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Abstract—In recent years, there has been rapid growth in
mobile devices such as smartphones, and a number of appli-
cations are developed specifically for the smartphone market. In
particular, there are many applications that are “free” to t he
user, but depend on advertisement services for their revenue.
Such applications include an advertisement module - a library
provided by the advertisement service - that can collect a user’s
sensitive information and transmit it across the network. Such in-
formation is used for targeted advertisements, and user behavior
statistics. Users accept this business model, but in most cases the
applications do not require the user’s acknowledgment in order
to transmit sensitive information. Therefore, such applications’
behavior becomes an invasion of privacy. In our analysis of 1,188
Android applications’ network traffic and permissions, 93% of
the applications we analyzed connected to multiple destinations
when using the network. 61% required a permission combination
that included both access to sensitive information and use of
networking services. These applications have the potential to
leak the user’s sensitive information. Of the 107,859 HTTP
packets from these applications, 23,309 (22%) contained sensitive
information, such as device identification number and carrier
name. In an effort to enable users to control the transmission of
their private information, we propose a system which, usinga
novel clustering method based on the HTTP packet destination
and content distances, generates signatures from the clustering
result and uses them to detect sensitive information leakage
from Android applications. Our system does not require an
Android framework modification or any special privileges. Thus
users can easily introduce our system to their devices, and
manage suspicious applications’ network behavior in a fine
grained manner. Our system accurately detected 94% of the
sensitive information leakage from the applications evaluated and
produced only 5% false negative results, and less than 3% false
positive results.

Index Terms—Security, Smartphone, Privacy

I. I NTRODUCTION

With the increasing popularity of smartphones and tablets,
development for mobile device operating systems (particu-
larly for Apple’s iOS and Google’s Android, which are the
most popular choices) has drastically increased, especially
the development of applications for sale in the providers
online marketplaces such as the AppStore and Google Play,
respectively. In May 2012, Google Play alone had 500,000
applications. Applications are categorized as free or paid. In
this work, we are primarily interested in free applications,
since these often come with an advertising module.

A smartphone retains various kinds of personal information,
such as the contents of the user’s address book, location
tracking data, and the unique device identifier. In order to

decouple the features of the device (ie, network access, the
camera, the previously discussed sensitive information),and
thus maintain security, Android provides a framework which
requires applications to have specific permissions for access-
ing restricted resources. However, the Android permission
framework does not completely protect the user’s sensitive
information: applications or advertising modules send the
user’s sensitive information to the outside servers using the
network [1], [2], [3], [4]. While this information is generally
used for targeted advertising, it can also be discovered and
used by malicious parties without the original user’s awareness
to combat this threat [5], [6]. Various methods, employing
tracking information flow and privilege separation, have been
examined [7], [8], [9], [10], [11]. These approaches could
effectively expose a sensitive information leakage, but they
all would require extensive modifications to the Android
framework. We think it is sufficient to force applications
to notify users of information usage details, thus enabling
the user to dynamically control the handling of sensitive
information. Our goal is a practical method that can identify
a sensitive information leakage in applications without an
Android framework modification. A user can easily add our
system to his device and use it to manage the transmission of
sensitive information by applications. In this way, the user can
reduce the possible violations of his privacy.

In this paper, we present a novel method of clustering that
uses selected HTTP packets to generate signatures which can
accurately identify new HTTP packets that contain sensitive
information. Our primary concern is not malware, but free
applications which risk leaking sensitive information. Inmany
cases, malware is detected by the anti-virus software. If free
software is not malware but causes a sensitive information
leakage. We postulate that software is the new threat for
the user. In our evaluation, we analyzed 1,188 free Android
applications from the Top 100 list and the Recent Uploads list
in Google Play Japan and collected 107,859 HTTP packets
that these applications generated. We examined the number of
HTTP packets that included sensitive information and sent it to
outside servers. Of our trace, 23,309 HTTP packets contained
such information. We then applied clustering to a sample of
the refined data the packets containing sensitive information
to generate signatures, and re-applied these signatures tothe
entire dataset. This method result in a high percentage of
true positives, and a low percentage false positives. Thus,
we conclude that our generated signatures have sufficient

http://arxiv.org/abs/1305.4045v1


Fig. 1. Overview of Android architecture

accuracy for detecting of sensitive information transmission
in applications.

We consider the main contributions of this paper to be:

• a novel clustering method using HTTP packet distance
that identifies the similarity between the two of Android
application network packets

• a system, using that the proposed method followed by
signature generation, that can detect sensitive information
leakage without altering the Android framework.

The rest of this paper is organized as follows. In Sec-
tion II, we explain the Android architecture and permission
framework. We describe the Android application permission
pattern can be a problem and show the practical validity of this
problem with an analysis of applications network behavior in
Section III. We present our algorithms for the HTTP packet
clustering and signature generation in Section IV. We evaluate
our approach using an HTTP packet dataset in Section V. We
review related work, discuss our results, and the limitations of
this approach in Section VI Finally, we conclude and suggest
directions for future work in Section 8.

II. BACKGROUND

A. Android Architecture

Figure 1 shows an overview of Android architecture. An-
droid consists a Linux kernel, Middleware, Android applica-
tions, and sensitive information (Address Book, GPS, Mail,
Phone State are shown). Middleware includes the Binder, the
Library framework, and one Dalvik Virtual Machine (DVM)
per application.

The Linux kernel provides some fundamental features for
the upper layers: process management, file system and network
services. Middleware provides DVMs, which are used run
applications as well as the Binder, which supports IPC and
checks an application’s permission list when it tries to access
sensitive information via the Library. Applications on Android
have a unique Linux UID and the associated permissions. This
environment paradigm is called sand-boxing. The application
can only access resources within the bounds of its privileges.

B. Android Permissions

Android provides the permission framework for managing
of an application’s privileges. In order to access resources on
Android, an application needs a specific set of permissions
which link to the resources. For instance, theINTERNET
permission can connect to any outside server using network.
The READ PHONE STATE permission can get the unique
device identifier and line number on the device. At the present
time there are 125 privileges permissions defined by Android
API Level 15 [12]. When an application accesses a controlled
resource object, the Binder takes charge of the reference mon-
itor to manage the application’s request. The Binder verifies
that the application has the appropriate permissions to bind to
the requested resource.

III. PROBLEM DESCRIPTION

In this section, we explain how particular combinations of
application permissions can allow a violation of user privacy.
Then, we use our analysis of the network traffic of 1,188
free applications - how many servers are connected to by an
application; what, if any, sensitive information is included in
the traffic - to show that this problem is a practical concern.

A. Application Request Permissions

Previous studies show that many applications require the
INTERNET permission [13]. Table I shows the permissions
held by our collected 1,188 applications. 302 applications
(25%) require only theINTERNET permission, while 727
applications (61%) require theINTERNET and some com-
bination of sensitive information permissions. We consider
sensitive information permissions to includeLOCATION ,
READ PHONE STATE, and READ CONTACTS. Those
727 applications can access sensitive resources on the device
and send information gathered from those sensitive resources
using the network feature, all without user confirmation,
putting the user’s privacy at risk.

In Android’s current model, an application requests permis-
sions once, on installation. Once the application is installed,
all its transmissions are opaque to the user, who has no way of
determining if sensitive information is present in his network
traffic. He may wish to use an application without interruption
when it is only transmitting benign data, but to be prompted
for confirmation when the application wishes to send sensitive
information over the network.

B. Application Traffic Analysis

It has been shown that some applications transmit sensitive
information to external servers [1], [2]. One of the main rea-
sons for this is that developers build an advertisement module
into the free version of their applications for revenue. In
order to collect statistical information of the device usage and
to provide a targeted advertisements for users, advertisement
modules take advantage of their ability to access sensitive
information.

Unique device identifiers (UDIDs) are most commonly used
by advertisement modules [3]. The types of UDIDs include



TABLE I
Number of applications with dangerous permission combinations.OUT OF 1,188APPLICATIONS TOTAL, 61% (THE FOUR LOWER ROWS IN THIS TABLE)

REQUIRED BOTH THEINTERNET AND ATLEASET ONE PERMISSION FOR SENSITIVE INFORMATION.

INTERNET LOCATION PHONE STATE CONTACTS # Apps
x 302
x x 329
x x x 153
x x 148
x x x x 23

Fig. 2. Frequency Distribution of HTTP Host Destinations.Out of 1,188
applications total, 81 (7%) have 1 destinations, 885 (74%) have up to 10
destinations, and average number of destinations was 7.9.

the Android ID, the International Mobile Equipment Identity
(IMEI), the International Mobile Subscriber Identity (IMSI)
and the SIM Serial ID. Additionally, some modules compute
UDID’s hash with a cryptographic hash function at the time of
transmission [4]. These UDIDs are immutable and linked to
a user’s real name and bank account. Unlike Internet cookies
and IP addresses, UDIDs are hard (if not impossible) to change
or erase, so it can be very dangerous for a user to have an
advertisement module leaking his UDIDs. If an advertisement
module generates a UDID’s hash value from only a UDID, the
hash value is same all the time, thus the user cannot change the
UDID’s hash value without changing the original UDID, so the
hash values have similar security problems. We believe thatan
advertisement module should use an application’s unique user
ID value (i.e UUID value) rather than its UDID. If UUIDs
(which are mutable) were used instead of UDIDs, harvested
information would be restricted to the transmitting application,
and the user would have the ability to alter his device’s ID if
he were concerned by the accumulation of information.

We selected 1,188 free applications from the popular rank-
ing in Japan’s Google Play from January to April, 2012. Since
many users choose their applications from this ranking, we
consider this to be a good sample of applications used in
Japan. We investigated the network traffic generated by these
applications. The applications sent 107,859 GET/POST HTTP
packets. The Experiment environment was a Galaxy Nexus S,
Android 2.3.4.

Table II shows the number of HTTP packets destined for
the most common hosts and the number of applications that
send to each destination domain. Note that many applications
send HTTP packets to the same destinations, and that some
of these domains, such as “admob.com” and “ad-maker.info”,
are clearly advertisement services. Other domains are Web
API service providers. We can see that many of our applica-
tions send information to advertisement servers. We noticed
during this experiment that several applications have multiple
advertisement modules (ie. AdMob, AdMaker, Adlantis, and
MicroAd). We suspect that those applications switch from one
module to another, depending on the user’s device environment
such as country or carrier, to improve the revenue.

Figure 2 shows the cumulative frequency distribution of
HTTP host destinations of our applications. From this, we
can confirm that most of the targeted applications connect to
multiple servers. In our examination of the HTTP host destina-
tions, we found that 81 applications (7%) have 1 destination,
885 applications (74%) have up to 10 destinations, and 1,006
(90%) application have up to 16 destinations. The average
number of destinations was 7.9. One application included
an embedded browser, and thus had the largest number of
destinations at 84.

Table III shows the number of HTTP packets, applications,
and HTTP host destinations that are touched by sensitive
information, where sensitive information is considered to
be: UDIDs (IMEI, IMSI, SIM Serial ID, and Android ID),
UDIDs hashed values, and CARRIER names. IMEI refers to
the assigned device number, IMSI to the assigned telephone
service subscriber number in the SIM card, SIM Serial ID
to the assigned SIM card number, and the Android ID to
the assigned Android instance number, which is generated at
Android’s initial boot. The Android ID is the most frequently
used identifier. We also found many examples of sensitive
information being sent to the same destination. For example:
“ad-maker.info”, “mydas.mobi”, “medibaad.com”, and “adlan-
tis.jp” expect IMEI and Android ID; “zqapk.com” expects
IMEI, and SIM Serial ID, and Carrier name; and “googlesyn-
dication.com” and “admob.com” expect only Android ID.

From these results, we can see that the user’s sensitive
information is accessed by applications, which send it to
outside servers via the network. Since Android does not
provide the usage history of runtime applications’ permissions,
the users can not observe the application’s network behavior,
and thus can not prevent the sensitive information leakage.



TABLE II
HTTP packet destinations.THIS TABLE SHOWS THE NUMBER OF PACKETS SENT TO EACHHTTP HOST DESTINATION, AND THE NUMBER OF

APPLICATIONS THAT SEND PACKETS TO EACHHTTP HOST DESTINATION.

HTTP Host Destination # Packets # Apps
doubleclick.net 5786 407
admob.com 1299 401
google-analytics.com 3098 353
gstatic.com 1387 333
google.com 3604 308
yahoo.co.jp 1756 287
ggpht.com 940 281
googlesyndication.com 938 244
ad-maker.info 3391 195
nend.net 1368 192
mydas.mobi 332 164
amoad.com 583 116
flurry.com 335 119
microad.jp 868 103
adwhirl.com 548 102
i-mobile.co.jp 3729 100
adlantis.jp 237 98
naver.jp 3390 82
adimg.net 315 72
mbga.jp 1048 63
rakuten.co.jp 502 56
fc2.com 163 52
medibaad.com 1162 49
mediba.jp 427 48
mobclix.com 260 48
gree.jp 228 45

TABLE III
Sensitive Information.THIS TABLE SHOWS FOR EACH TYPE OF INFORMATION CONSIDERED SENSITIVE THE NUMBER OF PACKETS CONTAINING THE

INFORMATION, THE NUMBER OF APPLICATION THAT SEND THOSE PACKETS, AND THE NUMBER OF DESTINATIONS TO WHICH THOSE PACKETS GO.

Sensitive Information # Packets # Apps # HTTP Host Destinations
ANDROID ID 7590 21 75
ANDROID ID MD5 10058 433 21
ANDROID ID SHA1 1247 47 12
CARRIER 2095 135 44
IMEI (Device ID) 3331 171 94
IMEI MD5 692 59 15
IMEI SHA1 1062 51 13
IMSI (Subscriber ID) 655 16 22
SIM Serial ID 369 13 18

IV. A PPROACH

We present the following HTTP packet clustering and
signature generation methods to address the problem described
in Section III. The objective of our work is to, without an
Android framework modification, detect suspicious network
behavior specifically the transmission of sensitive information
by an application to an outside server. Additionally, our system
should be practical and lightweight for users to apply, and
should not require any special device privileges. Ideally,users
would install our application component to handle all the
network transmissions generated by other applications.

Our approach is to collect network traffic and generate
signatures from the clustering of the traffic. If sensitive
information is sent unencrypted over the network, it is a
fairly simple matter to detect such transmission. However,
the signature generation can help to counteract leakage in
polymorphic and obfuscation traffic. It is also effective against
encrypted traffic that uses the same encryption key over a

variety of modules or applies a cryptographic hash functionto
sensitive information.

A. Overview

Figure 3 shows our approach, which consists of two parts.
First, a separate server (shown in Figure 3a) collects appli-
cation traffic, clustering the data and generating signatures.
Second, an information flow control application on the user’s
device (shown in Figure 3b) fetches signatures from the servers
and manages the transmission of other applications’ network
traffic.

The server generates signatures by the following process.
First, it generates a payload check, which separates application
network traffic into two groups: one containing packets with
sensitive information, and the other not. Second, the server
clusters the group containing sensitive information based
on packet destination distance and contents distance, and
constructs a set of signatures using conjunction signatures
[14]. This process is most effective with accurate patternsof



Fig. 3. (a) The architecture of our clustering and signaturegeneration system.
(b) The information flow control application that uses the signatures generated
by (a).

sensitive information leakage, and our clustering and signature
choices reflect that. Using the HTTP packet distance is em-
phasizes patterns in HTTP packets, allowing us to distinguish
trends and distributions of HTTP packets. Thus a packet with
sensitive information will be clustered with other packets
containing sensitive information, generating a useful signature.
In order to generate such useful signatures, we define distance
to include both packet content and packet destination. This
broader definition causes results sent to the same server to
be clustered together, creating advertisement module specific
signatures. The information flow control application inspects
network traffic using the Android API and detects sensitive
information leakage using the our server generated signatures.
It does not require any special privileges.

B. HTTP Packet Destination Distance

The HTTP packet destination distances are calculated by
the packets’ destination IP addresses, port numbers, and HTTP
host domains. Given two HTTP packetspx andpy, we define
the HTTP packet destination distance as

ddst(px, py) = dip(px, py) + dport(px, py) + dhost(px, py).

Let HTTP packetpn destination be defined aspn =
{ipn, portn, hostn}, whereipn is a destination IPv4 address,
portn is the port number,hostn is HTTP host. The distance
in the above equation are defined as follows:

• Destination IP Address Distance: The distance between
destination IP addresses’ high bit is the longest matching
prefix of the binary representations. IPv4 addresses have
a 232 bit space, and IP address blocks are denoted
approximately by the upper 8 bit range. IP address blocks
are allocated to organizations by the National Internet
Registry and if the upper bits of IP addresses match
on separate packets, there is a high possibility that the
two destinations are managed by the same organization.

Therefore, we define the destination IP address distance
on packetspx, py as

dip(px, py) = lmatch(ipx, ipy)/32 ∈ [0, 1]

wherelmatch is a function returns a number of common
upper bits in two IP address.

• Port Number Distance: The distance between port num-
bers is a Boolean (matching or not). Port numbers have
a 216 bit space, and usually, specific port number is
reserved for services. We define the port number distance
on packetspx, py as

dport(px, py) = match(portx, porty) ∈ {0, 1}

wherematch is a function returns 1 on matching ports,
and 0 on different ports.

• HTTP Host Distance: We define the HTTP host as the
character string of the FQDN. Thus, the distance between
HTTP host domains can be computed using the generality
method to determine their edit distance. We define the
HTTP Host distance on packetspx, py as

dhost(px, py) =
ed(hostx, hosty)

max(len(hostx), len(hosty))
∈ [0, 1]

whereed is a function which returns an edit distance re-
sult, len is a function which returns a length of character
strings, andmax is a function which returns the greater
of its two input values.

C. HTTP Packet Content Distance

The HTTP packet content distance is computed using the
request-line, cookie, and message-body fields of the HTTP
header. Given two HTTP packetspx and py, we define the
HTTP content distancedheader(px, py) as

dheader(px, py) = drline(px, py)+dcookie(px, py)+dbody(px, py).

Let HTTP packetpn contents be defined aspn = {rlinen,
cookien, bodyn}, where rlinen is request-line,cookien is
cookie,bodyn is message-body. These contents are character
or binary strings. In order to accurately compute a distance,
we apply the normalized compression distance (NCD) [15]
algorithm, which is based on Kolmogorov’s complexity, to
calculate the closeness of two strings without any context
dependency. The NCD of any two character strings is defined
as

ncd(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))

whereC(x) is a function which compresses a character string
x, then returns its length. We define the distance between
content components of HTTP packetspx, py as

ddata(px, py) = ncd(datax, datay) ∈ [0, 1]

wheredata corresponds to request-line, cookie, and message-
body respectively. After eachdata has been computed, they
are combined into the overall distance.



D. Hierarchical Clustering

Hierarchical clustering uses group averages for iterative
calculation and computes the proximity of clusters with HTTP
packet distance (HTTP packet destination distance and HTTP
packet content distance) as a heuristic. It then assigns a cluster
to each HTTP packet, and iteratively composes new clusters
from the nearest distance of HTTP packet pairs until there
is only one cluster. Given two HTTP packetspx and py, we
define the HTTP packet distance as

dpkt(px, py) = ddst(px, py) + dheader(px, py)

using the formulae from sections IV-B, IV-C to computeddst
and dheader. Given two clustersCx and Cy , group average
distance is defined as

dgroup(Cx, Cy) =
1

|Cx||Cy|

∑

px∈Cx

∑

py∈Cy

dpkt(px, py).

In a dataset ofN HTTP packetsH = {pi}i=1..N , we apply
hierarchical clustering to a subsetP of sizeM : Pj,j=1..M ⊂
H, using the following method:

1) Assign each HTTP packetpk ∈ P to clusterCk. At the
end of this step,C = {Ck}k=1..M is the set of defined
clusters.

2) Chose any clusterCx ∈ C, and compute the distance
to all other clustersCy,y=1..M ∈ C, x 6= y using the
cluster distancedgroup.

3) Select the clusterCy that is the closest toCx. Create
a new clusterCz = {Cx, Cy} and add it toC, then
removeCx andCy

4) Repeat untilC has one cluster.

E. Signature Generation

We generate a conjunction signature set from the hierar-
chical clustering result, which is a dendrogram of the HTTP
packet group. A conjunction signature set contains the invari-
ant tokens that describe the longest common substrings in the
dendrogram. Signatures each represent a feature of the cluster.
That is, they reflect sensitive information as a invariant token.
Given a dataset ofN HTTP packetsH = {pi}i=1..N and
a subsetPj,j=1..M ⊂ H used to generate (as described in
Section IV-D) dendrogramC, which has the nesting structure
characteristic of clusters, we generate the conjunction signa-
ture set using the following process:

1) Select the top of clusterCi ∈ C.
2) Compute a signatureSi as longest common strings of

HTTP contents inCi.
3) RemoveCi from C and repeat for all clusters inC.

V. EVALUATION

A. Experimental Setup

We collected network traffic from 1,188 free applications
running on an Android 2.3.6, Galaxy Nexus S, from January
to April, 2012. The application set was as previously described
in Section III. Each application was run manually for 5 to 15
minutes on the device. We attempted to test a every possible

Fig. 4. Detection Rate of Sensitive Information Leakage

application function. We generated the data manually, since
it is difficult to automatically test an application that requirs
user interaction such as entering passwords and other user
identification, or correct screen taps for a game.

The resulting dataset of application network traffic con-
tained 107,859 GET/POST HTTP packets. For this experi-
ment, we manually separated the dataset into a suspicious
group and a normal group for the evaluation of our signatures’
detection rate. The suspicious group consisted of packets
containing sensitive information. The normal group was made
up of those containing non-sensitive information. Again we
considered UDIDs (Android ID, IMEI, IMSI, and SIM Serial
ID), hashed UDIDs (MD5, SHA1), and Carrier names to be
sensitive information.

In this experiment, we were not concerned with encrypted
packets and obfuscation packets except the hashes mentioned
above. Consequently, the normal group contained these pack-
ets. The suspicions group consisted of 23,309 HTTP packets,
and the normal group contained 84,550 HTTP packets. The
details of the suspicious group are shown in Table III. We
selectedN HTTP packets at random out of the suspicious
group for signature generation, whereN was increased from 0
up to 500 in intervals of 100. Finally, we applied the generated
signatures to the dataset in its entirely to see how accurately
they could identify packets containing sensitive information.
We evaluate signatures for accuracy detection rate.

B. Experimental Results

Figure 4 shows the results of our experiment. approach. We
evaluated the percentage of true positives, false positives and
false negatives for varying values ofN .

True Positive: a correctly detected packet containing sen-
sitive information. The percentage of true positives was cal-
culated according to the following equation:

TP =
# of detected sensitive information packets−N

# of sensitive information packets−N



There were 23,309 sensitive information packets in the dataset
for our evaluation. Our system produced 85% true positives
at sampling sizeN = 100. It grew beyond 90% byN = 200,
with the best result being 94% atN = 500. These results show
that true positives rise with an increasing number of signature
generating sensitive information packets, therefore, signatures
generated from more packets cover a wider common pattern
of information leakage.

False Negative:a sensitive packet that was not correctly
detected. We calculated the percentage of false negative results
using following equation:

FN =
# of undetected sensitive information packets

# of sensitive information packets−N

As stated above, there were 23,309 sensitive packets in our
dataset. In this experiment, there were 15% false negativesat
N = 100, only 8% or less at more thanN = 200, and finally
5% at N = 500. Thus, effective detection of information
leakage is improved by increasing the number of sensitive
information packets used for generating signatures.

False Positive:a non-sensitive packet incorrectly detected
as sensitive. We calculated the percentage of false positives
using following equation:

FP =
# of detected non-sensitive information packets

# of non-sensitive information packets−N

This value is important for an evaluation of our system’s
signatures detection rate in terms of usefulness. If our system
produces many false positives, users will be continually both-
ered by unnecessary warnings and prompts. This dataset had
84,550 non-sensitive information packets. The signaturesfrom
this dataset produced 0.3% false positives atN = 100, 0.9%
atN = 200, and eventually 2.3% atN = 500. We can see that
verbose signatures are generated by increasing the number of
clustering packets. We postulate that large signature generating
sets produce signatures that detect packets without relation to
their information leakage.

VI. RELATED WORK AND DISCUSSION

Other approaches to preventing sensitive information leak-
age include taint tracking and permission framework modifi-
cations. In this section, we compare our approach with current
research results, and discuss the limitations of our scheme.

Several studies have analyzed the security and privacy
concerns of the potential sensitive information leakage in
Android and iOS applications [1], [2], [16], [17]. Other works
have focused specifically on advertisement modules’ access
to device identification number and location information and
their ability to send it over the network [3], [4]. To address
this problem, fine-grained access control techniques have been
proposed. These projects implement enhancements to the
Android permission policy [18], [19], [20]. Taint tracking
can also accurately detect sensitive information leakage and
control the information flow of applications [1], [7]. These
approaches have shown that dynamic analysis of the trace
details of applications’ behavior on the Android framework

can ameliorate the problem. It has the advantage of having
low overhead with very few false positives, minimizing the
notifications issue to the users. Separating the advertisement
module’s permissions from application’s can also reduce the
privacy risk [10], [11]. If the user does not grant permissions to
the advertisement module, he can be sure that advertisement
module does not access sensitive information on the device
and send it over the network. However, all these approaches
require Android framework modifications. Our approach of
generating signatures that can identify sensitive packetswith
a small percentage of false positives does not require any
modifications to the Android framework, or any escalation
of user privilege on the Android device, making our system
simple and immediately applicable. It can also be used with
previous works should the proposed modifications be imple-
mented or with anti-virus applications which are designed to
detect malware.

Generating signatures from clustering is not a new idea.
Previous work on signature generation used clustering focused
on the similarity of network traffic or on the characteristics
of applications, specifically, targeting malware and malicious
network traffic [21], [22], [23], [24], [25], [26], [27]. Other
proposals regarding clustering network destination and traf-
fic individually intend to comprehend some aspect of an
application’s behavior [28], and signature generation uses
include computing HTTP packet statistics contents to improve
detection rates [29], similar to our approach.

Clustering in general is useful for pulling together patterns
in large amounts of data, but the number of the generated
signatures tend to increase with cluster size, and can produce
signatures that match most network packets (e.gPOST *,
GET * , * HTTP/1.1 ), if the signature generation is applied
carelessly. For this reason, it has been difficult for a signa-
tures approach to achieve high detection rates using a real
dataset. Probabilistic signatures [14], [30], [31] might improve
detection of information leakage on Android applications,and
we hope to include them in our scheme in future work.
Currently our use of HTTP packet destination distance allows
us to generate more useful signatures. A concern with using
the destination distance is that two HTTP packets may have
close IP addresses but be owned different organizations, thus
generating an erroneously small distance is still very small.
While our current implementation does not specifically handle
this case, we feel that using a registration information process
such as WHOIS could be helpful for the verification of IP
addresses and domain names, which could be used to confirm
the distances. Our current approach also does not focus on
encrypted or obfuscated traffic. It can be difficult to detect
sensitive information in SSL traffic but if an advertisement
module uses one encryption key among applications or applies
a cryptographic hash function to sensitive information, our
approach can detect it.

Privacy preserving advertisement approaches which do not
collect users’ behavioral information from devices for targeted
advertising have also been proposed [32], [33]. In spite of these
proposals reducing users’ privacy risks, they are not being



utilized practically.

VII. C ONCLUSION

Advertisement services are widely accepted among appli-
cation developers. However it is still important to investigate
the behavior of an application with regards to security and
privacy. We have shown that many Android applications re-
quire permissions for sensitive information access and network
features, and that among them are applications that connect
to many outside servers without the user’s acknowledgment.
Furthermore, we have observed that applications’ network
behavior includes a large amount of sensitive information,
particularly, UDIDs and Android ID which are immutable
identifiers. We have proposed a novel clustering method us-
ing HTTP packet distances which include both the distance
between HTTP packet destinations and between HTTP packet
contents. Using that clustering method in combination with
signature generation in our dataset of 1,188 applications and
107,859 packets, which included 23,309 sensitive information
packets, we were able to achieve 94% accurate detection of
packets containing sensitive data with only 3% false positives.
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