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Abstract—In an increasing number of use cases, databases
face the challenge of managing irregularly structured data.
Irregularly structured data is characterized by a quickly evolving
variety of entities without a common set of attributes. These
entities do not show enough regularity to be captured in a
traditional database schema. A common solution is to centralize
the diverse entities in a universal table. Usually, this leads to a
very sparse table. Although today’s techniques allow efficient
storage of sparse universal tables, query efficiency is still a
problem. Queries that reference only a subset of attributes have
to read the whole universal table including many irrelevant
entities. One possible solution is to use a partitioning of the
table, which allows pruning partitions of irrelevant entities before
they are touched. Creating and maintaining such a partitioning
manually is very laborious or even infeasible, due to the enormous
complexity. Thus an autonomous solution is desirable.

In this paper, we define the Online Partitioning Problem for
irregularly structured data and present Cinderella. Cinderella is
an autonomous online algorithm for horizontal partitioning of
irregularly structured entities in universal tables. It is designed
to keep its overhead low by incrementally assigning entities to
partitions while they are touched anyway during modifications.
The achieved partitioning allows queries that retrieve only entities
with a subset of attributes easily pruning partitions of irrelevant
entities. Cinderella increases the locality of queries and reduces
query execution cost.

I. INTRODUCTION

As ubiquitous technological means for managing data,
databases are exposed to the persistent acceleration of so-
ciety and technological development. Traditionally modeled
database schemas become quickly outdated by reality and
application requirements. Where databases should compre-
hensively capture a large and quickly evolving variety of
entities, the traditional database design principles are stretched
to their limits. Examples for such application areas are product
catalogs (e.g., for electronic devices), clinical findings in pa-
tient databases, multi-tenancy databases, or analytic databases,
which are constantly enhanced with derived data. Here, new
entities frequently appear with new combinations of attributes
or totally new attributes. Typically, entities show some reg-
ularity but not enough to allow modeling a sound database
schema.

A common solution in such areas is to model on a more
abstract level and centralize the diverse entities in a universal
table. Instead of a table for each type of product in a traditional
product catalog, the universal table approach has a single

product table containing all product properties. Usually, this
leads to a very sparse table, which most of today’s database
systems can store efficiently [1], [2], [3]. Retrieval operations,
however, suffer from the universal table modeling. Queries
that reference only a subset of attributes have to read over the
whole universal table including many irrelevant entities that
do not have the referenced attributes. Horizontal partitioning
presents a simple technique to increase the efficiency of
such queries. A partitioning scheme taking into account the
irregularity of the entities allows queries pruning partitions of
irrelevant entities before they touch the data. Designing and
maintaining such a partitioning, though, is a laborious and
never ending task most DBAs are not willing to commit to.

In this article, we define the Online Partitioning Problem for
irregularly structured data. To solve the problem, a technique
with little overhead is a necessity. As the main contribution
of the article, we present Cinderella, an autonomous online
algorithm for horizontal partitioning of irregularly structured
entities in universal tables. Cinderella partitions entities into
homogeneous fix-sized partitions, such that the entities in a
partition share most of their attributes. Cinderella maintains the
partitioning while entities are added, modified, and removed.
It is designed to keep overhead low by operating online;
it incrementally assigns entities to partitions while they are
touched anyway during modifications. Queries that retrieve
only entities with a subset of attributes can easily prune
partitions which contain entities with only irrelevant attributes.
This way, Cinderella increases the locality of queries and
reduces query execution cost.

In the remainder of the paper, we first define the Online
Partitioning Problem in Section II. Afterwards, Sections III
and Section IV present Cinderella followed by an evaluation in
Section V. Finally, Sections VI and VII briefly discuss related
work and conclude the paper, respectively.

II. ONLINE PARTITIONING

Entities in a universal table are typically very heterogeneous
regarding their attribute sets. Together, the entities feature a
large number of attributes while most of the entities instantiate
only a small subset of these attributes. Figure 1 illustrates such
a universal table for the product catalog scenario. As can be
seen, attributes appear irregularly among the entities. Some
attributes are very common, e.g. name or weight, while others
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name resolution  aperture  screen  storage  tuner rotation  form factor  weight

Canon PowerShot S120  12.1 2.0 3 198

Sony SLT-A99 24 3 733

Samsung Galaxy S4 13 4.3 32GB 133

Apple iPod touch 5 4 64GB 88

LG 60LA7408 Full HD 40 DVB-T/C/S 9800

WD4000FYYZ 4TB 7200 3.5”

Garmin Dakota 20 2.6 150
Fig. 1. Example of a universal table for electronic devices.

are specific to only certain kinds of entities, e.g. aperture for
cameras with built-in lenses. Studies observed that distribution
of attributes obeys the Zipf’s law [4], [5]. Although the entities
exhibit some regularity, it is hard to find reasonably stable
and reliable partitioning scheme. While all of today’s cameras
feature a sensor, a screen, and a storage card slot, some of them
are also equipped with a flash, a GPS sensor, or Wi-Fi. Soon,
we will see cameras with mobile connectivity but lacking
a storage card slot. If there would be a stable partitioning
schema, after all, it is reasonable to assume that the database
modeler would have modeled the database accordingly.

The goal of the partitioning is to increase the query effi-
ciency by allowing the database system the early pruning of
partitions with entities irrelevant for a query. Each partition
is described in the system catalog using a partition synopsis
p, which lists the attributes of the entities in the partition.
Likewise, we can list all attributes relevant to a query in
a query synopsis ¢q. Based on the synopses, queries can
easily prune partitions that contain only entities irrelevant
to the query, i.e., partition for which |p A ¢| 0 holds.
Correspondingly, the efficiency of a given partitioning is the
ratio of how much data is relevant to a workload and how
much data is actually read.

Definition 1 (Partitioning Efficiency): Given a universal ta-
ble T containing the entities {ej,ea,...}, a query set W =
{q1,92,...}, and a partitioning P = {p1,pa,...}, the effi-
ciency of P is

Z:tIEW,eeT sgn(le A g|) - S1ZE(e)
ZQEW,pEP sgn(|p A g|) - SIZE(p)

EFFICIENCY(P) =

The function S1ZE() yields the size of an entity or a partition,
indicating how much has to be read to scan the entity or all
entities in a partition, respectively. The function sgn(|e A ¢|)
results in one if entity e is relevant to query ¢ and zero if not.
Likewise, sgn(|p A ¢|) results in one if partition p contains a
relevant entity and zero if not. The EFFICIENCY(P) returns
a value between zero and one representing the fraction of
accessed data which is actually relevant for the query set W.

The aim of online partitioning of a universal table is to
continuously maximize the efficiency of a given partitioning
under the presence of modification operations. Modification
operations are inserts, updates, and deletes that change the set
of entities or manipulate the attribute sets of the entities.

Provided by Sachsische Landesbibliothek

Definition 2 (Online Partitioning Problem): Given a uni-
versal table T', a query set IV, a partitioning P, and a modifica-
tion m, online partitioning updates P so that EFFICIENCY (P)
is maximized for W after m is applied to 7.

The online partitioning problem can be solved based on the
workload or solely on the entities. A workload-based solution
tries to find a partitioning so that, ideally, entities in the
same partition are relevant to the same set of queries. Hence,
the resulting partitioning is tailored for the given workload.
Whenever a workload is not available or where the solution
should be more general and robust, an entity-based solution
is more appropriate. An entity-based solution favors partitions
that contain entities with attribute sets as similar as possible.
The resulting partitioning is independent from a particular
workload.

The online partitioning problem applies to many different
database architectures and to various levels in an architecture.
Most obviously in distributed databases or distributed file
systems, partitions are distributed among the nodes. In modern
main-memory database systems running on a large shared-
memory NUMA system, partitions resemble the local memory
of each CPU core. In traditional disk-based systems, pages
may represent a partition granularity where solving the online
partitioning problem can help to increase the query efficiency
on universal tables.

III. CINDERELLA

Cinderella works incrementally. It relies on the basic as-
sumption that the data is already well partitioned. Triggered
by a modification operation, Cinderella merely adjusts the
partitioning so that the modified entity fits in well. Cinderella
creates partitions of a fixed maximum size. Partitions that
reach their capacity limit are reorganized with a split op-
eration. Since, among the common data modification opera-
tions, inserts affect the partitioning most, we will focus the
discussion of Cinderella on the insert operation. Cinderella
can create a workload-based or an entity-based partitioning.
For a workload-based partitioning, an entity synopsis lists the
queries an entity is relevant to, while for a workload-based
partitioning, an entity synopsis lists the attributes an entity
instantiates. For simplicity in the discussion, we will assume
the entity-based setup.

The basic insert procedure is illustrated in Figure 2. Given
two partitions cataloged with their synopses and a new entity,
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Fig. 2. Insert procedure.

Cinderella scans the partition catalog to find the partition
which fits best to the new entity. Every partition is rated and
the entity is inserted to the partition with the highest rating.
We will discuss the rating in detail in Section IV. There are
two possible exceptions from this basic procedure, illustrated
in the left and in the right of the Figure 2. First, the rating can
become negative indicating that the new entity fits none of the
existing partitions well. In this case, Cinderella creates a new
partition for the new entity. Second, the highest rated partition
has reached the maximum capacity B. Here, Cinderella splits
the partition into two new partitions.

For the split, the insert procedure maintains a pair of so-
called split starters for each partition in the system catalog.
The split starters are two entities from a given partition that
differ as much as possible in their synopses. The first two
entities added to a partition form the initial pair of split starters.
With every additional entity added, the insert procedure checks
whether this entity would make a better, i.e. more differential,
starters pair with one of the original starter entities. If that
is the case the insert procedure updates the partition’s pair
of split starters accordingly. The difference between entity
synopses e; and es is calculated as the number of different
schema properties |e; @ ea|. This incremental maintenance
heuristically tries to maximize the difference of the split
starters. It does not guarantee to yield the most differential
pair of entities in a partition, but it avoids the cubic effort
necessary to determine the most differential pair.

To split a partition, the insert procedure creates two new
partitions and moves each of the two split starter entities to one
of the new partitions. The remaining entities are assigned to the
new partitions using the insert procedure itself, while limiting
the set of possible target partitions to the two new partitions.
The procedure does not necessarily result in a balanced split;
the result strictly depends on the schema properties of the
involved entities. The recursive use of the insert procedure
can result in a split cascade. Neither will such a split cascade
be very long nor is it a very likely event.

Algorithm 1 lists the complete insert routine. First, Cin-
derella iterates over the partition catalog to find the partition
best rated for the new entity (Line 3-7). Then, depending on
the best rating, the algorithm either creates a new partition for
the entity (Line 9—13), splits the best rated partition (Line 26—
33), or simply inserts the entity into the best rated parti-

Algorithm 1 Online horizontal partitioning.
1: procedure INSERTENTITY(e, s, C)
2: > Se:

> e: entity

entity synopsis; C: catalog with partition synopses

3 Thest < —OO > init best rating
4 for (Sp,p) e C do > scan partition synopses in catalog
5 T < RATE(Se, Sp) > calculate rating
6: if Thest < T then > if is best rating so far
7 Thest €= T’y Dbest < P > save current best
8 > if best rating is negative

9: if 7pese < O then

10: Doest < CREATENEWPARTITION()

11: pbest.ADD(e) > add entity to new partition
12: Phest-€A4 < € D> set entity as first split starter
13: return

14: > update split starters of partition 7peg

15: if Dbest-€EB = NULL then > if second split starter is missing
16: Proest-€EB < € > set entity as second split starter
17: else > check if new entity is a better split starter
18: TeA < DIFF(€, Poest-€4)

19: rep < DIFF(e, Dpest-€5)
20: rAB < DIFF(Poesi-€4, Poest-€5)
21: if roa :MAX(TEA,TQB,TAB) then
22: Poest-€B < € > e becomes split starter B
23: else if r.p = MAX(7ea,7ep,7ap) then

24: Pbest-€A < € > e becomes split starter A
25: > if partition is full, split

26: if S1ZE(ppest) + S1ZE(e) > MAXSIZE then

27: pa < CREATENEWPARTITION()

28: pp < CREATENEWPARTITION()

29: PA-ADD(Pbesi-€4);  Phesi-REMOVE(Phest-€.4)

30: PB-ADD(Poes-€B);  Poest-REMOVE (ppest-€5)

31: for Esplit € Phest do > split remaining entities
32: INSERTENTITY (€split> Sey» 1PA> PB})

33: Dbest- REMOVE (€egpiit)

34: return

35: > normal case: just add entity to partition 7peg

36: Doest-ADD(e)

tion (Line 36). In the case of a split or a normal insert,
Cinderella updates the pair of split starters to reflect the new
entity (Line 15-24). Specifically, the new entity will replace
one of the split starters if it has a difference to the other split
starter larger than the difference between the original split
starters.

As can be seen, the complexity of finding the best rated par-
tition depends on the number of partitions and the cardinality
of the synopses. For a split, the complexity depends on the par-
tition size and, again, the cardinality of the synopses. However,
in I/O bound systems the performance will be dominated by
the moving of the actual entities from partition to partition.
Consequently, the split, although linear in complexity, is the
most expensive part of the algorithm.

The adjustment routines that Cinderella performs for the
other modification operations rely on the insert routine. Upon
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Fig. 3. Cinderella’s local rating.

deletes, Cinderella merely removes the deleted entity from its
partition. The partitioning itself remains unchanged. Empty
partitions will be deleted. Upon updates, Cinderella also runs
the insert routine but without actually inserting. In case the
updated entity is assigned to a new partition it is moved.
Otherwise, Cinderella updates the entity in place.

Assigning entities to partitions during insert relies on the
rating of how well an entity and a partition fit together. The
next section will detail this rating.

IV. CINDERELLA RATING

Cinderella’s partition rating compares an entity synopsis
with a partition synopsis to determine how well the entity
would fit in the partition. Therefore, the rating takes positive
evidence as well as negative evidence into account, as illus-
trated in Figure 3. Positive evidence is the amount of regularly
structured data a partition will contain if the entity is added.
We refer to this positive evidence also as homogeneity between
entity and partition. Cinderella determines the evidence as the
number of attributes that can be found in both, entity and
partition, multiplied with the sum of the size of the partition
and the size of the entity.

Homogeneity score:  ht = (SIZE(p) + SIZE(e)) - [e A p|
Negative evidence is the amount of irregularly structured data
that will result from adding the entity to a partition — in
Figure 3 indicated by the bold circles. There are two kinds
of negative evidence. The first one is heterogeneity on side of
the entity and originates from attributes the partition has but
the entity lacks. Analogously to the homogeneity, we measure
this entity heterogeneity as the number of the entity’s missing
attributes multiplied by the size of the entity.

h_ = S1ZE(e) - |-e A p|
The second negative evidence is heterogeneity on side of the
partition and originates from attributes the entity has but the
partition lacks. We measure this partition heterogeneity as the
number of the partition’s missing attributes multiplied by the
size of the partition.

Entity heterogeneity score:

Partition heterogeneity score:  h, = SIZE(p) - |[e A —p|

Note that Cinderella heuristically assumes that each partition
it already created is rather homogeneous. Irregularity already
existing in a partition is not considered since this would require

more information than the simple synopses.

To get a local rating 7/, Cinderella subtracts the total of the
negative evidence from the positive evidence.

' =wht — (1 —w) (hy +h,)

The weight w allows balancing between the influence of
positive and negative evidence. For a given data set, higher
weights result in a smaller number of more heterogeneous
partitions, while lower weights result in a larger number
of rather homogeneous partitions. In the extreme setting of
w = 0, any heterogeneity will result in a negative rating.
As a result, Cinderella creates only perfectly homogeneous
partitions like in a normal database for regularly structured
data. First experimental results suggest that a weight between
0.2 and 0.5 is a reasonable setting.

The local rating 7’ is not comparable between partitions
because the amount of data and size of the attribute set varies
from partition to partition. To compensate for that, Cinderella
uses the global rating » which is normalized with the partition
size and the number of the involved attributes:

,r,/

(S1ZE(p) + SIZE(e)) - |e V p

V. EVALUATION

We created a prototypical implementation of Cinderella and
studied Cinderella’s performance on the irregularly structured
data of DBpedia. Additionally, we used the TPC-H benchmark
to evaluate Cinderella on regularly structured data. In this
section, we first discuss the setup, which contains details on
the used implementation, and then present the results.

A. Setup

We implemented Cinderella in PostgreSQL 9.3 using views,
triggers, and stored procedures. Given a universal table, each
data manipulation operation triggers a stored procedure, which
implements the entity-based Cinderella algorithms presented
in this paper. The prototype creates a regular table for each
partition as well as a single catalog table for the meta data of
all partitions. Cinderella uses the meta data to rewrite incoming
queries to a UNION ALL over all partitions that contain the
set of requested attributes. The prototype provides transparent
data access through Cinderella, as the user inserts data to the
universal table using regular SQL statements.

Hardware platform for our experiments was a Windows 8
computer with an i7 CPU and 8 GB of memory. We executed
two kinds of experiments. With data taken from DBpedia, we
evaluated the performance of insert operations and how much
selective queries on irregularly structured data can benefit from
Cinderella. We also studied the influence of Cinderella’s two
main parameters, the partition size limit B and the weight
w in the DBpedia setup. With the TPC-H benchmark, we
investigated the effect of Cinderella on regularly structured
data. In the following, we detail the two experiments on
irregularly and regularly structured data.
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Fig. 4. Attribute distribution in the DBpedia data set.

B. Irregularly Structured Data

DBpedia [6] is a large database of irregularly structured
data, created by a diversity of web users. Given DBpedia’s
heterogeneity, selective queries can benefit from horizontal
partitioning by early elimination of irrelevant partitions from
data access. For this experiment, we extracted 100 000 person
entities with a total of 100 attributes. Although we limit the
data set to person records, it exhibits the typical long tail
distribution of irregularly structured data. Figure 4 shows the
distribution of the attributes in the data set. In particular,
Figure 4(a) shows the distribution of the attribute frequency,
i.e. how many entities of the data set instantiate a given
attribute. As can be seen, two attributes are extremely common
and appear on almost every entity. Eleven attributes are fairly
common and appear on over 30 % of the entities, while 85 %
of the attributes appear on less than 10% of the entities.
Figure 4(b) shows the distribution of the number of attributes
per entity. While the majority of entities have between two
and 15 attributes, a few entities have up to 27 attributes.

We inserted the data into an Cinderella-partitioned uni-
versal table, under different settings of partition size limit
and weight. The DBpedia person entities were inserted in
random order. In the process, we measured the execution
of the inserts; afterwards we recorded metrics about the
partitioning Cinderella had created in the particular setting
and measured the execution time of selective queries. For
this purpose, we generated a synthetic workload since there
is no common or standardized DBpedia workload. The goal
was to obtain queries with different selectivity to evaluate
the effect of Cinderella according to the query selectivity.
We created multiple sets of attributes. Each of the individual
attributes forms an attribute set. Additionally, we combined
the 20 most frequent attributes to pairs and triples. For each
of these attribute sets we generated a query of the form

2 |
S _-°
?
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A _ -A
e I
: S
£ ‘ol
g 3 : b
S 2 7| |— Universal Table X 1
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> B 7 : ]
5} N I
<] : X 1
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X . A - - A,
= e - ST aA . /A
& XX ; i) /,o
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o 4 L t;&Le' - -
\ \ \ \
0.001 0.01 0.1 1
Fraction of read entities
Fig. 5. Average query execution time for different partition size limits B.
SELECT ai, as, FROM universalTable
WHERE a; IS NOT NULL OR a; IS NOT NULL

where {a1,as,...} is the corresponding attribute set. Each of
these queries returns only entities that instantiate the given
attributes. The selectivity of the queries varies depending
on the attributes queried. We collected representative queries
to reasonably cover the range of possible selectivities; three
representative queries for each selectivity.

We start the discussion of the results with the measurements
of query execution time. This is followed by a more detailed
study of the influence of the weight in the partition rating
on the resulting partitioning. Finally, we discuss the measure-
ments of insert execution time.

Query Execution Time: For the representative queries of
our synthetic workload, we measured the execution time using
different partition size limits and weights. For comparison, we
measured the execution time on the original universal table.
Neither the Cinderella partitions nor the universal tables had
an index on any column. Figure 5 shows the average query
execution times depending on the selectivity for a partition
size limit of 500, 5000, and 50000 entities. The weight was
set to 0.5. As expected, the query execution time increases
with a decreasing selectivity of the queries since more data
has to be read. In contrast, the query execution time increases
only slightly on the original universal table. Regardless of the
actual selectivity, queries have to scan the whole table here.
Consequently, Cinderella achieves a significant speedup for se-
lective queries (selectivity < 0.2). In general, the more entities
a query reads, the smaller the benefit of horizontal partitioning
is. Queries of low selectivity (> 0.3) are likely to access every
partition and do not profit from Cinderella. With our prototype,
these queries show a longer execution time with Cinderella
than on the universal table. We attribute large parts of this
overhead to the implementation of our prototype. For instance,
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Fig. 6. Average query execution time for different weights w.

during the union operation, the database system has to project
all tuples of every involved partition to the common schema.
This cost can be avoided by an implementation directly in
a specialized database engine with a native presentation for
irregular data. There, we expect low selectivity queries not
to suffer more than queries suffer from normal range or hash
partitioned tables. Nevertheless, the aim of Cinderella is to
speed up selective queries and it is seen to be capable of doing
SO.

Figure 5 also shows the impact of the partition size limit
on Cinderella’s benefit. Given a data set, a smaller partition
size limit allows Cinderella to build more homogeneous par-
titions. This leads to lower and more stable query execution
time, particularly for queries of medium selectivity. On the
downside, a smaller partition size limit also results in a larger
number of partitions necessary to host the data. This requires
less selective queries to unite more partitions, which increases
the overhead for such queries. Consequently, the partition size
limit should be set lower for very selective workloads and
higher for less selective workloads.

Figure 6 shows the impact of the weight of the partition
rating on Cinderella’s benefit. We see a similar picture here.
Higher weights typically result in fewer but larger partitions.
For very selective queries, a lower weight is beneficial, while
queries of very low selectivity slightly profit from a higher
weight. However, the optimal weight depends more on the
irregularity of the data set than on the workload. For the
DBpedia data set we used in the evaluation, 0.2 is seen to
be a good balance between positive and negative evidence in
the partition rating. For other data sets with another irregularity
another weight is likely to be optimal.

Influence of Weight on Partitioning: For a more detailed
picture of the influence of the weight w on Cinderella’s
partitioning, we partitioned the DBpedia data set with Cin-
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Fig. 7. Influence of the weight w on the partitioning of the DBpedia data

set.

derella using different settings for the weight. For each of
the resulting partitionings, we recorded (1) the number of
partitions, (2) the number of entities per partition, (3) the
number of attributes per partition, and (4) the sparseness per
partition. The maximum partition size limit B was set to 5000.
Figure 7 illustrates the results.

As Figure 7(a) clearly shows, the lower the weight the
more partitions Cinderella creates. Particularly with a weight
less than 0.2 the number of partitions explodes. With a very
low weight, the homogeneity score loses its influence on the
partition rating. As a result, most entity—partition pairs get a
negative rating, causing Cinderella to create a new partition
even for entities that have a large overlap with the schema of
existing partitions. In the extreme case of w = 0 all created
partitions are completely homogeneous.

Naturally, the number of entities in the partitions behave the
opposite way, as shown in Figure 7(b). Higher weights allow
more heterogeneity within partitions, so that more entities are
assigned to the partitions. With a very low weight (w < 0.2),
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[O B=500,w=05 & B=5000,w=05 © B=50000_w=05]

TABLE I
QUERY EXECUTION TIME ON REGULAR DATA (TPC-H).

&“"“‘*‘aé Y

10000
1

of BB CRUFLHRIT ERFPET TV

Insert execution time in ms
100
I

Oe+00 2e+04 de+04 Ge+04 Be+04 1e+05
Inserted entity
Fig. 8. Insert execution time for different partition size limits B.

all partitions remain very small. Medium weights produce
a few partitions filled to the maximum capacity, although
the majority is less than half full. The large spread results
from the attribute distribution. On the one hand, a large
fraction of entities has only a small number of attributes and
many of these attributes are also the most common attributes.
Hence, these entities pile up in a large partition. On the other
hand, a very small fraction of entities has a large number of
very uncommon attributes. These entities result in very small
partitions.

Figure 7(c) shows the number of attributes per partition.
Again, the higher the weight the more heterogeneity per
partition is allowed and the higher the number of attributes.
However, in all settings all partitions have significantly fewer
attributes than the universal table has. This clearly shows
how Cinderella facilitates the pruning of irrelevant data. The
lower the number of attributes the higher the probability that
a partition can be pruned from query processing.

Since the number of entities and the number of attributes per
partition increase with the weight, the sparseness per partition
has to increase as well for a given data set. Figure 7(d) shows
this effect for the DBpedia data set. For the homogeneity-
preserving setting of w = 0, the sparseness per partition
is obviously zero. In contrast, higher weights (w > 0.6)
do not form any partition of very low sparseness. With all
medium weight settings, Cinderella forms mainly partitions
with a sparseness considerably lower than the sparseness of
the original data set (0.94).

All results in Figure 7 underline that medium weights
produce the most reasonable results. A perfect partitioning
has to reach contradicting goals. On the one hand a small
number of partitions that are well filled up to the partition size
limit minimizes the overhead for queries of low selectivity.

Scenario Partition size limit  Total query execution time
Standard TPC-H - 24.23s (100.00 %)
Cinderella I 500 entities 26.38s (108.87 %)
Cinderella II 2000 entities 25.61s (105.69 %)
Cinderella III 10 000 entities 24.54s (101.27 %)

On the other hand very dense partitions with small attribute
sets facilitate the highest speedup for very selective queries.
Medium weights balance between these contradicting goals.

Insert Execution Time: We also measured the execution
time of the insert operations, when we loaded the data set.
Figure 8 shows the results for different partition size limits
and a weight of 0.5. As can be seen, the majority of insert
operations finishes in between 1 ms and 10 ms. With a lower
partition size limit and a larger number of partitions, the inserts
take a little longer, because the size of the partition catalog
increases. A small fraction of inserts needs considerably
longer, though. These are insert operations where a partition
split occurs. As Figure 8 clearly shows, the number of insert
operations with a split decreases with an increasing partition
size limit. With a partition size limit of 500 entities, Cinderella
performs a split 448 times, for a limit of 5000 entities 100
times, and for a limit of 50000 no split occurs. At the same
time, the cost of a split increases with the partition size limit,
because more entities have to be reassigned and physically
moved during a split.

C. Regularly Structured Data

The TPC-H benchmark [7] has, in contrast to DBpedia, a
concrete specification of the workload. For this experiment,
we loaded TPC-H data with a scale factor of 0.5 into an
Cinderella-partitioned universal table. Views on the partitions
created by Cinderella emulated the standard TPC-H tables. The
TPC-H data is perfectly regular. While inserting this data into
an Cinderella-partitioned universal table, Cinderella should be
able to find a partitioning which is similar to the TPC-H table
schema. Any partitioning different from the TPC-H schema
would result in a significantly higher execution time for the
TPC-H queries. Accordingly, we measured the execution time
of the benchmark’s queries on the TPC-H-schema-emulating
views using different partition sizes and, for comparison, the
execution time on the regular tables of the TPC-H schema.

Table I shows the results. The table lists the total execution
time of the 22 TPC-H queries in four scenarios. One scenario
is the normal TPC-H benchmark without Cinderella and pro-
vides the baseline. The other three scenarios show Cinderella
with different settings for the partition size. As can clearly be
seen, the presence of Cinderella adds only a small overhead to
the query execution time on regularly structured data. In fact,
Cinderella finds only partitions which exactly fit the TPC-H
schema in any of the three settings. Again, we see that a larger
partition size decreases the cost of the additionally necessary
union operations for queries that span multiple partitions.
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VI. RELATED WORK

Naturally, the online partitioning problem of universal table
is related to partitioning techniques traditionally applied in
database systems. Other related research field are schema
mining and inference of hidden schemas.

Partitioning is an old means of physical design. Entity sets
can be either partitioned vertically or horizontally. Partitioning
advisor tools became a popular research topic along with
research on index advisor tools [8], [9], [10]. An online par-
titioning tool was presented only recently [11]. For horizontal
partitioning, all these tools consider mainly range partition-
ing because it is the partitioning mostly used in traditional
relational database setups. In web-scale databases, where load
balancing over a large number of nodes is the main concern,
hash partitioning is the common choice [12], [13], [14]. To
the best of our knowledge, horizontal partitioning according
to schema properties has not been considered so far.

Schema mining aims at finding interesting structures and
structural regularities in databases of semi-structured data.
It became a popular research topic in the second half of
the 1990’s, when the rise of the web rapidly increased the
amounts of irregular, semi-structured data. Commonly, schema
mining approaches use an edge-labeled graph as in the object
exchange model [15] to represent the semi-structured data.
They differ, however, in the used mining technique. One
technique used is clustering [16]. Here, a set of extracted
structural types is clustered into k£ groups of similar types.
Another technique extracts frequent structures using the notion
of minimum relative support [17]. Although schema mining
is a very closely related topic, the schema mining techniques
are not applicable to our horizontal partition problem. Schema
mining does not partition data; it finds structural representa-
tives.

Closely related to schema mining is the inference of so-
called hidden schemas [18]. The goal is also to partition
a universal table but vertically and offline. The presented
approach clusters attributes based on their co-occurrence. Co-
occurrence of two attributes is measured with the Jaccard co-
efficient. With the coefficients the authors create an adjacency
matrix and apply a k-nearest-neighbor clustering to obtain
the partitions. Although very closely related, the technique
is not directly applicable to our problem. First, it requires
additional knowledge about the data to provide a reasonably
good k. Second, the algorithm is meant to work offline since
the complex clustering algorithm comes with considerable
overhead.

VII. CONCLUSIONS

The universal table is a common setup in databases in-
volving a significant share of irregularly structured, hard-to-
model data. Horizontal partitioning can help to increase the
efficiency of queries on such universal tables. Maintaining
such a partitioning poses an optimization problem in the field
of physical design. We defined this as Online Partitioning
Problem for irregularly structured data. With Cinderella, we
proposed an online algorithm for horizontal partitioning of

irregularly structured data in universal tables. Cinderella au-
tonomously separates entities into fix-sized partitions based on
the schema properties of the entities, which allows queries to
prune partitions of irrelevant entities from processing before
actually touching them. In the evaluation, Cinderella showed
capable of significantly decreasing the execution time of
selective queries compared to an unpartitioned universal table.
Cinderella is still ongoing work. We are currently extending
our evaluation to further improve Cinderella. A promising
next step is an specialized data management. The smaller the
partition size the better the achieved efficiency. As smaller
partitions, however, increase the total number of partitions
and thereby the overhead of Cinderella, we will continue our
research and aim to further improve Cinderella. Particularly,
we will look to improve the management of a large number of
partition synopses with specialized data structures and include
further aspects of physical database design like caching or
indexing.
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