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Abstract-In this paper, we propose SemTree, a novel semantic 
index for supporting retrieval of information from huge amount 
of document collections, assuming that semantics of a document 
can be effectively expressed by a set of (subject, predicate, object) 
statements as in the RDF model. A distributed version of KD­
Tree has been then adopted for providing a scalable solution to 
the document indexing, leveraging the mapping of triples in a 
vectorial space. We investigate the feasibility of our approach in a 
real case study, considering the problem of finding inconsistencies 
in documents related to software requirements and report some 
preliminary experimental results. 

I. INTRODUCTION 

In the last decade digital data are grown in a large scale 
and in an exponential way in different application fields. Such 
data are often in the shape of textual documents containing 
unstructured, structured and/or semi-structured information 
(e.g. medical records can include both structured information, 
as example patient vital statistics, and unstructured text as 
medical reports; web pages can include both structured in­
formation in the form of HTML microdata and unstructured 
text). 

Within modern organizations, managing efficiently and ef­
fectively very large amount of digital documents has become a 
more and more important challenging aspect for a wide range 
of knowledge management applications. This process requires 
from one hand a model for representing semantics attached 
to any kind of document (e.g. web pages, medical records, 
logs and more in general each type of textual documents), and 
from the other one indexing techniques to support in a scal­
able manner document retrieval in very large distributed and 
heterogeneous repositories based on the underlying semantics. 

In the literature, the most widely used approaches that 
combine Knowledge Representation and Natural Language 
Processing techniques to allow an efficient semantic-based 
retrieval are: conceptual indexing, query expansion, and se­

mantic indexing [1]. 
The systems leveraging the conceptual indexing approach 

usually ground on catalogs of texts belonging to specific 
domains and exploit ad-hoc ontologies and taxonomies to 
associate a conceptual description to documents [2]. 
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Differently from the previous ones, the systems using 
query expansion techniques semantically enrich the user query 
adding words that have semantic relationships (e.g. synonyms) 
with the search terms [3]. 

Eventually, the systems based on semantic indexing tech­
niques exploit the meaning of documents' keywords to per­
form indexing operations [4], eventually using a latent analysis 
[5]. 

In this paper, we propose a novel semantic indexing ap­
proach for supporting retrieval of documents from digital 
collections. 

We assume that semantics of a document can be effec­
tively expressed by a set of assertions in the shape of 
(subject, predicate, object) statements (which relates a sub­
ject to an object by means of a predicate) as in the RDF 
model, allowing to represent both parts containing structured 
(whose transformation in a set of triples is immediate) and 
unstructured information, which requires NLP facilities [6]. 

SemTree, a distributed version of Kd-Tree, has been then 
adopted for providing a scalable solution to the document 
indexing, leveraging the mapping of triples in a vectorial space 
by means of the definition of a proper semantic distance 

between triples. The distance uses some domain specific and/or 
general vocabularies and can be computed through the most 
diffused semantic similarity measures [9]. 

The problem of supporting in a scalable way the fast 
retrieval of triples related to various pattern queries by trans­
lating them into multi-dimensional range queries has been also 
faced in [7]. Differently from our approach, the authors adopt 
an RDF store that is built on the top of a distributed multi­
dimensional index structure. 

Furthermore, scalability issues are met in a similar manner 
to our method by the proposal in [8], wherein a multi­
dimensional indexing structures layered over a key-value 

database is opportunely used to obtain an efficient query 
processing for location based services. 

Finally, we investigate the feasibility of our approach in a 
real case study, considering the problem of finding inconsis­

tencies within a large amount of documents related to software 
requirements. 
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The paper is organized as in the following. Section 2 

describe the motivating example of our work, while Section 
3 presents the overall framework for semantic indexing. Sec­
tion 4 illustrates the performed experiments on a distributed 
environment. Finally, Section 5 shows conclusions and future 
work. 

II. MOTIVATING EXAMPLE 

Recent studies on requirement engineering demonstrate that 
software teams still face problems in the formalization of 
textual requirements, in the verification of consistency of 
requirements not yet formalized, and even in the definition 
of specification models [10]. 

To this goal, some works have recently proposed an ap­
proach to verify inconsistencies in Natural Language docu­
ments, leveraging the adoption of similarity measures between 
concepts modeled using RDF [11]. Following this idea, we 
model each software requirement as a set of triples and 
then we find possible contradictions and conflicts within this 
set through the detection of appropriately defined patterns, 
expressed as particular target triples. 

In requirement engineering, two triplets ti and tj are in­

consistent if: (i) they have the same subject, (ii) they have 
the same object; (iii) the two predicates are linked by an 
antinomy relationship in a given vocabulary [11]. Leveraging 
such property, we may query the documents using as target 
triples possible inconsistent requirements, in order to detect 
all semantically similar triples that could then correspond to 
contradictions or conflicts. 

As an example, if we consider the following requirement 
(OBSW001, accepccmd, start-up) for an airplane on-board 
software (specifying that the cOlmnand 'start-up' has to be 
accepted by the software component 'OBSW0054'), then 
possible inconsistencies can be retrieved in the result set 
related to the query triple (OBSW0001, block_cmd, start-up) 
that contains all the triples "semantically close" to the target 
one. 

Furthermore, since a requirement contains more than one 
sentence and a sentence can include several triples, even the 
number of triples generated by a small set of requirements is 
considerable. Therefore, there is a strong need for a framework 
to efficiently implement semantic queries (i.e. range query and 
k-nearest query) on large set of documents. 

The purpose of our semantic index is to give an effective 
solution to this kind of problems. 

III. A FR AMEWORK FOR SEMANTIC INDEXING 

A. Background 

We propose a framework for big data indexing based on the 
following features: (i) the semantics attached to each document 
can be represented as a set of triples; (ii) it is possible to 
define "semantic distance" between two triples; (iii) the triples, 
together with related distances, are mapped into a vectorial 
space - using FastMap algorithm [12] - on which it is possible 
to define an efficient indexing structure; (iv) the index is 

63 

designed to work in a distributed environment supporting more 
efficiently query by examples on large set of data. 

In our model, data are represented by means of a set of 
assertions reflecting specific data properties ( i.e. predicates 

with a subject and an object, as in RDF model). 
Following our motivating example, data come from soft­

ware requirements' documents that are expressed in Natural 
Language and that are composed by a set of sections, each one 
containing the definition of a specific requirement. In this case, 
the predicates correspond to particular unary "functions" (i.e., 
'accept a cOlmnand', 'send a message', 'acquire an input', 
etc.), having as subject the Actor (software component or 
hardware device) and as object the related Parameter. 

An example of resources (in a Turtle-like format) that 
could be derived from such data source is described in the 
following' . 

('OBSW001', Fun:acquire_in, InType:pre-launch phase) 
('OBSW001', Fun:accepccmd, CmdType:start-up) 
('OBSWOOl', Fun:send_msg, MsgType:power amplifier) 

The notation X : x, expresses that the meaning of the 
concept x can be found by using the prefix X. If X is not 
specified, we use a standard vocabulary. 

Clearly, similar resources contain the triples that are able to 
express similar information content. In this paper we are not 
interested in how it is possible to transform documents into 
a set of assertions/triples (techniques to map relation data to 
RDF or NLP facilities to transform a text in a set of triples can 
be easily exploited [6]); in the opposite, we focus on how to 
compute the distance between two generic triples, eventually 
considering the related semantics. 

To evaluate a distance between two triples ti and tj, we 
consider the following formula: 

d(ti, tj) = a· ds(tf, tj) + (3. dp(tf, t�) +" ds(tf, t'j) (1) 

tic, t� , t'k being the projection of a triple tk on the one 
subject, predicate and object respectively, ds WI, tj), dp(tf, t�), 
do(i'l, t'j) the distances between triples' subjects, predicates 
and objects respectively, a, (3, , are set of weigths such that 
a+(3+,=l. 

To compute the specific sub-distances, we have to con­
sider two main cases: (i) the two triples' elements are both 
literals/constants of the same type (we can apply any dis­
tance function between strings, i.e. Levenshtein); (ii) the two 
triples' elements are both concepts (we can apply any distance 
semantic based on the available ontologies, taxonomies or 
vocabularies, i.e. Wu & Palmer). 

B. SemTree algorithms 

A variety of indexing data structures are available to deal 
with high-dimensional data: R-tree, Kd-tree, X-tree, SS-tree, 
M-tree, Quadtree, etc. 

IThe order of the triples reflect the temporal sequence of the requirement 
elements. 



Kd-trees are more efficient in bulk-loading situations (as 
required by our approach), they can adapt to different densities 
in various regions of the space and are easier to implement 
in memory (which actually is their key benefit). On the other 
hand, once built, modifying or rebalancing a Kd-tree is a non­
trivial task. 

Here, we present SemTree, a distributed index particularly 
suitable for managing semantic extracted data. In the follow­
ing, we describe the algorithm for dynamic insertion of new 
points into SemTree and present k-nearest and range query 

procedures; in addition, we assume that our data can be stored 
only into the leaf nodes. Each tree node can be either a routing 

or a leaf node. 
1) The Distributed Insertion Algorithm: this algorithm has 

been designed for performing an insertion of a point into 
SemTree, whose data structure can be distributed through 
different partitions usually managed by a single compute node. 
When a new point has to be added into a partition of the 
tree, there is the need to verify a specific condition based 
on the available resources of the specific compute node. The 
condition can be dynamically evaluated at run-time - for 
example, it may depend on the percentage of the available 
storage resources of each partition - or statically fixed. 

When there are not enough resources into the selected parti­
tion, new partitions are created invoking a specific procedure, 
as will be described in the following. The purpose of this 
procedure consists in moving each leaf node of the current 
partition into a different newly created partition. 

The insertion procedure starts from the root node of the root 
partition of SemTree; then, the tree is navigated with the aim 
to locate the leaf node in which the point has to be inserted. 

More in details, SemTree navigation is performed on the 
basis of the Sr (the Split Index of the current node) and Sv 
(the value of the node splitting variable) variables, as in the 
standard Kd-Tree [13]. The result of the comparison between 
the Sr coordinate of the point P (P[Sr]) and Sv at each level 
allows to navigate in the left/right sub-tree of the current node; 
if such a sub-tree is not located on the same partition of the 
current node, a message containing the point to be added has 
to be sent to the correct partition. 

When a leaf node ln (the blue node in the left sub-figure 
of Figure 1) saturates the bucket, two new child nodes are 
instantiated using an apposite function. Because ln is no longer 
a leaf node, the related points are moved into the new child 
nodes (the red nodes in the right sub-figure of Figure 1). 

In a given partition, we can distinguish between internal 

and edge nodes. Each leaf is an edge node, but a routing node 
can be either an internal or an edge node. A routing node is 
an edge node when at least one of its children is the root in a 
different partition; on the contrary, it is an internal when all 
its children are on the same partition. 

The tree navigation through different partitions takes place 
by a proper communication protocol (in our implementation 
based on MPJ libraries). 

When a routing node is reached, the sub-tree in which to 
delegate the insertion operation is determined. 
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Fig. 1: Example of SemTree distributed insertion 

Once the target sub-tree is identified, we need to determine 
whether it is on the same partition of the routing node by 
comparing two proper variables Cp (the identifier of the 
partition hosting the current node) and Childp (the identifier 
of the partition hosting the child node of the current node). 
When Cp = Childp, the tree is navigated as a sequential 
Kd-Tree; otherwise, we insert the point into the partition that 
contains the child node. 

2) The Build Partition Algorithm: this functionality allows 
us to build new partitions if there are some available compute 
nodes able to host them. This function starts when the max­
imum allowed number of resources of a partition is reached; 
the build partition algorithm starts from the root node of such 
a partition and goes on navigating the tree to find each leaf in 
the partition and to move them into a new different partition. 
The result is a partition tree in which some partitions are used 
just for routing and others for storing data. 

A direct link between different partitions is instantiated 
in order to allow the navigation across the partitions. For 
instance, Figure 2 shows how a leaf node candidate Lc is 
moved to a newly created partition and a link between the two 
partitions is then created. This process is replicated on each 
leaf node exceeding the allowed number of storage resources. 

3) The Distributed K-nearest Search Algorithm: this algo­
rithm describes the solution to the k-nearest query problem on 
SemTree. 

The navigation of the tree is similar to the previously 
described insertion algorithm. In a k-search we look for the k 

points closest to the one of interest. To illustrate the distributed 

k-search algorithm, we introduce the parameters listed in table 
I. The tree is navigated until a leaf node is reached and its 
bucket points are added to the result set; then we start going 
backward to the tree. 

During such a kind of visit, we evaluate, for each node, 
weather to start forward visiting the not yet analyzed sub­
tree having the current node as root. This condition, accord­
ing to the well known Kd-Tree sequential k-nearest search, 
is composed by the logical disjunction between two sub­
conditions, the former based on a comparison between dis-
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Fig. 2: Build Partition 

TABLE I: Imput Parameters of K-Search 

Field I Reference I Possible Values 
Node Status S Not Visited (Nv); Left 

Visited (Lv); Right Visited 
(Rv); All Visited (A v ), 

Number of Points K The number of points that we 
have to find, 

Distance D The distance between the in-
terested point and the most 
distant one in the result-set. 

Result-set Rs A structure able to store in 
memory the k points of inter-
est found, 

Point P The point of interest. 

tances (Imax(Rs[SI]) - P[SI] 1 > IP[SI] - Svl) (SI is the 
space index coordinate and Sv the split value of the current 
node), and the latter based on the replenishment of Rs against 
k (Rs.lenghtO < K). 

The protocol for exchanging messages between different 
partitions is basically the same as the one described in the 
insertion algorithm. The algorithm ends when the backward 
visit reaches the root node of the root partition. 

4) The Range search Algorithm: in a Range-search we 
search the points that are closest to the query point within a 
specific range. To illustrate the distributed Range search algo­

rithm, we refer to the parameters listed in table I, considering 
in this case D as a distance range. 

The navigation strategy is composed by two steps. First, we 
navigate the tree from the root node to the leaves to find the 
points within a specific distance range from a point P. During 
this phase the navigation through the current node is driven by 
the comparison between I(P[SI]-Sv)1 and the range distance 
D. We can have two possible cases: 

• I(P[SI]-Sv)1 < D: in this case we navigate across the 
two children of the current node; note that, if the current 
node is a border node, the navigation is performed in a 
parallel way. 
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• Otherwise, the navigation is performed with a comparison 
of the Sv variable of the current node, as in the insertion 
algorithm. 

Second, we navigate backward from the leaves to the root, 
adding the results to the Rs structure. The different result 
sets obtained through a parallel computation are merged into 
a unique one during this phase. 

C. Complexity 

To calculate the complexity of our algorithm we have to 
make some assumptions. Let us: 

• insert K points into the tree; 
• be able to use M partitions; 
• suppose to have a bucket, of size B s, in each leaf node 

to store the points; 
• suppose an equal distribution of points in each leaf node. 

We thus have N = 2;� nodes in the SemTree. Let us 
consider a Root Partition hosting routing nodes and able to 
distribute messages between the other partitions. In this case 
this partition hosts 2 * M - 1 nodes. If the points are equally 
d' 'b d h N N-(2*M-l) d '  h Istn ute , we ave I = M-l no es in every ot er 
partition. 

When we want to add a point to the tree, the insertion 

procedure starting from the root node of the root partition is 
invoked: when the tree is well-balanced, the time to navigate 
the tree to find the correct place is: 8(lOg2(M -1)+log2(NI)+ 
1). 

If M« N, we can consider log2 M « log2 N and 
log2 M = A is a certain number related to the number of 
used compute nodes. Then, we obtain 8(A + log2 �). 

This complexity refers to a single insertion; however, using 
M -1 data partitions, we can perform in the best case M -1 
parallel operations maximizing our throughput. 

The complexity of algorithm for bulding partitions is 8(M) 
and is related to the number of machines we are able to 
manage. Note that if M « N, this complexity is not 
important in tree building process. The search algorithms 
complexity is the same of the standard Kd-tree. 

IV. EXPERIMENTAL RESULTS 

In this section we evaluate the efficiency and the effective­
ness of SemTree. 

The efficiency has been calculated considering several case 
studies, varying the size of the tree and for different types of 
tree structure 2. 

The effectiveness has been computed using the Preci­

sion/Recall metrics, by comparing the output of our algorithms 
against ground truth provided by human annotators. 

The used dataset is extracted from a set of requirements' 
documents related to on board software systems. More in 
details, we deal with several hundreds of documents from 
which about 100,000 triples were extracted. 

2 All the experiments presented in this Section were conducted on a cluster 
having 8 processors with 8 GB RAM (compute nodes), 
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Fig. 4: Sequential K-Nearest Time, K=3 

A. Efficiency computation 

Figure 3 shows the running time achieved by our procedure 
for index building when varying the size of the input data and 
the number of used partitions. 

In figure 4 the running time of the sequential K-nearest 

algorithm when varying the size of the tree with K fixed to 
a default value (K = 3) are shown, while figure 5 shows 
the running time of the distributed K-nearest algorithm when 
varying the number of partitions. Similarly, figure 6 shows the 
running time of our algorithm for sequential range query and 
figure 7 the time of the distributed range query. In all the listed 
case studies, the achieved running time can be considered very 
good. 

B. Effectiveness computation 

We conducted a preliminary evaluation of SemTree effec­
tiveness with respect to the described case study. In particular, 
we want to show feasibility of the proposed indexing approach 
in automatically finding possible inconsistencies among soft­
ware requirements, expressed as set of triples. 

K-nearest time 
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Fig. 5: K-Nearest Time, K=3 
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Fig. 6: Sequential Range Query Time 
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Fig. 7: Range Query Time 
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Fig. 8: Effectiveness 

To this goal for 100 different requirements, we randomly se­
lected a triple from the related set and generated the equivalent 
target (query) triple. A target triple was obtained considering 
subject and object of the selected triple and as predicate 
an antinomic term (retrieved using an ad-hoc requirements 
vocabulary) with respect to predicate of the selected triple. 

Successively, from one hand we asked a group of software 
engineers 3 to specify - starting from the analysis of require­
ments documents expressed in terms of set of triples - the 
set of possible inconsistences (ground truth) for each selected 
triple. 

From the other hand, we performed 100 different K-nearest 
queries on SemTree using as query points the target triples. 

Denoting with T the set of triples returned by the K-nearest 
query related to a given target triple and with T* the set of 
inconsistencies expected by ground truth , Precision (P) and 
Recall (R) were computed as follows: 

P = ITnT*1 
ITI 

R= ITnT*1 
IT*I 

Figure 8 shows the average Precision and Recall values for 
the 100 query cases when varying K. As expected, the lower is 
K, the higher is P and the lower is R; then, when K increases, 
R grows up and P decreases. 

V. CONCLUSION 

In this paper, we presented SemTree, a novel semantic index 
for supporting retrieval of information from huge amount 
of document collections whose semantics can be effectively 
expressed by a set of (subject, predicate, object) statements as 
in the RDF model. 

A distributed version of KD-Tree was then adopted for pro­
viding a scalable solution to the document indexing, leveraging 

35 persons working at CIRA Institute (Italian Center for Aerospace Re­
search) 
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the mapping of triples in a vectorial space on the base of a 
semantic distance . 

We investigated the feasibility of our approach in a real 
case study, considering the problem of finding inconsistencies 
in documents related to software requirements. 

Preliminary experimental results showed as our approach 
can be considered promising for the problem of semantic 
information retrieval. 

Future work will be devoted to compare the efficiency and 
effectiveness achieved by our framework with the ones of other 
approches well-known in literature, such as [7]. 
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