A Framework for Secure Logging and Analytics in Precision Healthcare Cloud-based

Services

by

Parisa Moghaddam
M.Sc., K.N.Toosi University of Technology, 2013

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Applied Science

in the Department of Electrical and Computer Engineering

(©) Parisa Moghaddam, 2022

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

11

A Framework for Secure Logging and Analytics in Precision Healthcare Cloud-based

Services

by

Parisa Moghaddam
M.Sc., K.N.Toosi University of Technology, 2013

Supervisory Committee

Dr. Issa Traore, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Imen Bourguiba, Departmental Member

(Department of Electrical and Computer Engineering)

111

ABSTRACT

Precision medicine is an emerging approach for disease treatment and prevention that
delivers personalized care to individual patients by considering their genetic make-
ups, medical histories, environments, and lifestyles. Despite the rapid advancement of
precision medicine and its considerable promise, several underlying technological chal-
lenges remain unsolved. One such challenge of great importance is the security and
privacy of precision health-related data, such as genomic data and electronic health
records, which stifle collaboration and hamper the full potential of machine-learning
(ML) algorithms. To preserve data privacy while providing ML solutions, this thesis
explores the feasibility of machine learning with encryption for precision healthcare
datasets. Moreover, to ensure audit logs’ integrity, we introduce a blockchain-based
secure logging architecture for precision healthcare transactions. We consider a sce-
nario that lets us send sensitive healthcare data into the cloud while preserving privacy
by using homomorphic encryption and develop a secure logging framework for this
precision healthcare service using Hyperledger Fabric. We test the architecture by
generating a considerable volume of logs and show that our system is tamper-resistant

and can ensure integrity.

v

Contents

Supervisory Committee ii
Abstract 1ii
Contents v
List of Tables vii
List of Figures viii
Acknowledgements ix
1 Introduction 1
1.1 Context 1
1.2 Research Problem 3
1.3 Approach Outline 3
1.4 Thesis Contribution 4
1.5 Thesis Outline 5

2 Background and Related Works
2.1 Background and Review on Homomorphic Encryption on Cloud Services

2.1.1 Homomorphic Encryption

IS RN

2.1.2 Fully Homomorphic Encryption (FHE)

2.1.3 Basic Operations 9

2.1.4 Encryption Schemas in Homomorphic Encryption . .

2.1.5 Challenges in Using Homomorphic Encryption

2.2 Background and Review on Secure Logging with Blockchain

2.2.1 Blockchain Framework
2.2.2 Permissionless Blockchain vs Permissioned Blockchain
2.2.3 Hyperledger Fabric

2.2.4 Using Blockchain to Provide Auditing Capabilities . .

3 Machine Learning with Encryption (MLE) Framework

3.1 Machine Learning with Encryption
3.2 Proposed System

3.3 Summary

4 Secure Logging Architecture

4.1 General Architecture
4.2 Application to MLE Framework

4.3 SUmMmAary

5 Implementation and Experiments

5.1 MLE Implementation and Model Settings
5.1.1 MSK-IMPACT Dataset
5.1.2 Building the Model
5.1.3 Input Data and Needed Operations
5.1.4 Fully Homomorphic Encryption Libraries
5.1.5° Homomorphic Operations On The Data
5.1.6 Encryption and Parameters Selection
5.1.7 Time Complexity Analysis

5.1.8 Encryption Result

10
12
12
12
13
14
16

19
19
23
25

27
27
31
34

5.2 Secure Logging Framework Implementation

5.2.1 Implementing secure logging with a public channel

5.2.2 Implementing Secure Logging With a Private Channel

5.3 Framework Evaluation

6.1 Contribution

6.2 Future Work

Bibliography

Conclusion and future work

Summary . . .o

vi

42
44
46
46

49
49
50

52

List of Tables

Table 3.1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

The eight possible scenarios of encrypting the three components:
the training dataset tr, the ML model parameters M, and the

testing dataset ts.o

Comparison between SEAL and HEIib fully homomorphic encryp-
tion libraries
Effect of encryption parameters on encryption time. SEAL sup-
ports automatic selection of CoeffModulus. NA indicates noise
~0

41
Time to insert and query logs in our framework with different
number of logso

Disk usage on the data provider

vii

viil

List of Figures

Figure 3.1 A block diagram of a privacy-preserving MLE framework for pre-

cision medicine 23

Figure 4.1 A secure logging architecture in a cloud-based precision health-

care service with private channels 30
Figure 4.2 A secure logging architecture in a cloud-based precision health-

care service with a public channel 31

Figure 4.3 Sequence diagram of the system when inserting an audit log . . 33

Figure 5.1 Interaction between client application and the server side appli-

CatiON 44

1X

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Issa Traoré, from the Faculty of elec-
trical engineering at the University of Victoria for his continuous support. It would
not have been possible to conduct this research without his encouragement and ex-
cellent mentorship. I am greatly appreciative to Dr. Issa Traoré who provided me an

opportunity to be his research student in ISOT lab.

Chapter 1

Introduction

1.1 Context

Precision healthcare refers to the personalization of care to individuals. Despite the
exciting prospects of precision healthcare, it faces several technical and societal hur-
dles related to the identification of health risks, diagnoses, and outcomes by analyzing
data extracted from integrated biomedical databases. Security and privacy concerns
are among these hurdles. While precision health provides tremendous benefits by en-
abling better care, it can lead to personal privacy breaches through genetic disclosure
or genetic discrimination (treating differently because of a gene mutation). To deliver
targeted, personalized care, personal data (e.g., specific human genome sequencing)
must be shared with many professionals in possibly diverse geographic locations or
jurisdictions and sometimes over unreliable channels, such as the internet. This poses
several risks, such as insider threats, social engineering, distributed denial of service
(DDoS), illicit data inferences, cyber bullying/blackmailing, etc. [41]. Unlike pro-
tected health information (PHI), precision health data, such as genomic data, not

only identifies patients but also multiple generations of their families. Hence, such

data can be leveraged to conduct targeted security and privacy attacks against vul-
nerable individuals or groups of related individuals if fallen in the hands of malicious
actors.

Recent advancements in machine learning (ML) have led to significant progress
towards personalized predictions [32]. In principle, a machine-learning model can be
trained on either confidential or public data, allowing more training samples, data
distributions, and therefore more complex, predictive, and generalizing models. These
complex models can theoretically achieve higher predictive performance and find novel
associations within precision healthcare. However, performing analytics on new cases
provided by hospitals or medical centers should be treated with the utmost privacy
preservation level for the reasons introduced above.

Nowadays, Cloud computing has become an ubiquitous technology in personal-
ized predictions. While cloud services can enhance personalized predictions, sharing
private healthcare data with cloud services is a challenging task since this technology
suffers from severe security issues [42]. One way to deal with this is to use homo-
morphic encryption and let cloud services run machine learning models on encrypted
data.

Audit logs are one of the critical assets of any enterprise systems. Audit logs keep
a record of system events and in case of any system misuse or attack, log data can be
processed to identify the responsible person in a forensic investigation. However, an
attacker can modify audit logs in order to avoid detection. This is why maintaining
integrity of audit logs is very important. In a cloud-based service scenario, logs can
be compromised either on the server-side or the client-side. Since healthcare data is
sensitive, we need to make sure that there is a secure logging mechanism for systems

that interact with them.

1.2 Research Problem

The main research question explored in this thesis is about the feasibility of a secure
framework which enables predictive machine learning for precision healthcare while
ensuring both data and log security. Any privacy-preserving precision health analytics
builds on two main components: (1) the security and privacy features required to
protect interactions with the data by stakeholders and (2) ML predictive models for
this data.

In our work, we propose a machine learning with encryption (MLE) framework and
investigate the scope of secure logging in a precision healthcare cloud-based system
using MLE. An important aspect of the machine learning framework is to consider
needed requirements and constraints and facilitate performing analysis on a real pre-
cision healthcare dataset while preserving its privacy. Another key aspect is since
logging is a crucial element in forensic investigations, it is essential to store logs se-
curely and make logs tamper-resistant. Healthcare data are very sensitive data, and
this level of sensitivity can be attractive to hackers or intruders. Audit logs can be
very beneficial in any attacks or any unauthorized access to the system, but most of
the time, the main problem is attackers try to remove their footprints by deleting or
editing the audit logs. In this case, using audit logs could not be very helpful. One
way to prevent such scenarios is to use a mechanism to ensure the integrity and con-
fidentiality of the data while delivering the predictive capability offered by machine

learning.

1.3 Approach Outline

To ensure data security in predictive ML for precision healthcare we use homomorphic

encryption (HE). HE is a special cryptosystem which encrypts data in such a way

that certain operations could be performed on them without possessing the secret
encryption key (i.e., without decryption). The term “homomorphic encryption” de-
scribes a class of encryption algorithms that satisfy the homomorphic property; that
is, certain operations, such as addition, can be carried out on ciphertext directly so
that upon decryption the same answer is obtained as operating on the original mes-
sages. Therefore, HE allows other parties (e.g., the cloud and service providers) to
calculate certain mathematical functions expressed only in terms of these operations
on the encrypted data while preserving the function and format of the encrypted
data.

For secure logging, we can use methods that rely on specialized hardware to achieve
the goal. Hardware-based write-only devices are a cost-intensive solution, especially
when there is a large amount of continuously generated log data [40]. Another secure
logging mechanism is to use a trusted third party (TTP) entity. This approach
makes the system rely on a third party. Most of the third-party auditors do not
generally consider credibility and centralization, and such solutions may not be easily
scalable [33]. Another approach that we explore in our work is to use Blockchain

technologies. This technology can improve auditing by creating immutable logs [18].

1.4 Thesis Contribution

We make two contributions in this thesis. First, we propose a machine learning with
encryption (MLE) framework that facilitates performing analysis on a real precision
healthcare dataset while preserving its privacy. Second, we design a blockchain-based
logging framework for precision healthcare services. In our secure logging framework,
we assume that there are multiple data providers and one cloud-based service provider.

Our proposed mechanism offers a solution to preserve the integrity of logs and provide

access-protected storage based on blockchain. We use Hyperledger Fabric which is a
permissioned blockchain system that makes it easier to control the transactions on
the ledger and is typically faster when we compare it to public blockchains that are
used in most cryptocurrencies [9].

A practical application of our framework is when a health practitioner initiates a
request to find out if a patient can be prone to cancer or not. In this case, the health
practitioner sends patient genomic data in a homomorphically encrypted format and
gets back the machine learning scores from the server. In the client side there is an
application that is deployed in the hospital side and client side users can use it to get
the service from the machine learning service provider. The service provider sends
the result in an encrypted format and the client side application needs to decrypt the
result and make the decision about the possibility of cancer for the patient. Secure
logging framework also makes sure logs that are generated in the transaction have

integrity and are private.

1.5 Thesis Outline

The remaining chapters of this dissertation are structured as follows:

Chapter 2 will present an overview of the literature underlying this research, by
providing background and review on homomorphic encryption on cloud services and
secure logging with blockchain.

Chapter 3 will describe our proposed framework for a precision healthcare system
which provides ML solutions while preserving privacy.

Chapter 4 will present a generic architecture for secure logging and extend the ar-
chitecture by incorporating relevant modules for machine learning encryption frame-

work.

Chapter 5 will present experiments to find parameters for homomorphic encryp-
tion and discuss the implementation of the proposed framework and secure logging
architecture.

Chapter 6 will make concluding by discussing the proposed framework. In addi-

tion, it will suggest improvements for future works.

Chapter 2

Background and Related Works

In this chapter, we review works related to prediction models using homomorphic
encryption and secure logging by blockchain. This chapter is organized as follows.
Section 2.1 will discuss usage of homomorphic encryption in cloud services. Section

2.2 discusses works related to secure logging using blockchain.

2.1 Background and Review on Homomorphic En-

cryption on Cloud Services

2.1.1 Homomorphic Encryption

Encryption is the process of converting data from something intelligible into some-
thing unintelligible. The main purpose of this is to prevent unauthorized personnel
from viewing this data [30]. In the cryptography field, homomorphism is used as
an encryption type. Homomorphic encryption was originally proposed by [43] as a
way to encrypt data such that certain operations can be performed on it without
decrypting it first. Homomorphic Encryption (HE) is a kind of encryption scheme

that allows a third party (e.g., cloud, service provider) to perform certain computable

functions on the encrypted data while preserving the features of the function and the
format of the encrypted data [1]. Like other types of encryption schemes, an HE
scheme has three main functions: Gen (Key Generation), Enc (Encryption), and Dec
(Decryption) [27]. The term homomorphic encryption describes a class of encryption
algorithms which satisfy the homomorphic property: that is certain operations, such
as addition, can be carried out on cipher texts directly so that upon decryption the
same answer is obtained as operating on the original messages [6]. Encryption is a
tool which essentially allows one to seal data in a metaphorical vault, which can only
be opened by somebody holding the secret decryption key. Homomorphic Encryption
(HE) allows other parties to operate on the data without possession of the secret key
[31] A data mart that hosts the homomorphically encrypted data would perform the
analyses and control the number of performed tests, with no knowledge about the

raw data except its structure [38].

2.1.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) was introduced for the first time in 2009 by
Gentry [21]. Gentry in his Ph.D. thesis which was a seminal work in this scope
discussed a new scheme of homomorphic encryption which enables performing an
unlimited number of additions and multiplications. Before Gentry’s work, existing
schemes allowed only one algebraic operation on ciphertext; this limitation to only one
single operation was very restrictive. Gentry’s original scheme was highly inefficient
[19]. Following Gentry’s work, many FHE models have been introduced to make
FHE more practical. One of these works is known as levelled FHE. Levelled FHE
allows adding and multiplying encrypted input, but requires knowing in advance the
complexity of the arithmetic circuit that is to be applied to the input. Recently,

new implementations, data encoding techniques, and applications which help address

some of the challenges have been introduced but much still remains to be done [14].

2.1.3 Basic Operations

As mentioned above, a key property of homomorphic encryption is the ability to
perform certain basic operations such as addition and multiplication. Below is an
example presented by [44] to introduce the high-level concept of homomorphic en-

cryption:
1. Let m be the plaintext message
2. Let a shared public key be a random odd integer p
3. Choose a random large q, small r, (|r] < p =+ 2)
4. Ciphertext ¢ = pq + 2r +m (Ciphertext c is close to multiple of p)
5. Perform homomorphic addition/multiplication as required
6. Decrypt: m = (¢ mod p) mod 2

homomorphic addition can be illustrated as follows:

cl=qlxp+2xrl+ml (2.1)
2=q2xp+2%1r2+m2 (2.2)
cl+e2=(ql+q2)xp+2x(rl+r2)+ (ml+m2) (2.3)

and Homomorphic multiplication as follows:

cl=qlxp+2*xrl+ml (2.4)

10

2=q2xp+2%r2+m2 (2.5)
clxc2 = ((c1%q2)+qlxc2xqlxq2)*p+2(2%r1*xr2+rlsxm2+ml*r2)+mlsm2 (2.6)

The most notable shortcoming of HE is that operations in practical schemes are
limited to addition and multiplication [27]. Based on this shortcoming not all of the

functions can be “HE-friendly”. Formally, HE-friendly functions can be expressed as

Declks, Enc(ky,my) o Enc(k,, ma)] = my oma, (2.7)

where ks, k, are the secret and public keys, respectively (since they are not equal,
this is called “asymmetric encryption”), my, my € M are two values on which we
wish to perform encrypted operations on, M is the message space of the HE scheme
(i.e., the set of all possible values acceptable by the scheme), and ¢, o are operations

in encrypted and plain-text spaces, respectively.

2.1.4 Encryption Schemas in Homomorphic Encryption

An encryption scheme is said to be homomorphic if certain mathematical operations
can be applied directly to the cipher text in such a way that decrypting the result
renders the same answer as applying the function to the original unencrypted data.
The remarkable properties of homomorphic encryption schemes are not without limi-
tations, which typically include slow evaluation and the fact that the set of functions
which can be computed in cipher text space is very restricted [6]. The computational
complexity of the homomorphic encryption scheme depends primarily on the number
of levels of multiplications to be carried out on the encrypted data [23]. In fact, all
these different HE attempts can neatly be categorized under three types of schemes

with respect to the number of allowed operations on the encrypted data as follows

11

[1]:

e Partially Homomorphic Encryption (PHE) allows only one type of operation

with an unlimited number of times (i.e., no bound on the number of usages).

e Somewhat Homomorphic Encryption (SWHE) allows some types of operations

a limited number of times.

e Fully Homomorphic Encryption (FHE) allows an unlimited number of opera-

tions for an unlimited number of times.

PHE schemes can only be used for particular applications, whose algorithms include
only addition or multiplication operations[l]. In SWHE schemes that were proposed
before the first FHE scheme, the size of the ciphertext grows with each homomor-
phic operation and hence the maximum number of allowed homomorphic operations
is limited [1] and as the complexity of the function grows, the SWHE parameters
become prohibitively large [27]. Despite the advantages of using HE schemes, they
have some limitations. One is ciphertext size. The size of the message increases con-
siderably by encryption. Another important limitation is related to the noise. After
each operation, the amount of noise in ciphertext increases. Multiplication increases
noise much more than addition [27]. FHE schemes enable the computation of arbi-
trary functions on encrypted data. This property makes FHE the most sophisticated
homomorphic encryption scheme and the "holy grail” of modern cryptography [12].
The FHE scheme supports basic arithmetic computations on encrypted data. FHE
supports an unlimited number of arithmetic operations. In spite of being a potential
cryptographic technique, some of the FHE schemes remain quite impractical for real-
world applications due to their computational overhead and the amount of resources

that they require for computations [41].

12

2.1.5 Challenges in Using Homomorphic Encryption

One line of criticism against homomorphic encryption is its inefficiency, which is com-
monly thought to make it impractical for nearly all applications [19]. Theoretically
sound, FHE schemes are not quite ready to be deployed for practical applications. Ho-
momorphic implementations need efficient implementation of expensive mathematical
operations which makes the operation order of magnitude slower than conventional
software applications that operate on plaintext data [35]. Several constraints should
be considered for choosing the right homomorphic encryption solution. First, using
(Somewhat/Fully) HE schemes will lead to a huge ciphertext expansion (say from
2,000 to 500,000 or even 1,000,000 times according to the scheme and the targeted
security level). Second, the underlying operations are intrinsically expansive, which

will drastically penalize the global running time [10].

2.2 Background and Review on Secure Logging

with Blockchain

2.2.1 Blockchain Framework

Unlike conventional databases that are managed by a central authority, a blockchain
is a type of distributed database that stores append-only log of time-stamped records
cryptographically protected from changing and revision [26]. The blockchain can be
conceptualized as a state machine that runs on a network of computers, or nodes.
The blockchain’s state is stored in a ledger, which constitutes a full record of all
transactions, or state transitions, that have ever occurred on the network [4]. The
so-called ledger is a string of data blocks generated and chained cryptographically

in a chronological manner, and each block can contain multiple transactions [33].

13

A blockchain is an immutable transaction ledger, maintained within a distributed
network of peer nodes. These nodes each maintain a copy of the ledger by applying
transactions that have been validated by a consensus protocol, grouped into blocks
that include a hash that bind each block to the preceding block [28]. Blockchains
distribute trust by having each node in the network manage its copy of the blockchain,
but for each node to have its copy, they need a distributed mechanism to agree on the
current state of the blockchain [25]. This mechanism is known as a consensus protocol,
and is the algorithm that forms the foundation for security, accountability and trust
in a blockchain [47].

Blockchain inherently is resistant to modification of data because the ledger is
replicated among participating nodes which makes a modification to the replica on
the nodes to be meaningless. In the blockchain, nodes are working together to achieve
agreement on the up-to-date snapshot of the ledger by the consensus algorithm. Some
blockchains support smart contracts, which allow developers to encode arbitrary logic
that is uploaded to, and executed by the nodes in the blockchain network. Blockchains
are inherently slower than traditional databases, and therefore access control imple-

mented on blockchains will be slower [25].

2.2.2 Permissionless Blockchain vs Permissioned Blockchain

Permissionless blockchain systems (like Bitcoin and Ethereum) employ peer-to-peer
(P2P) networks of relays to disseminate transactions and blockchain updates through-
out the network using a best-effort gossip protocol. Such P2P networks typically
experience considerable churn, with relays joining, leaving, and rejoining the net-
work at will [26]. Permissionless blockchains can be accessed and utilized by anyone
with Internet access. Typically, in such networks, the participants are rewarded, self-

sustainable, open-source and, therefore, have more support from the community [8].

14

On the other hand, permissioned blockchain systems (like Ripple, Corda, and Hyper-
ledger) apply a clique of highly available validator nodes for agreeing on transactions
and blocks [26]. Permissioned blockchain systems regulate transaction read and write
permissions for users of the blockchains, allowing users to read-only transactions in
which they took part [25]. The advantage of using a permissioned network is that
it does not rely on a paid third-party service provider. Instead, the blockchain node
operators provide the immutability service for each other. Since all members evenly
share the operational cost, no additional costs arise besides operating the network [40].
A permissioned solution seems suitable for companies aiming for the competitiveness

of blockchain technology while protecting sensitive information [8].

2.2.3 Hyperledger Fabric

Hyperledger Fabric [28] is a permissioned blockchain, namely a closed system, where
one must obtain credentials to read the ledger or write to it [9]. Based on the access
mechanism, blockchain can broadly be categorized into public blockchain, private
blockchain, and consortium blockchain. In a public blockchain, all nodes are free to
join or exit at will. However, nodes cannot access the blockchain in either private
or consortium blockchain until the administrator has authorized them. Consortium
blockchain offers better decentralization since the administrators comprise more than
one organization (unlike a private blockchain) [33]. One of the well-known consortium
blockchain systems is Hyperledger Fabric, which is a modular and extensible open-
source system for deploying and operating blockchain [5].

In Hyperledger Fabric, smart contracts are implemented via a chaincode, an arbi-
trary program (e.g., in Java), executed by peers before a transaction can be recorded
on the ledger. The chaincode has access to the current ledger and the details of the

new transaction, and it determines whether that transaction will go through and what

15

data to add to the ledger [9]. Chaincode is a critical element in a Fabric network,
as it dictates the rules to be followed by member participants. It is run in Docker
containers and is, thereby, isolated from the shared ledger [8].

Lu et al. [33] addressed Hyperledger fabric characteristics as follow:

e Tamper-proof: In Hyperledger fabric, once consensus is reached, the ledger
will be maintained by all nodes. Hence, any change on a single node is invalid.

Therefore, it is challenging to modify the contents of historical ledger.

e Access permission: Hyperledger Fabric uses Public Key Infrastructure (PKI)
to build the Membership Service Provider (MSP) module, which is then used

to generate digital certificates to identify and manage the members’ identities.

e Anonymity: In Hyperledger Fabric, each entity publishes a transaction with a
new pseudonym instead of using a constant pseudonym (like in public blockchain).
To achieve anonymity, each transaction is accompanied by a zero-knowledge
proof of the user, and others can only learn the validity but not the user’s true
identity. To achieve unlinkability, each zero-knowledge proof differs between
transactions, even for the same user. Hence, no other entity can analyze these

proofs to identify the user.

e Efficient processing: Hyperledger Fabric divides all nodes into three roles,
namely: the endorsement nodes for executing and endorsing transactions, the
ordering nodes for ordering and packaging transactions into blocks, and the
normal nodes for publishing transactions to endorse nodes and receive new
blocks from ordering nodes. Thus, this allows one to avoid a bottleneck situation
during execution and ordering a single node. Hence, Hyperledger Fabric is more

efficient than Bitcoin and Ethereum.

16

e Faster consensus algorithm: The consensus process in Hyperledger Fabric
is faster than many public blockchains (e.g., Bitcoin). In Bitcoin, for example,
the consistency among nodes is maintained by proof of work (PoW), which
requires nodes to calculate a block hash value for the accounting right. This
process takes approximately 10 minutes on average, making the throughput
very low. However, in Hyperledger Fabric, the consensus module is designed to
be pluggable and supports consensus algorithms, such as Practical Byzantine
Fault Tolerance (PBFT) and Raft. The latter uses election to replace complex
computations in Bitcoin, and thus achieves significant savings in time (i.e.,

significantly faster than PoW).

2.2.4 Using Blockchain to Provide Auditing Capabilities

Audit logs are an inevitable part of any software system. They can record all events
and interactions of the system that can be used in case of any uncertainty in sys-
tem’s operations or attacks. Although audit logs help track changes made and ensure
correctness in the system, they are vulnerable to a series of attacks that may com-
promise the system’s integrity [3]. Secure logging means that all entries in the log
must have a corresponding event that happened, and all events that occurred must
have a corresponding log entry [45]. Although blockchain stems from cryptocurrency,
many studies have investigated the adoption of blockchain in different application
scenarios beyond the financial domain. That typically involves multiple parties with
a conflict of interest, such as personal data sharing, supply chain, identity manage-
ment and medical data management [34]. On the other hand, blockchain enables
secure, transparent, and immutable record keeping in distributed systems without a
trusted intermediary [3]. Distributed trust and data immutability of blockchains can

also provide auditing capabilities [25]. This attractive trait can make blockchain an

17

excellent candidate to be used in audit logging systems.

Schorradt et al. [45] elaborate that blockchain technology offers three security
characteristics that make it a secure logging protocol. Firstly, it provides integrity
protection via signatures. Secondly, it provides integrity protection via hash pointers,
and thirdly, it uses the distribution of data across nodes, with each node having a
full copy of the blockchain and being a verifier for overall blockchain integrity. Dis-
tributed trust and data immutability of blockchain provides wide opportunities for
combating fraud, reducing operational costs and optimizing processes in the health
care industry[15]. In [16], Chernyshev et al. proposed an audit logging architecture
for electronic medical record systems by leveraging forensic as a service (FaaS) con-
cept, focusing mainly on privilege misuse. They also investigated different types of
treat actions (such as hacking, ransomware, phishing, privilege abuse, etc.) regard-
ing healthcare data. Although they discussed forensic readiness in the context of
health systems, they only offered a conceptual architecture. [34] investigated using
blockchain to build a query genomic dataset audit trail. In this study, the authors
mainly focus on the time and space efficiency of the log to reduce the time it takes
to query the audit trail; to achieve this, they assumed the blockchain network has
been well-established under a specific consensus algorithm. They started the exper-
iment with a provided genomic data access log file and designed a mechanism to
store and retrieve the logs based on Multichain. They offered a primary method and
an enhanced version. Their implementation can be a compatible component for the
existing blockchain platforms. In their enhanced implementation, they assumed that
the percentage of reading operations is not that high, so they traded retrieval speed
for storage cost. Since some of the blockchain systems use LevelDB as a backend
database, they compared their two methods (baseline and enhanced) alongside Lev-

elDB as reference. They claimed that their design could be adapted to any Blockchain

18

framework with the help of an intermediary. Schorradt et al. [45] focused on using
blockchain to enable secure logging in industrial control systems. They connected
the Syslog functionality of a programmable logic controller to the public Ethereum
blockchain network. Their experiment found that the transaction time for the public
Ethereum blockchain harshly restricts the usefulness of this type of secure logging for
industrial control systems. They also provided their system prototype and investi-
gated challenges and security levels by increasing computational and network load.
Their work provides practical usage of a public blockchain network and offers a good
insight about using a public blockchain network and considerations about the imple-
mentation. Ahmad et al. [3] constructed a design schema named BlockAudit, which
leverages Hyperledger Fabric as a blockchain framework to enable trustworthy audit
logs. They showed the applicability of their design in online transaction processing
(OLTP) systems. They implemented an end-to-end system that encompasses all steps
from generating logs in a system to audit them. After designing an application, they
integrated it into a blockchain network to construct a distributed peer-to-peer net-
work. They converted generated audit logs in another format (JSON) to be used in
blockchain nodes. They evaluated their architecture by measuring the latency over
the consensus achieved by the peers by increasing the payload size. An interesting
result about their implementation is that the latency actor rises considerably when
the network size grows beyond 30 nodes and a visible increase in latency when the

payload size changes from 5MB to 10MB.

19

Chapter 3

Machine Learning with Encryption

(MLE) Framework

In this section, we discuss eight different scenarios for machine learning with en-
cryption and propose a four-component system architecture to accommodate any of
the eight scenarios. This architecture, illustrated in Figure 3.1, fulfills the privacy-

preserving requirements that are mandatory for future ML-based precision medicine.

3.1 Machine Learning with Encryption

Any ML algorithm trains on some training dataset tr, fits a model‘s parameters
M, and finally tests on a testing dataset ts. Therefore, in principle, there are eight
possible combinations or scenarios to introduce privacy via encryption to the learning
process by encrypting (or leaving unencrypted) each of these three components.

Table 3.1 summarizes those eight scenarios; below, we provide more details on them.
We use 0 to denote an unencrypted component, where it still can only be encrypted
using the public key k, of another component without having access to its private

key kg, and we use 1 to denote an encrypted component, where its private key k; is

20

Table 3.1: The eight possible scenarios of encrypting the three components: the
training dataset tr, the ML model parameters M, and the testing dataset ts.

tr M ts Literature Dataset ML Enc. Library
0 000 Ordinary ML
1 001 Our present approach MSK many SEAL
Dowlin et al. [19] MINIST NN SEAL
Hesamifard et al. [27] ~ MINIST, CIFAR-10 DNN Helib
2 010 Bostetal [11] Multiple NB, HP, DT self-implementation
011 —
4 100 Graepel et al. [23] Wisconsin FDA Magma
Aselett et al. [7] Multiple NB, RF EncryptedStats
Nandakumar et al. [37] MNIST6 DNN7 HElib
5 101 —— Not possible under the current theory
6 110 —— Not practical: training on encrypted data already produces encrypted model
7 111

not available for the other two components.

Scenario 0 is denoted by the binary combination 000, when tr, M, and ts are all
not encrypted; this is the typical ML paradigm, where no privacy is of concern.

Scenario 1 is denoted by 001, where only ts needs to be encrypted; this is the
scenario of this thesis. In such a scenario, since the model has access to an unen-
crypted training set, such as a public dataset, only the client data ts, which could be
patients’ genome records, are sensitive. Although the standard homomorphic prop-
erty as defined in (2.7) would imply that M must be encrypted with &, to predict on
an encrypted ts, this is not the case for our work, which leverages special techniques
implemented in SEAL [36], that allow encryption with plain-text multiplication with
the caveat that the results themselves are encrypted and can only be decrypted with
ks. Research exists in this category but in areas of application other than precision
medicine. [19] showed that a cloud service is capable of applying a neural network
(NN) to encrypted ts to make encrypted predictions and return them in encrypted
forms. They constructed a convolution NN (CNN) model from the unencrypted
MINIST dataset and then produced a simpler FHE-friendly version of the CNN con-

21

structed only from addition and multiplication operations so that the parameters
could be encrypted using the public key of the private testing dataset ts. [27] de-
veloped new techniques to allow testing CNN on encrypted ts. First, they designed
methods to approximate the activation functions commonly used in CNNs with low-
degree, FHE-friendly polynomials. Then, they trained a CNN on unencrypted tr with
the approximation polynomials instead of the original activation functions. Finally,
they converted the trained CNN to make predictions on encrypted ts.

Scenario 2 is denoted by 010, where the model is trained on an unencrypted train-
ing dataset tr. However, the model parameters themselves are then encrypted, which
may imply privacy in tr, as well if the training is pursued locally where tr resides.
Although the testing data ts is denoted by 0, it must be sent to M encrypted with
its public key, as it is not possible, according to the theory of FHE, to pursue binary
operations on encrypted numbers (parameters of M) and unencrypted numbers (ts),
without the results being encrypted and only decryptable with the same k, that can
decrypt M. The virtue of scenario 2 is that it entails more freedom in choosing the
model M as opposed to scenarios 4-7, where tr is encrypted and a stringent limita-
tion is incurred for choosing the model M that can train on encrypted data. We are
not aware of any literature that applies scenario 2 explicitly; however, [11] provided
a very nested, layered model that could be classified as 010 scenario, but without
relying solely on HE. They implemented a decision tree, naive Bayes and hyperplane
decision that could test (not train) on encrypted data and built their models using
cryptographic “building blocks” that emphasized protecting the model parameters
and test data. They also used garbled circuits to compare encrypted data, which al-
lowed a construction of argmax with alterations to ensure the ordering was not leaked.
These building blocks allowed the implementation of decision tree, naive Bayes, and

hyperplane decision with some minor changes. The building blocks also allowed the

22

construction of other ML methods and a combination of methods using AdaBoost,
which the authors demonstrated.

Scenario 3 is like 2 in that the model is trained on an unencrypted tr, and M's
parameters are then encrypted; however, the test dataset ts is also encrypted with
a different k, than M. Since there is no known method in the literature that allows
the use of binary operations on two numbers encrypted with different k,, scenario 3
(011) is not theoretically feasible under the current theory of cryptography.

Scenario 4 is denoted by 100, where an ML model is trained on encrypted tr
(as in scenarios 5-7, as well). Hence, the model M will have encrypted weights by
product, and the testing data must be sent to M encrypted with the same public key
of tr, as explained above. Therefore, the reason scenario 5 (101) is not theoretically
possible is the same as scenario 3. Furthermore, scenarios 6 and 7 (11x) are not
of any practical interest, since the produced encrypted M does not need further
encryption; this is possibly the reason for the absence of literature on these two
scenarios. Under scenario 4, [22] defined a fully confidential version of linear means
and Fisher’s discriminant analysis (FDA), which can train and test on encrypted data.
Linear means are rewritten to avoid division when learning the weights. The resulting
decision function returns a multiple of the original decision function with the same
sign. However, FDA requires the inverse of the covariance matrix to obtain the feature
weights. This is found using gradient descent, the 7" iteration of which is shown to be
a d-degree polynomial, where d = 2(r—1)+1. [7] provided a completely random forest
(CRF) implementation that could train and test on encrypted data. Among other
alterations to the algorithm, the key difference was encoding feature values using one
hot encoding after quantile partitioning. CRFs have important benefits, especially
learning incrementally. The authors also provided a naive Bayes classifier that could

train and test on encrypted data. [37] evaluated the feasibility of training NNs on

23

Client

* encrypts genomic data using public key.

* responsible for key management.

* decrypts predicted scores using private key.
« preforms classifier calibration.

* performs hard-threshold classification.

Encrypted Encrypted
scores testing sample (ts)

Encrypt Server

training dataset tr « Performs prediction and general analytics.
* Multiply the final classification scores by random integer.
Model M
Plain-text parameters
Database (tr)] ML Construction ()
¢ encrypts training datasets tr. « constructs ML models M from tr.
* stores tr. J l- encrypts parameters of M.

Figure 3.1: A block diagram of a privacy-preserving MLE framework for precision
medicine

encrypted data completely non-interactively. His proposed system used the FHE
toolkit HElib to implement stochastic gradient descent (SGD) for training. He used
“ciphertext packing” to minimize the number of required bootstrapping operations
and to enable the parallelization of computations at each neuron, thereby significantly
reducing the computational complexity. This, in combination with simplifying the
network architecture, allowed him to practically train neural networks over encrypted

data despite the computational hurdles.

3.2 Proposed System

To prove the concept of our secure logging mechanism, we present a solution to analyze
patients’ health data in the cloud while preserving patients’ privacy. Particularly, we
propose a client application that enables health workers to submit sensitive health
data and send them to the cloud and also an application on cloud. In the cloud,
any operation will be done and the result will be sent back to the client application.

Our solution makes use of homomorphic encryption to protect patients’ data during

24

the analysis. The proposed architecture depicted by Figure 3.1 consists of following

components:

Database (tr) is a reservoir for both publicly available genetic datasets, which do
not require preserving privacy, and private datasets, which need encryption prior to
public sharing. Whenever a new dataset is revealed, it can be added to this reservoir

for more accurate future analytics.

ML Construction (M) is the engine that constructs models—including transfor-
mation, feature selection, resampling, etc.—from the datasets in the database module.
This module can be open-sourced for the entire community and can always be updated
as new ML methods merge or more accurate models are constructed. In addition,
the module can train on its own private dataset, which is not part of the database
module, and then encrypt its model parameters M. Alternatively, it can establish a
protocol with the database module to train on the private dataset without encryption
for a wider range of algorithms and then encrypt the model parameters to preserve

the dataset’s privacy (Cases 01x in Table 3.1).

Client (ts) is where the testing data, which is probably sensitive and confidential,
resides and needs analytics. The owner of this data can opt to encrypt it, and this
encryption can be provided via simple software components installed on the client side
available via communication with the server. Next, the encrypted testing data is sent
to the server for prediction. Finally, the encrypted predicted scores are received back.
The client should be responsible for setting the threshold on the scores for the final
hard decision or classification. This is to achieve a required level of aggressiveness to
control the per-class sensitivity, such as in the case of the binary classification problem,
in which the threshold provides the trade-off between the sensitivity and specificity

and thus controls the operating point on the receiver operating characteristic (ROC)

25

curve.

Server is the cloud engine for prediction. On the one hand, it interfaces with the
client to receive the encrypted dataset for prediction and sends back encrypted predic-
tions, and on the other hand, it interfaces with ML construction to receive a particular
predictive model. Based on the underlying encryption scenario (Table 3.1), the server
receives the appropriate public key from these two modules. In addition, for the C-
class classification problem and for greater privacy preservation for the model and/or
the dataset (tr), the server can optionally multiply the scores s.(z),c = 1,...,C,
where x € ts, by a random integer. This keeps the relative C' scores unaffected. How-
ever, this disallows the client from inferring information about the model weights
(M) by sending pseudo-feature vectors in the form = = (0,...,1,0,...) (only one

feature is 1; the others are zeros).

To illustrate the utility of proposed architecture, we demonstrate how scenario 1 can
be implemented in a very practical setup. When ML training is based on public data
(tr), the weights of the trained model M are deployed on the server in unencrypted
form, while the queries (ts) must be encrypted for security sensitivity. Under a
hospital’s public key, many parties may also be eligible to upload data (e.g., doctors
and patients). The server is used for deploying ML implementations M. In this case,
the hospital sends encrypted data to the server. In the server, many computations
can be done on the encrypted data and the results sent back to the hospital. Only
the hospital can decrypt the data because the private key is provided only on the

hospital side.

3.3 Summary

This chapter discussed different scenarios for MLE and introduced our proposed sys-

26

tem. We explained the proposed system in detail and introduced the major compo-

nents.

27

Chapter 4

Secure Logging Architecture

In this chapter, we present a generic architecture for secure logging and extend the

architecture by incorporating relevant modules for MLE.

4.1 General Architecture

The proposed Secure logging architecture consists of two main parties: data providers
and a service provider. Data providers are hospitals and clinics that have patients’
healthcare data. There can be many healthcare data providers and each data provider
may consist of multiple hosts. The service provider offers precision healthcare services
like disease detection. Since the service provider has access to data from multiple data
providers, it can provide a much better prediction using machine learning models on
a larger dataset. As an example, a health practitioner can initiate a request to know
if a patient is prone to getting cancer or not. In this case, the user sends the patient’s
data in homomorphically encrypted format along with the algorithm (e.g., Neural
Network) and the data model that is going to be used (e.g., MSK-IMPACT). The
service provider processes the request and runs the selected algorithm and sends back

the score to the client. Finally, the client makes the decision about the cancer type

28

based on the scores. As we mentioned in Chapter 3 data providers encrypt data
by using homomorphic encryption before sending it to the service provider. Using
homomorphic encryption allows computation to be performed directly on encrypted
data. We define two types of audit logs, internal audit logs and external audit logs.

Internal audit logs store information related to the data provider organization
when a host communicates with the cloud service provider.

External audit logs store information related to the actual query.

For example, internal logs store username and role of the person initiating a service
call. On the other hand, external audit logs store fields like algorithm name, dataset,
and patient info. We store an identifier in both type of logs to relate an internal audit
log to its corresponding external audit log. The reason for creating two logs is that
we do not want the cloud service provider to view the information related to the data
provider. It only stores a hash of the internal log to ensure integrity.

We use a permissioned blockchain system called Hyperledger Fabric [5] that can
ensure both confidentiality and integrity of audit logs. We designed two frameworks
consisting of four pivotal components which we describe below.

Private Channel. Since data providers do not want other participating orga-
nizations to view their logs, transactions between a data provider and the service
provider should be kept private. One solution is to use separate private channels for
each data provider organization and the service provider.

Public Channel. To preserve the privacy of logs associated with a data provider,
we can use a public channel as well. In this case, we need to handle privacy by applying
some policies to private collections.

Private data collection. The aim of using private data collection (introduced in
V1.2 of Hyperledger Fabric [29]) is to prevent the cloud service provider from viewing

internal audit logs. With private collections, the hash of the internal log is kept on

29

the ledger, and actual (internal) logs are held under the control of the data provider.

Smart Contract. A Smart contract determines the system’s business logic and
how transactions change the state of the ledger. Since transactions need to be signed
before committing to the channel, it requires multiple endorsements from different
organizations. This multiple endorsement policy can ensure one organization on a
network could not tamper the ledger and use business logic that was not agreed to
by all channel members. This signing process requires each organization to invoke
and execute the smart contract, which then signs the transaction’s output. If enough
organizations sign the transaction and the outcome is consistent, this transaction can
be considered a valid transaction and committed to the ledger. Endorsement policy
specifies the organizations on the channel that need to execute the smart contract.
Deployed smart contracts in our prototype handle the logic of creating audit logs
(both internal and external) and reading logs based on the unique identifier. We can
consider two approaches for designing an architecture for secure logging framework.
For the first approach there are private channels and private data. This means each
data provider has their own channel and the service provider is a member of all
channels. In this architecture, we have one internal log collection in each channel,
which is private to a data provider and one external audit log, accessible to both the
data provider and the service provider. Figure 4.1 shows this architecture. In this
architecture, given that we might have more than one data provider, many channels
in the network can lead to more complicated maintenance. Handling many smart

contracts for each channel also can be very cumbersome.

30

Service
provider

CouchDB
Brivate state
Collection A1
xternal audit logs

{ \ Data

Data _ CouchDB X provider
Provider A Policy. Daw — — — ey
(ALY Insert logs Read providerA P e e

Collection A1
xternal audit logs

Smart
contract
(Java)

member OR
service
provider

side

Query logs member
by uniaue
Applicati identifier Policy: Private state
pplication Data '
with SDK providerA Collecpon A2
(Javascript) member nternal audit logs

< ChannelAlpha

Service

provider

CouchDB - _ _
Collection B1
xternal audit logs

Data
{ N provider
Data , B peer
Provider B read | Policy: Data Private state
o nsert logs | | smart provider B Collection B1
See contract member OR ternal audit |
(Java) i xternal audit logs
Query logs " provider
by unique memoer
identifier Poli Private state
Application p:)‘/'izz'r gata Collection B2
\(.'jfjith SDK 0 member nternal audit logs
avascrip
Channel Beta

Figure 4.1: A secure logging architecture in a cloud-based precision healthcare service

with private channels

For the second approach we can consider having a public channel and private

data. This means all data providers and the service provider are members of one

31

Service
provider

G R—

Private state
Collection A1

External audit logs of data

provider A

/ \ CouchDB
Data Collection B1
Provider A External audit logs of data
side ider B

Data

Policy: DafsCowhos > provider
|, Poli
Application Insert logs provider A Private state T
member OR Collection A1

with SDK

X write service "
Wavascript) - |_ | ~. / provider _Extenalauditiogs
Read

eyd|y |euuey)

\ member CouchDB
A - / N Smart
ery logs

contract Policy: Data Private state

py un!que (Java) providerA Collection A2
identifier member Internal audit logs

Data

Read
P D:.a(:a B [nsertlogs d Policy: Dalcou provider
r0v.| er provider B anate_ state B peer.
side member OR Collection B1
write service External audit logs
Application Query logs Enr::ql?): ==
with SDK by uniqug o CCouchbe > private state
(Javascript) identifier Policy: Data CollectionB2 ||
provider B Internal audit logs
L_member

Figure 4.2: A secure logging architecture in a cloud-based precision healthcare service
with a public channel

channel. Each data provider has an internal log collection accessible only to the data
provider and an external log collection accessible to both the data provider and the
service provider. Figure 4.2 shows this architecture. Since a private collection is a
combination of the actual private data and a hash of the data, all channel members
need to have an endorsed and ordered version of the hashes written on the ledgers.
Accordingly, because each peer needs to store the hash version, we need more memory

space.

4.2 Application to MLE Framework

The proposed secure logging framework can be used for the precision healthcare

predictor system described in chapter 3. Figure 4.3 shows the transaction flow from

32

the data provider to the Hyperledger network.

There are 6 main entities in this architecture as follows:

e Data Provider Application: This entity resides in the client side in the MLE
block diagram in figure 3.1. An application needs to be deployed in the owner
of sensitive data trusted servers. Each user (health practitioner) can install a

client application or use a web application to comunicate with the system.

e Service Provider: This is the server side application which is responsible for

providing the machine learning analysis.

e Application with SDK: This application is responsible to interact with with
the blockchain ledger through chaincode. This application can be embedded in
the data provider application and can be a standalone application that is only

responsible for interacting with the ledger.

¢ Endorsing Peers: Endorsing peers are part of the authorized organizations of
the collection and disseminate the private data to all the authorized peers (this

should be based on the collection policy).

e Authorized Peers: Authorized peers are able to query private data. They

will be determined based on the collection policy.

e Ordering Service: Ordering service is responsible for receiving submitted
transaction from the application with the SDK and broadcasting a hash of the

private data.

A user (healthcare practitioner) initiates a request to get service from the service
provider. To relate an internal log to the corresponding external log, an identifier is
added to this interaction. Users submitting a transaction need to have a valid private

key to verify their identity to the network.

33

| Data Provider Application

I
|
| Encrypt data

Service Provider | Application with SDK | Endorsing Peers | Authorized Peers Ordering Service
I T T

Request Service

A 4

Response with encrypted data

Send audit log
|

v

Register app user

| Invoke proposal

! Check signature
|

|

I Invoke chaincode

|

|
| Store private data

f—]

Distribute private data

Send proposal response |

e

Send transaction |
|
Send hash of the private data
T
|

|, Send hash of the private data
€

\ 4

Validate private data against hashes

Update ledger

|

|

|

|
| |
L |
| |
| |
I |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 1

Figure 4.3: Sequence diagram of the system when inserting an audit log

There are different policies for internal and external log submission. For internal
logs, an endorsement is needed from data provider peers and for external logs, an
approval is needed from both data and service provider peers. To insert a new log,
a transaction proposal is constructed to invoke the chaincode function to create logs.
The user signs the proposal and endorsement peers will check it to make sure it is
new and the signature is valid. Afterward, they will send the log to authorized peers.

In our scenario, authorized peers for the internal audit logs are from the data
provider organization. For external logs, both data provider and service provider peers
are authorized. For internal logs, after the application validates proposal responses,

it sends a message with the channel id to the ordering service. The ordering service

34

sends only a hash of the data to all authorized peers. In this way, the confidentiality of
audit logs is preserved. For external audit logs, actual logs are sent to all authorized

peers for storage.

4.3 Summary

This chapter we provided a general secure logging framework for healthcare system
and presented a secure logging framework that could be used in such a precision
healthcare system. We presented two approaches for this secure logging framework.
In the next chapter, we present experiments that we conducted based on the selected

approach.

35

Chapter 5

Implementation and Experiments

In this chapter, we describe the dataset, explain how to build the predictive model,
demonstrate computational aspects of the encryption process for MLE and also build
a secure logging mechanism for proposed system and finally testing our secure logging

framework with a large amount of log data to examine security and performance.

5.1 MLE Implementation and Model Settings

In this section, we illustrate a cloud-based precision healthcare service as part of MLE

framework and then apply our secure logging approach to the system.

5.1.1 MSK-IMPACT Dataset

To conduct our experiments, we use the MSK-IMPACT dataset. MSK-IMPACT, a
clinical sequencing cohort dataset [48], comprises genomic patient records extracted
from tumor-tissue samples taken from 10,336 patients. Since tumors are usually
the results of many mutations, there are more than 100,000 discovered mutations.
The dataset consists of 11 files linked together with sample_ID and Patient_ID and

contains various information about the somatic mutations within the genomic sam-

36

ples, including mutation signature, copy number alternation, and gene fusion data
files. ‘With maturing clinical annotation of treatment response and disease-specific
outcome”, according to [48], “this dataset will prove a transformative resource for
identifying novel biomarkers to inform prognosis and predict response and resistance
to therapy. Tumor molecular profiling is a fundamental component of precision on-
cology, enabling the identification of genomic alterations in genes and pathways that
can be targeted therapeutically”.

The authors of the dataset tried to associate “biomarkers” with a particular type
of cancer using simple methods of association, such as relative frequency. Then, to
illustrate the usefulness of their DN A-sequence approach, they leveraged the Oncology
Knowledge Base [13] to see how many of the mutations they detected (stratified by
cancer type) were known to be actionable, that is, have an associated treatment or

gene therapy.

5.1.2 Building the Model

In addition to the predictive power required for any ML model, the objective of
privacy preservation via FHE requires the final ML model be FHE-friendly, that is,
based only on addition and multiplication operations. Some ML models cannot satisfy
both of these objectives. For example, a random forest (RF) has binary decision splits
that are not FHE-friendly. However, although linear models (LM), logistic regression
(LR), support vector machines (SVM), and many others are all HE-friendly, they may
not perform well on a particular dataset. In this thesis, we used C-class LR which is

HE-friendly.

37

5.1.3 Input Data and Needed Operations

For the experiment, we extracted separately 7791 feature vectors, each consisting of
5599 columns or features. The coefficients of the classifier were also provided in a
separate file which has 22 rows and 5560 columns. The operation that was studied is

as follows:

Pr(G =c|X =2) = e}ép_gsc) , (5.1a)
1+> exp(si)
Se =we +wlx, c=1,...,C, (5.1Db)

where, C' = 22 types of cancer, the patient feature vector is x € R?,p = 5, 599; and the
testing dataset ts to be encrypted has N = 7,791 patient records. By construction,
the MLE framework requires sending the encrypted score of each testing observation
to the client rather than the final hard decision for trading off the types of error.
In addition, from (5.1), the numerator is a monotonic exponential function and the
denominator is only for scaling, so probabilities sum to 1. Therefore, it is sufficient

to encrypt the linear term s. and treat it as the final score sent to the client.

5.1.4 Fully Homomorphic Encryption Libraries

Some of the homomorphic encryption schemes have implementations which, are pub-
licly available. One of the most famous libraries which supports the Brakerski-Gentry-
Vaikuntanathan (BGV) and Cheon-Kim-Kim-Song (CKKS) schemes is HEIib [24].
HElib comes with many optimizations to make homomorphic evaluation run faster
by mainly focusing on effective ciphertext packing techniques and optimizations [24].
Many related works used HElib [27, 37] and this library is the most important and
widely utilized. It is designed using low-level programming, which deals with the

hardware constraints and components of the computer without using the functions

38

and commands of a programming language and hence is defined as “assembly lan-
guage for HE” one [1]. Another notable library is SEAL [46]. SEAL is an open-source
HE library developed by the cryptography and privacy research group at Microsoft.
The library is written in C++ and can run in many environments. SEAL allows
addition and multiplication to be performed on numbers. Other operations, such as
encrypted comparison, sorting, and regular expressions, are in most cases not feasi-
ble on encrypted data using this technology. SEAL supports two FHE schemes: the
Brakerski/Fan-Vercauteren (BFV) scheme, which allows modular arithmetic to be
performed on encrypted integers, and the CKKS scheme, which allows addition and
multiplication on encrypted real or complex numbers, but this latter scheme yields
only approximate results. Other libraries like Fastest Homomorphic Encryption in
the West (FHEW) [20], libScarab [39], Fast Fully Homomorphic Encryption Library
over the Torus (TFHE) [17] are also major implementations. The computational per-
formance of multiplicative homomorphic operations could be considered a factor in
choosing between different libraries. Melchor et al. [2] conducted an experiment using
large plaintext moduli with three different FHE libraries in order to evaluate their
respective capabilities and performance. For this purpose, they used SEAL, Helib
and FV-NFLIib to perform their experiments. They benchmarked for both libraries,
1 bit, 64 bits, 256 bits, and 2048 bits plaintexts. Based on different ciphertext mod-
ulus sizes, it turned out that for logp = 1 where p is plain text length, SEAL v2.3
is the best choice up to a depth of around 12. Then SEAL v2.3 and HElib have
similar performance until a depth of about 25, and above HEIib outperforms all the
other libraries. For logp = 60, FV-NFLIib and SEAL v2.3 both beat HEIlib for all
practical values (up to a depth slightly above 40). Based on these experiments, the
authors believe that given that FV-NFLIib and SEAL result in similar performance

and that SEAL is more actively developed and more user friendly, in practice, the

39

Table 5.1: Comparison between SEAL and HEIib fully homomorphic encryption li-
braries

Feature HElib SEAL
Language Support C++, Python C#, C++, Python
Scheme Support BGV, CKKS BFV, CKKS
Addition, Multiplication, || Addition, Multiplication,
Operations Support Bitwise operations, Bitwise operations,
Square, Negation Square, Negation

natural choice is SEAL v2.3.

Table 5.1 shows comparison between famous fully homomorphic libraries of SEAL
and Helib. In this thesis, we decided to use Microsoft SEAL with BFV scheme to
perform FHE operations. SEAL offers .NET library and is the only one that supports
the C# language. SEAL is well documented and is easy to use when comparing with
other libraries; there is just a challenging task to select encryption parameters which
is a critical job. In some kinds of analysis like machine learning processes, using

approximate results could impact the accuracy. That is the reason why we used the

BFV scheme.

5.1.5 Homomorphic Operations On The Data

We applied the BFV scheme implementation of SEAL to perform this weighted sum-
mation term. The encryption operations are explained as follows. (1) Encrypt the
feature list. (2) Multiply encrypted features by plain text weights and sum encrypted
values. (3) Decrypt the results and repeat step 2 for each set of coefficients, i.e. each
class.

Selecting parameters in SEAL library is very important because it can really
impact the security level and performance of the implementation. Three important

parameters are considered pivotal encryption parameters.

40

PolyModulusDegree: This parameter is the degree of the polynomial modulus.
Selecting larger values for this parameter makes ciphertext larger and impacts on the
speed of computations, on the other hand allows more complicated computations on
ciphertext.

CoefModulus: This parameter is associated to noise budget, which means larger
values for CoefModulus implies larger noise budget. The maximum value for this
parameter is determined by the PolyModulusDegree.

PlainModulus: This parameter corresponds to the size of the plaintext data and
noise budget consumption in multiplications.

In SEAL library (BFV scheme) every ciphertext has a quota by the name of noise
budget. Due to the fact that there is a restriction in the number of operations on
plaintext, arbitrary computations on encrypted data is not feasible. In this way,
for each hmomorphic computation, this budget decreases. When the noise budget
of a ciphertext reaches to zero, it makes it too corrupted to be decrypted. Finding

optimum encryption parameters helps to prevent such situations.

5.1.6 Encryption and Parameters Selection

We tested different encryption parameters to compare computational time. Table 5.2
illustrates the computational time required as a function of a subset of the parameter
space. Rows 3 and 4, caused the ciphertext noise budget to reach zero. This noise
budget is determined by the encryption parameters, and once the noise budget of
a ciphertext reaches zero, it becomes too corrupted to be decrypted. Thus, it is
essential to choose parameters large enough to support the desired computations;
otherwise, the correct result is impossible to obtain, even with the secret key. The
values in row five give the best average per sample prediction time after testing on

the entire dataset (7791 records), which spanned over seven days of computations

41

on an i7core-2.5GHz-16G machine. From Eq. (5.1b), this time is obviously T =
NC'((p+1)(E+M+A)+D), where N, C',E, M, A, and D are the number of samples
and the number of classes, encryption, multiplication, addition, and decryption times,
respectively. Computation costs in terms of word size integer arithmetic for M and
A are O(nlogn) and O(n) respectively. The BFV algorithm is manipulated on a
polynomial ring R = Z[X]/(X™ 4 1). In this ring, all the polynomials have degree at
most n — 1. For modular reduction X", it equals to —1 in this ring, namely X = —1,
while X?" equals to 1. The number of features (p) also impacts the computation cost
since we need to run M in p + 1 times. During this experiment, IntegerEncoder
was used to encode integers to BFV plain-text polynomials. IntegerEncoder is
easy to understand and uses simple computations; however, there are more efficient

approaches such as BatchEncoder, which can be investigated in future works.

Table 5.2: Effect of encryption parameters on encryption time. SEAL supports
automatic selection of CoeffModulus. NA indicates noise ~ 0

polyModulusDegree PlainModulus Time in Sec
1 8192 2048 34560

2 2048 1024 960

3 1024 512 NA

4 1024 1024 NA

5 2048 1024 865

6 2048 512 875

7 2048 1499 939

8 2048 786433 894

During the first attempt, we encountered some issues with memory (Ram) utilization.

Using parameter values in the first row required more than 16 Gb of Ram, which

42

was not feasible based on the current system configuration. The solution to this
issue was releasing the memory after each iteration manually. Releasing the memory
ensures that everything is returned to the memory pool at the latest before running
the next iteration. In rows 3 and 4, we observed that during the computations
the ciphertext noise budget reaches zero. This noise budget is determined by the
encryption parameters. We chose the parameter values in row 5 and experimented

with all the feature list (7791 records). This experiment took 190 hours.

5.1.7 Time Complexity Analysis

5.1.8 Encryption Result

Based on our observation, using HE in a cloud-based precision healthcare system is
entirely feasible because we could test our architecture on a real precision healthcare
dataset and the response time was acceptable. To ensure security there are just some
critical items like the power of the system, processing time and parameter selections

that needs to be considered.

5.2 Secure Logging Framework Implementation

To implement our secure logging framework, we use Hyperledger Fabric, which is a
permissioned Blockchain framework. In Section 3.2 we discussed two different ar-
chitectures for secure logging. To employ our secure logging framework, we need to
know what data are exchanged between client and server applications.

The client application calls the server API to get the prediction service. In this
call, the client needs to send patient-related data input in a homomorphically en-
crypted format. Alongside patient data, the client sends type of algorithm that must

be applied to the data (e.g. Neural network, Logistic regression, or any other ma-

43

chine learning algorithm). The client also needs to send which data set will be used.
Currently, our MLE framework only supports logistic regression and MSK-IMPACT
dataset. In response, the server application sends back the predicted scores in a ho-
momorphically encrypted format, and an identifier assigned to this transaction. This
identifier is useful when we want to store our audit logs. At the end, the client makes
the decision based on scores.

As discussed in section 4.1, internal logs store information related to the data
provider organization. This kind of data should be private to the data provider since
they are related to its internal system such as the information about users of the data
provider applications and their roles in the system. Below is a sample of the internal

audit log that can be stored in Hyperledger fabric.

{

"assetID": "0006dc82-9d6b-481a-8b89-40ea330e67c2",
"name": "MARTIN BROWN",
l|rolell: I|DRII

AssetID refers to the unique identifier that client app (data provider) sends to the
ML service provider and ML service provider returns in response of the API call. The
name refers to the person who initiated the request to call the service, and the role can
be doctor, practitioner, nurse or any other roles defined in the service provider system.
On the other hand we have the concept of external audit log which is the data that
is shared between each data provider and the service provider. As an example below
is an instance in JSON format of external audit log for data provider and the service

provider.

44

2 "assetID": "0006dc82-9d6b-481a-8b89-40ea330e67c2",

3 "algorithm": "NN",

4 "dataset": "MSK",

5 "objectType": "AuditLog",

6 "owner": "x509::CN=appUserl, 0U=client + 0U=orgl + 0U=

departmentl::CN=ca.orgl.example.com, O=orgl.example.

com, L=Durham, ST=North Carolina, C=US",

7}

5.2.1 Implementing secure logging with a public channel

As we described in chapter 3, our framework has three main components. In the

following sections, we provide details of the implementation of these components.

Client side application Server side

_GetPredictionService(algorithm, dataset, encrypted inp

——

Encrypted response+ identifier

Figure 5.1: Interaction between client application and the server side application

45

Private Data Collection

Private data collection can be configured to share with only a portion of authorized
organizations, while public data can be shared with all organizations on a channel.
Channel members approve collections, and they deploy when the chaincode definition
is committed to the channel. All channel members need to have the same version of
the collection file. A collection file is a JSON file containing an array of all channel

collections with their properties.

Smart Contract Implementation

Before data providers and the service provider can communicate, they must agree on
a contract. This contract can be composed of common terms, rules, definitions and
processes. We can consider this a business model that governs all of the interactions
between the service provider and data providers. A smart contract is an executable
code that data providers and the service provider can invoke to generate transactions.
In this thesis, we use Java language to develop our smart contract. There are some
logics that we enforced by executing the smart contract. The current logic includes

these operations:

e ReadAsset (By assetId) handles reading logs based on the unique identifier.

e CreateAsset handles the logic of creating audit logs (both internal and exter-

nal)

Applications run by members of the network can invoke smart contracts to create
assets on the ledger. There is an endorsement policy that specifies the set of peers
on a channel that must execute smart contract and endorse the execution results in

order for the transaction to be considered valid.

46

For private data collections, we can also specify an endorsement policy at the
private data collection level, which would override the chaincode level endorsement
policy for any keys in the private data collection, thereby further restricting which

organizations can write to a private data collection.

Private channel

In our experiment one data provider (organization A) and the ML service provider

(organization B) are part of a private channel.

5.2.2 Implementing Secure Logging With a Private Channel

To prevent storing extra hash on each peer need, we decided to choose a public channel
to perform secure logging. For this reason, we implemented a Hyperledger Fabric with
2 organizations. Organization A which is a data provider and organization B which
is a ML service provider. The channel comprised these two organizations. Since in
our scenario, we want to make internal audit logs to be private to organization A, we
need to have one private data collection to store organization A’s internal audit log.

We implemented this architecture and observed its behaviour in practice.

5.3 Framework Evaluation

In this section, we evaluate our framework in terms of security and performance.
Security. In the proposed framework, data and service providers are not able to
delete/tamper logs since only read and write methods are implemented in the smart
contract. If any party wants to add functions like delete or edit, all participating
organizations need to agree on that to be approved. The current policy requires that a

majority of channel members approve a new chaincode. As a result, an attacker needs

A7

Table 5.3: Time to insert and query logs in our framework with different number of
logs

Number of log records || insert (ms) || query one record(ms)
100 236453.43 37.34
200 1183543.31 61.47
10000 25437930.40 101.93

to compromise a majority of hosts from both data and service provider organizations
to be able to modify logs which is very difficult.

Different data providers interact with the service provider through different chan-
nels which maintains the confidentiality of the logs. As mentioned before, based on
the defined policy, the service provider can not view data providers’ internal audit
logs since only the hash is stored there.

To implement access control, we can easily restrict access of different service and
data provider hosts using chaincode.

Performance. We tested the framework on a Ubuntu 20.04 virtual machine on a
Windows host with Core i5 (1.10 GHz) processor and 8GB RAM. Table 5.3 shows the
results of the experiment. We started by inserting 100 audit log entries and then we
increased the number of log entries to 10000. In a cloud-based precision healthcare
service scenario, it is unlikely that a data provider organization will request more than
a hundred services in a quick succession. As a result, the insertion time is reasonable.
We also present the time to query one record based on the identifier inserted. When
the blockchain stores 10,000 logs, the time is 101.93 ms.

In Table 5.4, we show the disk usage on the data provider side. The service
provider does not store the actual internal audit log data and stores only the hash of
the internal audit logs; therefore, it needs less space than the data provider. As we

can see from the table, disk requirement is minimal if we store text-only logs.

Table 5.4: Disk usage on the data provider

Hashed Hashed
External Internal
Number internal external
£1 log log 1 1
of lo 0
& collection || collection & ©8
records)) collection || collection
size (KB) || size (KB) || . _
size (KB) || size (KB)
100 50.8 34.4 42.8 42.8
500 248.2 166.1 209.3 209.3
1000 495 330.6 412.1 412.1
10000 4800 3200 4000 4000

48

49

Chapter 6

Conclusion and future work

6.1 Contribution Summary

We proposed a machine learning with encryption (MLE) framework that enables
performing analysis on healthcare data while preserving its privacy. To ensure data
security in the proposed framework we used homomorphic encryption. The proposed
framework consists of four components: database which is a reservoir for both publicly
available genetic datasets and private datasets, ML Construction which is the engine
that constructs models, client which is where sensitive healthcare information resides
and the server which is the cloud engine for prediction. In this framework, a hospital
sends encrypted data to the server. In the server, many computations can be done on
the encrypted data and the results are sent back to the hospital. Only the hospital
can decrypt the data. Based on our observation, using HE in MLE is entirely feasible
but it can be slow when comparing to other types of encryption especially when we
need to perform multiplication on two ciphertexts. In our selected scenario in which
only testing data set needs to be encrypted, for each request HE, computation takes

15 minutes which is acceptable in this system. We conducted different experiments for

20

encryption parameter selection to ensure security and time efficiency but we observed
some sluggishness in the encryption phase of the framework.

Furthermore, we designed a blockchain-based logging framework for precision
healthcare services. We developed this framework for cloud-based precision health-
care services employing Hyperledger Fabric to provide a secure and auditable forensic-
ready logging mechanism. We defined two types of audit logs, internal audit logs and
external audit logs. To prevent storing extra hash when using private data collec-
tions, we decided to choose a public channel to perform secure logging. The channel
comprised a data provider and the service provider. Since internal audit logs have
to be private to the data provider, we considered one private data collection to store
the data provider’s internal audit log. The proposed framework is tamper-resistant
and can ensure the security, integrity and confidentiality of healthcare audit logs. We
tested the framework by inserting up to 10000 log entries. For this experiment, we
observed insertion time, query on a record time and disk usage. In our preliminary
experiments, the framework showed reasonable performance in terms of query time

and disk utilization.

6.2 Future Work

Currently, MLE only works only with MSK-IMPACT dataset, accordingly the current
secure logging implementation is developed with one data provider. One of the areas
of interest for our future work is to test our secure logging framework with multiple
data providers. These data providers will have different private data and might need
different ML services. In this case, we would have more organizations and we can
observe the performance of the framework when dealing with large amounts of log

entries that are produced with multiple data providers.

51

Another area of interest is to implement the framework with a public channel. We
expected to need more disk space but instead we need less complicated configurations
for Hyperledger Fabric which can be a good positive point.

Based on the results, the framework has enormous potential to be used in practice

and further research is necessary to improve its performance.

52

Bibliography

1]

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey on
homomorphic encryption schemes: Theory and implementation. ACM Comput.

Surv., 51(4):1-35, jul 2018.

Carlos Aguilar Melchor, Marc-Olivier Kilijian, Cédric Lefebvre, and Thomas
Ricosset. A comparison of the homomorphic encryption libraries HElib, SEAL
and FV-NFLIib. In Jean-Louis Lanet and Cristian Toma, editors, Innovative
Security Solutions for Information Technology and Communications, pages 425

442, Cham, 2019. Springer International Publishing.

Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen. To-
wards blockchain-driven, secure and transparent audit logs. In ACM Interna-
tional Conference Proceeding Series, pages 443-448. Association for Computing

Machinery, nov 2018.

Jessie Anderson and Sean Smith. Securing, standardizing, and simplifying elec-
tronic health record audit logs through permissions blockchain technology. PhD

thesis, Dartmouth College, 2018.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. Hyperledger fabric: a distributed operating

[10]

[11]

23

system for permissioned blockchains. In Proceedings of the thirteenth FEuroSys

conference, pages 1-15, 2018.

Louis J M Aslett, Pedro M Esperan ¢ a, and Chris C Holmes. A review of

homomorphic encryption and software tools for encrypted statistical machine

learning. 2015.

Louis J M Aslett, Pedro M Esperan ¢ a, and Chris C Holmes. Encrypted sta-
tistical machine learning: new privacy preserving methods. arXiv:1508.06845v1,

2015.

Rafael Belchior, Miguel Correia, and André Vasconcelos. JusticeChain: Using
blockchain to protect justice logs. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 11877 LNCS, pages 318-325, 2019.

F. Benhamouda, S. Halevi, and T. Halevi. Supporting private data on Hyper-
ledger Fabric with secure multiparty computation. IBM Journal of Research and

Development, 63(2), mar 2019.

Guillaume Bonnoron, Caroline Fontaine, Guy Gogniat, Vincent Herbert, Vian-
ney Lapotre, Vincent Migliore, and Adeline Roux-Langlois. Somewhat /fully ho-
momorphic encryption: Implementation progresses and challenges. In Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor-

matics), volume 10194 LNCS, pages 68-82, 2017.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine

Learning Classification over Encrypted Data. 2015.

[12]

[14]

[15]

[16]

54

Alycia Carey. On the explanation and implementation of three open-source
fully homomorphic encryption libraries. Undergraduate Thesis, University of

Arkansas, Fayetteville, 2020.

Debyani Chakravarty, Jianjiong Gao, Sarah Phillips, Ritika Kundra, Hongxin
Zhang, Jiaojiao Wang, Julia E. Rudolph, Rona Yaeger, Tara Soumerai, Mo-
riah H. Nissan, Matthew T. Chang, Sarat Chandarlapaty, Tiffany A. Traina,
Paul K. Paik, Alan L. Ho, Feras M. Hantash, Andrew Grupe, Shrujal S. Baxi,
Margaret K. Callahan, Alexandra Snyder, Ping Chi, Daniel C. Danila, Mri-
nal Gounder, James J. Harding, Matthew D. Hellmann, Gopa Iyer, Yelena Y.
Janjigian, Thomas Kaley, Douglas A. Levine, Maeve Lowery, Antonio Omuro,
Michael A. Postow, Dana Rathkopf, Alexander N. Shoushtari, Neerav Shukla,
Martin H. Voss, Ederlinda Paraiso, Ahmet Zehir, Michael F. Berger, Barry S.
Taylor, Leonard B. Saltz, Gregory J. Riely, Marc Ladanyi, David M. Hyman,
José Baselga, Paul Sabbatini, David B. Solit, and Nikolaus Schultz. Oncokb: A

precision oncology knowledge base. JCO Precision Oncology, (1):1-16, 2017.

Hao Chen, Kyoohyung Han, Zhicong Huang, Amir Jalali, and Kim Laine. Simple

Encrypted Arithmetic Library v3.2.0. Tech. Rep., 2018.

Shekha Chenthara, Khandakar Ahmed, Hua Wang, and Frank Whittaker. A
Novel Blockchain Based Smart Contract System for eReferral in Healthcare:
HealthChain. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
12435 LNCS, pages 91-102. Springer Science and Business Media Deutschland
GmbH, 2020.

Maxim Chernyshev, Sherali Zeadally, and Zubair Baig. Healthcare Data

Breaches: Implications for Digital Forensic Readiness. Journal of Medical Sys-

[17]

[18]

[19]

5}

tems, 43(1), 2019.

llaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz
abachene. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tthe.github.io/tfhe/(accessed August 2021).

Erikson Julio De Aguiar, Bruno S Faical, Bhaskar Krishnamachari, and
J6 Ueyama. A Survey of Blockchain-Based Strategies for Healthcare. 53(2),

2020.

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy. In 33rd Int. Conf. Mach.
Learn. ICML 2016, volume 1, pages 342-351, 2016.

Leo Ducas and Daniele Micciancio. FHEW: A fully homomorphic encryption
library, 2014. https://github.com/lducas/FHEW (accessed August 2021).

Craig Gentry. Fully Homomorphic Encryption Scheme. PhD thesis, Stanford

University, 2009.

T. Graepel, K. Lauter, and M. Naehrig. MI confidential: machine learning on
encrypted data. In T. Kwon, M.-K. Lee, and D. Kwon, editors, Information Secu-
rity and Cryptology - ICISC 2012 (15th International Conference, Seoul, Korea,
November 28-30, 2012, Revised Selected Papers), Lecture Notes in Computer

Science, pages 1-21, Germany, 2013. Springer.

Thore Graepel, Kristin Lauter, and Michael Naehrig. ML confidential: Machine
learning on encrypted data. In Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), volume 7839 LNCS, pages 1-21,
2013.

[24]

[25]

[26]

[27]

28]

[29]

[31]

[32]

26

Shai Halevi and Victor Shoup. HElib (release 2.1.0).
https://github.com/homenc/HElib(accessed August 2021), 2013. IBM Re-

search.

Taylor Hardin and David Kotz. Blockchain in Health Data Systems: A Survey.
In 2019 6th International Conference on Internet of Things: Systems, Manage-
ment and Security, IOTSMS 2019, pages 490-497. Institute of Electrical and

Electronics Engineers Inc., oct 2019.

Ryan Henry, Amir Herzberg, and Aniket Kate. Blockchain access privacy: Chal-
lenges and directions. IEEE Security and Privacy, 16(4):38-45, jul 2018.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep Neural

Networks over Encrypted Data. arXiw:1711.05189v1, 2017.

Hyperledger. Introduction on hyperledger fabric [online]. https://hyperledger-

fabric.readthedocs.io/en/release-2.2 /whatis.html, 2021. Accessed: 2021-06-15.

Hyperledger. Using private data in fabric [online]. https://hyperledger-
fabric.readthedocs.io/en/release-1.2 /private-data/private-data.html, 2021. Ac-

cessed: 2021-06-06.

Adam Richard Jones. Homomorphic Encryption Within The NHS Using Paillier,
2018.

Miran Kim and Kristin Lauter. Private genome analysis through homomorphic

encryption. Technical report, 2015.

Yikuan Li, Shishir Rao, José Roberto Ayala Solares, Abdelaali Hassaine, Rema
Ramakrishnan, Dexter Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza

Salimi-Khorshidi. Behrt: transformer for electronic health records. Scientific

reports, 10(1):1-12, 2020.

[33]

[35]

[40]

o7

Ning Lu, Yongxin Zhang, Wenbo Shi, Saru Kumari, and Kim Kwang Raymond
Choo. A secure and scalable data integrity auditing scheme based on hyperledger

fabric. Computers and Security, 92, may 2020.

Shuaicheng Ma, Yang Cao, and Li Xiong. Efficient logging and querying for
blockchain-based cross-site genomic dataset access audit. BMC Medical Ge-

nomics, 13(S7):91, jul 2020.

Ahmet Can Mert, Erdinc Ozturk, and Erkay Savas. Design and Implementa-
tion of Encryption/Decryption Architectures for BEV Homomorphic Encryption
Scheme. IEEE Trans. Very Large Scale Integr. Syst., 28(2):353-362, feb 2020.

Microsoft. GitHub - microsoft/SEAL: Microsoft SEAL is an easy-to-use and

powerful homomorphic encryption library., 2019.

Karthik Nandakumar. Towards Deep Neural Network Training on Encrypted
Data. IEEE Conf. Comput. Vis. Pattern Recognit. Work., 2019.

Silvia Paddock, Hamed Abedtash, Jacqueline Zummo, and Samuel Thomas.
Proof-of-concept study: Homomorphically encrypted data can support real-time
learning in personalized cancer medicine. BMC Med. Inform. Decis. Mak., 19(1),
2019.

Henning Perl, Michael Brenner, and Matthew Smith. libScarab: An implementa-
tion of the fully homomorphic smart- vercauteren cryptosystem, December 2013.

https://github.com /herypt-project /libScarab(accessed August 2021).

Benedikt Putz, Florian Menges, and Giinther Pernul. A secure and auditable log-
ging infrastructure based on a permissioned blockchain. Computers and Security,

87, nov 2019.

[41]

[43]

[44]

[45]

o8

Mohammad Saidur Rahman, Ibrahim Khalil, Abdulatif Alabdulatif, and Xun Yi.
Privacy preserving service selection using fully homomorphic encryption scheme
on untrusted cloud service platform. Knowledge-Based Syst., 180:104—115, sep
2019.

Sagar Rane and Arati Dixit. Blockslaas: Blockchain assisted secure logging-
as-a-service for cloud forensics. In Sukumar Nandi, Devesh Jinwala, Virendra
Singh, Vijay Laxmi, Manoj Singh Gaur, and Parvez Faruki, editors, Security

and Privacy, pages 77-88, Singapore, 2019. Springer Singapore.

Ronald Rivest, Len Adleman, and Michael Dertouzos. On Data Banks And Pri-
vacy Homomorphism. Technical report, Massachusetts Institute of Technology,

1978.

Sai Sri Sathya, Praneeth Vepakomma, Ramesh Raskar, Ranjan Ramachandra,
and Santanu Bhattacharya. A Review of Homomorphic Encryption Libraries for

Secure Computation. arXiw:1812.02428v2, 2018.

Stefan Schorradt, Edita Bajramovic, and Felix Freiling. On the feasibility of
secure logging for industrial control systems using blockchain. In Proceedings of
the Third Central European Cybersecurity Conference, CECC 2019, New York,

NY, USA, 2019. Association for Computing Machinery.

Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL (accessed
August 2021), June 2019. Microsoft Research, Redmond, WA.

Abdul Wahab and Waqas Mehmood. Survey of consensus protocols, 2018.

Ahmet Zehir, Ryma Benayed, Ronak H Shah, Aijazuddin Syed, Sumit Mid-
dha, Hyunjae R Kim, Preethi Srinivasan, Jianjiong Gao, Debyani Chakravarty,

Sean M Devlin, et al. Mutational landscape of metastatic cancer revealed from

29

prospective clinical sequencing of 10,000 patients. Nature medicine, 23(6):703,
2017.

