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Abstract— In this paper we present procedures for 

processing raw data collected with moving vehicles and for 

fusing this data with digital map data. The goal is to have a 

better understanding of the city traffic via quantitative 

research on collected taxi data in relation to digital map 

properties. Map attributes are provided by Digiroad, which is 

a database of Finnish road and street network. We define 

methods to clean up data that has been collected with taxis 

equipped with on-board vehicle tracking devices from real 

customer service situations. Consequently, the driving 

behavior may be inconsistent and sensor data can be limited 

and contain errors. We explain procedures of preparing data; 

filtering the most obvious errors from the data set, map-

matching moving object data, and fetching map attributes 

along the routes of the moving vehicles. The fetched properties, 

as well as other measurement data, are used for deriving 

statistics and illustrations to study driving behavior in 

downtown Oulu, Finland. 

Keywords— digital maps, GPS data, regression analysis, taxi 

trajectories, data fusion 

I. INTRODUCTION  

Traffic data collected by taxis can be utilized by various 

services, like route planning, traffic flow analysis and urban 

computing, as well as services promoting ecological driving 

habits. Zheng et al. [1] mine taxi trajectories for supporting 

urban planning, for sensing people’s mobility in a city with 

taxis and detecting salient traffic problems. Zhu et al. [2] 

explore urban mobility by analyzing spatio-temporal 

patterns from taxi trajectories for better understanding of 

urban structures and movements. Zhou et al. [3] study 

functionally critical network locations from people’s 

moving trajectories using taxi trajectories. Li et al. [4] use 

taxi trajectories and information around interesting 

intersections are segmented out to explain patterns behind 

traffic flows. Taxis serve a lot of customers, and do not 

follow predictable routes, opposite to public transportation. 

Moreover, private vehicles often follow similar routes due 

to daily routines. Consequently, taxi data offer rich 

information for multiple purposes. 

In this study, we utilize traffic data collected by taxis to 

better understand traffic in urban areas, constructed and 

equipped with different landmarks, like crossings, traffic 

lights and bus stops. All applications using taxi data require 

data preparation as the initial step. Moreover, all services 

rely on the quality of the collected data. Low-quality data 

can easily lead to low-quality analysis and consequently 

produce flaws in services and applications. Furthermore, 

any explanatory analysis benefits from cleansing.  

Specific problems related to the nature of the collected 

data need to be tackled when vehicle data is analyzed. 

Therefore, we also explain data gathering and preparation 

processes required to analyze traffic related data of real taxi 

trips. The methodology is developed for taxi data, but is 

targeted to generic features, like traffic speed. We are 

interested on city traffic’s dependencies on the underlying 

road network and its’ features (crossings, traffic lights, etc.). 

Here we take advantage of the Finnish national digital map 

database; we process this data to make it more suitable to 

our purposes and extract attribute data from it.  

Overall, the contribution of this article is follows: The 

preprocessing step serves an important role before the actual 

analysis, as the range of actions performed at the 

preprocessing step filter out errors, as well as other This research work has been financially supported by Academy of Finland UrBOT 

project (323630), by Academy of Finland 6Genesis Flagship (318927), NSFC 

(Natural Science Foundation of China) projects (71232006, 61233001, 61174172), 

and Chinese Dongguan’s Innovation Talents Project (Gang Xiong)  



properties otherwise effecting the analysis. We define an 

area of interest in an urban area; define important exit-entry 

point pairs in the selected area; preprocess the data, and 

analyze relations between gathered data and map features. 

Lastly, we apply mixed models to identify associations 

between map features and driving speed.  

This study will contribute to our future work, which is 

part of a large effort on instrumenting City of Oulu in 

Finland, collecting rich data sets, and developing novel 

solutions for recognizing interesting phenomena from the 

collected data (Fig. 1). 

The paper is organized as follows: Section II gives an 

overview of the related work. Section III describes the 

collected data, Section IV describes the overview for the 

study; initial data source and the map database used in the 

experiments as well as processes for cleaning the data. In 

Section V, we explain the related analyzing approach. In 

Section VI, we illustrate results mined from the example 

data. Finally, in Section VII, we conclude the article. 

II. RELATED WORK 

In many of the related studies, the aim is to make the taxi 

service more fluent and efficient. Li et al. [5] evaluate taxi 

traces to discover hotspots based on taxi pick-up and drop-

off events, to help taxi drivers to find the next passenger. 

Yuang et al. [6] use taxi data analysis to suggest routes that 

are the fastest in practice. Gilman et al. [7] fuse real driving 

behavior data from taxicabs, weather, digital map, and 

traffic situation information to gain understanding of how 

the routes are selected and what are the effects in terms of 

fuel-efficiency.  

 
Fig. 1.  Infrastructure of studies in City of Oulu region 

Kong et al. [8] propose a service recommendation model; 

Time-Location-Relationship to improve taxi drivers’ profits 

by integrating, processing and analyzing taxi trajectory data. 

Tang et al. [9] investigate spatial heterogeneity between 

travel demand and various variables using taxi GPS 

trajectory data. Phiboonbanakit and Horanont [10] 

concentrate on improving taxi driver profits with 

concentration on traffic congestion problem. Wang et al. 

[13] introduce an application to visualize hotspots using taxi 

trajectory data and information about passenger pick-up and 

drop-off points.  

Taxi data is considered to be reasonable to represent 

intra-city spatial interactions and to reveal city structure. Liu 

et al. [11] use taxi data to gain better awareness of the city 

traffic; hotspots are detected on statistics derived from the 

gathered data. Liu et al. [12] explore travel patterns and city 

structure using taxi GPS trajectory data. Furthermore, Kong 

et al. [14] use GPS equipped taxis for traffic state estimation 

for urban road networks. In overall, the existing research is 

classified by Castro et al. [15] to three categories; social 

dynamics, traffic dynamics, and operational dynamics. 

 Alvarez et al. [16] propose a method to analyze 

trajectory data using geographical information. Moreover, 

Jiang et al. [17] study the type, characteristics and reasons 

for errors in traffic data collected by sensors, and a linear 

interpolation method is proposed to restore the lost data. Li 

et al. [18] analyze specifically the frequency of driving 

different routes. Zhang et al. [21] study a method to clean 

and repair probe vehicle data. Phiboonbanakit and Horanont 

[10] apply statistical rules for cleaning existing errors and 

outliers. Map-matching is one specific area of interest. Lou 

et al. [19] concentrate on improving map-matching of low-

sampling-rate GPS data. In overall, as shown by Wang et al. 

[20], large-scale GPS probe data present challenges and 

opportunities for numerous applications.  

Minett et al. [24] use Origin-Destination point analysis, 

the routes are preselected, with appropriate properties, like 

similar length and amount of data available. Our work 

differs from the related work in that taxi drivers freely 

selected the routes between origin and destination, based on 

their own silent knowledge and intuition in particular 

driving situations. Consequently, problem framework is 

realistic, providing valuable information on the actual 

process required to collect data from the real world, and to 

pre-process it to find useful knowledge from the data.  

III. DATA  

In this study, we work with taxi traces data, as well as 

with geospatial information from digital map. 

Taxis, with on-board Driveco devices   

(http://eco.driveco.fi/www/ ), have been used to collect data. 

The information from the measurement device, GPS 

locations and car’s OBDII diagnostics are retrieved via  

HTTP interface from a server, check details from [7],[31]. 

The gathered data consist of trips, where each individual trip 

is defined as a run between two consecutive events of 

turning off the engine. A trip is identified with trip id and 

other measurement data including start and end time of the 

trip, start and end route point, total time (s), total distance 

http://eco.driveco.fi/www/


(m), total fuel (ml). A trip data set includes a collection of 

route points, each containing the properties measured at a 

specified time. There is no specific sampling rate for the 

route points, but a route point is generated when some 

significant change in the driving behavior, such as a turn, is 

registered. The vector of properties related to route points 

stores point id, trip id, latitude, longitude and start time, to 

give examples. The data in this study contains the 

information gathered with seven taxis driving in Oulu area 

during 1.10.2012-31.9.2013, as a basis for the study almost 

30000 taxi trips are considered. 

We fetch the road geometry and attribute data from the 

Digiroad database of Finnish road network maintained by 

National Land Survey of Finland, the Finnish Transport 

Agency and individual municipalities [22]. The road 

network consists of traffic elements, which are the smallest 

units of centre line geometry of the road. These traffic 

elements have unique identifiers and characteristic 

attributes, such as coordinates, functional type, length, and 

digitization direction. Segmented line-like attribute data 

refer to the data objects that are described as line segments. 

Road address and speed restrictions are examples of 

segmented line-like attribute data in Digiroad. In overall, the 

map database contains rich information at three levels; the 

geometry of the roads, the objects of the transportation 

system, like bus stops and traffic lights, and the properties of 

the roads, updated several times a year [23]. 

IV. FUSING ROAD NETWORK AND DRIVING DATA 

A. Map preparation 

In the road network graph roads represent graph edges and 

road intersections represent vertices, formulated with 

G={V,E}, where V refers to intersections and E edges 

between intersection. Accordingly, we reconstruct the road 

network graph to have one traffic element within each edge. 

First, we construct a table to identify the type of the 

endpoints of the traffic elements either as junctions (when at 

least three traffic elements have the same endpoint) or 

intermediate points (only two traffic elements have the same 

endpoint). In Digiroad map, the edges are a collection of 

traffic elements touching each other, and accordingly an 

edge may contain more than one traffic element. After this 

procedure, we can identify vertices (junctions) of the road 

network graph, as well as edges (sequences of traffic 

elements between two junctions). 

A clip of this data is presented in Table 1. The table is 

enriched with a geometry line constructed from the 

contributing traffic elements, digitization information 

fetched from the map database, traffic flow direction and 

additional field information for map matching purposes. The 

final road network graph is constructed from this table, 

where edges are single elements created from an array of 

smaller traffic elements (elements column in Table 1) and 

vertices presented with edge intersections. 

B. Data cleaning 

Taxi data is retrieved from real sensors and can contain 

errors, hence data pre-processing has to be conducted. A trip  
 

TABLE 1. EXAMPLE OF JUNCTION PAIRS (EPSG:4326 COORDINATE SYSTEM) 

Junction1  

geometry(Point,4326) 

elements 

integer[] 

Junction 2 

geometry(Point,4326) 

POINT(25.5244, 65.0252) {121499} POINT(25.524, 65.025) 

POINT(25.4650, 65.0353) {138854,138855, 
122734} 

POINT(25.464, 65.035) 

POINT(25.4558, 65.0434) {121427,121426} POINT(25.460, 65.043) 

 

consists of route points where timestamp Tn-1 <Tn if no 

errors happen. However, due to occasional latency variation, 

the data obtained from the measurement device (id, 

timestamp) may arrive at the server in an incorrect order. To 

tackle this challenge, we sort the route points into two 

sequences: by their id and by their timestamp. Then, the 

overall distance of the trip is calculated for both sequences. 

The one with the smaller length is judged as the right 

sequence. Finally, all the corresponding properties are 

aligned with respect to the correct sequence to guarantee 

monotonic increase. 

C. Data segmentation 

Taxi drivers demonstrate quite different behavior in 

comparison with ordinary drivers, and accordingly we 

suggest methods to handle especially taxi data. One of the 

biggest differences is that they can drive almost the whole 

day without turning off the car engine. We are interested in 

individual trips, like taking customers to their destinations. 

We divide the overall trip into trip segments with an 

algorithm that applies time-based segmentation (Table 2). 

    The rationale behind these rules is as follows: The overall 

region is small and having long stops on traffic lights is a 

rare situation. The traffic lights are programmed so that in 

an error situation one has to wait at most 200 seconds in the 

traffic light. After this, the red light is switched to a blinking 

yellow. Otherwise, in an unfavorable situation, the waiting 

time is 50-60 seconds. Driving a long distance with a very 

low speed is unlikely. Finally, all trip segments containing 

less than five route points and longer than 30 km are 

removed from further analysis. Having five measurements 

for the whole run may give poor information to analysis. 

Trips longer than 30 km are unlikely in the local region.  

D. Origin-destination segment selection 

We follow the Origin-Destination based approach similar to 

that proposed by Minett et al. [24]. The difference is that we 

work with real taxi data where we don’t have any control 

over the route selection. For this analysis, all the trips 

obtained and processed as indicated in previous sections are 

used. We selected three locations (i.e. road segments) which 

we name by the region names with T, S and L. All of these 

are located at the key enter and exit points of downtown 

Oulu. 
TABLE 2. SEGMENTATION RULES 

1 If the distance between route points does not change within three 

minutes then it is a stop  
2 If the distance change between route points is less than three km 

within the time more than seven minutes then it is a stop 

3 If from one route point to another one the car has moved with 
the speed less than 0.002 m/s, then we consider this as a stop  

4 If the car moved less than 3km in more than 15 minutes and the  
speed was more than 0.002 m/s we consider this as a stop  

5 If after the first round, there are still trips longer than 40km, we  

try to split these with the rule 1, having 1.5 minutes’ interval 



The red arrows in Fig 2. indicate the selected traffic flow 

directions of interest. We are interested in trips that contain 

route points near the origin and destination roads. In 

addition, the trips have to cross these roads in particular 

order in time (first origin, then destination). We chose to 

utilize a “thick geometry” approach (see Fig. 2) where the 

Origin and Destination roads are artificially made thicker to 

catch the routes significantly deviating from the original 

roads. 

     First, only the routes, which intersect the “thick roads” 

on an angle within a predefined range, are considered 

further. Table 3, second column, lists the number of trip 

segments for each taxi that fulfilled this condition. S-T 

transitions is expressed in Table 3, column 4. We ensure that 

the transitions happen within the central area. Hence, we 

filter out all the transitions, which occur outside (Table 3, 

column 5). We clean the trip segments to make sure that 

only the routes, which intersect two or more different roads, 

are considered (Table 3, column 3). A route between an 

Origin-Destination pair we call as a transition and the 

number of T-L, L-T, T-S, Finally, these T-L, L-T, T-S, S-T 

transitions within central area are map-matched and post-

filtered to make sure that start and end route points of the 

transitions are close to the Origin-Destination roads of Fig. 2  

(Table 3, column 6) 

 

 
Fig. 2. Selected origin-destination pairs and thick geometry visualization. 

 
TABLE 3. MAP MATCHING THE TRIP SEGMENTS 

Car Trip 

segments 

(total) 

Filtered  

and  

cleaned  

Transitions 

total  

transitions 

within  

city centre 

Post-filtered  

T-L,L-T,T-S,S-T 

transitions 

1 2409 636 89 79 65 

2 3068 1282 172 156 128 

3 1790 447 44 32 19 

4 2486 622 102 93 73 

5 2429 616 88 75 65 

6 1815 625 113 108 96 

7 4080 1109 162 131 98 

E. Map-matching 

Map matching is a way to align collected GPS locations on 

a digital map. There exists a big difference on the matching 

algorithm performance depending on the GPS accuracy and 

the sampling rate. In our case, the sampling rate is not even, 

but location information is only stored when significant 

changes occur. For map-matching, we use incremental map-

matching algorithm [25] enhanced with information 

retrieved from the digital map (like road directions). 

Furthermore the Dijkstra Shortest Path algorithm from 

pgRouting is utilized to fill the gaps, when data points are 

too far from each other, check details from [7],[31]. Only 

cleared and filtered transitions going through the city centre 

are map-matched (Column 6 of Table 3). 

F. Fetching attribute data from digital map 

The digital map attribute data may explain the driving 

behavior. Accordingly, we use a trip identifier (trip id) 

together with the start time of the trip as a unique identifier 

of a transition. The road network traffic elements of the 

transitions are identified by map-matching procedure, hence 

respective digital map attribute data for transitions can be 

retrieved.  We extract the information about the number of 

junctions, number of pedestrian crossings and number of 

traffic lights for transitions within the region of interest. 

G. Tools 

Driving data from taxi cars is retrieved with a program 

written in Java that pools information from the dedicated 

service. Retrieved data are stored in PostgreSQL 9.1 DBMS 

having PostGIS extension that allows manipulation with 

geospatial information. The road network graph is stored in 

the same database. SQL and PL/pgSQL languages of 

PostgreSQL DBMS are used to pre-process and manipulate 

the data. To visualize results, Quantum GIS is used. 

V. DATA ANALYSIS TECHNIQUES AND METHODS 

We use 200 m x200 m grid with even sized grid dimensions, 

as related to the nature of selected map features, it would be 

expensive and time-consuming to create a more complex 

spatial element structure. Furthermore, the dimension has 

been selected to have enough measure points on the 

individual cells, as well as to be meaningful to capture 

effects of multiple map features.  

To identify associations between map features and 

driving speed, we apply mixed models. Mixed models 

extend linear regression, a method commonly used to seek 

for a model to describe relationship between response 

variable and a predictor value. The formulae below [26] 

characterizes the linear relationship 

 IMNXbY 2,0~,                                         (1) 

,where Y is the response variable and X the model matrix 

consisting of the intercept and the values of the explanatory 

variables. Here, b is here the vector of regression 

coefficients to be estimated. In our case, each Yi is the point 

speed and in addition to the intercept, X may include the 

respective 200 m x200 m cell identification factor as well 

the map features such as the number of traffic lights, bus 

stops, pedestrian crossings or crossings for the cell. 



Mixed modelling sets further Gaussian priors on some or all 

the coefficients, treating them not as fixed but random. In 

effect, it thus regularizes the model, borrowing information 

from the cells with a lot of data to those with little data [26]. 

The model equation thus reads 

 IMNIMNuZuXbY u

22 ,0~),,0(~,            (2) 

,with Z denoting the random effect values and u the vector 

of random effect coefficients. 

VI. RESULTS AND INDICATIONS 

The retrieved and processed data allow us to inspect the 

driving behavior in downtown Oulu. Intuitively we expect 

that there is a relation between map attributes and driving 

behavior, like the location of the traffic lights and average 

speed.  

A.  Features analysis 

First, we studied some features expressing the cleaned and 

preprocessed data. In overall, the data contains 30469 

measured point speeds. The overall speed figures for taxi 1 

(4186 measured speed points) are shown in Fig. 3, with 

colours illustrating speed values. Furthermore in Fig. 4 is 

illustrated the effect of driving direction to the results. The 

speed data results for taxi 1 when data is categorized 

according to the direction (T-S, S-T, T-L, L-T) of the route. 

Especially in northern countries, there exist clearly separate 

seasons. Accordingly, we studied the seasonal variations in 

the collected data.  Similarly to directional differences the 

seasonal variances in speed are illustrated in Fig. 5 for taxi 

1. We calculated statistics on the routes by fetching attribute 

data from the prepared Digiroad digital map along the 

cleaned and preprocessed driven routes (See Table 3). We 

studied low speed, as it is one of significant factors affecting 

vehicles’ fuel consumption and gas emissions [22]. 

The statistics on the route distance, normal speed (speed 

at the speed limit), low speed (less than 10km/h) and fuel 

consumption are derived from the pre-processed trip data. 

The number of bus stops along routes is not calculated 

because the current map does not give information about the 

direction of a particular bus stop. The results of our 

inspections are presented in Table 4.  

It can be derived that routes S-T and T-S contain a 

greater proportion of low speed than T-L and L-T. 

Proportion of normal speed is contrariwise. Low speed also 

correlates to fuel consumption, supporting findings in 

literature [28]. In Table 4, the mean value of traffic lights 

and junctions is almost the same for each Origin-Destination 

pair. Accordingly, the count of traffic lights, does not itself 

explain the difference in low speed for T-L, L-T versus T-S, 

S-T directions.  

To study the issue further, we calculated the average 

speeds within cells of size 200 m x 200 m to find out areas 

where the average speed is considerably lower than 

elsewhere and whether this reflects the appearance of four 

selected features: traffic lights, bus stops, pedestrian 

crossings or crossings in overall. 

 
Fig. 3. Cleaned and preprocessed speed data for taxi1 
 

 
Fig. 4. Taxi 1 data categorized according to the direction. 
 

 
Fig. 5. Taxi 1 data categorized according to the season. 

 



The speed data is illustrated with statistics of the number of 

the four features in the map in Fig. 6 for L-T direction as an 

example. In the study area the overall number of traffic 

lights, bus stops, pedestrian crossings, and non-pedestrian 

crossings is {67,48,293,271} respectively. The illustration 

shows that for example traffic lights affect the speed values, 

but simultaneously it can be seen that the relations are not 

self-evident. This is furthermore inspected in Table 5. The 

results show that traffic lights decrease the average speed, 

similarly to bus stops. In cells with no traffic lights or bus 

stops the variance of values is much higher. In the 

evaluation, there was no particular differences for L-T, T-L, 

S-T, T-S directions. In winter season the average decrease 

of speed was -0.07 km/h, in spring 0.46 km/h increase, in 

summer 0.70 km/h increase and in autumn 1.38 km/h 

increase when measured against the averages over the whole 

year.  
 

TABLE 4. SUMMARY STATISTICS OF THE SELECTED FEATURES.  

 

 
Fig. 6. Average speed and map properties for L-T direction. 

 

TABLE 5. SUMMARY STATISTICS OF THE EFFECT OF MAP TRAFFIC LIGHTS 

AND BUS STOPS ON AVERAGE SPEED.  

 Number of 

traffic lights 

=0 

Number of 

traffic lights 

and bus stops 

=0 

Number of traffic 

lights and bus 

stops >0 

Number of 

traffic 

lights>0 

min 11.9600 11.96 (B*) 9.26   9.26 (C*) 

max 53.2700 53.27 32.09 (A*) 32.09 

mean 25.5273 29.2486 18.78 18.71 

var 231.4873 303.49 49.8995 47.898 

*Map attribute statistics for areas illustrated in Fig. 6  with A,B  and C; the 

number of traffic lights, bus stops, pedestrian crossings, crossings is 

{4,2,5,5} for A, {0,0,4,6} for B and {2,0,2,4} for C. 
 

B.  Mixed models analysis 

Moving to mixed models, we take a look at the average 

point speeds for each cell. In the regression analysis we 

have excluded all the cells having no measurement points. 

The model we are considering is now 

 22 ,0~),,0(~,   NNY iCelliCelli ii
         (3) 

,with 
iCell  indicating the random intercept value for each 

cell. As seen in the QQ-plot for cell intercepts in Fig. 7, with 

the exception of only the far edges, the Gaussian 

regularization indeed seems justified. Variances estimated 

by REML, the BLUP predictions for the intercepts for each 

cell appear as strong evidence of the effect of geography on 

the point speeds, with coefficients varying between ca. -15 

and +20 km/h. As seen in Fig. 8, while the variation is large 

for some cells, for most cells the result is solid. 

Plotting the results on map in Fig. 9, we can clearly see 

how the proximity of dead end roads areas reduces speeds 

on cells. However, the most interesting effects appear at the 

very center of the map (and the Oulu city), with speed 

reductions up to -8km/h. These are likely the result of both 

pedestrian movements and static map features such as traffic 

lights.  

Referring to Table 5, for the case when the number of 

traffic lights is greater than zero, the average speed is in 

general lower in the corresponding cells. Accordingly, we 

expect that when a number of traffic lights grows, it 

evidently leads to higher fuel consumption on the driven 

route. The experiments showed that in some cases this holds 

true, as illustrated in Fig. 10. When the number of traffic 

lights is greater than 9 (an experimentally chosen boundary), 

in general there is an increase of low speed, also 

independent of the weather conditions. Some traffic lights 

are in average passed without having to stop, which is also 

reflected on the average values (Fig. 3).  

From Fig. 6 it can be seen that compared to S-T and T-S 

routes, the routes L-T and T-L go through areas where more 

cells contain less features{10,14,110,82} (Fig. 6. below line 

D) This leads to proportion of normal speed to grow. Also, 

the hotspots, crowded areas with a lot of pedestrians 

moving, have an effect to the results. In Kostakos et al. [29], 

pedestrian movements were studied by calculating number 

of clients connected to a particular WiFi access points in 

City Oulu area. 

 Route Min. 1st Q. Med. Mean 3rd Q. Max. 

R
o
u

te
 

ti
m

e 

(h
) 

T-S 0.058 0.089 0.120 0.153 0.188 0.458 

S-T 0.047 0.106 0.124 0.135 0.152 0.347 

T-L 0.041 0.071 0.083 0.107 0.127 0.393 

L-T 0.041 0.078 0.100 0.114 0.136 0.388 

R
o
u

te
 

d
is

t.
 

(k
m

) 

T-S 1.457 1.742 1.968 2.377 2.448 7.079 

S-T 1.664 1.987 2.148 2.319 2.465 5.708 

T-L 1.721 1.932 2.070 2.214 2.267 5.189 

L-T 1.849 2.131 2.266 2.377 2.447 6.089 

L
o
w

 

sp
ee

d
 

%
 

T-S 0.2 24.2 38.3 38.2 51.8 72.6 

S-T 0 23.2 34.0 33.3 42.3 71.0 

T-L 0 7.5 20.9 23.3 37.0 76.6 

L-T 0 5.6 24.2 24.2 38.3 64.8 

N
o
rm . 

sp
ee

d
 

%
 

T-S 0 1.5 3.7 6.4 8.0 32.9 

S-T 0 3.8 6.6 8.8 11.4 40.0 

T-L 0 2.4 7.4 14.7 19.8 91.1 

L-T 0 4.2 8.5 14.5 18.6 98.6 

T
ra

ff
i

c 

li
g
h

ts
 T-S 2 5 7 8 9 22 

S-T 1 3 5 5 7 13 

T-L 2 5 7 7 9 18 

L-T 1 4 8 7 9 15 

J
u

n
ct

i

o
n

 

T-S 16 18 21 23 24 52 

S-T 17 20 22 23 24 47 

T-L 15 18 20 22 23 47 

L-T 19 22 23 24 26 43 

P
ed

es

tr
. 

cr
o
ss

i

n
g
s 

T-S 4 6 7 9 10 25 

S-T 4 6 7 8 8 21 

T-L 5 6 7 8 9 18 

L-T 5 6 8 8 10 23 

F
u

el
 

co
n

s.
 

(m
l)

 

T-S 106.3 176.5 216.9 264.9 302.3 823.9 

S-T 107.9 178.9 217.3 239.8 302.2 536.3 

T-L 76.68 1361 177.3 212. 2502 989.2 

L-T 92.3 168.2 210.6 231.2 273.1 766.1 



 
Fig. 7.  qq-cel-1 title: Cell intercept regularization QQ-plot.. 

 
Fig. 8. cel-random-1 title: Cell intercepts with confidence limits. 

 

 
 

Fig. 9. Cell intercept predictions on map 

 

In Fig. 6 the marked area B belongs to the location 

detected in the study as a crowded area, explaining the low 

average speed. Also, number of the pedestrian crossings 

(Table 5) support the observation that the effect of 

pedestrian crossings on low speed proportion is not direct, 

but related to real movements of people, similarly to the 

observation made from the average speed. Our findings 

support the need for data fusion from heterogeneous sources 

for data analysis as well as the need for data pre-processing. 

The analysis would benefit from crowdsourcing.  

VII. CONCLUSIONS 

In this paper we explained how traffic-related data needs to 

be prepared to proceed with map-matching and fetching 

attribute data. The noise present in sparse vehicle data 

measurements has to be removed to gather reliable data, as 

well as to align the data on a digital map. Furthermore, the 

characteristics of taxi data present problems that we 

discussed. We use time-based segmentation to divide long 

trips to sub-trips in order to make data analysis more 

reliable. By studying Origin-Destination pairs we are able to 

restrict the analysis on a specific area of interest. Free flow 

from origin to destination is allowed to get more realistic 

information about the relations between city traffic and 

attribute data.  

The experiments show that relations can be found by 

information fusion, between average speed and map 

attributes. However, the experiments also show that special 

care should be taken in data analysis. External factors, like 

real movements of pedestrians may play important part in 

driving behaviour and consequently relations are not self-

evident.  

The results of mixed modelling show clearly the 

difference between the average point speeds in cells. This 

should provide a good platform for further investigation on 

what constitutes this effect. Also, in data analysis, accuracy 

and correctness of the digital map information is important. 

In our prior work, we have incorporated the preprocessing, 

map preparation, filtering, map-matching and feature 

extraction properties to a Driving coach prototype, 

suggesting post-driving analysis of the trips driven [31]. 

Map context of the driven routes can be very useful in 

analysis of driving patterns and may reveal the reasons 

behind such patterns, consequently providing important 

information for applications like personalised route 

recommendation systems. Instructing driver for fuel-

efficient driving is of great interest [32]. In future work, 

more heterogeneous context information will be provided 

through data suppliers and stored in a common database 

enabling more thorough analysis of the data dependencies. 

 

 
Fig. 10. Low speed % with different temperature classes, number of traffic 
lights<9 (white) or >=9 (grey). Weather information provided by a road 

weather model, supplied by FMI (Kangas et al., [30]). 
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