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Abstract— Data quality and data cleaning are context depen- with applications to data quality assessment in mind. That
dent activities. Starting from this observation, in previous work \work was limited to a representation of this extension in

a context model for the assessment of the quality of a databas description logic (actually, an extension of DL-Litel [9Put
instance was proposed. In that framework, the context takeshe data quality assessment v'vas not developed

form of a possibly virtual database or data integration sysem into X - o
which a database instance under quality assessment is maghe /N this work we propose an ontological representation in
for additional analysis and processing, enabling quality asess- Datalogt [5] of the extended HM model, and also mechanisms

ment. In this work we extend contexts with dimensions, and by for data quality assessment based on query answering frem th
doing so, we make possible a multidimensional assessmentaita ontology via dimensional navigation. Our extension of thé H

quality assessment. Multidimensional contexts are represited model includescategorical relationsassociated to categories
as ontologies written in Datalogt. We use this language for 9 9

representing dimensional constraints, and dimensional rules, and ~ at different levels in. the (_Jlimensional hierarchies, pdys.ib
also for doing query answering based on dimensional navigation, to more than one dimension. The extension also considers

which becomes an important auxiliary activity in the assessient  dimensional constraintanddimensional ruleswhich could be
of data. We show ideas and mechanisms by means of examples.ieated both adimensional integrity constraintsn categorical
. INTRODUCTION relations that involve values from dimension categories.

The quality of data cannot be assessed without contextuaHowever, dimensional constraints are intended to be used as
knowledge about the production or the use of data. Actualgenial constraintshat forbid certain combinations of values,
the notion of data quality is based on the degree in which tidereas the dimensional rules are intended to be used for
data fits or fulfills a form of usagé][1]. [13]. As a consequencédata completion, to generate data through their enforcemen
the quality of data depends on their use context. It becom@gnensional constraints can lrgra-dimensionali.e. putting
clear that context-based data quality assessment recairgiestrictions on data values of categorical relations adatet
formal model of context, at least for the use of data. to categories in a single dimension, iater-dimensionali.e.

In this work we follow and extend the approach proposeglitting restrictions on data values of categorical retetio
in [2]. According to it, the assessment of a datab@sés associated to categories in different dimensions.
performed by mapping it into a contegtthat is represented  The next example illustrates the intuition behind categpri
as another database, or as a database schema with pdglations, dimensional constraints and rules, and howatter!
information, or, more generally, as a virtual data inteigrat can be used for data quality assessment. In it we assume,
system with possibly some materialized data and accessaggording to the HM model, that a dimension consists of a
external sources of data. The quality of datéDiis determined number of categories related to each other by a partial order
through additional processing of data within the contexiisT Later on, we use the example to show how contextual data

process leads to a new (or possible several) quality vefsiorcan be captured as a Datalbgntology.
of D, whose quality is measured in terms of how much it Example 1:Consider a relational tablleasurementsvith

departs from its quality version(s). body temperatures of patients in an institution (Tdble I). A

In [2], dimensions are not considered as contextual elesnefpctor in this institution needs the answer to the quéfyre
for data quality analysis. However, in practice dimensiares body temperatures of Tom Waits for September 5 taken around
naturally associated to contexts. For example,[in [4], thépon with a thermometer of brand B(as he expected). It
become the basis for building contexts, and[inl [15] they ai® possible that a nurse, unaware of this requirement, used a
used for data access data at query answering time. thermometer of bran®2, storing the measurements Mea-

In order to capture general dimensional aspects of da&arementsin this case, not all the measurements in the table
for inclusion in contexts, we take advantage of the Hurtaddte up to the expected quality. However, tabeasurements
Mendelzon (HM) multidimensional data modé[[12], whosé@lone does not discriminate between expected or intended
inception was mainly motivated by data warehouse and OLARIues (those taken with braP) and the others.
applications. We extend and formalize it in ontologicahter ~ Now, for assessing the quality of the dataMieasurements
Actually, in [14] an extension of the HM model was proposedccording to the doctor’s quality requirement, extra ctutal
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TABLE | TABLE II . - .
Measurements Measurementsd shows the latter). Our ontological multidimensional caige

support both.

Time Patient |Value Time Patient |Value o )
\[Sep/5-12:1Tom Waits] 38.2 | 1 [Sep/5-12:1Q Tom Waits| 38.2 ~ Example 2 (ex.]1 cont.)Two additional categorical rela-
2[Sep/6-11:5¢Tom Wait 37.1 | 2| Sep/6-11:50 Tom Waits| 37.1 tions, WorkingScheduleand Shifts (Table[ITl and Tabld1V),
3[Sep/7-12:1%Tom Waits| 37.7 store shifts of nurses in wards and schedules of nursests. uni
4| Sep/9-12:00 Tom Waits| 37.0 A query to Shiftsasks for dates wheMark was working in
5| Sep/6-11:0% Lou Reed| 37.5 ward W2, which has no answer with the extensional data in
5| Sep/5-12:0% Lou Reed) 38.0 Table[TW. Now, an institutional guideline states that if ase
Al Al works in a unit on a specific day, he/she has shifts in every
—— yvard of tha_t un!t on the same day..ColnsequentIy, the lase tupl

6 [Ome T ooy | eatient | in TableIl implies thatMark has shifts in botW1andW2on
stitition [ 5‘3”:”: sep/3 Jlom Waits Sep/9 This date would be an answer obtained via downward

e 2 | S Sep/6 JTom Wai . . . . . .
D) . 5237 i navigation from theStandardunit to its wards (includingv2).
4 | Terminal | Sep/6 | Lou Reed Month O TABLE IlI TABLE IV
2 — LO“ Reed WorkingSchedules Shifts

Unit | Day |Nurse| Type | Ward [ Day [Nurse| Shift
Intensivel Sep/y Cathy| cert. W2 [Sep/5 Cathy| night

Standard Sep/y Helen| cert. W1 [ Sep/d Helen|moming

Standarc Sep/q Helen| cert. W4 |Sep/5 Susar| evening
Terminal| Sep/q Susar| non-c.

Standard Sep/9 Mark | non-c.

PatientWard
Ward] Day Patient
W1 | Sep/5 m_Waitsf----""
W1 | Sep/6 JTom Waits
W3 | Sep/7 JTom Waits
W4 | Sep/6 | Lou Reed
W2 | Sep/S | Lou Reed
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Example[2 shows that downward navigation is necessary
_ . Fig. 1. An extended multidimensional model for query answering, in this case, for propagating data in
information about the thermometers used may be useful. kg ingScheduleat theUnit level down toShiftsat the lower
instance, there is a tablPatientWard linked to theWard  \y,qjevel). In this process a unit may drill-down to more than

category, that stores patients of each ward of the insiituti 5o \ward e.gStandardunit is connected to warde/1 and
(Fig.[d). In addition, the institution hasgaiidelineprescribing w2 genérating more than one tuple Sifts
that: “Temperature measurement for patients in standard care C,ontexts should be represented as formal theories into

unit have .to b.e taken with -thermometers ,Of Brapd Bl . which other objects, such as database instances, are mapped
This guideline, which will become a dimensional rule Mnto, for contextual analysis, assessment, interpretatial-

the ontology, can be used for data quality assessment WI?J‘?{ﬂ)naI processing, etcl[[2]. Consequently, we show how to

combined with an intermediate virtual relatioRatientUnit represent multidimensional contexts as logic-based ogies

linked to theUnit category, that is generated frdPatientWard (c.f. Section(ID). These ontologies represent and extdred t

by upvyard-na\{lgatlon through dimensid#ospital (on _IEﬁ' HM multidimensional model (cf. Sectidn] I). Our ontologica

hand-sn_je. of F'gE.ll)’ from categolfard to categ(_)ryUmt. language of choice is Datalag[8]. It allows us to give a clear
NOW I |s_pOSS|bIe to conclude thf”‘t on certain days, Tog mantics to our ontologies, to support some forms of ldgica

Waits was in the standard care unit, where his temperat%%soning, and to apply some query answering algorithms.

was tgken, af?d WiFh the right thermometer- according to tIﬁ‘ﬁrthermore, Datalog allows us to generate explicit data
guideline (patients in ward®/; or W had their temperatures by completion where they are missing, which is particularly

taken W.'th al ther;;ometer of Sra_;ﬂ;?. E'I['Ihesi_c:]ean dgta useful for data generation though dimensional navigation.
appear in relationMeasurements® (Tablell), which can be &, 1imate goal is to use multidimensional ontological

SeEr SS atqualltytanswer to ;[hqtdoct?(jri ret(r}]uest. that th contexts for data quality assessmént [2], which is achidyed
_=laborating on this exampie, 1t could be the case that thg roducing and defining in the context relational predisat
'S gconstrmn_nmpose_d on dimensions anq relations I|n!<ed t tanding for thequality versions of relations in the original
their categories. For instance, one capturing that theante instance Their definitions use additional conditions on data, to

_ca;re unit was clqtscejd .S'miﬁ Atggust;tZOOD pattlle;rg)tovévas_ "N make them contain quality data. In this work, going beyond
INtensive care unit uring the ime atter Augus gain, , the context also contains an ontology in Datatothat

throulgz ug}w?rt(:]-natt\é!g;t;onlto. thtebrlgi_t c?\;\(/egc&ryﬁ W?d sbho presents all the multidimensional elements shown in the
conclude that the third tuple in ta ientWardshould be examples above.

discarded. Thisnter-dimensional constraininvolves dimen- 4 = ontologies fall in theveakly-sticky(WS) class [8] of
sionsHospital and Time (right-hand-side of Fig.]1), to which . . :
. ; the Datalog- family of languages[[5] (cf. SectiopJIl) with
the ward and the day values RatientWardare linked. O . ; ;
separableequality generating dependencies (when used as
The example shows a processing of data that involvdsnensional constraints), which guarantees that conijct
changing the level of data linked to a dimension. This form afuery answering can be done in polynomial time in data. We
dimensional navigatiomay be required for query answeringhave developed and implemented a deterministic algorithm f
both in the downward and upward directions (Examplé]l boolean conjunctive query answering, which is based on a non



deterministic algorithm for WS Dataldg [8]. The algorithm In this paper, our MD ontologies turn out to be written in

can be used with ontologies containing dimensional rulas thweakly-stickfWS) Datalog:. This sublanguage extensiscky

support both upward or downward navigation (cf. Sedfioh IVpatalogk [6]. WS Datalogk allows joins in the body of TGDs,

Section[Y shows how to use the ontology to populate thmit with a milder restriction on the repeated variables.|Baio

quality versions of original relations. conjunctive query answering is tractable for WS Datald@].
This paper is an extended abstract. We show concepts, ideas, |||. THE EXTENDED MD M ODEL IN DATALOG -

ontologies, and mechanisms only by means of an extendegye will represent our extended MD model as a Datalog
example. The general approach and its analysis in detdil V‘Bhtology/\/l that contains a schem$,,, an instanceD 4,
be presented in an extended version of this work. and a set of dimensional rules and constralfs. Sy =

[I. PRELIMINARIES KUQOUR is a finite set of predicates (relation names), where

We start from the HM multidimensional (MD) data modelC is & set ofcategory predicatefunary predicates)) is a set
[12]. In it, dimensions represent the hierarchical datag a@f parent-child predicatesi.e. partial-order relations between
facts describe data as points in an MD spaceliensionis €lements of adjacent categories, dds a set ofcategorical
composed of a schema and an instanceliriension schema PredicatesIn Example[1,K contains, e.gWard(-), Unit(-);
includes a directed acyclic graph (DAG) ohtegorieswhich O contains, e.g. a predicate for connections frovard to
definedevelsof the category hierarchy. A dimension hierarchihit; and’R contains, e.gPatientWard An instance D, is
corresponds to a partial-order relation between the caego @ relational instance that gives (possibly infinite) exiens
a so-calledparent-child relation A dimension instanceon- t0 the predicates i, and satisfies a given set of TGDs,
sists of set of members for each category. The instancerhief@GDs, and negative constraints,, (cf. below). The constants
chy corresponds to a partial-order relation between mesnb&" Da come from an infinite underlying domain.
of categories, that parallels thparent-childrelation between ~ The dimensional rules and constraintsiin, constitute the
categoriesHospitaland Time at the right- and left-hand sidesintentional part ofM. Rules [1){(#) below show the general
of Fig.[1, resp., are dimensions. form of elements ok o4. In what follows, eactR;(e;; a;) is a

We extend the HM model with, among other e|emem§,ategorical atom, witle; a sequence of categorical attributes
categorical relationswhich can be seen as a generalization ¢¥alues) anda; a sequence of non-categorical attributes;
fact tables, but at different dimension levels and not neandly ~ Di(€:; ¢;) is @ parent-child atom with;, ¢; parent/child ele-
containing numerical data. Categorical relations repretee  MeNts, resp.; and(e;) is a category atom, with; a category
entities associated to the factual datacategorical relation €l€ment. ThatisK; € K, D; € O, R; € R. As an instance in
has a schema and an instancecategorical relation schema @) and [®), Unit(u) is a category atom antnit Ward (u, w)
is composed of a relation name and a list of attributes. Eagh@ Parent-child atom.
attribute is eithecategoricalor non-categoricalA categorical () To capture theeferential constrainbetween a categorical
attribute takes as values the members of a category in a attribute of a categorical relation and a category, we use
dimension. A non-categorical attribute takes values fram a @ negative constraint, with € &l

arbitrary domain. 1 + Ri(e;;a;),~Kl(e). (1)
Example 3 (eX]1 cont.)in Fig. [, the categorical rela- (b) A dimensional constrainis either an EGD of the form
tion PatientWard( Ward, Day, Patient) has its categorical @) (wherez, 2’ also appear in the body) or a negative

attributes,Ward and Day, connected to thélospital and Time constraint of the form{3):
dimensionsPatientis a non-categorical attribute with patient r=2a" <+ Ri(&:;a;),.., R;(&;a;), )
names as values (there could be a foreign key to another Du(ens €.y v Din(€m, €h).
categorical relation that stores data of patients). O A

1 <« Ri(ei;ai)7...7Rj(ej;aj), (3)

Datalogt [5] is a family of languages that extends plain
Datalog with additional elements: (a) existential quaitiiin ©
heads oftuple-generating dependenci€sGDs); (b)equality-
generating dependenci€EGDs), that use equality in heads;

Dy(en,€l), o Din(em,el).
A dimensional rules a Datalog- TGD of the form:
Ja. Ri(ex;ar) <  Ri(&;a:),..., Rj(€5;a5), (4)

and (c)negative constraintsthat usel in heads. With these Dy (€n,ey); s Dm(em, €,).-
extensions, Datalaj captures ontological knowledge that  Here,a. C ap, e S & U ..U ¢ U{en,..em} U
cannot be expressed in classical Datalog. {en, e} andag~a. € a; U ... Ua;. Furthermore,

Although thechasewith these rules does not necessarily ~ Shared variables in bodies of TGDs correspond only to
terminate, syntactic restrictions imposed on the set aégul ~ categorical attributes of categorical relations.

aim to ensure decidability of conjunctive query answerangy With rule {4) (an example is[{7) below), the possibility of
is some cases, also tractability in data complexity. Datalo doing dimensional navigation is captured by joins betwesgn c
has sub-languages, such laear, guarded weakly-guarded egorical predicates, e.@;(&;; a;), ..., I;(&;; a;) in the body,
sticky, andweakly-stickythat depend on the kind of predicates _ _ _ ,
Alternatively, we could have referential constraints begw categorical

and syntactic interaction of TGD rules that appear n th’@lations and categories that are captured by Datald@Ds, making it
Datalogt program. possible to generate elements in categories or categostztions.



and parent-child predicates, eB,,(en,€),), ..., Dm(em, e,,,). categorical relations do not match. So, the existenticbbe
Rule [4) allows navigation in both upward and downward represents missing data for tkhift attribute. O
directions. Thedirection of navigationis determined by the
level of categorical attributes that participate in thenjoi the
body. Assuming the join is betwed?} (¢;; a;) andD,, (e, e}, ),

upward navigation is enabled whef) € ¢; (i.e. ¢/, appears
in R;(é;;a;)) ande, € & (i.e e, appears in the head). On

. . ; .
the other hand, it,, occurs inR; ande;, occurs infy, then which depends on the assumption that the MD ontology has a

S ,
downwarq naw_gatlon_ 'S ena_bled, from to e, o fixed dimensional structure, in particular, with a fixed nianb
The existential variables iJ(4) make up for missing non-

) . ) . X of category members. No new category member is generated
categorical attributes due to different schemas (i.e. ttis-e gory gory g

. . . o _ when applying the dimensional rules of the forlmh (4).
tential variables may appear in positions of non-categbric The separability property[7], [8] in relation to the inter-

3:{;2“%50\?;? ?grt 'enagsti?olgc(‘?fl :ttggztesgiégsr;;ﬁgghé& action of dimensional EGDs of the formi](2) and TGDs of
9 ' P 9 b—‘he form [4) must be checked independently. Howewdren

It is possible to verify thathe Datalog- MD ontologies
with rules of the formd{1)-(4) are weakly-stickyhis follows
from the fact that shared variables in the body of dimengiona
rules, as defined in[4), may occur only in positions of
categorical attributes, where only limited values may appe

to_a parent member, the rule generates FUples for g_ll t }e EGDs have only categorical variables in the heads, the
child members of the parent member (or children specifical

indicated in the body). %parablllty condition holdswhich is the case with rulé6).

. . . Example 5 (eXJ2 and 4 cont.)o illustrate query answer-
tExam_pIel 4I(?Er§ f[:.oni'l)JThtf Eategolrlcalfattrllt;ﬁtgwat ”: ing via downward navigation, reconsider the query about the
categorical relatiofratientnitiakes values from thenit cat - ;4ies thamark works in W1 Q'(d) + Shifts(W1,d, Mark, s).

egory. We use a constraint of the form (1). Similar constgain . .
are in the ontology that capture the connection betweerr Otlgon&derlng [(B) and the last tuple iorkingScheduleshe

categorical relations and their corresponding categories hase wil generate a new tuple $iftsfor Mark on Sep/ain
9 P 9 9 W2, with a fresh null value for his shift, reflecting incomplete

L« PatientUnit(u, d; p), = Unit (u). (®)  knowledge about this attribute at the lower level. So, the
For the constraint in Examplé 1 requirifijyo patient was in answer to the query vidl(8) Sep/9 O
intensive care unit during the time after August 200&& use  The general TGD[{4) only captures downward navigation
a dimensional constraint of the foria (3): when there is incomplete data about the values of non-
1 « PatientWard(w, d; p), Unit Ward(Intensive,w), Categorical attributes, because existential variables caly
MonthDay(August /2005, d). non-categorical. However, in some cases we may have incom-
Similarly, the following rule, of form[{R), states th&all the  Pléte data about the categorical attributes, i.e. aboutrar
thermometers used in a unit are of the same type” and children involved in downward navigation.
, o TABLE V
t=1t" + Thermometer(w,t;n), Thermometer(w’,t';n’), DischargePatients
UnitWard (u, w), Unit Ward (u, w'), (6) Inst.| Day | _Patient

. 1| H1 |Sep/9 Tom Waits
with Thermometer( Ward, Thermometertype; Nurse) a cat- .| 1 [Sep/d Lou Reed

egorical relation with thermometers used by nurses in wards 3| H2 [Oct/5|Elvis Costelld

Finally, the following dimensional rules of the foril (4) éap  Example 6 (eXJ1 cont.)There is an additional categorical
ture how data irPatientWardand WorkingSchedulegenerate yg|ation DischargePatient¢Table[¥) with data about patients

data forPatientUnitand Shifts respfl leaving an institution. Since each of them was in exactly
PatientUnit(u,d; p) < PatientWard(w,d;p), (7) one of the unitsDischargePatientshould generate data for
UnitWard(u, w). PatientUnitthrough downward navigation from tHestitution
3z Shifts(w, d; n, z) < WorkingSchedules(u, d; n, t), Ievgl to theUnlt level. Since we do not have_ I_<nowledge abc_>ut
, which unit at the lower level has to be specified, the follayvin
UnitWard(u, w). (8)

rule could be used:

In (@), dimension navigation is enabled by the join between Ju InstitutionUnit (i, w), Patient Unit(u, d; p) 9)
PatientWardandUnitWard The rule generates data featien-

tUnit (at a the higher level obnit) from PatientWard(at the which is not of the form[{4), because it has an existentially

lower level of Ward) via upward navigation. Notice thall(7) uantified categorical variable,, for units. It allows down-

s in the general form({4), but since in this case the schemwgrd navigation while capturing incomplete data aboutgnit
of the two involved categorical relations match, no exigs&én 9 P 9 b

- and represents disjunctive knowledge at level of units. O
quantifiers are necessary.

Rule [8) captures downward navigation while it generates The general form of{9), for this type of downward naviga-
data forShifts(at the level ofWard) from WorkingSchedules tion is as follows:
(at the level ofUnit). In this case, the schemas of the two 3z Ry (éx;ax), Dn(en,€l), ..., Dm(em, €l,) (10)

m
2A rule with a conjunction in the head can be transformed intetof Ri(ei; i), oo R; (ej; a-j)’
rules with single atoms in heads. wherez C &, Ua, U {en,...,em}t U{el,...,el } ande, U

Sty Tm

DischargePatients(i,d; p),



{en, cem}t U{en, ..,en,}NzZ C e U...Ug anda,y~z C algorithms, which do exist for the Dataléigmore restrictive
a;U...Ua;, and the categorical attributes Bf, . . ., R; referto  syntactic classes, e.tinear andsticky [5], [6].
categories that are at a higher or same level than the catejor The MD ontologies to which the complexity results and
attributes ofRy,. (In (@), categoriednstitution and Day for algorithms above apply support both upward and downward
DischargePatients are higher and same level, resp. thamit navigation. However, for simpler MD ontologies that sugpor
and Day for PatientUnit.) only upward navigation (which can be syntactically detécte

If the MD ontology also includes rules of the forfn](10)from the form of the dimensional rules), we developed a
it still is weakly-sticky This is because, despite the fact thanethodology for conjunctive query answering based on FO
these rules may generate new members (nulls), they can ogliery rewriting. The rewritten query can be posed direaily t
generate a limited number of such members (because the ithie extensional database. Ontologies of this kind are cammo
only navigates in downward direction), i.e. there is no ycland natural in real world applications (Example 1 shows
behavior. With these new rules, EGDs with only categoricalich a case). Interestingly, these “upward-navigating” MD
attributes in heads do not guarantee separability anynSare. ontologiesdo notnecessarily fall into any of the “good” cases
checking this condition becomes application dependent.  of Datalogt mentioned above.

IV. QUERY ANSWERING ONMD ONTOLOGIES The algorithms mentioned in this section are rather proofs

Weakly-stickyness guarantees thabolean conjunctive of concept than algorithms meant to be used with massive
query answering from our MD contextual ontologies becoméata. It is ongoing work the development and implementation
tractablein data complexity[[B]. Then, answering open conof scalable polynomial time algorithms for answering open
junctive queries from the MD ontology is also tractatlel [10conjunctive queries.

We have developed and implemented a deterministic al- V. MD ONTOLOGIES AND DATA QUALITY
gorithm, DeterministicWSQAns, for answering boolean In this section, we show how a DatalagMD ontology
conjunctive queries from DatalegMD contextual ontologies. can be a part of -and used in- a context for data quality
The algorithm is based on a non-deterministic algorithrassessment or cleaning. Hig. 2 shows such a context and the
WeaklyStickyQAns, for WS Datalogt that runs in poly- way it is used. The central idea in][2] is that the original
nomial time in the size of extensional databdse [8]. instanceD (on the left-hand-side) is to be assessed or cleaned

Given a set of WS TGDs, a boolean conjunctive querfhrough the context in the middle. This is done by mapging
and an extensional databasesaklyStickyQans builds into the contextual schema/instan€eThe context may have
an “accepting resolution proof schema”, a tree-like strrest additional data, predicate€’(), data quality predicates)
which shows how query atoms can be entailed from tis@ecifying single quality requirements, and access toreate
extensional instance. The algorithm rejects if there is rita sourcesH;) for data assessment or cleaning. The clean
resolution proof schema; otherwise it builds it and accepts version ofD is on the right-hand-side, with scher§é, which

Our deterministic algorithmpeterministicWSQAns, IS a copy ofD's schemal[2].
applies a top-down backtracking search for accepting reso-The new element in the context is the MD ontology,
lution proof schemas. Starting from the query, the algarithwhich interacts withC, and represents the dimensional ele-
resolves the atoms of the query, from left to right. In eaelpst ments of the context. The categorical relations\ih provide
an atom is resolved either by finding a substitution that maginensional data for the relations ¢hand for quality predi-
the atom to a ground atom in the extensional database (whfges inP. C also gets extensional data from initial database,
makes a leaf node) or by applying a TGD rule that entail8, and external sources. Here we concentrate on data cleaning
the atom (building a subtree). The decision at each stepW§ich here amounts to obtaining clean answers to queries, in
stored on a stack to be restored later if the algorithm fails particular, about clean extensiorfg'] for the original database
entail the atoms of the query in the next steps. The algoritHiglations §;) (a particular case aflean query answerinfg]).
accepts if it resolves all the atoms in the query (the contentThe quality versionsS{ are specified in terms of the
of the stack specifies the decisions that lead to the acgpptiglations inC and quality predicatesP;. The data for the
resolution proof schema), and rejects if it cannot resolve #atter may be already in the context or come frdm the
atom, no matter what decisions have been made before. ontology M, or external sources. The problems become: (a)

In this deterministic approach, possible substitutionsasf- computing quality versions? of the original predicates, and
stants for query variables are derived by the ground atoms(fh computing quality answers to queri@sexpressed in terms
the extensional database (as opposed to the non-deteimin®f those original predicates. The second problem is solyed b
version of the algorithm that guesses applicable subistitsy. rewriting the query a®?, which is expressed (and answered)
This enables us to extendeterministicwWSQans for interms of predicateSy. Answering it is the part of the query
finding answers to open conjunctive queries, by buildingnswering process that may invoke dimensional navigatidn a
resolution proof schemas for all possible substitutions. ~ data generation as illustrated in previous sections. Erolg)

WeaklyStickyQAns runs in polynomial time in the is @ particular case of (b).
size of the extensional databasé [6]. It can be proved thaExample 7:(ex.[4 cont.) A quenQ about Tom Waits’ tem-
DeterministicWSQAns also runs in polynomial time. Peraturesis initially expressed in terms of the initialgicates
None of these algorithms are first-order (FO) query revgitinMeasurementsout is rewritten into a query expressed and an-



Fig. 2. An MD context for data quality assessment

swered via its quality extensioiecasurements? (see [2] for
more detailsﬁ More specifically, the query is aboutThe

QU(t,p,v) <  Measurements(t,p,v)?, p= Tom Waits,
Sep/5-11:45 < t < Sep/5-12:15.
Answering it, which requires evaluatinfakenWithTherm
triggers upward dimensional navigation frowiard to Unit,
when requesting data for categorical relati®atientUnit
More specifically, dimensional rul&l(7) is used for data gen-
eration, and each tuple iRatientWardgenerates one tuple in
PatientUnit with its unit obtained by rolling-up . O

VI. CONCLUSIONS

We have described in general terms how to specify in
Datalogt a multidimensional ontology that extends a mul-
tidimensional data model. We have identified some progertie
of these ontologies in terms of membership to known classes
of Datalogt, the complexity of conjunctive query answering,
and the existence of algorithms for the latter task. Finaiy
showed how to apply the ontologies to multidimensional and

body temperatures of Tom Waits on September 5 taken aro@#itextual data quality, in particular, for obtaining dtyaan-

noon by a certified nurse with a thermometer of brand B1”
Q(t,p,v) + Measurements(t,p,v),p = Tom Waits,
Sep/5-11:45 < t < Sep/5-12:15.
Measurementsas initially given, does not contain infor-
mation about nurses or thermometers. Hence gkpected

conditionsare not expressed in the query. According to thg

general contextual approach i [2], predickteasuremenriias
to be logically connected to the context, conceiving it as

footprint of a “broader” contextual relation that is given o [y
built in the context, in this case one with information about

thermometer brand$) and nurses’ certification statug)(
Measurement’ (t,p,v,y,b) <  Measurement(t,p,v),
TakenByNurse(t, p,n,y), TakenWithTherm(t,p,b),

where Measurement® is a contextual copy oMeasurement
i.e. the latter is mapped into the cont@xf. we want quality
measurements data, we impose the quality conditions:

< Measurement'(t,p,v,y,b),
y = Certified, b =B1,
with the auxiliary predicates defined by:
TakenByNurse(t,p,n,y) < WorkingSchedules(u, d;n,y),
DayTime(d,t), PatientUnit(u, d;p).
TakenWithTherm(t,p,b) <+  PatientUnit(u, d; p),
DayTime(d,t),b = B1,u = Standard.

Measurement? (t, p,v)

swers to queries through dimensional navigation. MD cadstex
are also of interest outside applications to data qualibeyT
can be seen as logical extensions of the MD data model.
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