
SemTree: an index for supporting

semantic retrieval of documents

Flora Amato1, Aniello De Santo2, Francesco Gargiulo3, Vincenzo Moscato 1 ,
Fabio Persia 1, Antonio Picariello1, Silvestro Roberto Poccia 1

Dipartimento di Ingegneria Elettrica e Tecnologie dellInformazione, University of Naples "Federico II"
via Claudio 21, 80125, Naples, Italy

l {flora.amato,vmoscato, fabio.persia,picus, silvestrorob erto.poccia}@unina.it
2aniello.desanto@gmail.com

3f.gargiulo@cira.it

Abstract-In this paper, we propose SemTree, a novel semantic
index for supporting retrieval of information from huge amount
of document collections, assuming that semantics of a document
can be effectively expressed by a set of (subject, predicate, object)
statements as in the RDF model. A distributed version of KD­
Tree has been then adopted for providing a scalable solution to
the document indexing, leveraging the mapping of triples in a
vectorial space. We investigate the feasibility of our approach in a
real case study, considering the problem of finding inconsistencies
in documents related to software requirements and report some
preliminary experimental results.

I. INTRODUCTION

In the last decade digital data are grown in a large scale
and in an exponential way in different application fields. Such
data are often in the shape of textual documents containing
unstructured, structured and/or semi-structured information
(e.g. medical records can include both structured information,
as example patient vital statistics, and unstructured text as
medical reports; web pages can include both structured in­
formation in the form of HTML microdata and unstructured
text).

Within modern organizations, managing efficiently and ef­
fectively very large amount of digital documents has become a
more and more important challenging aspect for a wide range
of knowledge management applications. This process requires
from one hand a model for representing semantics attached
to any kind of document (e.g. web pages, medical records,
logs and more in general each type of textual documents), and
from the other one indexing techniques to support in a scal­
able manner document retrieval in very large distributed and
heterogeneous repositories based on the underlying semantics.

In the literature, the most widely used approaches that
combine Knowledge Representation and Natural Language
Processing techniques to allow an efficient semantic-based
retrieval are: conceptual indexing, query expansion, and se­

mantic indexing [1].
The systems leveraging the conceptual indexing approach

usually ground on catalogs of texts belonging to specific
domains and exploit ad-hoc ontologies and taxonomies to
associate a conceptual description to documents [2].

978-1-4799-8442-8/15/$3l.00 © 2015 IEEE 62

Differently from the previous ones, the systems using
query expansion techniques semantically enrich the user query
adding words that have semantic relationships (e.g. synonyms)
with the search terms [3].

Eventually, the systems based on semantic indexing tech­
niques exploit the meaning of documents' keywords to per­
form indexing operations [4], eventually using a latent analysis
[5].

In this paper, we propose a novel semantic indexing ap­
proach for supporting retrieval of documents from digital
collections.

We assume that semantics of a document can be effec­
tively expressed by a set of assertions in the shape of
(subject, predicate, object) statements (which relates a sub­
ject to an object by means of a predicate) as in the RDF
model, allowing to represent both parts containing structured
(whose transformation in a set of triples is immediate) and
unstructured information, which requires NLP facilities [6].

SemTree, a distributed version of Kd-Tree, has been then
adopted for providing a scalable solution to the document
indexing, leveraging the mapping of triples in a vectorial space
by means of the definition of a proper semantic distance

between triples. The distance uses some domain specific and/or
general vocabularies and can be computed through the most
diffused semantic similarity measures [9].

The problem of supporting in a scalable way the fast
retrieval of triples related to various pattern queries by trans­
lating them into multi-dimensional range queries has been also
faced in [7]. Differently from our approach, the authors adopt
an RDF store that is built on the top of a distributed multi­
dimensional index structure.

Furthermore, scalability issues are met in a similar manner
to our method by the proposal in [8], wherein a multi­
dimensional indexing structures layered over a key-value

database is opportunely used to obtain an efficient query
processing for location based services.

Finally, we investigate the feasibility of our approach in a
real case study, considering the problem of finding inconsis­

tencies within a large amount of documents related to software
requirements.

ICDE Workshops 2015

The paper is organized as in the following. Section 2

describe the motivating example of our work, while Section
3 presents the overall framework for semantic indexing. Sec­
tion 4 illustrates the performed experiments on a distributed
environment. Finally, Section 5 shows conclusions and future
work.

II. MOTIVATING EXAMPLE

Recent studies on requirement engineering demonstrate that
software teams still face problems in the formalization of
textual requirements, in the verification of consistency of
requirements not yet formalized, and even in the definition
of specification models [10].

To this goal, some works have recently proposed an ap­
proach to verify inconsistencies in Natural Language docu­
ments, leveraging the adoption of similarity measures between
concepts modeled using RDF [11]. Following this idea, we
model each software requirement as a set of triples and
then we find possible contradictions and conflicts within this
set through the detection of appropriately defined patterns,
expressed as particular target triples.

In requirement engineering, two triplets ti and tj are in­

consistent if: (i) they have the same subject, (ii) they have
the same object; (iii) the two predicates are linked by an
antinomy relationship in a given vocabulary [11]. Leveraging
such property, we may query the documents using as target
triples possible inconsistent requirements, in order to detect
all semantically similar triples that could then correspond to
contradictions or conflicts.

As an example, if we consider the following requirement
(OBSW001, accepccmd, start-up) for an airplane on-board
software (specifying that the cOlmnand 'start-up' has to be
accepted by the software component 'OBSW0054'), then
possible inconsistencies can be retrieved in the result set
related to the query triple (OBSW0001, block_cmd, start-up)
that contains all the triples "semantically close" to the target
one.

Furthermore, since a requirement contains more than one
sentence and a sentence can include several triples, even the
number of triples generated by a small set of requirements is
considerable. Therefore, there is a strong need for a framework
to efficiently implement semantic queries (i.e. range query and
k-nearest query) on large set of documents.

The purpose of our semantic index is to give an effective
solution to this kind of problems.

III. A FR AMEWORK FOR SEMANTIC INDEXING

A. Background

We propose a framework for big data indexing based on the
following features: (i) the semantics attached to each document
can be represented as a set of triples; (ii) it is possible to
define "semantic distance" between two triples; (iii) the triples,
together with related distances, are mapped into a vectorial
space - using FastMap algorithm [12] - on which it is possible
to define an efficient indexing structure; (iv) the index is

63

designed to work in a distributed environment supporting more
efficiently query by examples on large set of data.

In our model, data are represented by means of a set of
assertions reflecting specific data properties (i.e. predicates

with a subject and an object, as in RDF model).
Following our motivating example, data come from soft­

ware requirements' documents that are expressed in Natural
Language and that are composed by a set of sections, each one
containing the definition of a specific requirement. In this case,
the predicates correspond to particular unary "functions" (i.e.,
'accept a cOlmnand', 'send a message', 'acquire an input',
etc.), having as subject the Actor (software component or
hardware device) and as object the related Parameter.

An example of resources (in a Turtle-like format) that
could be derived from such data source is described in the
following' .

('OBSW001', Fun:acquire_in, InType:pre-launch phase)
('OBSW001', Fun:accepccmd, CmdType:start-up)
('OBSWOOl', Fun:send_msg, MsgType:power amplifier)

The notation X : x, expresses that the meaning of the
concept x can be found by using the prefix X. If X is not
specified, we use a standard vocabulary.

Clearly, similar resources contain the triples that are able to
express similar information content. In this paper we are not
interested in how it is possible to transform documents into
a set of assertions/triples (techniques to map relation data to
RDF or NLP facilities to transform a text in a set of triples can
be easily exploited [6]); in the opposite, we focus on how to
compute the distance between two generic triples, eventually
considering the related semantics.

To evaluate a distance between two triples ti and tj, we
consider the following formula:

d(ti, tj) = a· ds(tf, tj) + (3. dp(tf, t�) +" ds(tf, t'j) (1)

tic, t� , t'k being the projection of a triple tk on the one
subject, predicate and object respectively, ds WI, tj), dp(tf, t�),
do(i'l, t'j) the distances between triples' subjects, predicates
and objects respectively, a, (3, , are set of weigths such that
a+(3+,=l.

To compute the specific sub-distances, we have to con­
sider two main cases: (i) the two triples' elements are both
literals/constants of the same type (we can apply any dis­
tance function between strings, i.e. Levenshtein); (ii) the two
triples' elements are both concepts (we can apply any distance
semantic based on the available ontologies, taxonomies or
vocabularies, i.e. Wu & Palmer).

B. SemTree algorithms

A variety of indexing data structures are available to deal
with high-dimensional data: R-tree, Kd-tree, X-tree, SS-tree,
M-tree, Quadtree, etc.

IThe order of the triples reflect the temporal sequence of the requirement
elements.

Kd-trees are more efficient in bulk-loading situations (as
required by our approach), they can adapt to different densities
in various regions of the space and are easier to implement
in memory (which actually is their key benefit). On the other
hand, once built, modifying or rebalancing a Kd-tree is a non­
trivial task.

Here, we present SemTree, a distributed index particularly
suitable for managing semantic extracted data. In the follow­
ing, we describe the algorithm for dynamic insertion of new
points into SemTree and present k-nearest and range query

procedures; in addition, we assume that our data can be stored
only into the leaf nodes. Each tree node can be either a routing

or a leaf node.
1) The Distributed Insertion Algorithm: this algorithm has

been designed for performing an insertion of a point into
SemTree, whose data structure can be distributed through
different partitions usually managed by a single compute node.
When a new point has to be added into a partition of the
tree, there is the need to verify a specific condition based
on the available resources of the specific compute node. The
condition can be dynamically evaluated at run-time - for
example, it may depend on the percentage of the available
storage resources of each partition - or statically fixed.

When there are not enough resources into the selected parti­
tion, new partitions are created invoking a specific procedure,
as will be described in the following. The purpose of this
procedure consists in moving each leaf node of the current
partition into a different newly created partition.

The insertion procedure starts from the root node of the root
partition of SemTree; then, the tree is navigated with the aim
to locate the leaf node in which the point has to be inserted.

More in details, SemTree navigation is performed on the
basis of the Sr (the Split Index of the current node) and Sv
(the value of the node splitting variable) variables, as in the
standard Kd-Tree [13]. The result of the comparison between
the Sr coordinate of the point P (P[Sr]) and Sv at each level
allows to navigate in the left/right sub-tree of the current node;
if such a sub-tree is not located on the same partition of the
current node, a message containing the point to be added has
to be sent to the correct partition.

When a leaf node ln (the blue node in the left sub-figure
of Figure 1) saturates the bucket, two new child nodes are
instantiated using an apposite function. Because ln is no longer
a leaf node, the related points are moved into the new child
nodes (the red nodes in the right sub-figure of Figure 1).

In a given partition, we can distinguish between internal

and edge nodes. Each leaf is an edge node, but a routing node
can be either an internal or an edge node. A routing node is
an edge node when at least one of its children is the root in a
different partition; on the contrary, it is an internal when all
its children are on the same partition.

The tree navigation through different partitions takes place
by a proper communication protocol (in our implementation
based on MPJ libraries).

When a routing node is reached, the sub-tree in which to
delegate the insertion operation is determined.

64

PO PO
RO

RO

.. �.
T1

TO

Fig. 1: Example of SemTree distributed insertion

Once the target sub-tree is identified, we need to determine
whether it is on the same partition of the routing node by
comparing two proper variables Cp (the identifier of the
partition hosting the current node) and Childp (the identifier
of the partition hosting the child node of the current node).
When Cp = Childp, the tree is navigated as a sequential
Kd-Tree; otherwise, we insert the point into the partition that
contains the child node.

2) The Build Partition Algorithm: this functionality allows
us to build new partitions if there are some available compute
nodes able to host them. This function starts when the max­
imum allowed number of resources of a partition is reached;
the build partition algorithm starts from the root node of such
a partition and goes on navigating the tree to find each leaf in
the partition and to move them into a new different partition.
The result is a partition tree in which some partitions are used
just for routing and others for storing data.

A direct link between different partitions is instantiated
in order to allow the navigation across the partitions. For
instance, Figure 2 shows how a leaf node candidate Lc is
moved to a newly created partition and a link between the two
partitions is then created. This process is replicated on each
leaf node exceeding the allowed number of storage resources.

3) The Distributed K-nearest Search Algorithm: this algo­
rithm describes the solution to the k-nearest query problem on
SemTree.

The navigation of the tree is similar to the previously
described insertion algorithm. In a k-search we look for the k

points closest to the one of interest. To illustrate the distributed

k-search algorithm, we introduce the parameters listed in table
I. The tree is navigated until a leaf node is reached and its
bucket points are added to the result set; then we start going
backward to the tree.

During such a kind of visit, we evaluate, for each node,
weather to start forward visiting the not yet analyzed sub­
tree having the current node as root. This condition, accord­
ing to the well known Kd-Tree sequential k-nearest search,
is composed by the logical disjunction between two sub­
conditions, the former based on a comparison between dis-

PO

P1

T1

Fig. 2: Build Partition

TABLE I: Imput Parameters of K-Search

Field I Reference I Possible Values
Node Status S Not Visited (Nv); Left

Visited (Lv); Right Visited
(Rv); All Visited (A v),

Number of Points K The number of points that we
have to find,

Distance D The distance between the in-
terested point and the most
distant one in the result-set.

Result-set Rs A structure able to store in
memory the k points of inter-
est found,

Point P The point of interest.

tances (Imax(Rs[SI]) - P[SI] 1 > IP[SI] - Svl) (SI is the
space index coordinate and Sv the split value of the current
node), and the latter based on the replenishment of Rs against
k (Rs.lenghtO < K).

The protocol for exchanging messages between different
partitions is basically the same as the one described in the
insertion algorithm. The algorithm ends when the backward
visit reaches the root node of the root partition.

4) The Range search Algorithm: in a Range-search we
search the points that are closest to the query point within a
specific range. To illustrate the distributed Range search algo­

rithm, we refer to the parameters listed in table I, considering
in this case D as a distance range.

The navigation strategy is composed by two steps. First, we
navigate the tree from the root node to the leaves to find the
points within a specific distance range from a point P. During
this phase the navigation through the current node is driven by
the comparison between I(P[SI]-Sv)1 and the range distance
D. We can have two possible cases:

• I(P[SI]-Sv)1 < D: in this case we navigate across the
two children of the current node; note that, if the current
node is a border node, the navigation is performed in a
parallel way.

65

• Otherwise, the navigation is performed with a comparison
of the Sv variable of the current node, as in the insertion
algorithm.

Second, we navigate backward from the leaves to the root,
adding the results to the Rs structure. The different result
sets obtained through a parallel computation are merged into
a unique one during this phase.

C. Complexity

To calculate the complexity of our algorithm we have to
make some assumptions. Let us:

• insert K points into the tree;
• be able to use M partitions;
• suppose to have a bucket, of size B s, in each leaf node

to store the points;
• suppose an equal distribution of points in each leaf node.

We thus have N = 2;� nodes in the SemTree. Let us
consider a Root Partition hosting routing nodes and able to
distribute messages between the other partitions. In this case
this partition hosts 2 * M - 1 nodes. If the points are equally
d' 'b d h N N-(2*M-l) d ' h Istn ute , we ave I = M-l no es in every ot er
partition.

When we want to add a point to the tree, the insertion

procedure starting from the root node of the root partition is
invoked: when the tree is well-balanced, the time to navigate
the tree to find the correct place is: 8(lOg2(M -1)+log2(NI)+
1).

If M« N, we can consider log2 M « log2 N and
log2 M = A is a certain number related to the number of
used compute nodes. Then, we obtain 8(A + log2 �).

This complexity refers to a single insertion; however, using
M -1 data partitions, we can perform in the best case M -1
parallel operations maximizing our throughput.

The complexity of algorithm for bulding partitions is 8(M)
and is related to the number of machines we are able to
manage. Note that if M « N, this complexity is not
important in tree building process. The search algorithms
complexity is the same of the standard Kd-tree.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the efficiency and the effective­
ness of SemTree.

The efficiency has been calculated considering several case
studies, varying the size of the tree and for different types of
tree structure 2.

The effectiveness has been computed using the Preci­

sion/Recall metrics, by comparing the output of our algorithms
against ground truth provided by human annotators.

The used dataset is extracted from a set of requirements'
documents related to on board software systems. More in
details, we deal with several hundreds of documents from
which about 100,000 triples were extracted.

2 All the experiments presented in this Section were conducted on a cluster
having 8 processors with 8 GB RAM (compute nodes),

Index Building Times

-1 partition (balanced)
-3 partitions
-5 partitions
-9 partitions
-1 partjtjon (totally unbalanced)

Number of points

Fig. 3: Index Building Time

Sequential K·nearest time (K=3)

/
/
/ -Balanced

/
-Totally Unbalanced (chain)

/
/ --

Number of points

Fig. 4: Sequential K-Nearest Time, K=3

A. Efficiency computation

Figure 3 shows the running time achieved by our procedure
for index building when varying the size of the input data and
the number of used partitions.

In figure 4 the running time of the sequential K-nearest

algorithm when varying the size of the tree with K fixed to
a default value (K = 3) are shown, while figure 5 shows
the running time of the distributed K-nearest algorithm when
varying the number of partitions. Similarly, figure 6 shows the
running time of our algorithm for sequential range query and
figure 7 the time of the distributed range query. In all the listed
case studies, the achieved running time can be considered very
good.

B. Effectiveness computation

We conducted a preliminary evaluation of SemTree effec­
tiveness with respect to the described case study. In particular,
we want to show feasibility of the proposed indexing approach
in automatically finding possible inconsistencies among soft­
ware requirements, expressed as set of triples.

K-nearest time

-1 partition
-3 partitions
-5 partitions
-9 partitions

Number of points

Fig. 5: K-Nearest Time, K=3

Sequential Range Query time

-Balanced
-Unbalanced

l,OOE+Q3

Number of points

Fig. 6: Sequential Range Query Time

Range Query time

-lpartjtjon
-3 partitions
-5 partitions
-9 partitions

Number of points

Fig. 7: Range Query Time

66

Effectiveness

-Precision
-Recall

Fig. 8: Effectiveness

To this goal for 100 different requirements, we randomly se­
lected a triple from the related set and generated the equivalent
target (query) triple. A target triple was obtained considering
subject and object of the selected triple and as predicate
an antinomic term (retrieved using an ad-hoc requirements
vocabulary) with respect to predicate of the selected triple.

Successively, from one hand we asked a group of software
engineers 3 to specify - starting from the analysis of require­
ments documents expressed in terms of set of triples - the
set of possible inconsistences (ground truth) for each selected
triple.

From the other hand, we performed 100 different K-nearest
queries on SemTree using as query points the target triples.

Denoting with T the set of triples returned by the K-nearest
query related to a given target triple and with T* the set of
inconsistencies expected by ground truth , Precision (P) and
Recall (R) were computed as follows:

P = ITnT*1
ITI

R= ITnT*1
IT*I

Figure 8 shows the average Precision and Recall values for
the 100 query cases when varying K. As expected, the lower is
K, the higher is P and the lower is R; then, when K increases,
R grows up and P decreases.

V. CONCLUSION

In this paper, we presented SemTree, a novel semantic index
for supporting retrieval of information from huge amount
of document collections whose semantics can be effectively
expressed by a set of (subject, predicate, object) statements as
in the RDF model.

A distributed version of KD-Tree was then adopted for pro­
viding a scalable solution to the document indexing, leveraging

35 persons working at CIRA Institute (Italian Center for Aerospace Re­
search)

67

the mapping of triples in a vectorial space on the base of a
semantic distance .

We investigated the feasibility of our approach in a real
case study, considering the problem of finding inconsistencies
in documents related to software requirements.

Preliminary experimental results showed as our approach
can be considered promising for the problem of semantic
information retrieval.

Future work will be devoted to compare the efficiency and
effectiveness achieved by our framework with the ones of other
approches well-known in literature, such as [7].

REFERENCES

[I] P. N. Bennett, E. Gabrilovich, J. Kamps, and 1. Karlgren, "Report on
the sixth workshop on exploiting semantic annotations in information
retrieval (esair'13)," in ACM SIGIR Forum, vol. 48, no. 1. ACM,2014,
pp. 13-20.

[2] L. B. Ghezaiel. C. C. Latiri, and M. B. Ahmed. "Conceptual indexing
documents in ir based on ontology enrichment. " in KES, 2012, pp. 1920-
1931.

[3] C. Carpineto and G. Romano. "A survey of automatic query expansion in
information retrieval," ACM Computing Surveys (CSUR), vol. 44, no. 1,
p. I, 2012.

[4] R. Mihalcea and D. Moldovan, "Semantic indexing using wordnet
senses," in Proceedings of the ACL-2000 workshop on Recent ad­
vances in natural language processing and information retrieval: held

in conjunction with the 38th Annual Meeting of the Association for
Computational Linguistics-Volume 11. Association for Computational
Linguistics, 2000, pp. 35-45.

[5] T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch, Handbook
of latent semantic analysis. Psychology Press, 2013.

[6] A. dAcierno, V. Moscato, F. Persia, A. Picariello, and A. Penta, "iwin: A
summarizer system based on a semantic analysis of web documents," in
Semantic Computing (ICSC), 2012 IEEE Sixth International Conference
on. IEEE, 2012, pp. 162-169.

[7] G. Tsatsanifos, D. Sacharidis, and T. Sellis, "On enhancing scalability
for distributed rdf/s stores," in Proceedings of the 14th International
Conference on Extending Database Technology. ACM, 2011, pp. 141-
152.

[8] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, "Md-hbase: a scal­
able multi-dimensional data infrastructure for location aware services,"
in Mobile Data Management (MDM), 2011 12th IEEE International
Conference on, vol. 1. IEEE, 2011, pp. 7-16.

[9] P. Resnik, "Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan­
guage," arXiv preprint arXiv:ll05.5444, 2011.

[l0] G. Fanmuy, A. Fraga, and J. Llorens, "Requirements verification in the
industry," in Complex Systems Design & Management. Springer, 2012,
pp. 145-160.

[ll] G. Gigante, F. Gargiulo, and M. Ficco, "A semantic driven approach
for requirements verification," in Intelligent Distributed Computing VITI.
Springer, 2015, pp. 427-436.

[l2] c. Faloutsos and K.-l. Lin, FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets.
ACM, 1995, vol. 24, no. 2.

[13] B. c. Ooi, K. J. McDonell, and R. Sacks-Davis, "Spatial kd-tree: An
indexing mechanism for spatial databases," in IEEE COMPSAC, vol. 87,
1987, p. 85.

