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Abstract— Clinical decision-support is gaining widespread 
attention as medical institutions and governing bodies turn 
towards utilising better information management for effective 
and efficient healthcare delivery for quality assured outcomes. 
Amass of data across all stages, from disease diagnosis to 
palliative care, is further indication of the opportunities and 
challenges created for effective data management, analysis, 
prediction and optimization techniques as parts of knowledge 
management in clinical environments. A Data-driven Decision 
Guidance Management System (DD-DGMS) architecture can 
encompass solutions into a single closed-loop integrated platform 
to empower clinical scientists to seamlessly explore a multivariate 
data space in search of novel patterns and correlations to inform 
their research and practice. The paper describes the components 
of such an architecture, which includes a robust data warehouse 
as an infrastructure for comprehensive clinical knowledge 
management. The proposed DD-DGMS architecture 
incorporates the dynamic dimensional data model as its 
elemental core. Given the heterogeneous nature of clinical 
contexts and corresponding data, the dimensional data model 
presents itself as an adaptive model that facilitates knowledge 
discovery, distribution and application, which is essential for 
clinical decision support. The paper reports on a trial of the DD-
DGMS system prototype conducted on diabetes screening data 
which further establishes the relevance of the proposed 
architecture to a clinical context. 

I. INTRODUCTION 
The challenge of accumulating, managing and exploring 

vast collections of heterogeneous data is commonplace in 
large medical organisations. Financial savings, quality 
assurance, workflow optimisation, error prevention, 
facilitation of best practices and medical research are some of 
the major expected benefits from proper clinical decision-
support (CDS). As reported in [1], technological innovations 
have gradually expanded the boundaries of CDS and thereby 
its definition has been constantly changing in each decade [2]. 
CDS has evolved from medical data processing tools to 
complex decision support frameworks and infrastructures for 
clinical knowledge management. Two prominent taxonomies 
for CDS architectures are presented in [1] and [2]. In [2], the 
authors define architecture as the form of interaction between 
related systems, with four distinct CDS phases; standalone, 

integrated, standards-based and the service model. The phases 
are evolutionary but it is not uncommon to find systems from 
the first phase in contemporary clinical environments. 
Standalone systems would take clinical parameters as input 
and make suggestions of diagnoses or therapy; they were 
confined to a single specific area of medicine. In the 
integration phase CDS were incorporated into clinical 
information systems (CIS) resulting in proactive systems with 
more streamlined data entry. The requirements of inter-
organisational and government policy-driven information 
exchange led to the next phase, the use of standards to 
represent, encode, store and share clinical knowledge. The 
more recent phase, the service model, separates CIS from 
CDS and provides interfaces for communication between the 
two. This allows a broad range of information interchange 
possibilities across departments and even hospitals, as well as 
other organisations concern.  Despite obvious challenges and 
the need for agreed standards for information exchange, such 
model also provides wide opportunities for further clinical 
knowledge creation through mining data from various sources 
while recognising multiple perspectives of the users.   

CDS architectures are explored in the context of the 
underlying technology [1]. The authors highlighted the need 
for an overarching architecture that integrates three existing 
architectures. These three, which are identified in terms of the 
underlying technology, are information management, data 
analytics and knowledge management. Convergence into a 
single overarching architecture is further justified as it can 
then address many of the grand challenges of CDS stated in 
[3]. Despite the emphasis on architecture and the need for 
convergence, existing literature does not present an integrated 
architecture that maximises throughput of accumulated data 
for better informed CDS.  

Decision Guidance is a recent concept that aims to direct 
decision makers towards rational outcomes in complex 
environments exploiting the richness of dynamical 
accumulation of data. A Decision Guidance Management 
System (DGMS) was defined as a productivity platform for 
closed-loop data acquisition, learning, prediction and decision 
optimization [4]. The authors reported positive outcomes on 



the application of DGMS to supply chain management, energy 
distribution and management [4-5].  

In this paper we propose an extension to the DGMS 
architecture, the Data-Driven DGMS (DD-DGMS) that has 
the potential to address the convergence requirement 
identified in CDS. The proposed extension introduces a data 
warehouse as the intermediary layer between conventional 
data stores and decision support techniques. Although the data 
warehouse concept is widely used in business, it found less 
relevance to medical and biomedical informatics research and 
practice. We analyse the studies towards Clinical Data 
Warehouse (CDW) with the aim of demonstrating how 
advanced multi-dimensional modelling functionality 
facilitated by underlying data warehouse can help clinical 
scientists in dynamic hypothesis generation and testing.  As 
elucidated in the rest of the paper, the plasticity of a data 
warehouse is instrumental in enabling multivariate decision 
guidance in clinical contexts, in particular in the context of 
translational research which aims to generate and test 
hypothesis based on collected data. 

The rest of the paper is organised as follows. Section II 
presents the motivation for data-driven decision guidance 
from a clinical perspective with emphasis on the information 
needs of clinical scientists who are actively involved in all 
phases of the decision making process from initiation to 
conclusion. Section III delineates data warehousing, its 
underlying dimensional model and business intelligence (BI) 
techniques used to navigate and explore the content in a 
warehouse. This section also discusses the CDW systems 
reported in the literature. The proposed architecture is 
presented in Section IV. It outlines the features of the 
enhanced DGMS along with benefits in a clinical context. 
Section V reports results from a prototypical trial conducted 
on Diabetes screening data while Section VI sees to the 
conclusion of the paper.  

II. MOTIVATION 
Clinical scientists are responsible for elucidating factors 

associated with disease risk, identification and progression 
and providing a platform to medical professionals for the 
diagnosis and management of disease. They collaborate with 
medical practitioners to conduct research on disease 
management, largely based on data accumulated from clinical 
examinations. The declining role of clinical scientists in 
medical research has been identified as a potential reason for 
the critical gap (termed the ‘valley of death’ crisis) that lies 
between bench research and bedside treatment [6]. In [7], the 
authors emphasise the increasingly important role of clinical 
scientists in translational research; research that converts 
laboratory discoveries into clinical interventions.  

Data analysis, interpretation and utilisation in practice is 
mostly restricted to the risk assessment based on multivariate 
regression modelling where the researcher or clinician decides 
a priori on features to be analysed and controlled for. A two 
group model such as diabetes versus non-diabetes explores the 
differences in features measured during clinical trials or 
research projects. This restricts the power of the information 

available in terms of identification of novel 
clinical/pathological interactions.  In contrast, routine clinical 
data collection provides a much larger database and greater 
scope for investigating and understanding disease processes, 
how patients are currently treated and treatment outcomes. 
Motivation for the proposed framework stems from this need 
to explore, analyse and aggregate large datasets. 

Further impetus toward a DD-DGMS approach comes from 
[8] which illustrates that data mining techniques with medical 
datasets lead to insights that often engendered a deeper 
understanding of conditions and informed the design of 
controlled medical experiments.  However, although many 
statistical and data mining algorithms exist, few are designed 
to assist an analyst to explore large and complex datasets for 
the kind of insight into underlying knowledge that is required 
in a DD-DGMS. For instance, [9] revealed that by presenting 
knowledge in a form that medical specialists could find 
intuitively easy to assimilate, unexpected interactions were 
found to be extremely interesting and stimulated the creation 
of explanatory hypotheses.  For example, that approach 
identified the absence of reflex in the knees and ankles 
together with a mid-range glucose reading was unexpectedly 
highly predictive of diabetes.  This prompted analysts to 
hypothesise about possible nervous system dysfunction being 
present at a pre-diabetes stage. Medical experts suggested 
explanatory hypotheses; perhaps post-menopause hormonal 
regulation may be more influential in pre-diabetes than 
currently thought.  Reflex and glucose level tests are easy to 
perform clinically, so this insight may lead to new ways to 
assess the risk of diabetes and diabetes complications from a 
preclinical stage.   

A data-driven DGMS relies heavily on the storage and 
codification of data in a form that can readily lead to the 
insights and guidance desired.  This form should also provide 
means of easily combining features and investigating complex 
connectivity patterns between features associated with disease 
progression. A data warehouse for this purpose is introduced 
in the next section. 
 

III. DATA WAREHOUSING BASICS 
Kimball broadly defines a data warehouse as a copy of 

transaction data specifically structured and optimized for 
queries and analysis [10]. Despite the introduction of data 
warehouses for clinical data more than two decades ago, very 
few institutions have actually built warehouses [11].  
Challenges include the difficulties inherent in developing a 
meta-model that encompasses a broad range of variables and 
values structured along a number of dimensions.  

The dimensional model is the conceptual basis for data 
warehouse development. Dimensional model design is 
essentially a denormalization technique that provides an 
intuitive view of data corresponding to the main areas of 
interest of the problem space [12]. It is commonly represented 
as a subject-oriented structure composed of fact tables and 
dimensional tables. The fact table contains keys and numerical 
measures that can be summarized in terms of dimensions. 



Dimensions are typically composed of attributes and 
hierarchies that identify areas of interest in the problem 
domain. The fact table is linked to all dimensional tables 
resembling a star or snowflake structure (Fig 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  A dimensional model for a Clinical Data Warehouse 

The data warehouse organizes attributes of each input 
vector into the star or snowflake schema of the dimensional 
model. 

In the past decade, data warehousing has emerged as a 
widely used platform for business intelligence (BI) 
capabilities that enable strategic reporting and decision 
making. Despite its prevalence in many industries, its 
adoption by medical organizations has been limited. Early 
implementations of CDW were aimed at addressing specific 
clinical problems. There are still a few recent case studies that 
demonstrate the applicability of data warehouse concept in 
medical domain. For example, in [13], the authors describe the 
use a data warehouse for hospital infection control. It was 
populated with data from three hospitals and demonstrated to 
be useful for measurement of antimicrobial resistance, 
antimicrobial use, the cost of infections, and detection of 
antimicrobial prescribing errors. In [14], the authors present a 
review of the Enterprise Data Trust at the Mayo Clinic, which 
is a collection of all electronic data organized to support 
information management, analytics and high-level decision-
making.  

In recent research endeavours [15-16], the authors have 
proposed and implemented data warehousing solutions to 
address the information needs of translational research. In [15], 
the authors developed a data warehouse integrating pathologic 
and molecular data with a clinical data model to support a 
breast cancer translational research program. STRIDE 
(Stanford Translational Research Integrated Database 
Environment) database environment [16], is an informatics 
platform for clinical and translational research. It consists of a 
data management system, a CDW and a development 
framework for new applications.  

The wide acceptance and implementation of CDW systems 
is a strong indicator of its usability in clinical contexts. The 
following section illustrates the novelty of the proposed 
architecture, where a data warehouse is introduced into 

DGMS as an intermediary layer that facilitates multivariate 
decision guidance.    

 

IV. ARCHITECTURE AND METHODOLOGY 
The DGMS architecture [4] was designed to be used in 

iterative loop-back phases. The first phase uses the database 
and domain knowledge to define a data space from which 
knowledge is derived (learned). In the second phase learning 
and domain knowledge are used for prediction and simulation. 
Prediction and simulation outcomes are used for decision 
optimization in the third phase, while in the final phase data 
acquisition queries are used as feedback to reduce ambiguity 
of decisions. The authors introduce DG-SQL (an extension of 
SQL) as a query language to support and enable the phases of 
operation in DGMS.  

The proposed DD-DGMS architecture replaces DG-SQL 
based intermediation with a data warehouse, whereby existing 
features of the framework are enhanced and further 
functionality is introduced. In order to discuss the 
functionality we distinguish between two groups of users 
found in a clinical environment based on their information 
needs. The first group comprises of users (operational level) 
interested in short term outcomes such as doctors investigating 
medication usage, clinical scientists seeking better means to 
reach diagnoses or determine effectiveness of medication, 
physical activity and diet in risk reduction of disease 
progression.  The second group of users (strategic level) such 
as clinical administrators and policy makers seek information 
relevant for optimising treatment regimen that have the best 
individual outcomes by reducing disease progression and 
disease associated mortality within the economic constraints 
of the current health care system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Architecture of the Data-driven Decision Guidance Framework 

The DD-DGMS architecture, its features and its 
interactions with the two groups of users are illustrated in Fig 
2. The use of each feature is not strictly limited to a single 
group, for instance strategic users would benefit from decision 
optimisation as equally as operational users. As noted earlier, 
the data warehouse is the intermediary layer facilitating each 
feature and operational phase. Its flexible structure enables 
multivariate information retrieval and incorporates user 
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feedback for subsequent use. Such interaction between the 
operational and strategic levels creates an opportunity for 
acquiring new and refining existing knowledge as part of the 
continuous knowledge management cycle. The operation of 
the architecture in a typical clinical setting is outlined in the 
following discussion of each of its components. 

Data Transformation 

A variety of electronic data stores can be found in a typical 
clinical environment. Flat file storage, multiple database 
vendors and different data models are common issues in any 
organisation where data from different sources, sub-units or 
departments needs to be integrated into a single structure. 
Many of the common technical challenges to data integration 
are discussed in detail elsewhere [10]. We focus on three 
issues specific to clinical data integration; they are 
discretisation, temporal abstraction and cardinality.  

1) Discretisation: Numeric clinical measures are 
continuous (real) by nature. For aggregation and analysis that 
supports decision guidance these measures need to be 
converted to discrete values or ranges. In most circumstances 
the discretisation criteria is determined by clinicians.  Where 
domain expertise is unavailable an algorithmic approach is 
adopted. A typical discretization process attempts to seek a 
compromise between information quality and statistical 
quality and broadly consists of four steps: sorting the 
continuous values, evaluating a cut-point for splitting or 
merging, splitting or merging intervals of the continuous value 
and termination [17]. 

2) Temporal Abstraction: Patient monitoring data consists 
of time-stamped variables. The purpose of temporal 
abstraction is to derive high-level qualitative descriptions 
from such low-level quantitative measures of a variable [18]. 
Given the multivariate nature of clinical data spaces, it is 
important to ensure temporal abstractions do not conflict with 
each other. The availability of qualitative descriptions 
improves the decision guidance process as they are context 
sensitive and relevant to actionable outcomes.  

 3) Cardinality: Cardinality is temporal abstraction applied 
to a group of variables that have a contextual association. A 
prominent example for the use or cardinality, which is also 
illustrated in the experiments section of this paper, is 
diagnosis of the time course of a medical condition. A patient 
with a chronic disease would have frequent tests conducted on 
variables indicative of the stage of the disease, the actual 
measurements are candidates for temporal abstraction while 
cardinality is used to identify each individual test. 
Once the data is integrated from multiple sources and 
transformed into a clinical-context sensitive format, it is 
uploaded into the warehouse.   

Data Warehouse 

The development of a data warehouse starts with the 
dimensional design process. As stated in Section II, numerical 
measures in the problem domain are identified initially. The 
granularity of these can vary from coarse-grained (e.g. number 
of patients) to fine-grained (level of blood glucose). The 
dimensions of interest are identified next. As shown in Fig 1 

these can be any aspect of the clinical environment that the 
numeric measures need to be analysed or aggregated from, 
such as personal details of the patient, exercise routine 
medical conditions and test results. It is necessary to introduce 
cardinality as a dimension when temporal dimensions such as 
medical conditions and test results (that change over time for 
the same patient) are included. Further dimensions are 
introduced to capture user feedback. Information on 
aggregates and trends derived by clinicians as well as clinical 
outcomes can be translated back to the warehouse as 
dimensions to be used in future analysis.  

Reporting- OLTP and OLAP 

Reporting is essentially the execution of queries on a 
structured data store. The underlying dimensional model of 
the warehouse supports both Online Transactional Processing 
(OLTP) and Online Analytical Processing (OLAP). The latter 
is more relevant for analysis and aggregation where data 
cubes can be formed by introducing multiple dimensions to 
the query. Furthermore, slicing and dicing operations can be 
performed on a cube to increase/decrease granularity of a 
multivariate query. Multidimensional expressions (MDX), the 
query language for OLAP can also be used for reporting.  

Prediction 

The availability of time-course analysis capabilities allows 
a clinician to use the warehouse to predict the subsequent 
phase of a patient affected by a medical condition based on 
past records of other patients in similar circumstances. Even 
well known disease trajectories can be validated with the DD-
DGMS approach.   

Visualisation 

While OLTP and OLAP are successful at aggregation and 
analysis, the large number of dimensions in clinical settings 
can require visualisation features for improved understanding. 
Groups of patients at the edges of overlapping dimensions are 
easily identified visually than by any other means.  

Decision Optimisation 

Decision optimization is partially the validation of the 
outcomes obtained from prediction and reporting features. 
Given the dimensions in a warehouse are independent to each 
other, outcomes can be reviewed by removing existing or 
adding further dimensions. Optimal aggregates would be 
consistent regardless of the changes to dimensions.  

Data Analytics 

Data analytics is the first feature that’s more applicable for 
long-term planning. Cubes of data that are of interest to the 
clinical scientist can be isolated using OLAP and further 
analysed using data mining algorithms. There are a variety of 
data mining algorithms to address different requirements such 
as classification, association and clustering. Trends and 
patterns prevalent in a subset of the population are valuable 
findings that can guide long term decision-making and policy 
shifts. Without the support of an underlying warehouse, it 
would be very difficult to identify and isolate such subsets.  



Knowledge Base 

Outcomes from all the above features are the building 
blocks of knowledge and understanding that can be derived 
from accumulated data. Use of the proposed DD-DGMS 
architecture by clinical scientists would thus generate valuable 
outcomes that can support clinical practice as well as research. 
These outcomes are initially maintained within the warehouse 
and transferred into a knowledge base when sufficient data-
based evidence is accumulated. A mature knowledge base can 
be useful to address knowledge management concerns such as 
ontology generation, training and guidelines development.   

 

V. EXPERIMENTS AND RESULTS 
A prototypical trial was conducted to establish the 

feasibility of the proposed DD-DGMS architecture in 
biomedical context. The dataset derives from the Diabetes 
Screening Complications Research Initiative (DiScRi) 
conducted at a regional Australian university [19]. It is a 
diabetes complications screening program in Australia where 
members of the general public participate in a comprehensive 
health review. The screening clinic has been collecting data 
over ten years and includes over one hundred features 
including demographics, socio-economic variables, education 
background, clinical variables such as blood pressure, body-
mass-index (BMI), kidney function, sensori-motor function as 
well as blood glucose levels, cholesterol profile, pro-
inflammatory markers, oxidative stress markers and use of 
medication. Data on 273 attributes from over 2500 
attendances of nearly 900 patients have been collected in 
recent years. The dataset has been used in several data mining 
applications [9, 20-21]. Application of the DD-DGMS 
approach to this dataset is discussed in the following 
subsections. 

A. DiScRi Data Transformation 

Data transformation initiated with the replacement of 
missing values, erroneous values and records.  Given the 
clinical nature of the dataset, the three issues of discretisation, 
temporal abstraction and cardinality were also addressed in 
this phase. Discretisation was applicable to a large number of 
the attributes. In most cases the clinical scientist was able to 
provide a clinical discretisation scheme (Table 1).  

TABLE I 
EXAMPLES OF CLINICAL DISCRETISATION SCHEMES 

Attribute Description Clinical discretisation 
scheme 

Age Participant’s age on test date <40, 40-60, 60-80, >80 
Diagnostic HT 
Years 

Number of years since 
diagnosis of hypertension 

<2, 2-5,5-10, 10-
20, >20 

FBG Fasting blood glucose level <5.5 very good, 5.5-6.1 
high, 6.1 to 7 
preDiabetic, >=7 
Diabetic 

Lying DBP 
Average 

Diastolic blood pressure when 
lying down 

< 60 = low,  60-80 = 
normal, 80-90 = high 
normal, >90 = 
hypertension 

Attributes without clinical schemes were duplicated with 
one having the original continuous form and the other 
discretised using a top-down or bottom-up discretization 
technique [17] that was most relevant to the type of data. 
Temporal abstraction and cardinality was required by many 
attributes in the dataset and thereby warranted a separate 
dimension in the dimensional model. This is discussed in 
following subsection.   

 

B. DiScRi Data Warehouse 

Domain expertise was necessary to determine the key 
dimensions of interest from the total of 273 attributes (Fig. 3). 
As individual patients attended the screening clinic multiple 
times, it was necessary to introduce cardinality as a separate 
dimension.  Except for Personal Information (which contained 
attributes such as gender, family history of medical 
conditions), all other dimensions were composed of attributes 
recorded for each visit/test. While the fact table would 
distinguish between records, the cardinality dimension was 
necessary to distinguish between patients.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Dimensional model used in the prototypical trial  

The proposed dimensional model (Fig. 3) was used to 
construct the data warehouse. Microsoft SQL Server [22] was 
selected as the database platform for its ease of use for rapid 
development. Microsoft Business Intelligence Studio [22] was 
used to populate the warehouse with the pre-processed DiScRi 
dataset and also as an analysis front end.   
 

C. DiScRi OLAP Reporting  

Upon populating the data warehouse, it was possible to 
execute OLAP queries using both the graphical user interface 
and MDX. The graphical interface is shown in Fig. 4. The 
ease of use of this interface by non-technical users (such as 
clinical scientists) is noteworthy. The measures and attributes 
(grouped by dimensions) are listed on the left panel. 
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Fig. 4 ‘Drag and Drop’ features for query construction in Microsoft BI Studio  

They can be dragged into the centre query area to dynamically 
generate queries and view the aggregated results. Fig. 4 shows 
the family history of diabetes by age group and by gender. 
Any number of attributes can be introduced to the query area 
for drill-down and roll-up features.  
      A graphical outcome is shown in Fig.5, where an OLAP 
query plots the age and gender distribution of patients with 
diabetes.  
 

 
Fig. 5 OLAP outcome: Age and gender (females – left column) distribution of 
patients with diabetes  

Using the drill-down feature, age distribution is shown at two 
levels of granularity. This has exposed a distinction between 
genders in the 70-80 age group; males dominate the 70-75 
subgroup while females are the majority in the 75-80 
subgroup.  

Also of note in Fig 5 is the reduction in proportion of 
females with diabetes in the older age groups.  Hesslera et al 
identified patient age as a neglected factor in diabetes 
management [23]. They illustrated that younger age groups 
(21-45 and 46-65) were associated with lower diabetic self-
efficacy and higher stress compared with patients in the 65-80 
age group. This led them to recommend education programs 
that targeted younger groups.  Although gender was not found 
to be related to age in that study, the OLAP outcome of Fig 5 
suggests that there may well be a gender effect within the 
older age group as the proportion of women with diabetes 

drops substantially over 78. This result provides an illustrative 
example of the potential the DD-DGMS approach advanced 
here has in enhancing translational research.  
      Another issue in translational research surrounding 
diabetes screening and management includes the identification 
of improved methods for performing a risk assessment of 
cardiovascular autonomic neuropathy, a well-known 
complication of diabetes.  Tests known as the Ewing battery 
of tests have been advanced as simple clinical procedures that 
lead to a risk assessment [24]. However, some of the 
procedures such as the hand grip test cannot be applied to the 
elderly because of arthritis or other reductions in capacity.  A 
DD-DGMS approach enables the data to be accessible to drive 
decision guidance hypothesis formulation regarding other 
patient characteristics that could be used in place of the 
missing test.  Results of this analysis are currently being 
explored.  

Fig. 6 illustrates the use of a clinical discretisation 
scheme (DiagnosticHTYears) in an OLAP query. 

 
Fig. 6 OLAP outcome: Distribution of number of years since diagnosis of 
hypertension by age groups.  

Patients with hypertension are identified by their age 
groups and by the number of years since diagnosis of 
hypertension. Again, the use of drill-down feature in age 
groups detects a significant drop in the number of 5-10 year 
hypertension cases in the age sub-groups of 70-75 and 75-80.  
 

VI. DISCUSSION AND CONCLUSION 
DGMS and data warehousing provides the means for seamless 
integration and dynamic combination of features for 
investigating complex connectivity patterns between features 
associated with disease progression. To enhance translational 
research, data obtained from the annual screening clinic needs 
to be interpreted in terms of outcome measures following 
diverse treatment options present in the screening cohort. New 
associations between personal health status, intervention and 
individual outcome that also reflects a wider population use is 
an essential part of current health care research.  

The paper reports on a trial of the DD-DGMS prototype 
conducted on diabetes screening data which further 
establishes the relevance of the proposed architecture to a 
clinical context. This paper only reports on outcomes from 
operational use of the DD-DGMS architecture. The strategic 
benefits are generated by long-term usage of the architecture 



and are of significant value in terms of knowledge 
management in a clinical setting. This is part of the current 
and future work the authors are involved in. It is envisaged 
that access to the infrastructure for decision guidance and 
clinical decision support facilitated by multi-dimensional 
modelling will equip the clinical scientists to produce more 
refined and better informed test plans for future data 
collection and analysis. 

We argue that such an approach can make a significant 
contribution to creation, use and re-use of medical knowledge 
thus facilitating effective clinical practice and better support 
for medical decision-making.   
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