2a) indicates that several scans (red boxes) over
the entire document index are necessary to join (green
boxes) the XPath steps. Expensive navigations (blue box)
are needed to retrieve all “@id” attribute values.

• +Content Index: This option may replace the navigation
operator by a content index scan (dark green box) to
reduce document index access (see Figure 2b)).

• +Element index: In Figure 2c), the QEP can replace
three document scans by element index scans (purple
boxes). Note, the resulting node streams may contain
nodes originating from different paths to be filtered out.

• +Path index: The QEP in Figure 2d) illustrates the use
of a path index (brown box) that covers, at least, the path
/site/people/person. Exploiting this path index allows
to remove the left QEP part, avoiding two element index
scans and an access to the document root node.

• +CAS index: Such indexes have higher selectivity com-
pared to generic content indexes. Hence, an additional
CAS index (dark green box in Figure 2e)) can be used to
substitute the content index scan. The CAS index result
needs to be sorted by their labels (document order).

Even this simple query example impressively illustrates the
variability of XML index support. Apparently, it is fairly
difficult for a DB admin to define suitable indexes beyond the
simple element or content index. Moreover, the variety and
flexibility of XML structures and, in turn, query predicates
(e.g., wildcards (*), descendant axis (//)) make it impossible
to specify static index configurations facing ad-hoc queries.

query: search dblp "title"

unique path non-unique path

element only content predicate

q1=//title[text() = "XML"]
q2=//article/title[text() = "XML"]
q3=//title
q4=//article/title

1. path
2. element
3. CAS
4. document

1. element
2. path(s)
3. CAS(s)
4. document
* combination of
element + path + CAS

1. CAS
2. content
3. path
4. element
5. document

1. content
2. CAS(s)
3. path(s)
4. element
5. document
* combination of
content + path + CAS

Fig. 3. Index-type decision tree

C. Index Selection in XML

Besides the flexibility of XML, another major challenge
comes up when space restrictions are to be met and/or in-
sert, update, and delete (IUD) operations are present. Thus,
the well-known index selection problem (from the relational
world) is substantially more complex for XML indexing. The
evaluation of a path expression containing multiple path steps
may exploit different index types in various combinations
(to avoid unwanted document scans). As a typical example,
Figure 3 reveals considerable complexity to only search for a
proper index type—a base task of a query optimizer. Although
the listed queries are fairly similar, a heuristics-based query
optimizer would identify the query properties and usually look
for indexes in differing orders given in the illustration. Because
a full set of indexes can never be maintained, index selection
typically favors those serving different queries. Furthermore,
this simplified decision tree hides the necessity that a cost-
based selection usually accounts for size (height) and cluster
properties of an index. Moreover, a combination of different
indexes and types is possible as well, thus considerably
increasing the search space.

Containment Problem: Digging a little deeper in the search
space of alternatives reveals the containment problem for XML
indexes. Related to the introductory example of Section II-
B, it is difficult to strictly distinguish index uses as long
as they are overlapping, contained in each other, or equal.
For the user or DB admin, containment may not be visible
during index definition. For instance, an element index spec-
ified for “person” nodes may have the identical scope as a
path index defined on “//people/person∨//show/person”.
Therefore, an index configuration may contain redundancy to
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Fig. 2. XMark query 01: Index-driven alternatives in QEPs using XTCcmp [14].

be maintained during updates, too. In contrast, the system may
prefer one of these index alternatives due to cost effectiveness
resulting from a different clustering or compression overhead.
Due to the expressiveness of XPath, it is easy to define indexes
containing a subset or being a superset of an existing one. For
instance, the set of nodes addressed by the path /a/b/c/d are
⊆ compared to the path /a//d. Adding wildcard steps and
different index types amplifies the containment problem.

Generalized Indexes: XML indexing allows for tailor-made
index definitions to favor specific queries, e.g., a full path
containing only child axes. To support as many queries as
reasonable, specialized indexes should be combined to more
general indexes to share physical structures and, at the same
time, improve buffer usage. On the other hand, such a shared
usage would provoke increased contention produced by par-
allel IUD queries, which, in turn, would again advocate the
use of more specific indexes. Apparently, this flexibility for
indexing and storing XML has to be identified and exploited
when autonomous query-driven XML indexing is addressed.

III. TOWARDS AUTONOMOUS INDEXING

Our autonomous index management is based on the self-
tuning principle of MAPE-K [16]—a typical feedback-control-
loop mechanism—, where queries are intercepted or asyn-
chronously forwarded to an index analysis component. During
the analysis, (virtual) index candidates are generated, opti-
mized, and by calling the native query optimizer component,
validated for the specific use.

We extended MAPE-K to enable more fine-grained defi-
nition and monitoring of index candidates leading to a cost-
based index configuration model. Recommendations delivered
for index creation and deletion were turned into low-priority
jobs and enqueued by the database scheduler. As soon as such
(physical) indexes are either created or removed, the query
processor immediately uses the new index configuration.

A. Statistics for Decision Support

Index candidate optimization and cost estimation relies on
statistics covering document tree properties and indexes.

1) Document Statistics: Because only little additional in-
formation is sufficient to estimate index properties needed,
document statistics can be kept in an extended path synopsis
and collected while the document is stored. The nodes of
the path synopsis shown in Figure 4 are extended by a path

b) path synopsis
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Fig. 4. Extended path synopsis carrying essential document statistics

instance counter, the average content length for this path
class, and an update counter for IUD operations. The resulting
path synopsis is still a compact data structure (representing
typically less than 200 path classes [11]); hence, this extension
can be kept in main memory as well (see Table I).

2) Index Statistics: Similar to the document, accurate char-
acteristic values are initially collected during index creation.
Therefore, parameters such as B-tree height, no. of leaf pages,
cardinality, and index size enhance the index definition.

B. Candidate Generation

Decoupled from the actual index selection of the query
optimizer, our index generation solely exploits the internal
(normalized) query graph model (QGM) representation [14].
By traversing the QGM bottom-up, starting from the access
operators (leave nodes of the QGM, typically scans or naviga-
tional operators), axes relationships (e.g., structural joins for
child, or descendant axis), value predicates, data types, and
node types are collected to assemble step-by-step prospective
index candidates. During these steps, candidates with overlap-
ping scopes are retained and collected. The decoupling of this
step allows us to apply global knowledge about the documents,
queries, indexes, usage, and statistics, which are usually not
fully taken into account by a query optimizer.

Cost Model

Autonomous index management dictates several conditions
for index selection. At first, the maximum space consumption
of all secondary indexes is either an absolute value or is
dependent on the actual data size. In the second place, index
creation and maintenance negatively impact query processing
to be compensated by beneficial index use. Therefore, a cost
model has to address creation and maintenance costs as well
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as index size. Hence, our extended path synopsis carrying the
necessary statistics is used to estimate these costs.

For each index candidate generated, an index size (IdxStats)
estimation is calculated as shown in Listing 1:

Listing 1. EstimateSize
1IdxStats estimateSize(IndexDef ic, PathSynopsis ps)
2{
3 // generate path class-based set of synopsis nodes
4 IdxStats stats = new IdxStats(ic);
5 List<PSNode> nodes = match(ic, ps);
6 int size = 0; count = 0, updCnt = 0;
7 for (PSNode node : nodes)
8 {
9 size += node.getInstances() * node.getAvgLength();

10 count += count; updCnt += node.getUpdateCnt();
11 }
12 // estimate index-type-dependent height and #leaves
13 calcIndexStructure(size, stats, count, updCount);
14 return stats;
15}

Because this estimation needs to be done for all virtual
index candidates that are generated for the cost-based query
optimizer, the matching in line 5 exploits a path cache to
speed-up the generation of PSNode lists. Larger updates of
the extended path synopsis, i.e., new paths added, bulky
document updates, or deletions, empty the look-up cache to
improve estimation accuracy. The calcIndexStructure method
in line 13 uses heuristics gained through experiments to
account for the indexing overhead. These heuristics consist of
cluster-dependent key compression ratios, average descriptor
overhead, and typical B-tree occupancy. The resulting IdxStats
objects contain all index metrics a query optimizer might be
interested in.

Candidate Selection

Similar to [17], the index candidates were frequently ranked
by their cost-benefit ratio by accounting for QEP benefit
and, in turn, index maintenance cost. Because this ranking
may require too much time, its frequency is adjusted each
time to the recent success of index tuning and overhead. A
greedy algorithm observing space restrictions marks indexes
according to their rank for the new configuration. Finally, all
existing indexes marked for deletion are removed and all vir-
tual indexes marked for materialization enqueued. Similar to
MAPE-K, the index manager then invokes queued candidates
to be built asynchronously to normal query processing.

IV. FURTHER OPTIMIZATIONS

Due to space restrictions, we only highlight some of our
methods. Improving candidate estimation is possible by ana-
lyzing the top-k plans, and not only the winner. Several tech-
niques for overhead reduction are available, such as caching of
analyses, search space reduction by pruning query-irrelevant
candidates. The extended path synopsis helps to solve the
containment problem by avoiding index replicas as well as
unnecessary scope overlaps and inclusion. Furthermore, virtual
indexes can be merged, type-specific preferences are used to
improve candidate search, and query analysis is only selec-
tively applied to promising queries. Although not evaluated

TABLE I
SPACE CONSUMPTION FIGURES

workload document path ext. path EXSum
/ storage synopsis synopsis

XMark 12M / 9.5M 4K 11.2K 14.2K
112M / 95M 4.1K 11.6K 14.4K

nasa 25M / 13M 0.8K 2.2K 10.5K
lineitem 32M / 13M 0.1K 0.4K 1.6K
treebank 90M / 46M 2.9M 7.3M 63K

dblp 330M / 233M 1.1K 3.3K 6.7K
TPoX collection (scale factor XXS)

security 126M / 107M 0.7K 2K 11.4K
custacc 58M / 26M 0.7K 2.2K 14K
order 73M / 54M 1K 3.1K 4.6K

yet, the index materializer is capable of sharing document
scans to build several indexes at a time.

V. EVALUATION

For the empirical evaluation, we use our own native XML
DBMS prototype [6] supporting the four major index types.
The following benchmarks are performed on a Pentium IV
computer (2 x 3.2 GHz CPUs, 1 GB main memory, 160 GB
external memory, Java Sun JDK 1.6).

A. Workloads

We use a variety of workloads to reveal the index tuning
capabilities for differing scenarios. The datasets and queries
are based on the following XML benchmark suites.

1) XMark: We use XMark [15]—well-known from many
projects—to generate XML documents of varying sizes and
for queries heavily exploiting different kinds of indexes. This
workload mainly consists of a scalable XML document and a
sequence of XQuery statements searching or aggregating data.

2) TPoX: This benchmark [18] generates IUD workloads.
Although we confined our experiments to single-user mode,
TPoX is suitable for concurrent query processing, too.

3) Document Collection: To stress our methods by a wide
range of different document types, we also measured overhead-
related aspects for a well-known and often used reference
collection of XML documents [19].

B. Statistics Maintenance

In our first experiment, we measured the typical overhead of
statistics maintenance for autonomous indexing. For this rea-
son, we stored documents of all three workloads and measured
additional storage as well as processing time. Table I contains
storage consumption figures for a collection of documents,
their path synopses, and for the sake of comparison, storage
figures needed by the full-fledged XML statistics framework
EXsum [20]. These figures confirm a fairly small footprint of
the path synopsis extension (< 1% of the actual document(s)).

Figure 5 reveals the processing time overhead in percent.
The first column indicates the amount of extra processing time
consumed to gather the statistical values for the extended path
synopsis. The second column adds the additional overhead
for collecting the index statistics. Fortunately, in almost all
workload scenarios, the maximum of both is below ∼ 5− 6%
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and, note, this overhead occurs only once for each document
while mapping it to the DB storage representation. Thus, the
overhead caused by the path synopsis extension is negligible
compared to the potential future gain. In contrast, the overhead
of EXsum [20] is much higher (column 3) and would not pay
off for autonomous indexing.

C. Accuracy

Because index tuning heavily depends on cost estimation
accuracy, the statistics available need to be properly used to
estimate the index shape and, thus, its access cost. In Figure 6,
we used our index size estimation from III-B to evaluate
and compare all materialized index candidates generated for a
subset of 10 different XMark queries in a workload. The total
error Et is the weighted sum of the cardinality error Ec, page
number error Ep, height error Eh, and size error Es (using
the ratios of estimated

real values):

Et = α ∗ Ec + β ∗ Ep + γ ∗ Eh + δ ∗ Es,
∑δ
α = 1

To augment cost-based query optimization, the weights are
adjusted to their expected cost impact. The cardinality error α
and the height error γ are weighted by 0.3 each, because the
query optimizer’s cost estimation heavily depends on them.
The remaining weight of 0.4 is equally distributed.

The results in Figure 6 reveal that index estimation is fairly
accurate in almost all cases (black dots equal Et ≤ 12%).
The minimum and maximum estimation error is shown via the
error bars; however, the larger the workload (document size),
the lower the min, max, and weighted error. Although content
indexes were not used in the experiment, we show on the right
side their estimation error, too. Apparently, compared to the
tiny overhead caused by statistics gathering, the accuracy of
index estimation seems to pay off.
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D. Index Self-tuning Quality

In a further experiment, we want to identify the overall gain
drawn from the autonomous index definition and selection.
Therefore, we designed the following four scenarios

1) No indexes: Unmanaged system.
2) Manual: Content and element indexes created, because

they are straightforward to define and usually deliver
quite an acceptable performance.

3) Manual + Self-tuning: Additionally to the pre-selected
content and element indexes, the system tunes the con-
figuration autonomously.

4) Self-tuning: No indexes were pre-selected, optimization
is due to autonomous index tuning.

and illustrate the average tuning gains for varying XMark
workloads in Figure 7 and 8, respectively. Both scenarios
reveal similar aspects, the manual version delivers quite a
satisfactory performance under a constantly high index space
overhead, whereas the self-tuning version continuously im-
proves response times down to the same level (or even ∼ 10%
better!) as the manual versions, yet consuming clearly less
index space. For each new index (noticeable as steps in the
colored index space curves in Figure 7 and 8), the quality
ratio PerformanceGain

Overhead decreases slowly, thereby proving the
effectiveness of the cost-based index selection.
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The question, whether or not parallel indexing (in single-
user mode) improves the tuning gain, is answered for some
XMark-based benchmarks. Figure 9 tries to reveal correlated
effects of our experiments: elapsed times (black), index space
(colored), and decreasing runtimes for repetitive workloads
for both configurations. The negligible margin of both pairs
of curves confirms that 1) parallel indexing has hardly any
(negative) influence on workload time and 2) that the growth
of the index space is independent of whether or not performed
sequentially or in parallel. The scattered bars (red) indicate the
phases where additional indexes were created.

Playing around with the multi-programming level yields
an upper limit of building four indexes in parallel; but, scan
sharing may further increase this limit. In any case, only a
couple of workload repetitions is usually necessary to reach
for the index configuration a final (stable) state.

In a final experiment, we explored the effects of “aggres-
siveness” when materializing candidates. Figure 10 shows
throughput growth and index space consumption for various
thresholds controlling how aggressive a positive cost-benefit
ratio turns into an index materialization. Especially the con-
tainment problem is automatically addressed by analyzing
several queries/workloads to exploit synergy effects of index
candidates. This is clearly visible for decision levels > 3.
In terms of space overhead, the moderate policies are the
most efficient ones. However, nearly all setups increase their
throughput in the same order. Thus, it is possible to adjust
the threshold to specify whether fast adaptation to changing
workloads or conservative space occupation is preferred.

VI. CONCLUSIONS

Self-tuning XML indexes may not only enhance manual
index setups, but also outperform it. Tailor-made statistics
causing little overhead are necessary to compare and figure out
the complex alternatives in the XML index search space. In the
future, we will combine all the presented tuning knobs (e.g.,
parallelism, aggressiveness) with major shifts in the workloads
together with updates requiring index maintenance.
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