
Old Techniques for New Join Algorithms: A Case
Study in RDF Processing

Christopher R. Aberger
caberger@stanford.edu

Susan Tu
sctu@stanford.edu

Kunle Olukotun
kunle@stanford.edu

Christopher Ré
chrismre@cs.stanford.edu

Abstract—Recently there has been significant interest around
designing specialized RDF engines, as traditional query process-
ing mechanisms incur orders of magnitude performance gaps
on many RDF workloads. At the same time researchers have
released new worst-case optimal join algorithms which can be
asymptotically better than the join algorithms in traditional
engines. In this paper we apply worst-case optimal join algorithms
to a standard RDF workload, the LUBM benchmark, for the
first time. We do so using two worst-case optimal engines: (1)
LogicBlox, a commercial database engine, and (2) EmptyHeaded,
our prototype research engine with enhanced worst-case optimal
join algorithms. We show that without any added optimizations
both LogicBlox and EmptyHeaded outperform two state-of-the-
art specialized RDF engines, RDF-3X and TripleBit, by up to 6x
on cyclic join queries—the queries where traditional optimizers
are suboptimal. On the remaining, less complex queries in the
LUBM benchmark, we show that three classic query optimization
techniques enable EmptyHeaded to compete with RDF engines,
even when there is no asymptotic advantage to the worst-case
optimal approach. We validate that our design has merit as
EmptyHeaded outperforms MonetDB by three orders of magni-
tude and LogicBlox by two orders of magnitude, while remaining
within an order of magnitude of RDF-3X and TripleBit.

I. INTRODUCTION

The volume of Resource Description Framework (RDF)
data from the Semantic Web has grown exponentially in the
past decade [14], [18]. RDF data is a collection of Subject-
Predicate-Object triples that form a complex and massive graph
that traditional query mechanisms do not handle efficiently
[13], [14]. As a result, there has been significant interest in
designing specialized engines for RDF processing [7], [12],
[14], [18]. These specialized engines accept the SPARQL
query language and build several indexes (> 10) over the
Subject-Predicate-Object triples to process RDF workloads
efficiently [14], [18]. In contrast, the natural way of storing
RDF data in a traditional relational engine is to use triple
tables [14] or vertically partitioned column stores [2], but
these techniques can be three orders of magnitude slower
than specialized RDF engines [14]. The goal of this paper is
to reexamine the performance difference between specialized
RDF engines and general-purpose relational engines with a
new class of worst-case optimal join algorithms.

Recent database theory has shown that Selinger-style join
optimizers [6], used inside of both traditional relational en-
gines and specialized RDF engines, can be asymptotically
suboptimal due to their computation of joins in a pairwise
fashion [15]. In fact, on cyclic queries, which can be the
bottleneck queries in standard RDF benchmarks [10], any
pairwise relational plan is provably worse asymptotically. For

example, both RDF and traditional relational engines execute
the “triangle listing” query, found in the standard LUBM RDF
benchmark [10], in time O(N3/2), where N is the number of
tuples in the input relation. Any traditional query plan takes
Ω(N2) and is thus suboptimal by a factor of

√
N . Fortunately,

recent database theory has suggested new multi-way style join
algorithms that solve arbitrary join patterns with a series of set
intersections and loops to guarantee worst-case optimality [15].

These new worst-case optimal join algorithms can sup-
port rich applications as shown by the LogicBlox engine [5]
which is the first commercial database engine to use a worst-
case optimal join algorithm. In fact, on the aforementioned
cyclic queries, where worst-case optimal join algorithms have
an asymptotic advantage, LogicBlox can be 18x faster than
traditional relational engines and 4x faster than specialized
RDF engines (see Section IV). Nevertheless, LogicBlox does
not come with fully optimized query plans or indexes. Thus,
LogicBlox can be two orders of magnitude slower than special-
ized engines on queries where they do not have an asymptotic
advantage (see Section IV). This leaves open the question
of whether worst-case optimal join algorithms are practically
beneficial across RDF workloads–or whether there is a fun-
damental inefficiency in this style of engine for some RDF
patterns. The key question we ask is to what extent can these
new worst-case optimal join algorithms achieve performance
comparable to that of the specialized RDF engines?

To answer this question, we use EmptyHeaded [3], our
prototype worst-case optimal engine designed around recent
advancements in join processing [11]. EmptyHeaded uses
query compilation techniques and optimized data layouts that
are both different from those in LogicBlox’s original design.
To determine the performance gap between worst-case opti-
mal engines and state-of-the-art specialized RDF engines, we
compare LogicBlox and EmptyHeaded against RDF-3X [14]
and TripleBit [18] on the entire LUBM benchmark [10].

We find that by adding three classical (and simple) query
processing optimizations to EmptyHeaded, we are able to
consistently achieve performance within an order of magnitude
of specialized RDF engines, while sometimes outperforming
them. The first optimization we consider is optimized index
layouts for the worst-case optimal join algorithm. This opti-
mization provides up to a 8x speedup on simple RDF patterns
with high selectivity. The second optimization we consider is
pushing down selections in our query plans. This can enable
up to a 234x speedup on RDF patterns with high selectivity.
Finally, our third optimization is pipelining intermediate results
across nodes in our query plan. This can provide up to a
4x performance improvement. In general, we find these three

ar
X

iv
:1

60
2.

03
55

7v
1

 [
cs

.D
B

]
 1

0
Fe

b
20

16

classical optimizations to be necessary for worst-case optimal
join algorithms to compete with specialized RDF engines.

Our contributions are as follows:

• We are the first to benchmark engines with a worst-
case optimal join algorithm on a standard RDF work-
load. We show that on cyclic join queries, the bottle-
neck queries in the LUBM benchmark, that a worst-
case optimal design outperforms both specialized and
traditional data processing engines by up to 6x without
any added optimizations.

• We map three classic query optimizations to a worst-
case optimal engine: (1) optimized index layouts,
(2) pushing down selections, and (3) pipelining in-
termediate results. We show that these optimizations
improve performance by over two orders of magnitude
and allow EmptyHeaded to become competitive with
TripleBit and RDF-3X on simple acyclic queries with
high selectivity.

• We validate that EmptyHeaded consistently outper-
forms traditional relational engines and existing worst-
case optimal engines while remaining competitive
with specialized RDF engines. Our performance can
be two orders of magnitude better than the traditional
relational design of MonetDB, an order of magnitude
better than LogicBlox, and within an order of magni-
tude of TripleBit and RDF-3X.

We hope our work serves as a feasibility study, validating
that worst-case optimal join algorithms have merit and can
serve as an improvement over the traditional querying pro-
cessing mechanisms used in common RDF workloads (in some
cases more than others).

II. BACKGROUND

The EmptyHeaded engine works in three phases: (1) the
query compiler translates a high-level datalog-like query into
a logical query plan represented using a generalized hypertree
decomposition (GHD) [9], replacing traditional relational alge-
bra based query plans; (2) code is generated for the execution
engine by translating the GHD into a series of set intersections
and loops; and (3) the execution engine performs automatic
algorithmic and layout decisions.

For completeness, we summarize the design points of the
EmptyHeaded engine necessary to understand the added opti-
mizations in Section III. We present these results informally
and refer the reader to Aberger et al. [3] for a complete survey.
We recapitulate the data representation, worst-case optimal join
algorithm, and query plans used inside of EmptyHeaded.

A. Data Representation

EmptyHeaded stores all relations (input and output) using
tries, which are multi-level data structures common in column
stores and graph engines [16], [17]. The tries in EmptyHeaded
currently support sets containing 32-bit values stored using
either (1) an unsigned integer array or (2) a bitset layout.

Predicate Relation Dictionary Encoding Trie Representation

subject object
University0
University0

Department0

University1 Department1
Department1

0

2
1

suborganizationOf Key
University0

Department0
Department1

University1

Value

3

0

1

2

3

3

Fig. 1: Transformation process from a vertically partitioned
relation to EmptyHeaded’s trie representation.

1) Trie Structure: Prior to building a trie, EmptyHeaded
performs dictionary encoding [14], [18], to encode relations of
arbitrary types into 32-bit values. Dictionary encoding maps
original data values to keys of another type—in our case 32-bit
unsigned integers. After dictionary encoding, our 32-bit value
relations are grouped into sets of distinct values based on a
previous (if present) attribute or column. Each level of the trie
corresponds to an attribute or column of an input relation. The
mapping of levels to attributes is not fixed. We choose the
order of the attributes for the trie based on a global attribute
order, which is analogous to selecting a single index over the
relation. We describe how we select a global attribute order
in Section II-C and show the complete transformation from a
vertically partitioned table [2] to a trie in Figure 1.

2) Set Layouts: EmptyHeaded uses an automatic layout
optimizer to select data layouts for each set within the trie
data structure. Currently, EmptyHeaded chooses between an
unsigned integer array and bitset layout. EmptyHeaded has a
set optimizer that chooses the layout for each set in isolation
based on its cardinality and range. The optimizer chooses the
bitset layout when more than one out of every 256 values
appears in the set.1 It otherwise defaults to the unsigned integer
array layout. We found that these layout decisions provided
over an order of magnitude performance improvement on join
patterns where set intersection is the bottleneck operation [3].

B. Worst-Case Optimal Joins

The generic worst-case optimal join algorithm serves as the
foundation for the join algorithms used in the LogicBlox and
EmptyHeaded engines. The generic worst-case optimal join
can be asymptotically better than any pairwise join plan. As
an example, consider query 2 in the LUBM benchmark [10]:

undergraduateDegreeFrom(x,y) ./ memberOf(x,z)

./ subOrganizationOf(z,y)

./ type(x,a=‘GraduateStudent’)

./ type(y,b=‘University’)

./ type(z,c=‘Department’)

This query contains the following cyclic subquery which
forms a triangle pattern:

undergraduateDegreeFrom(x,y) ./ memberOf(x,z)

./ subOrganizationOf(z,y)

On this cyclic subquery, the generic worst-case optimal join
algorithm runs in a time proportional to the maximum number
of tuples that could be output. Assuming the three relations

1The size of an AVX register.

Algorithm 1 Generic Worst-Case Optimal Join Algorithm

1 / / I n p u t : Hypergraph H = (V,E) , and a t u p l e t .
2 Gener ic−J o i n (V ,E , t) :
3 i f |V | = 1 t h e n re turn ∩e∈ERe[t] .
4 I ← {v1} / / t h e f i r s t a t t r i b u t e i n V .
5 Q ← ∅ / / t h e r e t u r n v a l u e
6 / / I n t e r s e c t a l l r e l a t i o n s t h a t c o n t a i n v1
7 / / Only t h o s e t u p l e s t h a t agree w i t h t .
8 f o r e v e r y tv ∈ ∩e∈E:e3v1πI(Re[t]) do
9 Qt ← Gener ic−J o i n (V − I , E , t :: tv)

10 Q ← Q ∪ {tv} ×Qt

11 re turn Q

are all of size N , the worst-case output size is O(N3/2) here,
whereas, any pairwise plan has a worst-case runtime Ω(N2).
The generic worst-case optimal join algorithm is presented in
Algorithm 1.

In fact, for any join query, the generic worst-case optimal
join algorithm’s execution time can be upper bounded by the
Atserias, Grohe, and Marx (AGM) bound [8]. This can be eas-
ily computed when the query is represented as a hypergraph.
A hypergraph is a pair H = (V,E), consisting of a nonempty
set V of vertices, and a set E of subsets of V , the hyperedges
of H . There is a vertex for each attribute of the query and
a hyperedge for each relation. Now, fix a hypergraph H . The
AGM bound tells us that the output size is upper bounded by∏

e∈E
|Re|xe

under the constraints

∀v ∈ V,
∑

e∈E:e3v
xe ≥ 1

∀e ∈ E, xe ≥ 0

To get the tightest bound, we would like to minimize∏
e∈E |Re|xe , subject to those constraints.

C. Query Plans

EmptyHeaded uses GHDs to represent the query plans.
GHDs enable optimizations such as pushing down selections,
pushing down projections, and early aggregation that engines
based solely on the generic worst-case optimal join algorithm
are unable to capture. We briefly summarize how GHDs are
used in EmptyHeaded. For a more detailed discussion we refer
the reader to Aberger et al. [3].

Definition 1. Let H be a hypergraph. A generalized hypertree
decomposition (GHD) of H is a triple D = (T, χ, λ), where:

• T (V (T), E(T)) is a tree
• χ : V (T) → 2V (H) is a function associating a set of

vertices χ(t) ⊆ V (H) to each node t of T
• λ : V (T) → 2E(H) is a function associating a set of

hyperedges to each node t of T

such that the following properties hold:

1. For each e ∈ E(H), there is a node t ∈ V (T) such
that e ⊆ χ(t).

type type type

x z

y

memberOf

xa b y c z

suborganizationOfundergraduateDegreeFrom

Fig. 2: GHD for LUBM query 2.

2. For each v ∈ V (H), the set {t ∈ V (T)|v ∈ χ(t)} is
connected in T .

3. For every t ∈ V (T), χ(t) ⊆ ∪λ(t).

4. For every t ∈ V (T), χ(t) ⊆ ∪e∈λ(t)e

Using GHDs, we can define a non-trivial cardinality es-
timate based on the sizes of the relations. Define Qt as the
query formed by joining the relations in λ(t). The (fractional)
width of a GHD is AGM(Qt), which is an upper bound on the
number of tuples returned by Qt. The fractional hypertree
width (fhw) of a hypergraph H is the minimum width of all
GHDs of H . EmptyHeaded chooses the GHD with the lowest
fhw and smallest height by enumerating all possible GHDs. For
example, the GHD that is chosen for query 2 of the LUBM
benchmark is shown in Figure 2 and has a fhw of 1.5.

After choosing a GHD, EmptyHeaded needs to also choose
a global attribute order. This determines the order of the
attributes in each trie as well as the order in which attributes
are processed in the generic worst-case optimal join algorithm.
We choose the global attribute order by doing a breadth-first
traversal of the GHD: attributes seen earlier in the traversal are
earlier in the order. We also apply some heuristics, described
in Section III-B1, to better order high selectivity attributes.

Finally, during execution we perform two passes over the
GHD. First, the GHD is traversed in a bottom-up fashion
where Algorithm 1 executes over each node in the GHD and
children pass intermediate results up to their parents. Second, if
necessary, we traverse the GHD in a top-down fashion where
we use a message passing algorithm [20] to materialize the
final result.

III. CLASSIC OPTIMIZATIONS

The LUBM benchmark contains several queries with
acyclic join patterns and equality selections with high selec-
tivity, a class of queries that was not considered in the original
EmptyHeaded design. As such, we found it necessary to add
three classic query optimization techniques to our worst-case
optimal design to enable high performance on this class of
queries: (1) optimized index layouts, (2) pushing down selec-
tions, and (3) pipelining results in our query plan. We describe
briefly how each optimization maps to worst-case optimal join
algorithms and demonstrate that these optimizations can have
over a two orders of magnitude performance improvement on
the overall query execution time.

Query +Layout +Attribute +GHD +Pipelining

1 2.10x 129.85x - -
2 8.22x 1.03x - -
4 2.02x 12.88x 69.94x -
7 4.35x 95.01x - -
8 2.24x 1.99x 1.5x 4.67x
14 7.92x 234.49x - -

TABLE I: Relative speedup of each optimization on selected
LUBM queries with 133 million triples. +Layout refers to
EmptyHeaded when using multiple layouts versus solely a
unsigned integer array (index layout). +Attribute refers to
reordering attributes with selections within a GHD node. +GHD
refers to pushing down selections across GHD nodes in our
query plan. +Pipelining refers to pipelining intermediate
results in a given query plan. “-” means the optimization has
no effect on the given query.

A. Index Layout

The impact of various index layouts on predicate selections
is a well-researched and empirically solved problem in classic
join optimizers [1], [4]. It is relatively straightforward to apply
similar optimizations to the design in EmptyHeaded. Recall
that in EmptyHeaded a single trie is analogous to a single index
in a standard database. Therefore, EmptyHeaded performs an
equality selection by checking whether a set in the trie contains
a value. For the bitset layout we can do this lookup in constant
time. For the unsigned integer layout, this is done in O(log n)
using a binary search. As shown in the +Layout column
in Table I, the mixed layouts can provide up to a 8.22x
performance increase over solely the unsigned integer layout
on simple queries with equality selections. Correspondingly,
we would like the attributes with equality selections to appear
first in the trie, since the first level of each trie is usually dense
and therefore best represented as a bitset. Next, we describe
how we ensure this by reordering attributes within GHD nodes
to push down selections.

B. Pushing Down Selections

A classic database optimization is to force high selectivity
operations to be processed as early as possible in a query
plan [19]. In EmptyHeaded we can do this at two different
granularities in our query plans: within GHD nodes and across
GHD nodes.2

1) Within a Node: In EmptyHeaded pushing down se-
lections within a GHD node corresponds to rearranging the
attribute order for the generic worst-case optimal join algo-
rithm that we described in Section II. Recall, the attribute
order determines both the order that attributes are processed in
Algorithm 1 and the order in which the attributes will appear
in the trie.

2Recall EmptyHeaded executes a GHD query plan in two phases: (1) the
generic worst-case optimal join algorithm runs inside of each node in the GHD
and (2) the final result is computed by passing intermediate results across
nodes. The phases directly correspond to the two granularities at which we
push down selections.

bx y2x y3xax
bxax

y2x y3x

y1x
y1x

high selectivity

R
R

S T
T

U

U

V bxax
T

V

S S

Fig. 3: “Across nodes” transformation of the GHD of LUBM
query 4.

Example 1. Consider LUBM query 14 where the relation R
contains the attributes (a,x):

select x from R where a = ‘University’

For this trivial query we produce a single node GHD
containing attributes (a,x).3 A attribute ordering of [x,a]
in this node means that ‘x’ is the first level of the trie
and ‘a’ is the second level of the trie. Thus, EmptyHeaded
would execute this query by probing the second level of
the trie for each ‘x’ attribute to determine if there was a
corresponding ‘a’ value of ‘University’. This is much
less efficient than selecting the attribute ordering of [a,x],
where EmptyHeaded can simply perform a lookup in the first
level of the trie (to find if an ‘a’ value of ‘University’
exists) and, if successful, return the corresponding second level
as the result.

This same optimization holds for more complex queries,
such as LUBM query 2 (Figure 2), where the attribute order-
ing we select is [a, b, c, x, y, z]. We show in the
+Attribute column of Table I that forcing the attributes
with selections or small initial cardinalities to come first can
enable an up to 234.49x performance increase.

2) Across Nodes: Pushing down selections across nodes
in EmptyHeaded’s query plans corresponds to changing the
criteria for choosing a GHD described in Section II. Our goal
is to have high selectivity or low-cardinality nodes be pushed
down far as possible in the GHD (so that they are executed
earlier in our bottom-up pass). We accomplish this by adding
three additional steps to our GHD optimizer:

1) Find optimal GHDs T with respect to fhw, changing
V in the AGM constraint to be only the attributes
without selections.

2) Let Rs be some relations with selections and let Rt
be the relations that we plan to place in a subtree.
If for each e ∈ Rs, there exists e′ ∈ Rt such that
e′ covers e’s unselected attributes, include Rs in the
subtree for Rt. This means that we may duplicate
some members of Rs to include them in multiple
subtrees.

3) Of the GHDs T , choose a T ∈ T with maximal
selection depth, where selection depth is the sum of
the distances from selections to the root of the GHD.

3Note: for the remainder of the paper () denotes an unordered set of
attributes while [] denotes an ordered list of attributes.

Example 2. Consider the acyclic join pattern for LUBM query
4 containing high selectivity attributes (a,b):

R(x,y1) ./ S(x,a) ./ T(x,b) ./ U(x,y2) ./ V(x,y3)

Figure 3 shows two possible GHDs for this query. The GHD
on the left is the one produced without using the three steps
above. This GHD does not filter out any intermediate results
across potentially high selectivity nodes when results are first
passed up the GHD. The GHD on the right uses the three
steps above. Here the nodes with attributes ‘a’ and ‘b’
are below all other nodes in the GHD, ensuring that high
selectivity attributes are processed early in the query plan.

This optimization applies to only two queries in the LUBM
benchmark, but provides up to a 69.94x speedup as we show
in the +GHD column of Table I.

C. Pipelining

Finally, pipelining is a classic query optimization used to
reduce the size of materialized intermediate results in a query
plan [19]. We add a simple rule such that the root node of a
GHD can be pipelined with one child node in EmptyHeaded:

Definition 2. Given a GHD T , we say (t0, t1) ∈ V (T)×V (T)
are pipelineable if t0 6= t1 and χ(t0)∩χ(t1) is a prefix of the
trie orders for both t0 and t1.

Example 3. Consider the following query pattern from LUBM
query 8 over relation R with attributes (x,y) and relation S
with attributes (x,z):

select x,y,z from R,S where R.x = S.x

The GHD EmptyHeaded produces for this query contains
two nodes with respective ordered attributes [x,y] (root t0)
and [x,z] (child t1). By definition this GHD is pipelineable
as the nodes share the common prefix ‘x’.

On LUBM query 8 we found that pipelining results be-
tween nodes with materialized attributes provided up to a
4.67x performance advantage as shown in the +Pipelining
column of Table I. Unfortunately, the impact of pipelining is
negligible on most LUBM queries as the number of output at-
tributes is often small and so are the intermediate cardinalities.

IV. EXPERIMENTS

We benchmark a standard relational engine, two worst-case
optimal join engines, and two state-of-the-art specialized RDF
engines on the LUBM RDF benchmark. We select MonetDB
as the classical relational data processing engine baseline,
LogicBlox and EmptyHeaded as the worst-case optimal engine
baselines, and RDF-3X and TripleBit as the specialized RDF
engine baselines. Our comparison shows that EmptyHeaded
and LogicBlox’s designs outperform all other engines on
cyclic queries, where, again, pairwise joins are suboptimal. On
the remaining queries we show how EmptyHeaded remains
competitive with the specialized RDF engines due to our
addition of the three classical database optimizations described
in Section III.

A. Experiment Setup

We describe the details of our experimental setting.

1) LUBM Benchmark: The LUBM benchmark is a standard
RDF benchmark with a synthetic data generator [10]. The
data generator produces RDF data representing a university
system ontology. We generated 133 million triples for the
comparisons in this section. The LUBM benchmark contains
complex multiway star join patterns as well as two cyclic
queries with triangle patterns. We run the complete LUBM
benchmark while removing the inference step for each query.
This is standard in benchmarking comparisons [7], [18]. We
omit queries 6 and 10, since without the inference step, they
correspond to other queries in the benchmark.

2) Comparison Engines: We describe the specialized RDF
engines (TripleBit and RDF-3X) and general purpose relational
engines (MonetDB and LogicBlox) with which we compare.

RDF Engines: We compare against RDF-3X v0.3.8 and
TripleBit, two high performance shared memory RDF engines.
TripleBit [18] and RDF-3X [14] have been shown to consis-
tently outperform traditional column and row store databases
[14], [18]. RDF-3X is a popular and established RDF engine
which performs well across a variety of SPARQL queries.
RDF-3X builds a full set of permutations on all triples and uses
selectivity estimates to choose the best join order. TripleBit
[18] is a more recent RDF engine which uses a sophisticated
matrix representation and has been shown to compete with
and often outperform RDF-3X on a range of RDF queries on
larger scale data. TripleBit reduces the size of the data and
indexes through two auxiliary data structures to minimize the
cost of index selection during query evaluation. Both engines
use optimizers that generate optimal join orderings.

Relational Engines: We also provide comparisons to
MonetDB (Jul2015-SP1 release) and LogicBlox v4.3.4 which
are two general purpose relational engines. MonetDB is a
popular open source column store database whose performance
has been shown to outperform row store designs, such as
PostgreSQL, by orders of magnitude on RDF workloads [14].
LogicBlox is a commercial database engine that uses a worst-
case optimal join algorithm similar to that inside of the
EmptyHeaded engine. For all relational engines, including
EmptyHeaded, we store and process the RDF data in a verti-
cally partitioned manner as this has been shown to be superior
to storing the data as triples [2], [14]. Vertical partitioning is
the process of grouping the triples by their predicate name,
with all triples sharing the same predicate name being stored
under a table denoted by the predicate name [2].

3) Experimental Setting: We ran all experiments on a
single machine with a total of 48 cores on four Intel Xeon
E5-4657L v2 CPUs and 1 TB of RAM. We compiled the
C++ engines (RDF-3X, TripleBit, EmptyHeaded) with g++
4.9.3 (-O3). For all engines, we chose buffer sizes and heap
sizes that were at least an order of magnitude larger than
the dataset itself to avoid garbage collection. For all engines,
we put the database files in tmpfs, a RAM disk, which is a
standard resource to use when comparing in-memory engines
to databases [12]. For MonetDB, we explicitly built indexes on
each column and each pair of columns as well as histograms
over each relation (with the ANALYZE command).

4) Metrics: For each query we measure the wall clock time
of the engine to complete the query. We do not measure the
time for data loading, index creation, or query output for each

Query Best EH TripleBit RDF-3X MonetDB LogicBlox

Q1 4.00 1.51x 3.45x 1.00x 174.58x 8.62x
Q2 973.95 1.00x 2.38x 1.92x 8.79x 1.52x
Q3 0.47 1.00x 92.61x 8.44x 283.37x 83.41x
Q4 3.39 4.62x 1.00x 1.77x 2093.78x 116.32x
Q5 0.44 1.00x 99.21x 9.15x 303.11x 81.44x
Q7 6.00 3.18x 8.53x 1.00x 573.33x 6.52x
Q8 78.50 9.83x 1.00x 3.07x 206.62x 5.03x
Q9 581.37 1.00x 3.53x 6.63x 24.29x 1.35x
Q11 0.45 1.00x 6.07x 11.03x 58.63x 73.76x
Q12 3.05 2.22x 1.00x 7.86x 118.94x 50.23x
Q13 0.87 1.00x 48.90x 35.49x 86.18x 102.77x
Q14 3.00 1.90x 54.47x 1.00x 313.47x 325.02x

TABLE II: Runtime in milliseconds for best performing system
and relative runtime for each engine on the LUBM benchmark
with 133 million triples. EH denotes the EmptyHeaded engine.

engine. For TripleBit and RDF-3X, we do not include the
time for lookups from ID to String (or output time) at the
end of the query. We run each query seven times, discarding
the worst and best runtimes while reporting the average of
the remaining times. We do not measure compilation time for
EmptyHeaded. Since we run queries back-to-back, often only
the first execution incurs compilation costs, and this longest
run is discarded for all engines.

B. End-to-End Comparison

LUBM queries 2 and 9 are the two cyclic queries that
contain a triangle pattern. Unsurprisingly, here LogicBlox
outperforms specialized engines by 3-5x and MonetDB by
17.96x (Table II) due to the asymptotic advantage of worst-
case optimal join algorithms. On these queries EmptyHeaded
is 1.5x faster than LogicBlox due to our set layouts, which are
designed for single-instruction multiple data parallelism [3].
In general, our speedup over LogicBlox is more modest here
than on previously reported cyclic graph patterns [3] due to
the presence of high selectivity selections.

On acyclic queries with high selectivity, EmptyHeaded also
competes with the specialized RDF engines. On simple acyclic
queries with selections (LUBM 1,3,5,11,13,14), EmptyHeaded
is able to provide covering indexes, like the specialized en-
gines, using only our trie data structure and the attribute order
we described in Section III-B1. Therefore EmptyHeaded main-
tains competitive performance with RDF-3X and TripleBit
(Table II). On more complex acyclic queries with selections
(LUBM 7,8,12), RDF-3X and TripleBit observe a performance
advantage over EmptyHeaded due to their sophisticated cost-
based query optimizers which combine selectivity estimates
and join order (Table II). Our optimizations from Section III
can provide up to a 48x performance improvement here, but
more sophisticated optimizations are needed to outperform the
specialized engines. Finally, on LUBM query 8 we observe a
performance slowdown when compared to LogicBlox. This is
due to expensive reallocations that occur within the Empty-
Headed engine. When removing allocations, we observed that
EmptyHeaded’s performance for query 8 was equivalent to that
of RDF-3X. We hope to add these further optimizations to the
EmptyHeaded engine in the future.

V. CONCLUSION

Our work shows that worst-case optimal join algorithms
can provide up to a 6x performance advantage on bottleneck
cyclic RDF queries when compared to the join algorithms
used inside of both specialized RDF engines and traditional
databases. On simple acyclic queries, we show how three
classic database optimizations can be added to a generic
worst-case optimal join processing engine to enable sufficient
performance on simple acyclic RDF queries. We hope our
work serves as a feasibility study, validating that worst-case
optimal join algorithms can benefit common RDF workloads.

Acknowledgments We thank the authors of the LogicBlox engine for their assistance

in our experimental comparisons. We gratefully acknowledge the support of the Defense

Advanced Research Projects Agency (DARPA) XDATA Program under No. FA8750-12-

2-0335 and DEFT Program under No. FA8750-13-2-0039, DARPA’s MEMEX program

and SIMPLEX program, the National Science Foundation (NSF) CAREER Award under

No. IIS-1353606, the Office of Naval Research (ONR) under awards No. N000141210041

and No. N000141310129, and Intel. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and do not necessarily

reflect the views of DARPA, AFRL, NSF, ONR, or the U.S. government.

REFERENCES

[1] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-
oriented database systems. VLDB ’09’, pages 1664–1665.

[2] Abadi et al. Scalable semantic web data management using vertical
partitioning. In VLDB ‘07, pages 411–422. VLDB Endowment, 2007.

[3] Aberger et al. Emptyheaded: A relational engine for graph processing.
arXiv preprint arXiv:1503.02368, 2015.

[4] Ailamaki et al. Data page layouts for relational databases on deep
memory hierarchies. VLDB ‘02, 11(3):198–215.

[5] Aref et al. Design and implementation of the logicblox system. In
SIGMOD ‘15, pages 1371–1382. ACM, 2015.

[6] Astrahan et al. System r: relational approach to database management.
TODS, 1(2):97–137, 1976.

[7] Atre et al. Matrix bit loaded: a scalable lightweight join query processor
for rdf data. In WWW ’10, pages 41–50. ACM.

[8] Atserias et al. Size bounds and query plans for relational joins. SIAM
Journal on Computing, 42(4):1737–1767, 2013.

[9] Green et al. Provenance semirings. In SIGMOD ’07’, pages 31–40.
[10] Guo et al. Lubm: A benchmark for owl knowledge base systems.

Web Semantics: Science, Services and Agents on the World Wide Web,
3(2):158–182, 2005.

[11] Joglekar et al. Aggregations over generalized hypertree decompositions.
arXiv preprint arXiv:1508.07532, 2015.

[12] Kim et al. Taming subgraph isomorphism for rdf query processing.
VLDB ‘15, 8(11):1238–1249, 2015.

[13] Klyne et al. Resource description framework (rdf): Concepts and
abstract syntax. 2006.

[14] Neumann et al. The rdf-3x engine for scalable management of rdf data.
VLDB ‘10, 19(1):91–113.

[15] Ngo et al. Worst-case optimal join algorithms:[extended abstract]. In
PODS, pages 37–48. ACM, 2012.

[16] S. Hong et al. Green-marl: A dsl for easy and efficient graph analysis.
ASPLOS XVII, pages 349–362, 2012.

[17] Stonebraker et al. C-store: a column-oriented dbms. In VLDB ‘05,
pages 553–564. VLDB Endowment, 2005.

[18] Yuan et al. Triplebit: a fast and compact system for large scale rdf data.
VLDB ‘13, 6(7):517–528.

[19] Matthias Jarke and Jurgen Koch. Query optimization in database
systems. ACM Computing surveys (CsUR), 16(2):111–152, 1984.

[20] Mihalis Yannakakis. Algorithms for acyclic database schemes. In
VLDB, pages 82–94, 1981.

APPENDIX

A. Related Work

Our work extends previous research on three distinct types
of data processing engines: specialized RDF engines, tradi-
tional relational engines, and worst-case optimal engines.

Pairwise Engines: The most straightforward way to
store RDF data in a traditional general purpose RDBMS is to
store all Subject-Predicate-Object triples in a 3-column table,
called the triple table [14], where each row holds a triple.
Unfortunately, querying a triple table with millions of rows is
rarely optimal. For example, many RDF queries involve self-
joins and a huge triple table complicates both selectivity esti-
mations and increases the time for simple operations such as
scans [2], [18]. Another approach, vertical partitioning, stores
RDF data in many two-column tables, one for each unique
predicate [2]. Like storing a triple table, this approach can be
used in either row-oriented or column-oriented databases. In
this paper we show for the first time that it can be naturally
mapped to worst-case optimal databases as well.

RDF Engines: Two of the most popular specialized
RDF engines are RDF-3X and TripleBit. Both accept queries
in the SPARQL query language and have been shown to
significantly outperform traditional relational engines. RDF-3X
creates a full set of subject-predicate-object indexes by build-
ing clustering B+ trees on all six permutations of the triples
[14]. RDF-3X also maintains nine aggregate indexes, which
include all six binary and all three unary projections. Each
index provides some selectivity estimates and the aggregate
indexes are used to select the fastest index for a given query.
In the TripleBit engine, RDF triples are represented using a
compact matrix representation [18]. TripleBit also stores two
auxiliary index structures and two binary aggregate indexes
to use the selectivity estimation of query patterns to select
the most effective indexes, minimize the number of indexes
needed, and determine the query plan. Like EmptyHeaded,
both RDF-3X and TripleBit use dictionary encoding.

Multi-Way Engines: The first worst-case optimal join
algorithm was recently derived [15]. The LogicBlox (LB)
engine [5] is the first commercial database engine to use
a worst-case optimal algorithm. Recent theoretical advances
[11] have suggested worst-case optimal join processing is
applicable beyond standard join pattern queries. We continue
in this line of work, applying worst-case optimal algorithms
to a standard RDF workload.

B. LUBM Queries

We provide the SPARQL syntax used for each query run in
this paper as well as the output cardinality of each query run
with 133 million triples produced by the LUBM data generator.

All queries include the following prefixes:
PREFIX r d f :
<h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#>

PREFIX ub :
<h t t p : / / www. l e h i g h . edu / ˜ zhp2 / 2 0 0 4 / 0 4 0 1 / univ−bench . owl#>

Query 1: 4 tuples
SELECT ?X
WHERE{

?X r d f : t y p e ub : G r a d u a t e S t u d e n t .

?X ub : t a k e s C o u r s e
<h t t p : / / www. Depar tment0 . U n i v e r s i t y 0 . edu / Gradua teCourse0>}

Query 2: 2,528 tuples

SELECT ?X ?Y ?Z
WHERE{

?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : U n i v e r s i t y .
?Z r d f : t y p e ub : Depar tment .
?X ub : memberOf ?Z .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m ?Y}

Query 3: 6 tuples

SELECT ?X
WHERE{

?X r d f : t y p e ub : P u b l i c a t i o n .
?X ub : p u b l i c a t i o n A u t h o r
<h t t p : / / www. Depar tment0 . U n i v e r s i t y 0 . edu /

A s s i s t a n t P r o f e s s o r 0>}

Query 4: 14 tuples

SELECT ?X ?Y1 ?Y2 ?Y3
WHERE{

?X r d f : t y p e ub : A s s o c i a t e P r o f e s s o r .
?X ub : worksFor <h t t p : / / www. Depar tment0 . U n i v e r s i t y 0 . edu> .
?X ub : name ?Y1 .
?X ub : e m a i l A d d r e s s ?Y2 .
?X ub : t e l e p h o n e ?Y3}

Query 5: 532 tuples

SELECT ?X
WHERE{

?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?X ub : memberOf <h t t p : / / www. Depar tment0 . U n i v e r s i t y 0 . edu>}

Query 7: 59 tuples

SELECT ?X ?Y
WHERE{

?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : Course .
?X ub : t a k e s C o u r s e ?Y .
<h t t p : / / www. Depar tment0 . U n i v e r s i t y 0 . edu /

A s s o c i a t e P r o f e s s o r 0> ub : t e a c h e r O f ?Y}

Query 8: 5,916 tuples

SELECT ?X ?Y ?Z
WHERE{

?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : Depar tment .
?X ub : memberOf ?Y .
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www. U n i v e r s i t y 0 . edu> .
?X ub : e m a i l A d d r e s s ?Z}

Query 9: 44,021 tuples

SELECT ?X ?Y ?Z
WHERE{

?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : Course .
?Z r d f : t y p e ub : A s s i s t a n t P r o f e s s o r .
?X ub : a d v i s o r ?Z .
?Z ub : t e a c h e r O f ?Y .
?X ub : t a k e s C o u r s e ?Y}

Query 11: 0 tuples

SELECT ?X
WHERE{

?X r d f : t y p e ub : ResearchGroup .
?X ub : s u b O r g a n i z a t i o n O f <h t t p : / / www. U n i v e r s i t y 0 . edu>}

Query 12: 125 tuples
SELECT ?X ?Y
WHERE{

?X r d f : t y p e ub : F u l l P r o f e s s o r .
?Y r d f : t y p e ub : Depar tment .
?X ub : worksFor ?Y .
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www. U n i v e r s i t y 0 . edu>}

Query 13: 2,489 tuples
SELECT ?X
WHERE{

?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m <h t t p : / / www. U n i v e r s i t y 5 6 7 . edu>}

Query 14: 7,924,765 tuples
SELECT ?X
WHERE {?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t}

