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Abstract

Directed Acyclic Graph (DAG) workflows are widely used for large-scale

data analytics in cluster-based distributed computing systems. The performance

model for a DAG on data-parallel frameworks (e.g., MapReduce) is a research

challenge because the allocation of preemptable system resources among parallel

jobs may dynamically vary during execution. This resource allocation variation

during execution makes it difficult to accurately estimate the execution time.

In this paper, we tackle this challenge by proposing a new cost model, called

Bottleneck Oriented Estimation (BOE), to estimate the allocation of preempt-

able resources by identifying the bottleneck to accurately predict task execution

time. For a DAG workflow, we propose a state-based approach to iteratively

use the resource allocation property among stages to estimate the overall exe-

cution plan. Furthermore, to handle the skewness of various jobs, we refine the

model with the order statistics theory to improve estimation accuracy. Extensive

experiments were performed to validate these cost models with HiBench and

TPC-H workloads. The BOE model outperforms the state-of-the-art models by

a factor of five for task execution time estimation. For the refined skew-aware

model, the average prediction error is under 3% when estimating the execution

time of 51 hybrid analytics (HiBench) and query (TPC-H) DAG workflows.

1 Introduction

There is a trend towards unifying Big Data and AI on cluster-based distributed

computing systems [1]. The data parallel paradigm makes it easy to automatically

distribute the computation and manage task failures at a large scale. The data parallel

analytics jobs are often represented by Directed Acyclic Graph (DAG) workflows [2–

7]. A DAG of computational stages are built for parallel execution. For example, (1)
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Fig. 1 The task execution plan of a DAG with four jobs. mi(k) denotes that a map task of job i requires

k task slots (i.e., maximum number of Map or Reduce tasks can run simultaneously) for execution.

Hive Query Language (HQL) is translated to the execution plan of MapReduce [8]

jobs to be run in parallel, (2) the Spark [2] program and machine learning workloads

are transformed to a DAG workflow for execution [7], and (3) the Tez [5] framework

allows for a complex DAG of tasks for processing data.

The performance of DAGs are widely studied in the literature [3, 9–11]. While

these works expose various aspects of the performance behavior of DAGs, a step

forward is required to build a cost model that estimates DAG execution time for

parallel jobs. Cost models are the fundamental building blocks for system manage-

ment and optimization, for example, (1) job self-tuning [9, 12], (2) capacity planning

on the cloud [13], and (3) progress estimation [14]. However, existing cost mod-

els are limited to single jobs [9, 12], and it is still a challenge to build cost models

for a DAG workflow of parallel jobs on cluster-based distributed computing such as

MapReduce, Spark, and Tez.

For data parallel computing frameworks, a precise yet useful cost model often

measures the job execution time (i.e., beyond simple cost like I/O) [9, 12]. The

main challenge in building an execution time based cost model for a DAG workflow

is the inherent complexity of system resource allocation for heterogeneous tasks in

each stage. This allocation may vary among computational stages. This is caused by

two main factors that may vary among different stages: (1) the degree of parallelism

(i.e., the number of simultaneously running tasks in the cluster) for parallel jobs, and

(2) system resource bottleneck. Given the cluster computing resource, the degree of

parallelism is determined by the resource requirement (i.e., CPU cores and memory)

of running jobs. The resource requirement of tasks may be changed from one stage

to the next due to computation stage changes, which may lead to the change of the

degree of parallelism for each job. Then, the bottleneck resource may be changed

from one stage to the next stage. It finally leads to the variation of the allocation for

preemptable system resource and task execution time accordingly.

We use a DAG of web site analytics [15] in MapReduce to illustrate the above

challenge. As shown in Figure 1, The DAG has four jobs to process the event log of

page views to report the metrics. Job 1 pre-aggregates the duration of each visit to

generate records that contain the page, visiting IP and duration on the page. Job 2
counts the number of views for each page (i.e., Word Count like job). Job 3 sorts the

pages by the duration of each visit (i.e., Sort like job). Finally, job 4 generates a report

for the pages of min, median and max duration on each page. The DAG workflow is
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divided into 7 stages (states) 1 based on the start and end of Map/Reduce stages. The

task execution plan shows why the execution time estimation is challenging because

of the parallel execution of job 2 and 3. In the 3rd state, the map task time for job 2
is 27 seconds, bounded by CPU. In the 4th state, the system bottleneck becomes net-

work I/O due to the shuffle operation for job 3. The map task time for job 2 is reduced

from 27 seconds to 24 seconds because its CPU resource allocation is increased. In

the 5th state, there are only two map tasks in the cluster. The map task time for job 2
is further reduced from 24 seconds to 20 seconds due to the released CPU resources

from job 3. In summary, the execution time of map tasks of job 2 varies between

the 3rd and 5th state due to the variation of system bottlenecks (i.e., CPU-bound,

network-bound and none). It indicates that the execution time of the same task may

vary from one stage to the other due to the variation of system resource allocation.

Unfortunately, the previous cost models such as Starfish [9] and MRTuner [12] are

not able to capture the variation of resource allocation among stages because the

degree of parallelism is assumed to be unchanged for a single job.

In this paper, we study the cost models for a DAG workflow on data parallel

frameworks (i.e., MapReduce). We use MapReduce programming paradigm because

it is a well-known framework in distributed computing, and the result is easy to be

extended to other cluster-based distributed systems such as Spark and Tez, of which

the key mechanisms for execution model, task distribution and fault-tolerance are

similar. A starting point of our study is a thorough understanding of the system behav-

ior for parallel jobs, by using a set of benchmarks. We have two findings to build

cost models: (1) The task execution time variation is caused by the change of sys-

tem resource bottleneck among computation stages. The cost model for parallel jobs

should be able to handle bottleneck resource estimation. (2) For each computation

stage, the resource allocation for each running job is steady. This property can be

used to estimate the DAG execution plan break-down in an iterative manner.

We propose the Bottleneck Oriented Estimation (BOE) model to estimate the

execution time at the task level. The model estimates the bottleneck resource and its

allocation among tasks by predicting the cost of each type of tuple level operations

(i.e., read, transfer, compute and write). The pipelined and blocked operations are

modeled separately. The effective time of the identified bottleneck resource is derived

as the execution time for the pipelined operations. The BOE model identifies the

bottleneck resource and accurately estimates the task execution time variation (e.g.,

27s, 24s and 20s for task m2 among the stages in Figure 1).

Next, we use a state-based approach to integrate the task-level BOE model in

holistic estimation for the execution plan of a DAG workflow. For each stage of a

DAG workflow, we estimate the degree of parallelism for each job using the proper-

ties of schedulers and estimate the task-level execution time for each job through the

BOE model. Then, we iteratively estimate the task execution plans for parallel jobs

on each stage. The workflow level execution time (e.g., the DAG execution time from

stage 1 to stage 7 in Figure 1) is estimated by this state-based iterative approach.

To further improve the accuracy of the cost model, the skewness of tasks (i.e.,

the variation of task execution time caused by non-linear I/O complexity [16]) is

1In this paper, the terms stage and state, DAG and workflow, are used interchangeably.
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addressed at both task-level and workflow-level. For the task-level model, the rela-

tion between the selectivity factor distribution and the execution time distribution is

derived using the order statistic theory. Then, the impact of task execution time vari-

ation is estimated for the DAG workflow execution plan. Finally, the expected gain

of our approach of handling the skewness is derived.

The key contributions of this paper are as follows.

• We study a set of workloads to thoroughly understand the system behavior for

typical parallel DAG jobs. Our key insight includes (1) the key reason for task

time variation during DAG execution is because of the change of the underlying

resource bottlenecks, and (2) the resource allocation for parallel tasks is steady

during each computation stage. This insight guides the design of the cost model.
• We propose a BOE model to estimate task-level execution time for parallel jobs.

To the best of our knowledge, this is the first general cost model that addresses the

problem of preemptable resources allocation for parallel jobs.
• We use a state-based approach to integrate the BOE model for a holistic execution

plan estimation of a DAG workflow. This framework makes use of the property

that the resource bottleneck is steady during a stage, and iteratively estimates the

execution plan for parallel tasks from one stage to the next stage.
• To further improve the accuracy of the model, we refine the granularity for both

task-level and DAG level models to handle skewness. The time distribution of

tasks in sub-stages is derived from the selectivity factor using the order statistic

theory. Consequently, the expected gain of our approach to handle the skewness is

obtained.
• We conduct extensive experiments with hybrid analytics benchmarks (HiBench)

and query benchmarks (TPC-H) to validate the cost models. The result shows

that the BOE model can correctly identify resource bottlenecks. As a comparison,

the BOE model outperforms existing MapReduce models including Starfish and

MRTuner by a factor of five for task-level estimation. For the state-based approach,

the average prediction error is under 3% when predicting the execution time of 51
hybrid analytics and query DAG workflows. Furthermore, the overhead for calcu-

lating cost models is less than 1 second for all the DAG workflows. Both accuracy

and overhead results indicate that our model is able to serve applications such as

auto-tuning, capacity planning and progress estimation.

The rest of the paper is organized as follows. We provide the background and

problem description in Section 2. We conduct benchmarks to understand the system

behavior for parallel jobs in Section 3. We propose the task-level execution model in

Section 4. In Section 5, we present the holistic cost model for a DAG workflow. We

improve the cost model in regard to skewness in Section 6. The evaluation results

are presented in Section 7. We present the related work in Section 8 and conclude in

Section 9.
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Fig. 2 Example of a DAG Workflow

2 Background and Problems

2.1 MapReduce

MapReduce is a data-parallel computing framework to execute user-defined map and

reduce functions in parallel.

Map: The map stage reads input tuples to execute the user-defined map function, and

writes the results (e.g., (k1, v1), (k1, v2)) to the local disk for a shuffle. In

the case when the intermediate map output cannot fit into the memory, the framework

uses external merge & sort for generating the map output.

Shuffle: The shuffle stage is responsible for copying the intermediate map output to

the reduce side. The task may read data from the OS buffer caches during the shuffle

stage when the intermediate data is just written by the previous stage. To reserve

memory for the user-defined reduce function, the reduce input is materialized on the

disk before each tuple is sent to the reduce function for processing.

Reduce: The reduce stage processes the value list for each key (e.g., (k1,

List(V1, V2))), and writes the output to HDFS.

2.2 Resource Management and Job Scheduling

The job scheduler is responsible for assigning tasks based on the availability of

system resources on nodes. To separate the task scheduling and resource manage-

ment, Apache YARN [17] uses a resource manager to monitor and allocate resources

for multiple jobs. The resource manager provides multi-dimensional fairness (e.g.,

Dominant Resource Fairness, DRF [18]).

2.3 DAG Workflow

Directed Acyclic Graph (DAG) based execution is popular for modern data analyt-

ics workloads. For example, (1) the physical execution plan for HiveQL is a DAG of

MapReduce jobs [19]; (2) SystemML [20, 21] compiles DML (Declarative Machine

learning Language) to a DAG of hybrid MapReduce jobs and control programs;

(3) Spark [2] transforms the user-defined analytic program to a DAG workflow for

parallel execution.

In this paper, we define the DAG workflow as follows.

Definition 1 A DAG workflow is composed of a set of jobs connected through a DAG relation-

ship GF (J,E), where J is the set of jobs that compose the workflow, and the arc (jm, jn) ∈ E
indicates that the start of jn depends on the completion of jm.
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Figure 2 presents an example of such a DAG workflow composed of 7 MapRe-

duce jobs: (1) A job in the workflow is started if and only if all its parent jobs finish

(e.g., j6 has to wait for the completion of both j3 and j5), and (2) multiple jobs from

the DAG can run simultaneously (e.g., j2, j3, and j5 run in parallel).

2.4 Problem Definition

We formulate the problem of cost estimation for a DAG workflow as follows:

Problem 1 Given a DAG workflow G(J,E) with job profile J and topology dependency

E, the objective is to estimate the execution time t(G,D,P,C) of G against data D with

parameter sets P and cluster resources C.

3 Benchmark Analysis

We conduct a set of benchmarks to understand the system behavior for parallel jobs.

The experimental setup about hardware and software is described in Section 7.1.1.

3.1 Task-level System Behaviors

First, we study the impact of the degree of task parallelism on resource utilization for

CPU, disk, and network. We use workloads including Word Count (WC), TeraSort

(TS) and TeraSort with three replicas on HDFS (TS3R) since they are representative

for CPU-bound, disk-bound, and network-bound workloads, respectively.

Figure 3 shows the median task execution time of each stage for WC, TS, and

TS3R with varying the degree of parallelism. Note that only task execution time t is

shown in the figure. The stage execution time should be t · N∆ where N is the number

of tasks and ∆ is the degree of parallelism. It means that the stage execution time

may be reduced even if the task execution time is increased as ∆ increases.

Map: As shown in Figure 3 (a), the task execution time does not increase when

the degree of parallelism is less than 6. This is because there are idle CPU cores as

the number of simultaneously running tasks increases, and neither disk nor network

is a bottleneck. When the degree of parallelism is higher than 6, we observe slow-

down for map tasks since the CPU becomes a bottleneck. It means that the change of

the degree of parallelism of a job may lead to the change of the system bottleneck,

which could further affect the task execution time. In Figure 3 (d) and (g), for the

map stage of both TS and TS3R, the task execution time is proportional to the degree

of parallelism. This is because the map stages of both jobs are disk-bound under all

the parallelism configuration.

Note that multiple operations such as compression, serialization/de-serialization,

GC, etc. are CPU intensive [22] and here we select the TeraSort configuration without

compression to cover the disk-bound case in this experiment.

Shuffle: For WC, TS, and TS3R, as shown in Figure 3 (b) (e) (h), we observe that the

median task execution time of the shuffle stage is proportional to the degree of paral-

lelism. This is because the shuffle stage is network-bound for all the workloads. The
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Fig. 3 The Impact of Degree of Parallelism for a Single Job

increased degree of parallelism leads to contention in the saturated network resource

which is a bottleneck for the shuffle stage.

Reduce: As shown in Figure 3 (c) (f) (i), for WC and TS3R, the median task time of

the reduce stage is also proportional to the degree of parallelism. The reduce stage is

network-bound because of HDFS write. For TS with only 1 output replica in HDFS,

we observe that the task execution time is steady when the degree of parallelism is

less than 6, which is similar to the map stage of WC as shown in Figure 3 (a). It is

also because the reduce stage is CPU-bound for TS, and there are idle CPU cores for

use when the degree of parallelism is less than 6.

Implications for Task-level Cost Model: Through the set of single job experiments,

we find the following insights to develop the cost model: (1) The task execution time

during a DAG stage is determined by the bottleneck system resource (e.g., CPU,

disk or network) for that stage. (2) The bottleneck may be changed with varying the

degree of parallelism. Consequently, given the degree of parallelism, the cost model

should be able to identify the bottleneck resources and the allocation among tasks to

accurately estimate the task-level execution time.

3.2 Workflow-level System Behavior

We study the resource usage behavior for multiple jobs running simultaneously. In

this set of experiments, we configure a fixed parallelism 8 and evaluate resource

utilization behavior for various stages of jobs that run in parallel.

We first evaluate the execution plan for parallel WC and TS jobs. There are two

overlapped stages: (1) WC map and TS map, and (2) WC map and TS reduce. We find

that: (1) For the first overlapped stage (i.e., WC map and TS map), WC’s median map

task time is increased from 22.7s to 27.7s in comparison to the single job benchmark

result. This is because of the saturated CPU resource under the parallelism configu-

ration. (2) For the second overlapped stage (i.e., WC map and TS reduce), WC’s map

task time is reduced to 24.3s. This is because the network-bounded TS releases CPU

to WC. For TS, its reduce task time (including both shuffle and reduce) is reduced by

a factor of two. This is because only 50% of simultaneous tasks now compete for the
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bottleneck resource (i.e., network for the shuffle). (3) For each computational stage

of which boundary is start/end of map/reduce stages, the resource allocation for tasks

is steady. This is because the degree of parallelism for each job is fixed within a stage

according to the task scheduling policy such as DRF [18].

Next, we evaluate the execution plan for parallel WC and TS3R jobs. We observe

that the first stage is bounded by the CPU. The second stage is bounded by the net-

work I/O. TS is 1.9x faster than its single job case for the reduce task time. This is

because of the reduction in the degree of parallelism for TS reduce tasks that compete

for the network bandwidth. Furthermore, we also observe that the resource allocation

for tasks is steady during a stage. Figure 4 illustrates the correlation between resource

utilization (on a slave node) and 4 workflow stages. Each stage is visually correlated

with preemptable resources (CPU, network and disk) through the time-line.

Implications for Workflow-level Cost Model: Through this set of multiple job

experiments, we find that the resource allocation for tasks from each job is steady

during a stage of which boundary is start/end of map/reduce stages. The share rate

of the bottleneck resource among jobs is determined by the resource usage charac-

teristic during a stage. Therefore, this property could be used to iteratively divide the

execution plan to multiple stages for holistic execution plan estimation.

4 Task-level Model

In this section, we present a cost model, Bottleneck Oriented Estimation (BOE), for

task-level execution time estimation. BOE models the system behavior presented in

Section 3.1.

4.1 BOE Model

4.1.1 Task Execution Model

We first model the fundamental behavior for task execution on data parallel comput-

ing frameworks. As shown in Figure 5, we break down a task into multiple sub-stages.

For each sub-stage, the task is executed in a pipelined fashion from one tuple to the
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next tuple, which consists of a subset of operations including reading, transferring,

computing, and writing. There is bulk synchronization at the end of each sub-stage

which blocks all the tuples to be processed by the next sub-stage. The task execution

model is general for data parallel computing frameworks that follow the functional

programming model (e.g., MapReduce, Spark, and Tez).

This execution model distinguishes pipelined and blocked processing in the

tuple level, which formalizes task-level execution plans to predict the allocation of

preemptable resources for parallel tasks.

4.1.2 Resource Usage Model

Given the above task execution model, we use the resource usage model in [23] to

make a uniformity assumption for resource usage behavior. For each sub-stage, since

the subset of read, transfer, compute and write operations is executed in the pipeline

from one tuple to the next tuple, the usage of preemptable resources is uniform during

a sub-stage. We assume that disk and network are preemptable. CPU is preemptable

when there is no free CPU core (e.g, the number of simultaneously running tasks is

larger than that of CPU cores). Memory is not preemptable because it is managed by

JVM. This resource usage model follows the execution model to distinguish pipelined

and blocked processing in the tuple level and provides the hint to estimate resource

utilization (i.e., effective time) for a bottleneck resource.

4.1.3 Bottleneck Oriented Estimation

Given the task execution model in Figure 5, we estimate the execution time tσ for a

sub-stage of a task as follows,

tσ = Λ(tread, ttransfer, tcompute, twrite) (1)

where Λ(·) estimates the non-overlapped time among tX to process tuples in the

pipeline, and tX is the actual execution time of the operation X. Note that for spe-

cific sub-stages in MapReduce, we have a subset of operations according to the

implementation. For example, there is only a disk write for map output sub-stage.

According to the resource usage model, the resources are uniform over

the pipelined execution of tuples. Since the processing time for each tuple

is very short, we omit the processing time for the first tuple and last tuple.

Then, we have tread = ttransfer = tcompute = twrite. That is, tσ =
max{tread, ttransfer, tcompute, twrite}.

We assume that the resource throughput for X is θX. The resource usage for X

is µ(∆) when X is fully utilized by tasks with ∆ parallelism. Thus we have tX =
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Table 1 Parameters for Cost Model

Symbol Description

Job Profiles

tload Time to create, schedule and destroy a task

θmap CPU throughput for a map task per core

θreduce CPU throughput for a reduce task per core

θsort CPU throughput for the sort stage of a reduce task per core

αm Selectivity for materialized map output

αr Selectivity for materialized reduce output

αs The fraction of reduce input for the second pass of sort & merge.

Data Parameters

B Size of the input split for a task

System Resource Profiles

θdr Throughput of local disk write for a node

θdw Throughput of local disk read for a node

θdfsw Throughput of HDFS disk read for a node

θdfsw Throughput of HDFS disk read for a node

θnet Network throughput for a node

Ncores Number of CPU cores for a node

γ fraction of data read from OS buffer for a Map or Reduce task

Job Runtime Parameters

∆ Degree of Parallelism on a node

Nm Number of map tasks

Nr Number of reduce tasks

D

pX·µ(∆)·θX
, where pX · µX(∆) is the actual resource usage for X when it is not a

bottleneck. D is the size of data to process.

For the bottleneck resource X, we have pX = 1 and tX = D

µ(∆)·θX
. Otherwise,

0 ≤ pX < 1, and we have tX < D

µ(∆)·θX
.

If there is at least one bottleneck resource, we have

tσ = max{
B

µread(∆) · θread
,

B

µtransfer(∆) · θtransfer
,

B

µcompute(∆) · θcompute
,

s ·B

µwrite(∆) · θwrite
} (2)

where B is the size of input for the task.

4.2 Details of Task Estimation

To implement the BOE Model for MapReduce, we select the parameters of profiling-

and-estimation framework in [9, 12] to build the cost model. The profiling-and-

estimation framework collects the historical profiles in terms of job, data and system

resources as the input for the cost model. In particular, the parameters are defined in

Table 1. A task represents a map/reduce task unless otherwise specified. θmap and

θreduce are obtained when a CPU core is fully allocated to the task.

4.2.1 Single Job Case

For single jobs, the cost model of a map task is presented in Proposition 1.

Proposition 1 Given the job profile (tload, θmap, αm), input split B, cluster resources

(θdfsr, θdw), the degree of parallel ∆, as defined in Table 1, the execution time of a map task

for single jobs is

tmap = tload +max{ B

µdfsr(∆) · θdfsr
,

B

µcpu(∆) · θmap
}+ αm ·B

µdw(∆) · θdw
(3)

where µdfsr(∆) = µdw(∆) = 1
∆ , and µcpu = min{Ncores

∆ , 1}.
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Analysis. For the first sub-stage to read data from HDFS and compute in map

function, the execution time is estimated based on the bottleneck resources (HDFS

read or CPU). If the map task is HDFS-bound and there is only one job using the

system resource, the HDFS read and disk write throughput allocated to each task is
θhdfs

∆ and θdw
∆ , respectively. Thus the execution time for a map task is tload+

B·∆
θdfsr

+
αm·B·∆

θdw
. Otherwise, if the map task is CPU-bound, the execution time for a map

task is tload +
B·max{∆/Ncores,1}

θmap
+ αm·B·∆

θdw
. It is noteworthy that the max operation

automatically estimates the execution time based on the bottleneck resource during

the execution. For the second sub-stage to write map output on local disks, there is

only one resource (i.e., disk write) that is fully utilized.

A reduce task has two sub-stages including shuffle and reduce. The execution

time for a shuffle sub-stage is estimated as follows.

Proposition 2 Given the job profile (tload, sm), input split B, cluster resources (θdr, θdw),
job configuration (∆, Nm, Nr), as defined in Table 1, the execution time for the shuffle sub-

stage of a reduce task for single jobs is

tshuffle = tload +max{ αm ·B ·Nm

µdw(∆) · θdw ·Nr
,

αm ·B ·Nm

µnet(∆) · θnet ·Nr
} (4)

where µdw(∆) = µnet(∆) = 1
∆ .

Analysis. The execution time is estimated based on the bottleneck (disk I/O or

network transfer) resources. The input size of a reduce task is B·Nm·αm

Nr
. If disk I/O is

a bottleneck, the allocated disk resource for each task is θdw
∆ , and the execution time

of the shuffle stage is tload +
αm·B·Nm·∆

Tdw·Nr
. Otherwise, if the network is a bottleneck,

the execution time of the shuffle stage is tload + αm·B·Nm·∆
θnet·Nr

. Here, either disk or

network throughput for each task is allocated as 1
∆ of the total throughput if it is a

bottleneck. The max operation automatically estimates the execution time based on

the bottleneck resource of the shuffle stage.

The execution time for a reduce sub-stage is estimated as follows.

Proposition 3 Given the job profile (θsort, θreduce, sm,
sr), input split B, cluster resources (θdr, θdfsw), job configuration (∆, Nm, Nr), as defined

in Table 1, the execution time for the reduce stage of a reduce task for single jobs is

treduce = max{ αs · αm ·B ·Nm

µdw(∆) · θdw ·Nr
,

αs · αm ·B ·Nm

µcpu(∆) · θsort ·Nr
}

+max{ αr ·B ·Nm

µdfsw(∆) · θdfsw ·Nr
,

αm ·B ·Nm

µcpu(∆) · θreduce ·Nr
} (5)

where µdfsw(∆) = µdw(∆) = 1
∆ , and µcpu = min{Ncores

∆ , 1}.

Analysis. For the sort sub-stage, the execution time is estimated based on the

bottleneck resources of sort compute or local disk write. αs is the fraction of reduce

input data to have the second pass of sort & merge. Thus the input size of the sort

sub-stage is αs·αm·B·Nm

Nr
. For the reduce sub-stage, the execution time is estimated
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based on the bottleneck of HDFS writes or reduce function computation. If HDFS

write is a bottleneck, the execution time of the reduce stage of the task is αr·B·Nm·∆
θdfsw·Nr

.

Otherwise, if CPU time for the reduce function is a bottleneck, the execution time of

the reduce stage is
αm·B·Nm·max{∆/Ncores,1}

θreduce·Nr
. The HDFS write throughput for each

task is allocated as 1
∆ of the total throughput if it is a bottleneck.

In summary, Eq 3, Eq 4, and Eq 5 are materializations of the BOE model in Eq 2

for MapReduce tasks.

4.2.2 Multiple Job Case

We extend the single job cost model to handle the parallel job case. For N jobs run

in parallel, we denote the utilization of the bottleneck resource X for a task of job

i as µXi
, and we have

N
∑

i=1

µXi
· ∆i = 1. Based on the uniformity assumption in

Section 4.1.2, µXi
represents the effective time for which the bottleneck resource is

utilized for a task of the running job i. For system resources such as disk and network,

µXi
is determined by the scheduling policy of the underlying driver as well as the

workload characteristic of the job (i.e., the proportion of computation and I/O) [24].

Given the estimation for the resource utilization µXi
, we extend the task time

estimation model for single jobs to estimate the resource utilization of θX for each

task. The bottleneck could also be identified by using the max operator in the BOE

model. For example, as shown in the Proposition 1, we have θdfsri = µdfsri · θdfsr
and θdwi

= µdwi
·θdw. If the disk is the bottleneck for job i, B

µdfsri
·θdfsr

will be larger

than B
µcpui

·θmapi

. Otherwise, the job i is CPU-bound. Note that the bottleneck of a

DAG workflow may be different in various stages, and our model can automatically

identify the bottleneck for each stage.

5 Workflow level Model

In this section, we present the workflow level model to estimate the holistic execution

plan of a DAG workflow. This model makes use of the observation on resource usage

property in Section 3.2.

5.1 The State-based Approach

The result in Section 3.2 indicates that the resource allocation for each job is steady

during a stage that is divided by the map/reduce stages. We make use of this prop-

erty to break down a DAG workflow into multiple stages and propose a state-based

approach for a DAG workflow level estimation.
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5.1.1 State division for a DAG workflow

We define the state (i.e., stage) s (s = 1, 2, · · · , S) for a DAG workflow based the

map or reduce stage transition of its jobs. As shown in Figure 6, the workflow state

is transited from 3 to 4 when job j3 is transformed from the map stage to the reduce

stage. During the execution of a stage for a DAG workflow, the degree of parallelism

∆i for the running job i will not change. Consequently, the allocation of shared bot-

tleneck resources (i.e., disk, HDFS, and/or network) is fixed for each running job

during a stage of a DAG workflow. This property provides the foundation to estimate

the allocation of shared resources among running jobs of a DAG workflow.

Algorithm 1 State-based Cost Estimation for a DAG workflow
1: tdag ← 0

2: s ← 0
3: while G is not empty do

4: Add new jobs to job queueQ from G

5: job end flag=0

6: while job end flag = 0 do

7: Estimate ∆i for each job i ∈ Q ▷ Section 5.2.1

8: for each job i ∈ Q do

9: Estimate ttask(i, s) using BOE model ▷ Section 4.2

10: Estimate the stage time tstage(i, s) ▷ Section 5.2.2

11: end for

12: tstage(s) = tstage(k, s) =
Ns
min
i=1
{tstage(i, s)} ▷ stage of job k finishes

13: for each job i ∈ Q do

14: update the progress for job i ▷ Section 5.2.3

15: end for

16: if job k in reduce stage then

17: job end flag=1

18: Q.remove(k)

19: else

20: update job k to the reduce stage

21: end if

22: tdag = tdag + tstage(s)

23: s = s + 1
24: end while

25: end while

26: Return tdag

5.1.2 Cost Estimation for a DAG workflow

Algorithm 1 presents the algorithm of the state-based approach to iteratively estimate

the execution time for a DAG workflow. Given a DAG workflow, we estimate the

state transition sequence 1 → 2 · · · → S by iteratively estimating the duration for

each workflow stage. For each iteration, we estimate the stage duration as follows:

(1) estimate the degree of parallelism ∆i for each running job i; (2) identify the bot-

tleneck resource and task execution time for each running job using the BOE model;

(3) estimate the rest of the execution time of the current stage for all the running jobs;

(4) find the job with minimum stage duration time; (5) update the progress for other

running jobs. Therefore, given a DAG workflow G, input data D, cluster resources

C, and historical profile P , we estimate the execution time for the DAG workflow by

estimating the duration of stages: tdag =
S
∑

s=1
tstage(s).

As the example shown in Figure 6, when job j1 completes (i.e., the DAG work-

flow enters the stage 3), we estimate the degree of parallelism ∆3, ∆4, and ∆5, for

j2, j3, and j4, respectively. Next, we estimate the task execution time for each job,
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and estimate the state duration time tstage(3), and update the state and progress for

each running job. Finally, we enter the state 4.

5.2 Details of DAG Workflow Estimation

5.2.1 Degree of Parallelism for Jobs

As shown in Figure 6, the degree of parallelism ∆i for each running job i is fixed

during a stage. We assume that tasks in the job queue are scheduled using multi-

dimensional fairness DRF [18]. For each job i in the job queue, the scheduler

maximizes its degree of parallelism ∆i while minimizing its allocation of dominate

resources. For a stage in DAG, we assume there are N running jobs. Each pair of

jobs i and j should satisfy the following condition.

max(
Ci ·∆i

Ncores
,
Mi ·∆i

Bmem
) = max(

Cj ·∆j

Ncores
,
M ·∆j

Bmem
) (6)

where Ci and Mi are the required CPU and memory for tasks of job i, and Ncores and

Bmem are the quanta for CPU cores and memory on the cluster. Based the resource

capacity, we have
N
∑

i=1

Ci ·∆i ≤ Ncores and
N
∑

i=1

Mi ·∆i ≤ Bmem. Therefore, Eq. 6

can be solved to obtain the degree of parallelism for each job.

Note that other schedulers such as the max-min fairness scheduler2 can be

supported by adjusting the resource allocation model in Eq. 6.

5.2.2 Stage Duration Estimation

Given the estimated degree of parallelism ∆i for each job, we use the BOE model

implementation in Section 4.2 to estimate the task execution time for each job. Note

that the degree of parallelism for a job may change from one stage to the next stage.

We propose the task tracks to keep track of the progress of tasks that have the same

progress (i.e., start at the same time). We denote ∆i,τ,s as the number of tasks run in

parallel for the τ th task track of job i during the sth stage, and there are totally Ts

task tracks for job i during the sth stage. Consequently, the degree of parallelism for

job i during the sth stage is ∆i,s =
Ts
∑

τ=1
∆i,τ,s.

When we iterate the estimation from one stage to the next stage, a new task track

may be created due to the increased degree of parallelism for that job. For the task

track τ of job i, ∆i,τ,s is monotonically decreasing as s increases during the pro-

cessing of a job. For a new stage, all the increased degree of parallelism should be

assigned to the new task track so that all the tasks in the same task track have the

same progress.

Figure 7 presents an example of the task track assignment for stage 4 and 8 of

the DAG workflow in Figure 2. As shown in Figure 7 (a), during the stage 3, the task

track assignment for job 2, 3 and 4 is the same (i.e., ∆2,1,3 = ∆3,1,3 = ∆4,1,3 = 2).

Once job 3 finishes its map stage and the workflow enters the stage 4, the task tracks

2https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html



Distributed and Parallel Databases 15

4

m(2)

m(2)

m(2)

m(2) m(2)

m(2)

Workflow State

r(4)

m(2)

m(2)

m(2)

m(2)

m(2)

m(2)

m(2)

m(2)
3,1,2∆

3,1,3∆

3,1,4∆

4,1,2∆

4,2,3∆

4,1,4∆

(a) Changes in State 4
8 Workflow State

r(4)

r(3)

r(3)

r(3)

r(3)

r(3)

r(3)

r(3)

r(3)

r(3)

r(3)

7,5,3∆

7,5,4∆

8,6,4∆

8,5,4∆

(b) Changes in State 8
Fig. 7 Example of Task Tracks Changes in States of DAG. The label in a task denotes the task type

and quota of required memory. For example, m(2) represents a map task requiring 2 GB memory for its

container. We assume the total memory available for containers is 12 GB, and memory is the dominant

resource for all the jobs.

of job 2 and job 4 remains the same (i.e., ∆2,1,4 = ∆4,1,4 = 2). Since the reduce task

of job 3 requires more memory than its map task, the task track for job 3 is reduced

to ∆3,2,4 = 1.

As shown in Figure 7 (b), once the DAG workflow is processed from the state

7 to state 8, there are only reduce tasks for job 4 on the cluster. The new task track

∆4,6,8 is assigned to job 4 due to the newly released containers from job 3. Thus the

total task tracks for job 4 during the state 8 is ∆4,8 = ∆4,5,8 +∆4,6,8 = 4.

Given the task execution time ttask(i, s) for each job i during the state s using

the BOE model, and the above estimation for the degree of parallelism ∆i,τ,s for task

tracks, we estimate the duration of a stage as follows.

Proposition 4 Given the state s, the remaining execution time of job i for that stage is

tstage(i, s) = ttask(i, s) · (1−
Ts−1

min
τ=1

p(i, τ, s− 1) + ⌈Nrm(i, s− 1)

∆(i, s)
⌉) (7)

where t(i, s) is the estimated task execution time using the BOE model, and p(i, τ, s) is the

progress of the task track τ for job i at the end of the state s, and Nrm is the number of pending

tasks for job i at the end of the state s.

The above stage estimation takes the progress of each task track into account. The

duration of a stage is determined by the slowest task track.

5.2.3 Progress Estimation

Based on the stage duration time, we update the progress for each running job from

one stage to the next stage. For each task track τ of job i, the progress of jobs at the

end of the state s is p(i, τ, s) =
tstage(s)
tstage(i,s)

.

Furthermore, for job i, the number of pending tasks at the end of the state s is

Nrm(i, s) = Nrm(i, s− 1)−

Ts
∑

τ=1

∆i,τ,s ·
tstage(s)

ttask(i, s)
(8)

Note that we keep track of both the progress of task tracks and the number of pending

tasks during iterations for the DAG workflow estimation.
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5.2.4 Analysis

For a DAG workflow with n jobs, there is at most 2n sub-stages. For each stage, the

time complexity to figure out the degree of parallelism is O(1) based on the third

constraint of the optimization problem in Section 5.2.1. The worse case time to esti-

mate the execution time of a stage is O(n) while all the jobs run in parallel. The time

to update the progress in a stage is constant. Therefore, the time complexity to esti-

mate the execution time for a DAG workflow is O(n2). For typical DAG workflows,

the time to estimate the execution time of a DAG workflow in Algorithm 1 is often

on a time scale of milliseconds.

6 Handling Skewness

Through the detailed analysis for the execution plans of benchmarks in Section 3.1

and Section 3.2, we further find that another source of the loss of accuracy for the

execution plan estimation is the skewness among tasks [16, 25]. For the task level

execution, the main cause of skewness is the variation of output I/O and computa-

tion overhead among tasks, which leads to skewness on task execution time. For the

workflow level execution, the skewness affects the degree of parallelism of a job,

which leads to additional sub-stages with the changed degree of parallelism for each

job, and may delay the total execution time of a DAG.

5 Workflow State
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Fig. 8 The Impact of Skewness on Task Tracks in DAG

Figure 8 (a) shows the execution plan for a DAG without skewness. For this DAG,

the reduce tasks of job 1 complete at the end of state 5, and there is no new job can

be started based on the DAG dependency at the state 6. Thus more reduce tasks of

job 2 starts accordingly to fill the newly available container slots.

Figure 8 (b) shows the execution plan for a DAG with skewness. For this DAG,

the execution time of the last three reduce tasks varies. This lead to no new tasks

get started at the state 6, and only 1 reduce task of job 2 get started at the state 7.

Therefore, the degree of parallels are ∆1,5 = 3 and ∆2,5 = 2 for the state 5, and

∆1,6 = 2 and ∆2,6 = 2 for the state 6, and ∆1,7 = 1 and ∆2,7 = 3 for the state 7,

and ∆2,8 = 4 for the state 8. This is different from the degree of parallelism for the

case without skewness in Figure 8 (a).
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6.1 Task-level Model Extensions

The skewness of MapReduce is caused by the non-uniform distribution of I/O over-

head for output key-value tuples. We assume that the distribution of the I/O for output

key-value tuples is the same for both profiling data and estimating data. In particular,

the main source that leads to the skewness is the variation of selectivity factor (i.e.,

αm and αr) among tasks. Note that the variation of task input size has been addressed

by the BOE model in Section 4.2.

We assume that αm, and αr of all tasks from a job are independent normal

random variables, denoted as ᾱm, and ᾱr, respectively.

During the profiling stage, we get the mean (µ) and variance (σ) of each ran-

dom variable from MapReduce task counters. For the estimation stage, we use these

statistics to generate the samples of ᾱm and ᾱr for each task by using the normal

distribution N(µ, σ2).
We formalize the distribution for the map stage of tasks considering skewness.

According to the Proposition 1,

t̄map = a+ b · ᾱm (9)

Then,

E(t̄map) = a+ b · E(ᾱm) (10)

V (t̄map) = b2 · V ar(ᾱm) (11)

where a and b are constants.
According to Proposition 2, the distribution for the shuffle stage of tasks is

formalized in the same fashion.

E(t̄shuffle) = a′ + b′ · E(ᾱm) (12)

V (t̄shuffle) = b′2 · V ar(ᾱm) (13)

Finally, we model the distribution for the reduce stage of tasks. According to

Proposition 3, the reduce task time is modeled as follows.

t̄reduce = a′′ · ᾱm +max{b′′ · ᾱm, c′′ · ᾱr} (14)

Since ᾱm and ᾱr are independent, the last order statistics of a normal random

variable is approximated as follows based on Fisher-Tippett-Gnedenko theorem [26].

E(t̄reduce) = a′′ · E(ᾱm) + b′′ · E(ᾱm) + c′′ · E(ᾱr) (15)

+λ ·
√

b′′2 · V ar(ᾱm) + c′′2 · V ar(ᾱr)

V (t̄reduce) = a′′2 · V ar(ᾱm) + ξ · (b′′2 · V ar(ᾱm) + c′′2 · V ar(ᾱr)) (16)

where λ and ξ are constants.
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Algorithm 2 State-based Cost Estimation for a DAG workflow with Skewness
1: tdag ← 0

2: s ← 0
3: while G is not empty do

4: Add new job.stage to stage queueQ from G

5: stage end flag = 0
6: while stage end flag = 0 do

7: Estimate ∆i for each job.stage i ∈ Q ▷ Section 5.2.1

8: for each job.stage i ∈ Q do

9: Estimate the number of pending tasks N

10: for j=1 to N do

11: Estimate ttask(i, s, j) using extended BOE model

12: end for

13: Estimate tstate(i, s) using ttask(i, s, j), j = 1...N

14: end for

15: tstate(s) = tstate(k, s) =
Ns
min
i=1
{tstate(i, s)} ▷ state of job k finishes

16: for each job i ∈ Q do

17: update the progress for job i ▷ Section 5.2.3

18: end for

19: if job i has no tasks in Q then

20: stage end flag=1

21: if job k in reduce stage then

22: Q.remove(k)

23: else

24: update job k to the reduce stage

25: end if

26: end if

27: tdag = tdag + tstate(s)

28: s = s + 1
29: end while

30: end while

31: Return tdag

6.2 Workflow-level Model Extensions

To estimate the execution time for tasks with skewness, we reduce the size of each

task track ∆i,τ,s to 1. It means that two newly available containers will be assigned

to task track ∆i,τ,s and ∆i,τ+1,s separately for the ith job with τ − 1 existing task

tracks at the stage s.

The skewness affects the degree of parallelism (∆) of a job, which leads to addi-

tional sub-stages. The state-based approach in Figure 6 is extended to finer-grained

to address these additional sub-stages caused by the skewness. For the map or reduce

stage of a job, if the number of remaining map tasks is not enough to occupy the cur-

rently allocated slot, the container slot will be released to other jobs. In such a case,

when there is a container slot released from a job, we re-estimate the degree of paral-

lelism (∆i) for each job i in the DAG. Then, we estimate the task execution time as

well as progress for each job. Note that we estimate the number of pending tasks for

the state since the pending tasks of the state may not equal to all the pending tasks of

the job. This refinement of the state-based approach is shown in Algorithm 2. Here a

state is a sub-stage division caused by the skewness of tasks.

6.2.1 Analysis

Complexity: For a DAG workflow with n jobs, there is a maximum of 2n stages

without considering the skewness. According to Algorithm 2, the prediction is

extended to a per task manner for each stage. Suppose the number of tasks in a

job is m, the time complexity to predict the overall execution time of a DAG is

O(m · n2). Since there are often a few jobs in a DAG workflow, the time complexity

is approximate to O(m).
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Bounds: We provide the bounds of the gain from the skewness based cost estimation

by the following theorem.

Theorem 5 Given the degree of parallel ∆ and the number of waves N of a job in a stage, the

lower and upper bound of the expected grain from the skewness based approach is

0.23

√

N

∆
σ
√

log∆ ≤ E[tgain] ≤
√

2N

∆
σ
√

log∆ (17)

where σ is the variance derived from Eq. 9 - Eq. 15.

Proof. The execution time of the stage is bounded by the slowest task track. We firstly figure

out the distribution of total execution time for tasks on the same track, and then derive the

upper bound and lower bound of the slowest task track among all the tracks run in parallel.

The task-level model from Eq. 9 to Eq. 15 in Section 6.1 shows that the task execution time

follows a normal distribution of which mean and variance can be expressed by the feature of

selectivity factors (i.e., αm and αr). We denote that tasks of a job in a stage follow the normal

distribution N(µ, σ2). For each task track in a stage, there are N/∆ tasks run in series (i.e.,

N/∆ waves). Therefore, the distribution of the execution time of a task track follows the normal

distribution N(N∆ · µ, N∆ · σ2).
According to the analysis in [27], the expected maximum of N ′ samples from the normal

distribution N(µ′, σ′2) is bounded by the following inequality.

0.23σ′
√

logN ′ ≤ E[Y − E[X]] ≤
√
2σ′

√

logN ′ (18)

where Y = max1≤i≤N ′ Xi.

Since there are ∆ tasks run in parallel in the cluster during a stage, the lower bound and

upper bound of the gain from the skewness based estimation in Algorithm 2 is obtained as

follows.

0.23

√

N

∆
σ
√

log∆ ≤ E[tgain] ≤
√

2N

∆
σ
√

log∆ (19)

Theorem 5 means that the expected gain from the skewness based approach can

be expressed by the selectivity factors of a task. Since the statistics of selectivity

factors can be collected from history job profiles, the bounds can be figured out before

cost estimation.

7 Evaluation

7.1 Experimental Setup

7.1.1 Cluster Configuration

The Hadoop clusters are deployed on identical hardware, with a total of eleven

servers. Each node has 6 physical CPU cores at 2.4 GHz, 2 disk drives at 7.2k RPM

with 500 GB each, and 32 GB of physical memory. Nodes are connected using a 1
Gbps Ethernet switch. Hadoop is deployed on Java 1.7.0. We use Hadoop version

2.8.4 to run MapReduce on YARN [17]. We use one node as the master for manage-

ment and scheduling, and the other ten nodes as slaves for computation and storage.

We use 2 disks to store intermediate data for MapReduce and for storing HDFS data

as well. We configure HDFS with 128 MB block size and a default replication factor

of 3. The default JVM heap size is set to 2 GB per task.
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Table 2 Overview of Workloads for Evaluation

C R Bottleneck

Micro Single-Job

Word Count (WC) Y 3 CPU

TeraSort (TSC) Y 1 CPU

TeraSort (TS) N 1 CPU, Disk

TeraSort (TS3R) N 3 CPU, Network

Micro Multi-Jobs
WC+TS N 3, 1 CPU

WC+TS3R N 3, 3 CPU, Network

Hybrid
WC+TPC-H(Q1-Q22) Y 3 Hybrid

TS+TPC-H(Q1-Q22) Y 3 Hybrid

WC+KMeans Y 3 Hybrid

WC+PageRank Y 3 Hybrid

TS+KMeans Y 3 Hybrid

TS+PageRank Y 3 Hybrid
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(c) WC (reduce)
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(d) TS (map)
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(e) TS (shuffle)
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(f) TS (reduce)
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(g) TS3R (map)
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(h) TS3R (shuffle)
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(i) TS3R (reduce)
Fig. 9 The Task-level Effect of BOE Model for a Single Job

7.1.2 Workload Description

We define a set of representative workloads for the experimental evaluation. As

shown in Table 2, we use Word Count and TeraSort for micro-benchmarks. We

use PageRank for graph analysis and Kmeans for machine learning, both from

HiBench [28]. The query workload is selected from TPC-H3. C represents the com-

pression is enabled or not. R denotes the number of replicas. The hybrid workload

means to run two jobs/queries in parallel. For WC and TS, we use 100 GB input. We

use the huge data set for Kmeans and PageRank in HiBench. For TPC-H, we gener-

ate 80 GB input for 8 input tables. We set the hive.exec.parallel parameter

to true to make independent jobs in a query DAG run in parallel.

7.2 BOE Model

We evaluate the effect of the task-level BOE model. We use the best cases of

Starfish [9] and MRTuner [12] as the baseline. That is the ground truth execution

time when the degree of parallelism is equal to that in the profiling stage. We use the

median execution time of tasks as the ground truth in all the evaluations.

3https://github.com/rxin/TPC-H-Hive
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7.2.1 Single Job

Figure 9 (a), (b), and (c) present the WC evaluation result for the map, shuffle, and

reduce stages, respectively. The average accuracy for the execution time estimation

is 95.2%, 82.3%, and 85.1% for the BOE model. When the degree of parallelism

is 12, the BOE model outperforms the baseline by a factor of 6.6x, 4.3x, and 4.1x

for the map, shuffle and reduce stages, respectively. For the map stage, there are

enough idle CPU cores when the degree of parallelism is less than 6. When the degree

of parallelism is higher than 6, the job becomes CPU-bound due to the saturated

computing resource. The max operation in Proposition 1 can automatically identify

this change of the bottleneck, and hence we have the turning point when the degree

of parallelism is 6 for the BOE model. For the shuffle stage, the WC job is network-

bound under all the configuration. Our BOE cost model can identify this bottleneck

by using the max operation in Proposition 2. For the reduce stage of the WC job,

the bottleneck is network due to the HDFS write. The execution time for reduce

tasks is proportional to the degree of parallelism according to the cost estimation in

Proposition 3.

Figure 9 (d), (e), and (f) present the TS evaluation result for the map, shuffle, and

reduce stages, respectively. The average accuracy for the execution time estimation

is 94.0%, 81.5%, and 86.8% for the BOE model. For the case in which the degree

of parallelism is 12, the BOE model outperforms the baseline by a factor of 4.3x,

10.6x, and 1.9x for the map, shuffle and reduce stages, respectively. The bottleneck

is steady with varying the degree of parallelism for both the map and the reduce

stage. The map stage is disk-bound, and the shuffle stage is network-bound. For the

reduce stage, the job is CPU-bound for the low degree of parallelism, and it becomes

disk-bound for the high degree of parallelism. Our BOE cost model can identify the

change of bottleneck by using the max operation in Proposition 3.

Consequently, the BOE model accurately estimates the execution time with

respect to the degree of parallelism, by identifying the bottleneck for each stage.

Table 3 Task Level Effect for Parallel Jobs

DAG Job s1 s2 s3 s4

WC+TS
WC 99.5% 84.9% 88.6% 70.5%
TS 99.9% 92.4% - -

WC+TS3R
WC 99.9% 92.7% 97.9% 71.7%

TS3R 99.9% 99.9% - -

7.2.2 Multiple Jobs

We evaluate the task level BOE model for parallel jobs. The DAG workflow has two

parallel jobs. Table 3 presents the accuracy of the task level model for parallel jobs

including WC, TS, and TS3R, running simultaneously.

For WC and TS run in parallel, the average accuracy is 99.7% and 88.7% for

states 1 and 2, which consist of parallel jobs. For state 1, the BOE model identified

the CPU bottleneck. When the workflow enters state 2, the BOE model identifies

bottlenecks for the TS reduce stage, which is network-bound for the shuffle and disk-

bound for HDFS write (with 1 replica). For states 3 and 4, we skip detailed evaluation

since it is covered by single job models in Section 7.2.1.
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(c) Estimation Accuracy for Stage Break-downs using Algorithm 2
Fig. 10 Evaluation of the state-based approach for Hybrid Query and Computing DAGs

For WC and TS3R run in parallel, the average accuracy is 99.9% and 96.3% for

states 1 and 2, which consists of parallel jobs. For state 1, the behavior is the same as

the previous DAG (WC+TS). For state 2, the reduce stage of TS is network-bounded

due to HDFS write (with 3 replicas). For the shuffle stage, the execution time for TS

is reduced by a factor of 2 in comparison with the single job case. This is because the

number of parallel tasks to use the bottleneck resource (i.e., network) is reduced by

a factor of 2 for the state 2.

Consequently, the BOE model can identify the bottleneck resource and its

allocation for each job, and hence to estimate the execution time for each task.

7.3 State-based Approach

We evaluate the effectiveness of the state-based estimation framework as well as

the skewness related improvements for DAG workflow cost estimation. To eliminate

the error of task-level models, we use task execution time profiles with the identi-

cal degree of parallelism for each stage. For the TPC-H workload, we also count the

compilation time for each query in estimation. To evaluate the effectiveness of the

skewness related improvements, we compare the estimation result by using four pro-

filing approaches including mean (Algorithm 1), median (Algorithm 1) and normal

distributions (Algorithm 2). We run both micro-benchmarks (WC or TS) and query/-

analytics DAGs (TPC-H or HiBench) in parallel to cover real workloads. Besides the

end-to-end execution time for DAG workflows, we present the average accuracy of

the estimated execution time for each stage (denoted as Stage Break-downs). This

metric provides a break-down for the estimation and evaluates the accuracy of the

state-based approach for each stage.
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Overall DAG Results: First, we present the accuracy for DAG execution time. The

average accuracy of 51 workflows is 93.50%, 95.00%, 96.38% for median, mean and

normal distribution respectively.

The last 7 columns of in Figure 10 (a) present the result for the state-based

approach using analytics DAG workflows. Overall, the minimal accuracy of end-

to-end execution time estimation is more than 81.13% for all the workflows by

Algorithm 1. Furthermore, when taking the skewness into account, the minimal accu-

racy of DAG estimation for all the workloads is improved to 91.2% for all the

workloads by using Algorithm 2. Take TS-PageRank(PR) for example, the accu-

racy of estimation is improved by 20.1% when the skewness related optimization is

enabled. This is because PageRank has significant skewness. Furthermore, all of the

stage break-downs are correctly identified by using the state-based approach.

The rest of the columns in Figure 10 (a) present the overall DAG estimation

accuracy for hybrid HiBench and TPC-H workload. Overall, the estimation accu-

racy on average of 22 WC+TPC-H workflows is 94.62%, 96.58%, 97.42% for the

median, mean and normal distribution, respectively. Figure 10 (a) presents the overall

DAG estimation accuracy for hybrid TS+TPC-H workloads. The prediction accuracy

on average of these 22 workflows is 92.94%, 93.67%, and 96.21% for the median,

mean and normal distribution, respectively. The result indicates that our state-based

approach can handle various workloads from short to long. Some of the queries have

many jobs. For example, Q21 has 9 MapReduce jobs, which leads to 18 stages when

it is run in parallel with the WC job. Algorithm 2 achieves 99.83% of accuracy in

DAG estimation for WC+Q21.

For the impact of skewness, there is a significant improvement for some DAG

workflows like TS+Q7, and almost no improvement for other DAG workflows

like TS+Q17. This is because of the different degrees of skewness (e.g., standard

deviation) for statistics in profiles.

Stage Break-down Results: Next, we break down to the execution of each stage of

DAGs. Figure 10 (b) and Figure 10 (c) show the statistic of accuracy which is broken

down to each stage, for Algorithm 1 (using median) and Algorithm 2, respectively.

Boxes depict the 25th, 50th, and 75th percentiles, and whiskers depict min and max.

The average accuracy of the 75th percentiles is 98.18% and 96.6%, for Algorithm 1

and Algorithm 2, respectively. It indicates that the model can also be used to predict

detailed progress for the DAG. Furthermore, the result shows the accuracy is not

sensitive to the number of stages.

We observe that the overall estimation of DAG workflows is slightly better than

the break-down of cost estimation for each stage. We find that there are two sources

for the loss of accuracy: (1) task scheduling order (e.g., WC uses all the slot when

the Q3 query is in compilation at the beginning of WC+Q3 DAG) and (2) estimated

bound of each stage. The impact of scheduling on the estimation accuracy is reduced

as more rounds of tasks are executed. The accuracy of the late stages is better than that

of the early stages. Thus we observe that the overall estimation for DAG workflows

is better than break-down for stages.

Execution time: Finally, we evaluate the execution time of the state-based approach

for each DAG workflow used in the above evaluation. The result indicates that the
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overhead for computing the cost models is less than 1 second for all the DAG work-

flows. This means that the cost model is suitable to be used in runtime optimizations

such as query re-writing and self-tuning for DAG workflows.

8 Related Work

MapReduce Cost Models: The cost models for MapReduce are studied since the

bottleneck for data parallel computing framework are different compared to tradi-

tional database systems. The cost models for single MapReduce jobs are used to tune

MapReduce configurations [9, 12, 29]. These works proposed the general cost-based

estimation framework for MapReduce. The authors use queuing theory to predict key

performance indicators (e.g., task waiting time and blocking probability) of MapRe-

duce jobs in [30]. However, these cost models are for single MapReduce jobs and

do not consider the resource allocation variance with respect to the degree of paral-

lelism. Thus these cost models have the limitation in terms of resource estimation for

parallel MapReduce jobs, which is the main focus of this paper. An analytical cost

model is used as the fundamental building block to optimize resource configuration

for SystemML programs [31]. In contrast to our work, this cost model is specifically

for SystemML resource configuration and does not consider the general problem

for resource contention among MapReduce tasks. Ernest [32] is a performance pre-

diction model that collects as few training points as required by using a statistical

technique (i.e., optimal experiment design). Like Starfish and MRTuner, Ernest also

focuses on single jobs rather than DAGs with parallel jobs. The machine learning

based prediction model is proposed in [33] to estimate job execution time for Spark.

However, the identified features do not consider the impact of parallelism on system

bottleneck. Thus the model does not fit for the multiple job scenario.

The preliminary version of the BOE model was proposed in our previous work-

shop paper [34]. This new paper includes more than 30% new materials, including

that (1) we addressed the skewness issue in the workflow level model; (2) we added

the analysis of expected gain of the model, and (3) we added the evaluation of the

skewness impact.

Query Optimizers: Prior to MapReduce, cost models are widely used in query opti-

mizers in relational database systems. The cost estimation for relational queries is

widely studied for a parallel database [35]. There do exist interesting works on the

resource usage model for parallel queries such as join [23], which take the impact

of resource contention into account for the cost estimation. However, the analyti-

cal model for MapReduce is different due to different task execution frameworks.

Resource Bricolage is proposed for parallel query optimization in a heterogeneous

cluster [36]. This approach quantifies the performance differences among machines

with various resources by profiling workloads. Our problem differs from theirs as we

aim to model the resource usage for parallel MapReduce tasks rather than parallel

queries.

DAG Workflow: DAG workflow is a natural representation for high level query in

data parallel frameworks. Stubby is a transformation-based Optimizer for MapRe-

duce Workflows [3]. It uses the What-if Engine building block of Starfish for the cost
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estimation [9]. However, the resource statistics are assumed to be the same between

the profiling and estimation stages, and hence it does not address the preemptable

resource issue for parallel jobs. ParaTimer is a Progress Indicator for MapReduce

DAGs [14], which estimates the critical path for parallel jobs of a DAG workflow.

However, ParaTimer does not consider resource contention among parallel tasks. The

authors experimentally demonstrate the impact of the degree of parallelism on the

execution time of DAGs in [10]. However, this work focuses on DAG-level, and it

does not address the task-level cost models. The work in [11] estimates the execu-

tion time of DAGs in tuple-level for distributed streams. However, this work uses

regression algorithms for the prediction, and the accuracy relies on the quality of the

sample space.

Distributed and Parallel Computing: There are previous works to estimate the exe-

cution time for distributed and parallel computing frameworks. Bandwidth-latency

models such as LogP model [37] and the BSP model [38] models are proposed to

estimate latency and throughput for parallel computing systems. These models are

not suitable for the MapReduce framework because MapReduce does not rely on a

messaging-based asynchronous communication system. The work [39] measures the

job completion time for a best-case scenario without blocking on network or disk

use, by using finer-grained instrumentation to Spark compute thread. They find that

the upper bound on the improvement from optimizing disk and network performance

is limited. This work is cross-validation of the idea that tasks are pipelined executed

using multiple resources, and it focuses on execution analysis rather than the cost

models to estimate the task execution time based on data, system and job profiles.

Data Skew: The skewness is a well known issue in MapReduce framework [16, 25].

In contrast to our work for cost estimation under skew tasks, these works address

the skewness issue by extending the MapReduce framework to repartition skew data

for load balancing. The performance model of data skew effects is studied for paral-

lel database systems [40]. However, these models are for relational queries such as

parallel joins, hence they can not be used for MapReduce directly.

9 Conclusion

In this paper, we proposed the BOE model to predict the allocation of preemptable

system resources for task-level execution time estimation. The state-based approach

was proposed for workflow-level execution plan estimation. We refined the granu-

larity for cost models to tackle the challenge of skewness to further improve the

estimation accuracy. We performed comprehensive experiments to show that our new

cost model outperforms existing models by a factor of five for task execution time

estimation. For the skew-aware state-based approach to estimate the execution time

of a DAG workflow, the average prediction error is under 3%. As the follow-up

research, we will apply our cost models in automatic tuning for DAG workflows.
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