
Formal Reasoning about Runtime Code Update
Nathaniel Charlton Ben Horsfall Bernhard Reus

School of Informatics, University of Sussex
Brighton, United Kingdom

{n.a.charlton,b.g.horsfall,bernhard}@sussex.ac.uk

Abstract—We show how dynamic software updates can be
modelled using a “higher order store” programming language
where procedures can be written to the heap. We then show how
such updates can be proved correct with a Hoare-calculus that
allows for keeping track of behavioural specifications of such
stored procedures.

I. INTRODUCTION AND MOTIVATION

Allowing software to update at run-time is an important
feature for critical systems that require constant uptime (see
e.g. [1]). But because these are critical systems, it is also very
important that updates do not inadvertently crash the system,
and that the updated system behaves as expected. There is
therefore a need to be able to apply formal methods to the
analysis of systems which use dynamic updating.

One mechanism which goes some way towards formally
ensuring correctness is type-checking. Bierman et al. give a
type system for the update calculus [2], a functional language
featuring modules and an abstract update primitive used to
model dynamic updates. The type-checking algorithm of their
calculus ensures the safety of updates, in other words well-
typed updates (even those which change the types of functions)
do not lead to crashes. Type systems for dynamic update are
also discussed in [3] and [4] which address imperative and
multi-threaded programs respectively.

Bierman et al. also provide a concrete example: a series of
runtime updates is applied to an idealised webserver written
in the update calculus. Using the type system one can check
that the updated system will continue to run safely.

But while type safety is important in ensuring that a program
does not crash, we also want to reason about the functional
behaviour of a system. This is termed “semantic correctness”
in [2]. Such behavioural requirements are typically given in the
form of assertions, and pre- and post-conditions for program
procedures.

In this paper we present an imperative language with
dynamic memory allocation which can also model the web-
server example, and show how to prove safety and “semantic
correctness” properties. The foundation for our language is the
ability to update the code stored in memory at runtime. We
can then load new code and use code pointers to invoke it.
The vital ingredient for reasoning about such languages is the
use of nested Hoare triples [5], which allow assertions to keep
track of behavioural specifications of code stored on the heap;
this code changes as programs run due to dynamic updates.
Conventional Hoare logics do not provide any mechanism to
represent such changes.

We use a semi-automated verification tool, CROWFOOT, to
conduct our proofs. The work most closely related to ours is
that of [6].

A brief summary of the webserver example is given in
Section II. Section III describes how we have modelled the
updatable webserver in our language with stored procedures.
In Section IV we discuss the specifications of the webserver
procedures, including an example for semantic correctness
through the addition of an invariant, and their automated proof.

II. WEBSERVER EXAMPLE

In the webserver example of [2], the update mechanism
works as follows. Initially, modules are at version 1. When
an update takes place, the updated modules are added to
the current set, and given the next available version number.
Before the update is applied, the entire program (with the
update) is checked for type-safety. Calls to functions of a
module may optionally be qualified with a specific module
version; otherwise, the latest version currently loaded will be
used. Keeping the old versions and allowing references to
specific versions means that the functions may change type
during an update.

The single-threaded webserver runs an infinite loop han-
dling event requests from a queue, which, along with standard
get and post requests, includes update requests. The initial
system consists of two modules:
• Handlers – containing functions to handle the different

kinds of event
• Server – containing the loop function which takes an

event from the queue and applies the relevant function
from the Handlers module, before recursively calling loop
again.

Due to space constraints we will only talk about the first
dynamic update from [2], although we have also implemented
and proved the second [7]. This first update adds logging to
the system, so that a record is kept of all the events that have
been processed. The changes here involve:

1) the addition of a Log module
2) the handle function to now add each event to the log

before calling the appropriate function
3) the loop function to now pass around the log

In order for this to take place, it is necessary for the new
version of the Server module to have a transitional loop
function, which, when called recursively after the update, will
safely start the newly introduced loop′ function with a newly
created empty log as the extra log parameter.

In [2] the only correctness property that is checked is type-
safety, though that paper then discusses the future possibility
of extending the calculus with Hoare-type assertions such that
invariants of the loop can express semantic correctness of the
program before and after updates.

III. THE WEBSERVER IMPLEMENTED WITH STORED
PROCEDURES

The language we use is an imperative language with recur-
sive procedures, call-by-value parameter passing, and dynamic
memory allocation via a mutable heap supporting address
arithmetic. The most striking feature is that procedures can
be stored on the heap and called at runtime. This is used to
load and store modules since our language does not have a
built-in update mechanism. The operations for manipulating a
heap (where [e] is heap lookup at address e) are:
x := new 0 ; /∗ A l l o c a t e a new heap c e l l ∗ /
[x] := 5 ; /∗ C o n t e n t m o d i f i e d t o c o n t a i n 5 ∗ /
[x] := foo (,) ; /∗ We can a l s o s t o r e p r o c e d u r e s . . . ∗ /
e v a l [x] (1 , 2) ; /∗ . . . and t h e n in vo ke them ∗ /
d i s p o s e x ; /∗ D e a l l o c a t e t h e c e l l ∗ /

Here we load (or store) a procedure named foo into the new
cell1, then call the procedure stored in x with parameters
before the cell is deallocated. The invocation of stored pro-
cedures uses keyword e v a l instead of c a l l used for fixed
procedures. Should a stored procedure be invoked with the
wrong number of arguments, the program will crash. Note
that our language is untyped; any type checking will be done
as part of the Hoare-logic we describe in the next section.

Having described the features of our programming lan-
guage, we now present the code of our implementation of
the updatable webserver. The shaded elements in Figures 1,
2, 4, and 5 are not part of the code. They can be skipped for
now and will be explained in Section IV.

Our language has fixed procedures which can be loaded
onto the heap as explained earlier. The loading of the initial
modules is done at the start of the main () procedure, in
Fig. 1. Specifically, main () loads the first versions of Server
and Handlers and starts the loop with an empty event queue.
For the implementation here, we have abstract procedures for
manipulating a queue.

The primary difference of our implementation w.r.t. [2] is
the use of stored procedures to hold the modules. We have
encoded each module using procedures stored in a block
of consecutive heap cells, addressed by a constant (declared
above main ()) whose name consists of the module name and
version number. For example, version 1 of the Server module
is found at address s e r v e r 1 . Named constant offsets are
used to address the particular procedures within each module.
A pointer to the latest version of each module is maintained
in a cell addressed by a constant without a version number,
e.g. s e r v e r .

Next we have the implementations of the Server and
Handlers modules in Fig. 2 and 3, respectively. Server’s

1We can choose to instantiate some of the arguments at load-time (partial
application), though this is not necessary for the purposes of the webserver.

/∗ C o n s t a n t s f o r t h e a d d r e s s e s o f module v e r s i o n s ∗ /
/∗ and o f f s e t s o f p r o c e d u r e s w i t h i n t h o s e modules ∗ /
c o n s t s e r v e r 1 , s e r v e r 2 ,

g e t e v e n t =0 , h a n d l e =1 , l oop =2 , loopPr ime =3;
c o n s t h a n d l e r s 1 ,

h a n d l e G e t =0 , h a n d l e P o s t =1 , h a n d l e U p d a t e =2;
c o n s t log1 ,

empty log =0 , l o g E v e n t =1;
c o n s t s e r v e r , h a n d l e r s , l o g ; /∗ ’ L a t e s t ’ p o i n t e r s ∗ /

proc main ()
pre: version 7→ * ... ; post: false;

{
l o c a l s qP t r , q ;
[v e r s i o n] := 1 ;
/∗ Load t h e f i r s t v e r s i o n s o f S e r v e r & H a n d l e r s ∗ /
[s e r v e r 1 + g e t e v e n t] := g e t e v e n t () ;
[s e r v e r 1 + h a n d l e] := h a n d l e () ;
[s e r v e r 1 + loop] := loop () ;
[h a n d l e r s 1 + h a n d l e G e t] := h a n d l e G e t (,) ;
[h a n d l e r s 1 + h a n d l e P o s t] := h a n d l e P o s t (,) ;
[h a n d l e r s 1 + h a n d l e U p d a t e] := h a n d l e U p d a t e () ;
ghost “fold $Code1()”;
/∗ S e t t h e ’ l a t e s t ’ p o i n t e r s t o v e r s i o n 1 ∗ /
[s e r v e r] := s e r v e r 1 ;
[h a n d l e r s] := h a n d l e r s 1 ;
ghost “fold $Code(?)”;
/∗ Make an empty queue and s t a r t t h e loop ∗ /
q P t r := new 0 ;
c a l l mk empty queue (q P t r) ;
q := [q P t r] ;
d i s p o s e q P t r ;
e v a l [s e r v e r 1 + loop] (q)

}

Fig. 1. Initial loading for first version of modules

h a n d l e (q) and loop (q) are implemented as in [2]. In par-
ticular, l oop (q) simply calls the g e t e v e n t and h a n d l e
procedures before recursively calling itself. These procedures
are not called directly, however, but via pointers from the heap.
This provides “dynamic dispatch”; at runtime new procedures
can be added to the heap and the “latest” pointers adjusted
accordingly. For the Handlers module, because we are not fo-
cussing on how the get or post requests are handled, we declare
the h a n d l e G e t (q , r e q) and h a n d l e P o s t (q , r e q) pro-
cedures as abstract. The h a n d l e U p d a t e () simply calls the
u p d a t e () procedure, corresponding to the update primitive
from the update calculus.

The u p d a t e () procedure in Fig. 4 performs the required
steps to load the new code into memory, and adjust the “latest”
pointers accordingly. In the update considered here, the new
Log module (consisting of two procedures) is loaded, along
with the new version of Server (see Fig. 5). The Log module
consists of abstract procedures for creating an empty log
(mk empty log) and logging an event (l o g e v e n t). The
specifications for these and other module procedures can be
seen in $Code2 (Fig. 6). Note that loop2 () is the transi-
tional function, and loopPr ime (,) is the new infinite
loop. The type of the new h a n d l e and loop procedures has
changed such that they will take a pointer to the log as an
additional parameter.

/∗ C o n s t a n t s d e n o t i n g k i n d s o f e v e n t s ∗ /
c o n s t evGet =0 , e v P o s t =1 , evUpdate =2;

proc a b s t r a c t g e t e v e n t (q)

proc h a n d l e (q) {
l o c a l s e P t r , even t , eventType , r e q ;
e P t r := new 0 ;
c a l l dequeue (q , e P t r) ;
e v e n t := [e P t r] ;
d i s p o s e e P t r ;
ghost “unfold $Event(?)”;

even tType := [e v e n t] ;
r e q := e v e n t +1 ;
/∗ E x p l i c i t l y c a l l v e r s i o n one of H a n d l e r s ∗ /
/∗ hand leGet , h a n d l e P o s t o r h a n d l e U p d a t e ∗ /
i f even tType = evGet then {

e v a l [h a n d l e r s 1 + h a n d l e G e t] (q , r e q)
} e l s e {

i f even tType = e v P o s t then {
e v a l [h a n d l e r s 1 + h a n d l e P o s t] (q , r e q)

} e l s e {
e v a l [h a n d l e r s 1 + h a n d l e U p d a t e] ()

}
} ;
d i s p o s e e v e n t

}

proc l oop (q) {
l o c a l s tmp ;
ghost “unfold $Code(?)”;
/∗ C a l l l a t e s t v e r s i o n o f Se rve r ’ s . . . ∗ /
tmp := [s e r v e r] ;
ghost “fold $Code(?)”;
e v a l [tmp+ g e t e v e n t] (q) ; /∗ . . . g e t e v e n t ∗ /
ghost “unfold $Code(?)”;

tmp := [s e r v e r] ;
ghost “fold $Code(?)”;
e v a l [tmp+ h a n d l e] (q) ; /∗ . . . h a n d l e ∗ /
ghost “unfold $Code(?)”;

tmp := [s e r v e r] ;
ghost “fold $Code(?)”;
e v a l [tmp+ loop] (q) /∗ . . . l oop ∗ /

}

Fig. 2. Server module, version 1

proc a b s t r a c t h a n d l e G e t (q , r e q)
proc a b s t r a c t h a n d l e P o s t (q , r e q)
proc h a n d l e U p d a t e () { c a l l u p d a t e () }

Fig. 3. Handlers module, version 1

IV. OUR SPECIFICATION OF THE WEBSERVER

Our assertion language is an extension of Separation logic
[8], a variant of Hoare logic for reasoning about programs that
manipulate the heap. Separation logic allows one to specify
the behaviour of code in a local way, such that it is only
necessary to specify the part of the heap that is manipulated
by the code (the footprint), whilst the remaining unspecified
portion (the frame) will not change. Its key features are the
separating conjunction ∗ expressing properties of disjoint
parts of the heap, and a predicate e 7→ e1, . . . , eN stating that e

proc u p d a t e ()
forall ver.

pre: $Code(ver);

post: $Code(ver+1) * ver != 2 ∨ $Code(ver) * ver=2; {
l o c a l s v ;
ghost “unfold $Code(?)”;

v := [v e r s i o n] ;
i f v = 1 then { /∗ I f we didn ’ t u p d a t e y e t ∗ /

[l og1 +emptyLog] := mk empty log () ;
[l og1 + l o g e v e n t] := l o g e v e n t (,) ;
[s e r v e r 2 + g e t e v e n t] := g e t e v e n t () ;
[s e r v e r 2 + h a n d l e] := h a n d l e 2 (,) ;
[s e r v e r 2 + loop] := loop2 () ;
[s e r v e r 2 + loopPr ime] := loopPr ime (,) ;
ghost “fold $Code2()”;
/∗ Update ’ l a t e s t ’ p o i n t e r s ∗ /
[l o g] := log1 ;
[s e r v e r] := s e r v e r 2 ;

[v e r s i o n] := 2
} e l s e { /∗ I f we a l r e a d y r a n t h e u p d a t e ∗ /

s k i p
} ;
ghost “fold $Code(?)”

}

Fig. 4. Procedure modelling the update to add logging

is a pointer to a block of N consecutive heap cells containing
values e1, . . . , eN (we abbreviate ∃n. e 7→ n by e 7→).

The crucial extra feature we use is nested triples [5]. As
explained earlier, it is the use of nested triples that allows us
to reason about programs that store procedures (i.e. code) on
the heap. In particular, this is how we capture the effects of
dynamic updates. For example, the following assertion

x 7→ ∀res. {res 7→ } (res) {res 7→ }

states that address x contains a procedure, with one argument
res , that satisfies a Hoare triple with the following meaning: if
res is allocated when the procedure runs then, if it terminates,
the cell is still allocated. As standard with separation logic,
triples have a partial correctness, fault-avoiding semantics, so
the above triple also states that if res is allocated in the heap
the procedure will not crash (even if it does not terminate).
The above assertion could be used in pre- or post-conditions
of other procedures which leads to nesting of triples.

Another addition to our assertion language are user-defined
predicates to “wrap-up” assertions. Specifically we use pred-
icates to describe the loaded modules, as shown in Fig. 6.
We precede our predicate names with a $-sign, to distinguish
them from ordinary variables in assertions, and define them
using the r e c d e f keyword. These definitions can be mutually
recursive which is important as one needs to be able to specify
that a stored procedure invoked via e v a l preserves its own
specification and maybe other specifications of procedures it
uses. In Fig. 6 we can see that $Code() is recursively defined
via $Code1 and $Code2. We split the specification of the loaded
code described by $Code() into two parts:

recdef $Code1() :=
handlers1+handleGet 7→ ∀q, req , n. {$GetRequest(req) ∗ $Q(q, n)} (q, req) {$Q(q, n)}

* handlers1+handlePost 7→ ∀q, req , n. {$PostRequest(req) ∗ $Q(q, n)} (q, req) {$Q(q, n)}
* handlers1+handleUpdate 7→ ∀ver . {$Code(ver)} () {$Code(ver + 1) ∗ ver 6= 2 ∨ $Code(ver) ∗ ver = 2}
* server1+getevent 7→ ∀q, n. {$Q(q, n)} (q) {$NEmpQ(q, n)}
* server1+handle 7→ ∀q, n. {$Code(1) ∗ $NEmpQ(q, n)} (q) {$Code(1) ∗ $Q(q, n+ 1) ∨ $Code(2) ∗ $Q(q, n+ 1)}
* server1+loop 7→ ∀q. {∃n.$Code(1) ∗ $Q(q, n)} (q) {false} ;

recdef $Code2() :=
log1+emptyLog 7→ ∀logPtr . {logPtr 7→ } (logPtr) {∃lg .logPtr 7→ lg ∗ $Log(lg , 0)}

* log1+logevent 7→ ∀lg ,e,n. {$Log(lg , n) ∗ $Event(e)} (lg , e) {$Log(lg , n+ 1) ∗ $Event(e)}
* server2+getevent 7→ ∀q,n. {$Q(q, n)} (q) {$NEmpQ(q, n)}
* server2+handle 7→ ∀lg ,q,n. {$Code(2) ∗ $NEmpQ(q, n) ∗ $Log(lg , n)} (lg , q) {$Code(2) ∗ $Q(q, n+ 1) ∗ $Log(lg , n+ 1)}
* server2+loop 7→ ∀q. {∃n.$Code(2) ∗ $Q(q, n)} (q) {false}
* server2+loopPrime 7→ ∀lg ,q. {∃n.$Code(2) ∗ $Q(q, n) ∗ $Log(lg , n)} (lg , q) {false} ;

recdef $Code(v) := /* Encapsulates the entire state of program at version v */
v = 1 * version 7→ 1 * $Code1()

* handlers 7→ handlers1 * server 7→ server1 /* Latest versions of Server & Handlers is ver 1 */
* log1 7→ 0,0 * log 7→ 0 * server2 7→ 0,0,0,0 /* Cells for code that will appear in first update */∨

v = 2 * version 7→ 2 * $Code1()
* handlers 7→ handlers1 /* Handlers hasn’t changed */
* $Code2() /* Code that appeared in the update */
* log 7→ log1 * server 7→ server2 ; /* Latest Log is ver 1, latest Server is ver 2 */

Fig. 6. Predicate definitions used for the webserver specifications, making prominent use of nested triples

• $Code1 contains the specifications for the initially loaded
code, i.e. version 1 of the Server and Handlers modules.

• $Code2 contains the specifications for procedures that will
be added after the update (a new version, 2, of Server,
and completely new procedures for version 1 of Log).

Predicate $Code(v) encapsulates the entire state at each stage
v of the update process. In this case we only have one update,
so we have the initial state (version 1), and the state after the
update (version 2). This predicate describes the heap as having
the relevant heap cells allocated, and in $Code1 and $Code2 we
give the behavioural specifications of the loaded code.

Additionally we have (abstract) predicates without defini-
tions (ie. predicate variables), declared in Fig. 7, using the
keyword f o r a l l , to represent the abstract request types and
the queue type used. The latter, for instance, is declared
abstractly as the predicate $Q(,), where the first parameter
is the address of the queue, and the second is a counter
that increments on each dequeue operation. $NEmpQ(,) is
analogous for non-empty queues. The abstract procedures of
our queue datatype are specified as follows: the dequeue
procedure requires a non-empty queue and ensures a queue,
mk empty queue establishes a queue, and r e s e t sets the
counter of dequeued elements to 0 and maintains the queue.
Finally, the $Log(,) predicate represents the log structure,
with the first parameter being the address of the log and the

second parameter being its size.
The program code introduced in Section III has two types

of annotation (the shaded elements). The first are the spec-
ifications (pre- and post-conditions) for each procedure, and
the second are hints to the verifier (ghost statements). The
hints instruct the verification tool we use about how and when
to fold/unfold predicates. Question marks indicate predicate
arguments to be inferred by the verifier. This is necessary for
instance at the call site for h a n d l e (q) in loop (q) (Fig. 2).
Here we need to “unfold” the $Code predicate to be able to
find out what is stored in address [s e r v e r] , and we need to
“fold” it back up in order that the symbolic state will satisfy
the pre-condition when the code at that address is invoked.

Due to space limitations, the specifications of the module
procedures have been omitted from the code; they can still be
seen in the $Code1/$Code2 predicates. The pre-condition from
main () in Fig. 1 has been shortened with “. . .”. The missing
part specifies that cells have been allocated for every module.

To encode the different kinds of events, we use predicate
variables (Fig. 8) combined with a constant integer (Fig. 2)
for each kind.

As an example of a behavioural correctness property, we
add to our type- and memory safety assertions an invariant
that states that the number of entries in the log is the same as
the number of events that have been dequeued. This invariant

proc a b s t r a c t mk empty log (l o g P t r)
proc a b s t r a c t l o g e v e n t (lg , e)

proc h a n d l e 2 (lg , q) {
l o c a l s e P t r , even t , eventType , req , tmp ;
e P t r := new 0 ;
c a l l dequeue (q , e P t r) ;
e v e n t := [e P t r] ;
d i s p o s e e P t r ;

/∗ Here i s t h e new b e h a v i o u r : we l o g t h e e v e n t . ∗ /
ghost “unfold $Code(?)”;

tmp := [l o g] ;
ghost “fold $Code(?)”;
e v a l [tmp+ l o g e v e n t] (lg , e v e n t) ;
ghost “unfold $Event(?)”;

even tType := [e v e n t] ;
r e q := e v e n t +1 ;
i f even tType = evGet then {

e v a l [h a n d l e r s 1 + h a n d l e G e t] (q , r e q)
} e l s e {

i f even tType = e v P o s t then {
e v a l [h a n d l e r s 1 + h a n d l e P o s t] (q , r e q)

} e l s e {
e v a l [h a n d l e r s 1 + h a n d l e U p d a t e] ()

}
} ;
d i s p o s e e v e n t

}

proc l oop2 (q) { /∗ T r a n s i t i o n a l l oop p r o c e d u r e ∗ /
l o c a l s l o g P t r , newLog ;
l o g P t r := new 0 ;
e v a l [l og1 +emptyLog] (l o g P t r) ;
newLog := [l o g P t r] ;
d i s p o s e l o g P t r ;
c a l l r e s e t (q) ; /∗ R e s e t queue c o u n t e r ∗ /
e v a l [s e r v e r 2 + loopPr ime] (newLog , q)

}

proc l oopPr ime (lg , q) { /∗ New loop p r o c e d u r e ∗ /
/∗ As loop , b u t e v a l s have e x t r a l o g p a r a m e t e r ∗ /
. . .

}

Fig. 5. Code of new Log and Server, added in the update

f o r a l l $GetReques t () , $ P o s t R e q u e s t () ,
$Q (,) , $NEmpQ(,) ,
$Log (,) .

Fig. 7. Abstract predicates declared without a definition

is supposed to hold every time one re-enters the loop body
(see occurrence of $Q(q, n) ∗ $Log(lg , n) in pre-condition of
loopPrime in Fig. 6). This n is the reason why we have
the second arguments to the $Log and $Q predicates. Note
that all server loops are not supposed to terminate so their
postcondition is simply false .

In order to keep track of specifications and perform proofs
it is extremely helpful to have some software support. We are
currently developing a tool called CROWFOOT, which we have
used to formalise and prove the specifications as outlined in
this paper. CROWFOOT allows one to state programs which use
stored procedures and their properties and, once appropriate

r e c d e f $Event (e) :=
e 7→ evGet ∗ $GetReques t (e +1)

| e 7→ e v P o s t ∗ $ P o s t R e q u e s t (e +1)
| e 7→ evUpdate ;

Fig. 8. Encoding the event type using predicates

invariants and ghost statements have been sprinkled in, auto-
matically verify that all procedures meet their specifications
(using ideas extending [9]). More details, including annotated
code and outputs for the webserver example, can be found on
[7], and publications are in preparation.

V. FUTURE WORK AND CONCLUSION

In this paper we have only discussed the first update
of the webserver in [2]. The second, which enriches the
event type, has been formalised analogously and proved using
CROWFOOT. It can be obtained from [7]. In [2] the loading
process is abstractly modelled by a rewrite step, updating
the program’s runtime configuration that contains all modules
loaded over the lifetime of the program; this is modelled in
this paper by updating blocks of stored procedures addressed
by fixed pointers. A less abstract model of the loading process
would use a linked list of modules enriched by necessary meta-
information that accompanies the modules.2 Dynamic loading
is a form of reflection and it is part of our research programme
to develop proof systems for reflective programs including
runtime code generation. Finally, we have indicated that our
Hoare-logic based approach allows us to prove what [2] calls
“semantic correctness”. Of course, more complex invariants
than the one presented here can be formalised.

ACKNOWLEDGEMENTS

This research has been sponsored by the EPSRC grant
“From Reasoning Principles for Function Pointers To Logics
for Self-Configuring Programs” (EP/G003173/1).

REFERENCES

[1] M. Hicks, “Dynamic software updating,” Ph.D. dissertation, Department
of Computer and Information Science, University of Pennsylvania, Au-
gust 2001.

[2] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle, “Formalizing dynamic
software updating,” in Proceedings of Workshop on Unexpected Software
Evolution (USE ’03), April 2003.

[3] G. Stoyle, M. W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu,
“Mutatis Mutandis: Safe and predictable dynamic software updating,”
ACM Trans. Program. Lang. Syst., vol. 29, no. 4, 2007.

[4] A. Anderson and J. Rathke, “Migrating protocols in multi-threaded
message-passing systems,” in HotSWUp, 2009.

[5] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang, “Nested Hoare
triples and frame rules for higher-order store,” in CSL, 2009, pp. 440–454.

[6] B. Jacobs, J. Smans, and F. Piessens, “Verification of unloadable C
modules — soundness proof,” Departement Computerwetenschappen,
Katholieke Universiteit Leuven, Tech. Rep. CW-570, 2009.

[7] (2010) The Crowfoot website (under development). [Online]. Available:
www.informatics.susx.ac.uk/research/projects/PL4HOStore/crowfoot/

[8] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in LICS, 2002, pp. 55–74.

[9] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with
separation logic,” in APLAS, 2005, pp. 52–68.

2Note that using fixed pointers does not have any impact on the validity of
our approach regarding verification which solidly models the one of [2].

