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Abstract— Although many decision-making problems involve
uncertainty, uncertainty handling within large decision support
systems (DSSs) is challenging. One domain where uncertainty
handling is critical is emergency response management, in
particular nuclear emergency response, where decision making
takes place in an uncertain, dynamically changing environment.
Assimilation and analysis of data can help to reduce these
uncertainties, but it is critical to do this in an efficient and
defensible way. After briefly introducing the structure of a typical
DSS for nuclear emergencies, the paper sets up a theoretical
structure that enables a formal Bayesian decision analysis to be
performed for environments like this within a DSS architecture.
In such probabilistic DSSs many input conditional probability
distributions are provided by different sets of experts overseeing
different aspects of the emergency. These probabilities are then
used by the decision maker (DM) to find her optimal decision.
We demonstrate in this paper that unless due care is taken in
such a composite framework, coherence and rationality may be
compromised in a sense made explicit below. The technology we
describe here builds a framework around which Bayesian data
updating can be performed in a modular way, ensuring both
coherence and efficiency, and provides sufficient unambiguous
information to enable the DM to discover her expected utility
maximizing policy.

I. INTRODUCTION

Most decision analyses require numerical inputs the DM is
unsure about. This uncertainty can derive from physical ran-
domness, which can be modeled using various methodologies,
from judgmental estimates of quantities she is unsure about,
or from many other sources as noted in [1]. In particular,
in the case of an off-site nuclear emergency, uncertainty can
derive from, for example, weather forecasts, observation errors
in monitoring data, the degree of public agreement about
the efficacy with any countermeasure, and the quality of
the models used such as those for atmospheric dispersion.
The need for uncertainty handling in any nuclear DSS has
been recognized for some time [2]. In this work it was also
demonstrated that, at least in this context, it is possible to
propose an entirely Bayesian solution. However in [3] it
was recognized that the development of methodologies for
uncertainty handling for use in nuclear DSSs that are both

formal and practical were still in their infancy. During the
intervening years technologies applying Bayesian techniques
to this area ([4], [5]) have advanced sufficiently to ensure that
if fully formal methods are developed then it will be possible
to actually implement those. So it is now timely to revisit this
problem. In more recent years some progress has been made in
uncertainty handling for nuclear emergency management, for
example by including statistical methodologies in components
of DSSs that previously were deterministic, as shown in
[6]. Also data assimilation using the appropriate statistical
methodologies has been included in some analyses, as for the
atmospheric dispersion of the radiation [7], with the main aim
of reducing uncertainty. However, there still exists no complete
formal theory about how this uncertainty should be propagated
over the system. In particular, to our knowledge there does not
exist a systematical study of the causal link between different
statistical models inside a DSS, which can help in recognizing
all the uncertainties underlying the system under study. In this
paper we describe the development of some new theoretical
frameworks which will eventually lead to a defensible as well
as feasible methodology for uncertainty handling, that will
provide the necessary structure for integrating a network of
probabilistic models into a DSS for addressing emergency
management in situations like the one illustrating this paper.

In the context of nuclear emergency management the DSS is
typically made up of several different components expressing
best expert judgment often over very different domains. In
such a situation the composite DSS needs to coherently
network together judgments about the quantities that are nec-
essary to perform the analysis, provided by different experts
overseeing different areas of the problem. For example, an
assessment of the safety of a nuclear plant will be based
on expert judgments of nuclear physicists and engineers who
build their own decision support model. However, the experts
that are needed to assess what might happen after an accidental
release has happened are different. There experts will be
atmospheric physicists and local weather forecasters to inform
the spread of the contamination, combining their knowledge



into a different component. Yet another DSS will build on the
effect this spread of contamination might have, because of the
exposure of humans, animals and plants, and because of the
introduction of contaminated items into the food chain. At the
very end of the chain of consequences doctors and geneticists
can be asked to provide information about the impacts of the
disaster to health on the population as a function of these
different exposure patterns: again experts with very different
domain knowledge.

From the description above it is therefore apparent that in a
DSS many heterogeneous aspects need to be accommodated to
include judgments from different experts with heterogeneous
backgrounds. Because of the huge dimensionality of this
class of problem, it would be highly desirable to obtain
a modular structure in which every aspect of the overall
problem was modeled and subsequently updated independently
and in which the relevant experts could provide judgments
autonomously. Critical properties needed by such a network
would be the abilities to appropriately encode the relevant
uncertainty associated with each component, to propagate
these uncertainties over the system and so infer the best overall
choice which accommodates all quantified uncertainties and
structure in a typical user’s utility function.

In the following sections we will give conditions when
such modularity can be ensured both a priori and after the
collection of data. We note that, assuming that the experts
provide rational and coherent judgments about their area of
jurisdiction, then, by standard decision theory (see [9] for
example), the decisions based on these judgments will be
rational when the system is modular. In [10] it was noted that
after a large scale disaster, for example after a nuclear accident,
the lack of integration and collaboration among all the involved
people threatens to cause further negative consequences to
the event: in particular high levels of anxiety and stress. This
kind of threat to rationality can be directly managed through
developing the types of protocols we address here, permitting
the people involved to be required only to provide quantitative
judgments within their own area of expertise and still be
confident that their contributes, when combined with others’,
will provide a coherent picture of the ongoing emergency.
They are then able to concentrate on their own element of the
problem, to collaborate with experts with the same background
and to combine their diverse judgments into a consensual joint
approval of the potential risks associated with the features of
the problem they oversee.

To achieve this within a Bayesian paradigm, a DSS needs
to be able to use agreed collective beliefs about the qualitative
relationships in the process, pasting together the outputs of the
different modules, each of them having inputs from different
sets of experts, into a single probability model. The DM would
then be able to use these statements as her own. Then, when
certain conditions hold, she would have sufficient input to
be able to behave as a single expected utility maximizer.
Furthermore she can be confident that the input probabilities
she uses are appropriately informed by the judgments of the
relevant experts. Once in place she would therefore be able to

argue that she has come to her decision drawing upon as fully
as possible the data relevant to the decision making process in
a way advised by these experts, and so defend her decisions
to an external regulator, the general public and politicians.

The paper is structured as follows. Section II, after briefly
introducing the architecture of a typical DSS for nuclear
emergencies, discusses the need of uncertainty handling in
such a system. Section III then defines the notation, reviews
the main background material and explains the statistical
setting used to model uncertainty. In Section IV an example
representing a nuclear DSS is presented to illustrate the
conditions necessary to ensure the modularity property needed
for such a system. Section V presents a very simple scenario in
which the omission of the uncertainty leads to wrong policies.
We conclude the paper with a discussion of some ongoing
developments in this area.

II. THE NEEDS OF A NUCLEAR DSS

In the last 25 years, subsequently to the Chernobyl accident,
there has been an increasing number of European projects
which have aimed to develop a joint DSS to improve the
emergency management of any future accidental release of
radioactivity. One of the DSSs developed during these collab-
orations was RODOS, which, as other nuclear support systems,
differed from traditional DSSs in the following aspects:
• It was designed to work in several different contexts,

depending on where decisions needed to be made;
• It had a client/server architecture, built on a list of

modules connected via a communication interface;
• It was designed to explicitly address and solve the issue

of uncertainty handling.
Among the other DSSs to support decisions in the case of

radioactive contaminations, more recently MOIRA ([11],[12])
and its newest version MOIRA-PLUS ([13]) provide support
for the identification of optimal remedial strategies to restore
water systems after accidental introduction of radioactive
substances.

Before examining how uncertainty can be incorporated
into the system, we first present the conceptual architecture
underpinning RODOS. As described in [14], this was split
into three distinct subsystems:
• Analysing Subsytem (ASY) modules which processed

incoming data and produced forecasts;
• Countermeasure Subsystem (CSY) modules which sug-

gested possible countermeasures;
• Evaluating Subsystem (ESY) modules which ranked these

countermeasures.
In [3] it was argued that this architecture corresponded well
with the Bayesian paradigm for decision-making. The ASY
modules build the statistical models underlying the system,
the CSY modules identify actions and calculate their potential
consequences and the ESY modules compute their expected
utilities.

Fig. 1 summarizes this architecture. On the right of the
diagram we note two different sets of available actions: one for
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Analysis and forecast of the development

of the contamination based on
data and models’ outputs

Simulation of the effects of
the available countermeasures, judgment
of their attainability and evaluation of

the consequences of each countermeasure.

Evaluation and rating of the possible
countermeasures by considering
their positive and negative sides.

Emergency Actions:
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Protective measures;
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Purification;

Agricultural measures;

Fig. 1. Conceptual structure of RODOS after [8]

the short term and the other for the long one. Thus RODOS,
like certain other nuclear DSSs, provided decision support for
all the different phases of a nuclear accident. As time passes
the system arrives at different decision points where it must
select three modules to form an ASY, CSY and ESY chain
appropriate to the context of the decision. In such a DSS
it is necessary a temporal control system which manipulates
modules in response to the user’s requests or to some pre-
programmed sequences of desired analyses. These functions
were performed by the so called Temporal Support Functions
(TSF), providing the flexibility to change operating behavior
according to the current phase of the accident, selecting the
most suited models and processing and storing incoming data
in a suitable way.

Another fundamental element of such a composite DSS is
the graphical representation of the forecasts or the estimates
deriving from the probability models included in each module,
which is handled by the GUI unit. Some of these features
are discussed in [15] and references therein. These help the
DM having a much clearer idea of how such a complex DSS
works, increasing her appreciation and confidence about the
results that it provides.

In an integrated DSS like the one described above, it is
tempting solely to model expectations of inputs into such a
system and treat them as known. However, if there is signif-
icant uncertainty associated with such input, then it is well
known that such methods can grossly distort the assessment
of the comparative efficacy of various competing policies. This
will be demonstrated below through a simple example. So to
properly inform DMs it is vital to incorporate uncertainty into
such a DSS.

Sometimes this uncertainty will be intrinsic to a particular
module within the panel of domain experts. For example, an
estimate of the likely release of radioactivity before it actually
occurs is provided by the Source Term Module (STM), which
consists of a directed statistical graphical model (see [16] for
an introduction) as shown in [3], while one of the available
atmospheric dispersion deposition modules was RIMPUFF, a

puff diffusion model (see for example [17]). In implemented
systems the complexity of the domain demands that such
methods are numerical, although occasionally it is possible
to perform such uncertainty analytically (see below). We note
that the component models may be chosen subsequent to a
careful model selection over competing probabilistic models,
for example using MAP model selection methods, see e.g.
[18]. However, for simplicity we will assume in the following
that everyone in a given panel of experts has agreed on a single
selected model for each module.

At other times expert judgments are encoded in terms of a
collection of sparse sets of simulators over an highly complex
deterministic system. This is typical of modules associated
with climate change. In the context of systems describing
the developing of nuclear incidents such modules might be
those which predict the effect of the nuclear accident on the
food chain. In these cases uncertainty needs to be assessed
by the appropriate panels of analysts using methodologies
based on emulators which produce such uncertainty measures,
analogous to those developed for climate change [19]. In other
scenarios there is no model based methodologies possible, so
that uncertainty measures need to be elicited directly from the
panels.

However uncertainties are encoded by the single panels,
these uncertainties will need to be communicated to panels
using the outputs of that module as the inputs to their own
forecasting module. For example uncertainties about the extent
of release from a nuclear plant as well as point predictions
of point releases will need to be communicated to the panel
responsible for the prediction of the contamination spread
across the locality. In reality the methodologies behind the
calculation of these uncertainties can be very complex. In
this paper we will however treat them as a given, centering
the analyses on illustrations of what they might look like in
very simple situations. This will allow us to concentrate more
fully on transparently illustrating how these assessments can
be collated, processed and propagated through the network of
expert systems.
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Fig. 2. Plausible network for the modules of a nuclear DSS. The gray vertices are overseen by the engineering panel; the green ones by the environment
panel; the blue ones by the biological panel; the brown, red and yellow ones by the political, medical and economical panels respectively

As we will formalize in the following section, the network
of panels of experts can often be conveniently depicted through
a directed acyclic graphical model (DAG), here associated
to the common knowledge of all involved people in the
development of the DSS. With certain additional assumption
this DAG has a fully formal semantic, implying that certain
analytical deductions can already be made by the group. A
plausible example of such a network that may describe the
whole system is presented in Fig. 2, together with a division
of the nodes into areas of interest for different sets of experts.
Subsequently in this paper we will use this network to illustrate
our methodology.

We will also illustrate below the issue of exactly which
uncertainties are needed by the composite system to be deter-
mined by the purpose of the whole decision support. In partic-
ular we argue in this paper that ideally this should be assessed
through the structure of the (multi-attribute) utility function,
which is used to represent and analyze the preferences of
the experts and consequently of the DM. There has been
an increasing interest in using multi-attribute utility theory
(MAUT) in DSSs as noted by the analyses drawing on [20]
and [21]: the first studied the contributions of multi-criteria
methods (among which MAUT) to DSSs, while the second
evaluated the current state of implementation of these methods
in DSSs. Both the articles noted the advantages in using such
methodologies in the context of supporting decision-making.
We here apply these ideas to this complex and necessarily
distributed environment.

III. SETTING AND NOTATION

We start by introducing the notation necessary for the fol-
lowing. Consider a set of decisions d ∈ D available at a certain
decision point and let Y = (Y1, . . . ,Yn) ∈ Y = ×n

i=1 Yi

be a random vector of measurable quantities parametrized by
θ ∈ Θ such that fY(y |θ) is a joint density of the model.
Here Yi, for i = 1, . . . , n, is one of the n modules that are
included in the DSS. Let {G1, . . . , Gm} denote m panels of

domain experts, which input the relative information to the
DSS necessary for the DM to make the optimal decision. Let
also θ = (θ1, . . . ,θn) such that θi ∈ Θi and Θ = ×n

i=1 Θi.
In a Bayesian framework we assume the parameter vectors
θi to be random vectors with density function fi(ai(d)), in
which ai(d) ∈ Ai are the hyper-parameters, for i = 1, . . . , n.
Note that we are assuming that the random variables of the
systems are different for each decision available, with the
hyper-parameters being allowed to be functions of d. Each
module is under the sole jurisdiction of its associated panel,
providing beliefs about the distribution of the appropriate
vectors Yi(d)|Zi(d), where Yi(d) and Zi(d) are disjoint
(Zi(d) possibly null) sub-vectors of Y(d). Depending on
the situation, these sets of experts’ beliefs may be expressed
as conditional densities, as in a full Bayesian analysis, or
alternatively, for example, as only some lower order moments
of the conditional distributions.

With this notation we can denote the quantities of the
network in Fig. 2 as:

• G1: engineering panel;
• G2: environment panel;
• G3: biological panel;

• G4: political panel;
• G5: medical panel;
• G6: economical panel;

• Y1: power plant;
• Y2: source term;
• Y3: air dispersal;
• Y4: water dispersal;
• Y5: deposition;

• Y6: animal absorption;
• Y7: human absorption;
• Y8: human health;
• Y9: political effects;
• Y10: costs.

Panel G1 (gray) oversees Y1 and Y2; panel G2 (green)
oversees Y3, Y4 and Y5; Y6 and Y7 are jurisdiction of G3

(blue); G5 (red), G4 (brown) and G6 (yellow) are responsible
for Y8, Y9 and Y10, respectively. Assume also that the DM’s
decision space D for this example consists of:
• d1: do nothing;
• d2: tell the population to shelter;



• d3: deliver protective measures;
• d4: temporarily evacuate;
• d5: leave the area forever.
Consider also R = (R1, . . . ,Rn) ∈ R a set of attributes

such that Ri = Ri(Yi(θ), d) (note that also θ depends on
d) and a utility function U : R × D → [0, 1]: thus, U =
U(d,Ri(Yi(θi)), i = 1, . . . , n). Also the utility function and
the rewards can depend on the decision d. The attributes Ri’s
are introduced for those cases where it is unclear or infeasible
to elicit preferences over some Yi’s. Because our focus is the
uncertainty handling and not the optimization problem, in the
following we will suppress the dependence on d. The reader
should bear in mind though that, depending on the situation,
some of the quantities involved may vary across the decisions
available.

For the preferences of the DM about the composite system
to be expressed in terms of the preferences over different
domains of the problem, it is helpful for the composite utility
function to factorize respecting the division of the vector Y
into the sub-vectors overseen by the different panels: this
concept will become clearer in the following section.

Moreover a system like the one above will usually be
dynamic. However, again to limit the technicalities in this short
paper we will restrict our discussion to the cross sectional/non-
dynamical aspects of the support system. In fact it can be
shown that dynamic analogues of the analysis given below
can be developed in a straightforward albeit rather technical
manner. So the cross sectional analysis we present here
forms a template for more nuanced applications. We therefore
imagine the DM to be at a particular decision point, for
which the vector Y represents all the relevant modules to the
problem. Moreover, at this particular time point, we assume
that a dataset x becomes available, collected from this non-
dynamical system. We will discuss at a later point how the
ideas we develop in this paper can be generalized into a
dynamic framework.

A. The graphical input/output structure

In the previous section we noted that the outputs of some of
the modules can be used as inputs for subsequent ones. These
relationships between modules can all be depicted through a
graphical model where, if the output of module j is used as in-
put for module i, a directed edge from the vertex representing
j to the one of i is drawn. If the resulting graph fulfills some
constraints then it can be shown that it will be a Bayesian
network (BN) (see [22]): now a widely used framework to
express beliefs in terms of probabilities. In a Bayesian system
this structure forms the framework over which a coherent
Analyzing Subsystem can be build. The great success of these
graphical models is due to the evocative and intuitive way
in which they depict relationships between random variables
and to the fast learning and inferential routines that can be
performed over them. Let Zi be the modules whose output is
used as input for the module corresponding to Yi and denote
Qi = Yi−1 \Zi, where Yi−1 = {Y1, . . . ,Yi−1}. With this
further notation we can define a BN.

Definition 1: A Bayesian network for the random vector
Y = (Y1, . . . ,Yn) consists of a set of n − 1 conditional
independence statements of the form Yi ⊥⊥ Qi|Zi, together
with a directed graph G having no directed cycles. The directed
graph has vertex set V (G) and edge set E(G), where

V (G) = {Y1, . . . ,Yn} and
(Yi,Yj) ∈ E(G)⇐⇒ i ∈ Zj , 1 ≤ i < j ≤ n.

Note the assumption of having a numerically ordered vertex
set: that is, (Yi,Yj) ∈ E(G) only if i < j. Note also that
Yi ⊥⊥ Qi|Zi reads that the vector Yi is independent of Qi

given Zi: so that the only information to infer Yi from Qi

& Zi is from Zi. Given a directed acyclic graph a BN can be
alternatively defined by the recursive factorization formula

fY(y) =

n∏
i=1

f(yi |Zi = zi),

where yi and zi are generic realizations of the vectors Yi and
Zi respectively.

Every conditional independence statement of a BN can be
deduced from the topology of its graph after a simple trans-
formation, called moralization, as stated by the d-separation
theorem [16]. Recall that a vertex Yi is a parent of a vertex
Yj , and Yj is a child of Yi in G if (Yi,Yj) ∈ E(G).
The set of all parents of a vertex Yi is the parent set,
denoted with Pa(Yi), and, for our construction, it corresponds
to Zi. The moralization process simply joins with an edge
two vertices in the same parent set that are not connected
for an appropriate subset of the graph G. These conditional
independences are usually called Markov conditions and they
state that for every vertex Yi in V (G) we have that Yi

is independent of Y \(Dn(Yi) ∪ Pa(Yi)) given Pa(Yi),
where Dn(Yi) corresponds to the descendant set of Yi. The
descendant set of Yi consists of those vertices Yj for which
there is a directed path on the graph starting from Yi and
finishing in Yj .

In Section II we noted that uncertainty can be included
into the DSS by introducing non-deterministic relationships
between the modules. In the graphical context, one of the
simplest such model defines, for example, a multivariate Gaus-
sian distribution over the network, through a set of regression
relationships. In the causal literature these are also called
structural equations. For example in the simplest case when
the output variable Yj is a univariate Gaussian variable then,
for j = 1, . . . , n:

Yj = θ0,j +
∑
i

θi,jYi +Wj , ∀ i ∈ Pa(Yj), (1)

where θi,j ∈ R, for i < j, are regression parameter and
Wj ∼ N (0, ψ2

j ) independent of the Yi’s and of the other
Wi’s, for i < j. Note that the Gaussianity of the system is
exclusively induced by the random errors Wi, i = 1, . . . , n.
Thus, different distributions can be envisaged by changing
the density function associated to the errors. However, as
asserted by the central limit theorem, many situations can be
approximately modeled using Gaussian distributions without



inconsistencies. We note also that the Gaussianity assumption
is in no way central to the general development below. It does
however provide a class of probability models whose uncer-
tainty handling is particularly straightforward to analyze and
so provides us with simple explicit examples demonstrating
certain points we need to make.

For Bayesian uncertainty handling each of the parameters
θi needs to be treated as a random variable with its own
distribution expressing prior knowledge and data provided by
the associated expert panel. For the purposes of this paper,
we define only some of the moments of the parameters. Let
E(θi,j) = ai,j and V(θ0,j) = τ0,j for i = 0, . . . , n − 1
and j = 1, . . . , n with i < j. Let also E(ψ2

i ) = λi for
i = 1, . . . , n. We note that in fact in the current applications
of this technology it is usually appropriate to treat these
parameters as random processes which change during the
progress of the emergency. This generalization is in fact quite
straightforward using the class of multi-regression dynamic
model [23]: henceforth assume these are fixed in time over
the period of the emergency management.

When a graphical model expresses the beliefs of a single
expert the common and often default choices are the so called
global and local independence assumptions (see [24],[25]).
The global independence assumption states that, if θi and θj
are the parameters of Yi and Yj respectively, then θi ⊥⊥ θj ,
for all the possible couples i, j. The local independence as-
sumption on the other hand states that if θi is a random vector,
then its components are independent of each other, for i =
1, . . . , n. It can be shown that these two assumptions together
imply that all the parameters are mutually independent. It is
shown in [26] that inferences are usually robust to violations
of this assumption if the supporting data sets the panel receives
are informative. Various technical issues associated with this
independence assumption and its generalizations are discussed
in [27].

Under these conditions, the following theorem, from [28],
shows how to derive the full distribution of the system, when
the variables are defined as in (1).

Theorem 2: Let Y = (Y1, . . . , Yn) be a random vector,
where every Yi’s is defined as in (1). Let Ψ be the diagonal
matrix Ψ = diag(ψ2

1 , . . . , ψ
2
n) and let L be an n × n upper

triangular matrix defined as

Lij =

{
θi,j , if {i, j} ∈ E(G),
0, otherwise.

Set also B = I − L, where I is the n × n identity matrix.
Then Y ∼ N (B−T θ0,Σ), where θ0 = (θ0,1, . . . , θ0,n) and
Σ = B−T ΨB−1.

Since the Gaussian distribution is fully described by its
first two moments, an alternative way of stating Theorem 2
is in terms of recursive expressions of the expectations and
of the covariances/variances of the vertices. Then the mean
relationships are simply obtained by plugging in the expected
values for their associated variables. This gives us that

µj = E(Yj) = θ0j +
∑
i

θi,jµi, ∀ i ∈ Pa(Yj).

In order to compute the variances, which will capture the
uncertainties about these variables, we first need to derive the
covariance relationships between any two random variables.
For k < j, call

σk,j = Cov(Yk, Yj) =
∑
i

θi,jσi,k, ∀ i ∈ Pa(Yj). (2)

It then follows that the required variances can be calculated
using formula (2) as

σj,j = V(Yj) =
∑
i

∑
k

θi,jθk,jσi,k + ψ2
j , ∀i, k ∈ Pa(Yj).

Note that since each parameter θi,j in these expressions is
itself a random variable, it will also have its own associated
uncertainty related, for example, to the quality of the estimate
the panel can make of it. However, these other uncertainties
can also be folded into these expressions in a straightfor-
ward way exemplified later in the paper. Our underlying
methodology can be illustrated using the appropriate algebraic
relationships like the ones above associated both with the
underlying graphical structure and the assumed form of utility
functions.

B. Causality and learning

In order to incorporate information deriving from experi-
mental evidence each panel might have available, it has now
been recognized that the network like the one described above
is not simply a BN, but a causal Bayesian network (CBN)
[22]. The relevant concept of causation leading to the CBN
was defined in [29]. It has also been recognized that even
when the network is not assumed to be causal, a CBN can be
derived as a natural extension of a BN in which the global
independence assumption is met, as shown in [30]. In a CBN
each arc can be interpreted as a direct causal influence between
a parent node and a child node, relative to the other nodes in
the network: an assumption which has some plausibility within
this type of applications (see [22]).

The intrinsic hypothesis behind a causal model is the so-
called manipulation property [31]. This states that if one of
the variables/vectors of the system, Yi say, is controlled and
set to a particular value, then the outcomes of the remaining
variables would occur as if the outcome of the i-th vertex was
not controlled. There are often strong arguments for believing
that this causal hypothesis will hold in a given scenario.
It is this property that allows us at a preliminary stage to
conduct experiments, manipulating some of the inputs to each
module in a designed experiment and observing the results of
these actions, which we assume would be just like what we
might observe after a real accident. We note that in practice
this assumption of perfect correspondence between designed
experiments and observational studies - implicitly a causal
hypothesis of the type discussed above - is almost always
made in inferences about the inputs of emergency responses
in contexts like these.

The databases resulting from these manipulations can be
used to start populating the DSS with supporting experimental



evidence and also to derive the topology of the network
connecting the modules. In [32] a Bayesian method to learn
CBNs is introduced, which, taking as input a dataset, produce
then a causal graphical model based on the data, which
can be both observational and experimental. Thus, using this
algorithm, a network for the modules can be derived, over
which the relative experts provide the required conditional
judgments.

Suppose henceforth we now assume that all the users of the
DSS agree on the graphical statistical model which connects
the modules. This, for example, will be implicit if they accept
the network architecture of the composite system.

C. Bayesian updating

The collection of data can reduce the uncertainty in the
DSS by the combination of the information in the sample
with the prior belief specification of the relative experts.
In the full Bayesian framework, this updating is performed
through Bayes theorem combining the prior distribution with
the sample’s likelihood to obtain the posterior distribution. All
the information in the sample about the parameter of interest,
θ say, is contained in its likelihood function as assured by the
likelihood principle.

We will now demonstrate how this updating is performed
for one of the regressions that define the Gaussian distribution
over the graph G as in (1). The equation for the i-th variable
can be rewritten as

Yi = Xiθi + ε, (3)

where Xi is a row vector of k − 1 explanatory variables (we
are including a costant term), θi is a column vector of k
parameters and ε ∼ N(0, ψ2

i ). Thus, the k − 1 explanatory
variables are the parents in the network and θi contains all
the regression parameters. Although this class of models is
rather too simple to the typical uncertainty handling needed
for nuclear DSSs, it nevertheless provides insight into how new
experimental or observational data updates expert judgments
concerning the uncertainty of their outputs.

In a full Bayesian framework the experts need to define
prior distributions for the parameters. One common choice
is to pick conjugate distributions, that is ones for which the
resulting posterior distribution is in the same family. For a
Bayesian Gaussian linear model, as the one we are considering
in (3), it is possible to find a conjugate prior, which is
the normal-inverse gamma, as we will show. We emphasize
that the conjugate analysis below is not essential in later
arguments: indeed it will be unusual in our context. However
it is invaluable to come to a deeper appreciation of how
experimental information feeds through this network of expert
systems.

Assume that, after an observational study or a manipulation
(we have seen that in the causal framework there is no distinc-
tion among the two), a sample consisting of n observations is
available and let now Yi be a n×1 column vector, Xi a n×k
matrix and ε ∼ N(0, ψ2

i I). Also recall that in this setting the

likelihood is defined to be

L(θi, ψ
2
i |Xi,Yi) ∝

(
ψ2
i

)−n/2

exp

[
− 1

2ψ2
i

(Yi −Xiθi)
′
(Yi −Xiθi)

]
.

We also define the priors. Recall that, if (θi, ψ
2
i ) ∼

NIG(µi,Σi, ai, bi) (Normal-Inverse Gamma), where Σi =
ψ2
i Vi is a positive-semidefinite and symmetric matrix, then its

density is

f(θi, ψ
2
i ) =

1

2π|Σi|1/2
exp

(
− 1

2σ2
(θi − µi)

′V −1
i

(θi − µi)

)
bai
i

Γ(ai)
(ψ2

i )−(ai+1) exp

[
− bi
ψ2
i

]
.

We now show that this is a conjugate prior for a normal linear
model. Using Bayes theorem we have that

f(θi, ψ
2
i |Yi,Xi) ∝

(
ψ2
i

)−n/2

exp

[
− 1

2ψ2
i

(Yi −Xiθi)
′
(Yi −Xiθi)

]
|Σi|−1/2 exp

[
− 1

2ψ2
i

(θi − µi)
′
V −1
i

(θi − µi)

] (
ψ2
i

)−ai−1
exp

[
− bi
ψ2
i

]
∝
(
ψ2
i

)−n/2−1/2−ai−1
exp

[
− Q

2ψ2
i

]
,

where Q is equal to

Q =(Yi −Xiθi)
′
(Yi −Xiθi)

+ (θi − µi)
′
V −1
i (θi − µi) + 2bi

=θ
′

i(X
′

iXi + V −1
i )θi + θ

′

i(X
′

iYi + V −1
i µi)

+ (Y
′

iXi + µ
′

iV
−1
i )θi + (Y

′

iYi + µ
′

iV
−1
i µi + 2bi)

=(θi − µ∗i )
′
(V ∗i )−1(θi − µ∗i ) + 2b∗∗i .

Note that we have defined

V ∗i = (V −1
i + X

′

iXi)
−1,

µ∗i = V ∗i (V −1
i µi + X

′

iYi),

b∗∗ = Y
′

iYi + µ
′

iV
−1
i µi + 2bi − (µ∗i )

′
(V ∗i )−1µ∗i .

We can consider again the posterior distribution to derive that

f(θi, ψ
2
i |Xi,Yi) ∝

(
ψ2
i

)−n/2−ai−1
exp

[
−b
∗∗
i /2

ψ2
i

]
×
(
ψ2
i

)−1/2
exp

[
− 1

2ψ2
i

((θi − µ∗i )
′

(V ∗i )−1(θi − µ∗i ))

]
∼NIG(µ∗i ,Σ

∗
i , a
∗
i , b
∗
i ),

where a∗i = ai + n/2, Σ∗i = ψ2
i V
∗
i and b∗i = b∗∗i /2.

Through this kind of updating the sample information
can be introduced into the DSS for every module and the



overall uncertainty reduced, leading to a more reliable decision
making. Note that as more information is input into the
system, Σ∗i becomes systematically smaller. Even when no
such conjugate analysis is possible, current sampling methods
allow us to calculate posterior distributions numerically from
which various posterior moments we use later in this paper can
be drawn. Within this context these numerical distributions,
as their moments, can be delivered directly into the DSS. The
properties described above, where uncertainties reduce as data
increases, are generic to a wide range of Bayesian models
whether or not they are Gaussian.

We note further that when the quantities of interest are only
some of the moments but the system is non-Gaussian it is
then possible to use techniques of Bayesian linear estimation
(see [33]) to provide coherent and simple algebraic inputs
to the system. However, because of the space constraint and
the difficulty of illustrating such procedures, these kind of
updating will not be included here. The effect of relevant
experimental evidences with the necessary causal assumptions
will then reduce the variance of output variables in a well
defined quantifiable way, which, again, will be used as inputs
to other modules in the system.

D. The combination of beliefs

One of the main issues for maintaining the integrity of
large DSSs is the fact that many different sets of people
introduce information into the system. There exists a quite
large literature on how to combine beliefs provided from
different people into a single coherent statement. See [34] for
a recent review. However, it mostly focuses on the case in
which everyone provides information about the whole system,
which is a different setting from the one considered in this
paper. We now however review the main results in the area,
since in the next section we will show that with the technology
we are developing, some of the properties can hold also in this
more composite case.

When requiring that the DM acts as if she is a single
expected utility maximizer who accommodates all information
provided by the involved experts it is necessary for the DSS
to be externally Bayesian [35]. Loosely speaking external
Bayesianity (EB) demands that an aggregated posterior dis-
tribution is the same either if every expert updates via Bayes
Formula his prior distribution and then the aggregation is
performed and if the prior distributions are combined and
then Bayes theorem is applied to obtain a single posterior
distribution. We have argued above that this property is critical
if the decision of the DM are going to be defensible to an
outside auditor.

In [36] it is shown that under a certain set of conditions the
only non-dictatorship EB pooling operator, which performs the
aggregation of a set of densities, is the logarithmic operator
(LogOp). If the i-th member of a pool of k members provides
a probability distribution fi(θ), then the LogOp is defined as

f̄(θ) ∝
k∏

i=1

fwi
i (θ)

where wi ≥ 0, for i = 1, . . . ,m, are arbitrary constants such
that

∑m
i=1 wi = 1. The constant wi is a weight representing

the level of trust of the expert that delivered the density fi.
In [27] a new class of logarithmic operators were intro-

duced, which possesses a generalized version of EB, called
conditional external Bayesianity (CEB). Heuristically speak-
ing, CEB requires the same indifference about the order of
aggregation and prior-to-posterior analysis for the conditional
distributions associated to a BN G. This can be obtained if the
likelihood factorizes in the same way as the density function
associated to G. A generalization of the LogOp has now been
developed which, instead of pooling marginal distributions,
pools conditional ones. Without considering the details related
to measure theory, this generalization is quite straightforward
and leads to the conditional LogOp defined as

Tj(f1j , . . . , fmj)(yj |Aj) ∝
m∏
i=1

[fij(yj |Aj)]
wij(Aj),

where wij are the weights, possibly function of Aj , adding up
to one, Aj = {Pa(Yj) = Pa(yj)} and fij is the conditional
distribution relative to Yj provided by the i-th expert. Recall
that in the framework of DSSs most of this quantities can be
a function of the decisions d, and consequently be elicited for
each decision available.

Two other works are worth noting here. In [37] the use of
graphical models to aid the process of aggregating beliefs is
investigated. In particular, it was proved there that a pooled
distribution obtained with the LogOp reflects any shared
Markov independence by the group and for this reason, it
can be represented in a concise and natural manner with a
BN as well. However, it was also noted that any pooling
operator cannot maintain all independences representable in a
BN. On the other hand in [38] a new framework of opinions’
aggregation for linear Bayes theory was developed, based on
expectations rather then densities. After redefining variations
of the main properties present in the literature about the
aggregation of densities, it was shown there that an expectation
aggregated through a linear combination of expectations is co-
herent if each of the experts has given a coherent specification.
These combination methods are therefore now sufficiently well
developed to integrate into the DSS we envisage in this paper.

E. Multiattribute utility theory

Multi-attribute utility theory provides independence con-
cepts for preferences over a large number of attributes. Again
in any Bayesian DSS the typical form of the user’s utility
function will provide the framework from which the Evalua-
tion Subsystem can be quantified.

When no preferential independences hold, it is difficult for a
DM to express her preferences coherently. On the other hand,
the recognition of independences reduces the dimensionality of
the space over which she has to express preferential judgments,
simplifying considerably the elicitation of her utility function.
For simplicity here we assume that Ri ≡ Yi, for i = 1, . . . , n.
We also suppress the dependence on d. Denote also with Y A

the subset of the component attributes whose indices lie in a



subset A ⊆ [n] = {1, . . . , n} and let also Ā = [n] \A denote
the complement in [n] of the set A.

In utility theory there are many different definitions of in-
dependence and we define them here through the factorization
of the utility function that they induce (for more references
see [39]).

Definition 3: The set of components attributes YA is
said to be utility independent of the other attributes YĀ

(UI(YA,YĀ)) if the joint utility function can be factorized
as

U(y) = f(yĀ) + g(yĀ) U(yA), g(·) > 0,

where f and g depend only on their arguments and U(yA) is
a utility function not depending on the attributes yĀ, which
are fixed to a reference value.
The utility independence condition UI(YA,YĀ) demands that
the preferences over the attributes YA are the same for every
level at which the attributes YĀ can be fixed.

When UI can be verified for every attribute in the system
or for every subset of the attributes’ set, then the joint utility
function simplifies remarkably.

Theorem 4: Let 2[n] be the set of all subsets of [n]. Given
attributes Y = (Y1, . . . ,Yn), with n ≥ 2 and values y =
(y1, . . . ,yn), a multi-linear utility function

U(y) =
∑

A∈2[n]

kA
∏
a∈A

U(ya),

exists if and only if Ya, a = 1, . . . , n, is utility independent
of its complement Yā, where the utilities U are functions of
their arguments only and the k’s are the criterion weights.
The criterion weights represent the importance of the terms
in the previous utility factorization (for a definition see [22]
and [9]). For example, if a high value is assigned to ki, it
follows that a value of this attribute with a high utility is
desirable. Note that, calling y0 and y∗ the worst and the best
possible values of y respectively, if one assigns U(y0) = 0
and U(y∗) = 1, then all the criterion weights are in (0, 1].

In the multi-linear factorization multiplicative terms are
included: these are able to represent the interactions among
some of the attributes. If these interaction terms are not
considered relevant, so that the overall utility depends only
on the marginal values, then the attributes verify a different
class of independence, called additive independence. This
assumption is the most used in practice because it is simpler
to explain and enact.

Definition 5: Let Y1, . . . ,Yr be disjoint subsets of Y, such
that ∪ri=1Yi = Y. We say that Y1, . . . ,Yr are additive
independent (AI) if the joint utility function can be written
as

U(Y) =

r∑
i=1

fi(Yi).

IV. MODULARITY OVER THE NETWORK

Expected utility theory tells us that the optimal decision for
a DM is the one maximizing her expected utility. We note that
this expected utility can often be expressed as a function of

various moments of the random variables. For example, in the
linear case for which U(yi) = yi, the expected utility of Yi
corresponds to the expectation of Yi. In the following section
we will show some results relating the shape of the utility
function and the moments necessary to derive its expectation.
Moments are functions of the parameters of these random
variables and in the multi-attribute case we need conditions
on the interactions between these parameters if we want to
obtain a modular structure for the DSS. In particular we now
require that global and local independence assumptions hold
and that the preferences respect an additive factorization. We
again refer here the reader to [27] for a discussion of the local
and global independence assumptions in this context.

This kind of assumptions is usually discussed and, even-
tually, agreed during Facilitated Workshops and Decision
Conferences (see [40]), in which representatives of different
stakeholders, appropriate scientists and authorities involved
meet. The prime purpose of these meetings is the elicitation
of an agreed utility function between potential users in an
emergency. This is elicited using some simple examples of
hypothetical scenarios to get the group’s preferences appro-
priately calibrated. Once this utility function, and in particular
the criterion weights, are fixed, the different groups of experts
individually continue to draw out their beliefs about the
process, as described in the previous sections.

For the final developments assure that for simplicity each
panel consists of one member only. When these assumptions
hold, the relevant attributes are informed by a particular panel
that will ideally provide all involved in the decision mak-
ing with the posterior probability distributions or summaries
thereof associated with the outputs of their particular domain.
Within the context of the regression models these assessment
would include posterior distributions on the regression param-
eters or, more generally, on the parameters of the conditional
distributions of the attributes under their jurisdiction.

Fig. 3 shows the expected utility scores of the different
decisions available to the DM for the nuclear example il-
lustrated with the network in Fig. 2, under the conditions
just introduced. Decisions d3 (protective measure) and d4

(evacuate) obtained the highest scores, with a significant
distance from the other decisions available. In this situation
the overall expected utility of a decision is a function of the
panels’ expected utilities and consequently one can analyze
the scores associated with the different panel domains for the
single decisions.

Fig. 4 shows the panels’ expected utility scores for the
decisions of evacuating and delivering protective measures.
Recall that the overall expected utility obtained by a decision is
a weighted average of the relative scores shown in this graph.
We can note that providing protective measures obtained a
way higher score in the economical area comparing it to the
evacuation option, because of the high costs consequently
to transfer a high number of people. However, the decision
of evacuating performed far better in the biological and the
medical modules, because of the smaller intake of radiations
for the population. On the other modules, the results are the
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same for the two options and from these considerations (we
assume the weights to be the same for the different areas)
follows the fact that d4 obtained an higher overall expected
utility score.

The type of analysis illustrated through this simple example
relies on various assumptions. Prior to an actual accident
different panels will bring the posterior distributions associated
with their domain of expertise. These can also be updated in
the light of further experiments before the actual emergency
starts. When an emergency occurs, these judgments are fed
into the DSS and combined with the utility function elicited
during the Decision Conferences to help elucidating real sce-
narios faced by the group’s directly countermeasures. We have
assumed that these judgments about parameters are mutually
independent of each other: otherwise any formula associated
with uncertainty handling may no longer be valid. There are
two simple conditions that can be imposed on the system that
will allow this assumption. The first is that any experimental
data used by the different panels is associated with experiments

that are mutually independent of each other. A second kind of
legitimate data set is one which is observational but complete.
Both these scenarios lead to a likelihood which separates over
the different panels’ parameter vectors. This assumption will
then continue to be valid as the actual incident proceeds,
provided that information about the progress of the incident
is complete until that point.

There are two other assumptions. The demand that there is
only one expert for each panel can be initially generalized if
the various panel members can agree to deliver their opinions
in terms of a single probability distribution. In practice this
may be difficult to achieve or even inappropriate to the
context, although in an earlier section we reported results that
demanded it if the coherence of the system was going to be
ensured. Furthermore recent developments in decision support
theory have made such delivery at least plausible. In particular,
the elicitation of the quantities necessary to compute the
scores of the individual panels can be performed during other
Facilitated Workshops, in which only the experts concerning
that particular module meet and discuss the features of the
models available. We note that the recent explosion of avail-
able Bayesian software has made this argument much more
achievable, because scientists are now much more familiar
with such probabilistic outputs.

Lastly, if we move our discussion from the additive case to
the multi-linear case for utility functions, we add interactions
between the preferences of different panels. Sadly, often to be
realistic it is necessary to consider this situation. In this case
the expected utility might no longer lead to the useful factor-
ization of the expected utility we employed in this example.
Fortunately in the next section we will show the polynomial
associated to a simplification of the running example for a
multi-linear factorization and the issues that may arise from
the misuse of uncertainty in this scenario.

V. CONSEQUENCES OF THE OMISSION OF UNCERTAINTY

Consider a simplification of the example in Fig. 2, in
which only the human health and costs modules are included.
Assume also that each of the two modules consists of a
single random variable. The variable for human health is
Y1, say, while the one for costs is Y2: they can correspond
for example to the number of people experiencing negative
symptoms and the financial implications to the government,
respectively. Their relationship is described by the network in
Fig. 5: in this case the graph includes the relationships among
the parameters that will appear in the expected utility function
when the variables are define as in (1).

Assume that U(y1, y2) = y1y2 in this case (a multilinear
factorization without the additive component) and that the
decisions available are either to evacuate (d1) or to provide
protective measures (d2). It can be shown that in this case the
expected utility is of the form

a0,2a0,1 + a1,2[λ1 + τ0,1 + a2
0,1], (4)

where all the quantities in the previous expression depend
on d. The optimal decision will be then the one minimizing
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expression (4) (since the attributes represent negative con-
sequences, the optimal decision is the one minimizing the
expected utility). Now assume that the values provided for
the decision of evacuation are:

a0,1(d1) = 2, a0,2(d1) = 2.5, a1,2(d1) = 2,

λ1(d1) = 4, τ0,1(d1) = 4,

while for the protective measures option we have that:

a0,1(d2) = 2.5, a0,2(d2) = 2, a1,2(d2) = 2,

λ1(d2) = 2, τ0,1(d2) = 1.

For the purposes of this simple example, which aims to
show the consequences of omitting the uncertainty of the
estimates, we will not focus on the heterogeneity of the
experts that provide these estimates and we will simply assume
that they are given by a single person. The hyper-parameter
a0,1 corresponds to the expectation of the expected number
of people with adverse symptoms, while a0,2 represents the
expectation of expected amount of financial cost. It is then
reasonable to provide a higher value for a0,1 in the case
of protective measures than in the evacuation scenario. By
the same logic, even though protective measures may lead to
more expenses for medical cures, the costs of an evacuation
are incredibly high and significantly greater than for the
other available option. The hyper-parameter a1,2 represents the
strength of the causal relationship between the two variables.
A priori, the expert(s) may not be very well informed about
this quantity and decide to provide the same value for the
two decisions available. The expectation of the variance of the
number of people with negative symptoms is λ1: in the case of
delivering protective measures this value is definitively lower,
since it is easier to provide shelter to most of the population.
On the other hand during an evacuation, it may not be possible
to help all the people in danger and only a subset of them may
be moved to safer areas: as a consequence, the expectation of
the variance of Y1 for decision d1 is higher. The last hyper-
parameter τ0,1 corresponds to the variance of the expectation
of Y1 and, by the same argument, it is higher in the evacuation
case than in the protective measures one.

In Section II we noted that, once the expectations are pro-
vided, then it is possible to treat them as known quantities, so
that the analysis becomes very similar to a deterministic one.
In this example the hyper-parameters expressing expectations
are a0,1, a0,2 and a1,2, while τ0,1 and λ1 refer to variances.

To show the issues deriving from the suppression of the
uncertainty of the estimates, imagine that the values for τ0,1
and λ1 are set to zero, so that the expression to minimize is
now

a0,1a0,2 + a1,2a
2
0,1.

In this case, plugging in the values provided by the appropriate
expert(s), the expected utility for the evacuation scenario is 13,
while the expected value for delivering protective measures is
17.5: the optimal choice, when no variation in the estimates is
allowed is to evacuate the population. Consider now the actual
expected utility expression as in (4), including the second-
order uncertainty. In this situation the expected utility of d1

is 29, while the expected utility under d2 is 23.5, from which
it follows that the optimal decision consists of delivering
protective measures. The misjudgment of uncertainty in this
case has led to an indefensible decision, highlighting the need
to handle uncertainty at every level.

VI. DISCUSSION

The implementation of Bayesian decision theoretic tech-
niques into DSSs has been in many cases challenging and
often considered too complex to be actually developed. In this
paper we have shown that there are some conditions where
the non-deterministic framework do not bring too many issues
in the modeling of decision-making problems. In these cases
software, ad hoc or already implemented methods, can be used
to introduce uncertainty in the single modules. There are also
several pieces of available software which encodes statistical
graphical modeling that can be embedded into the DSS to
describe the relationships among the modules. Moreover, we
have shown through simple examples the threats to rationality
that can arise from an omission of the uncertainty component
in a decisional process. We note that, although uncertainty
handling concerning most nuclear DSSs has vastly improved
after recent years [41], the formal incorporation of these
methods within the composite whole is still in its infancy. The
methodological developments illustrated in this paper are now
being used to structure protocols for Decision Conferencing
of DSSs improvements in this important area.

Due to the space constraint we have had to restrict ourselves
to the discussion of non dynamical systems at a single decision
point. However, the technologies we are developing do not
require such non-dynamic systems to be valid. In fact a
technology that generalizes the apparatus discussed here and
incorporates these necessary features is straightforward to
specify and will reported in a later paper. For example, the
multi-regression dynamical model [23] guarantees under a
certain set of conditions the modularity of the probability
distribution over the network at every time point. Moreover,
the study of decisional processes, such as the Markov decision
process, can also be incorporated into the modeling of several
time decision points.

To aid the efficient application of more general techniques,
the authors are also currently investigating the use of com-
puter algebra to simplify the polynomials resulting from the



expected utilities when the relationships through the modules
are defined as in (1). In the last few years computer algebra and
algebraic geometry have been used with success in different
areas of statistics and we believe that such a technology
can solve many of the problems faced in DSSs. Indeed, the
expression resulting from the expected utility computations are
often intractable and a higher level of abstraction seems to be
necessary in order to be able to identify the relevant quantities
for the individuation of an optimal policy.

Finally, we note that probabilistic DSSs that use the tech-
nologies we employ here are not restricted to the management
of nuclear emergency response. The authors are also currently
applying their methods to network of expert judgments asso-
ciated with food security. Again details of this new application
will be reported in a future paper.
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