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Abstract—Artificial intelligence (AI) has shown great promise
in revolutionizing the field of digital health by improving disease
diagnosis, treatment, and prevention. This paper describes the
Health Guardian platform, a non-commercial, scientific research-
based platform developed by the IBM Digital Health team to
rapidly translate AI research into cloud-based microservices.
The platform can collect health-related data from various digital
devices, including wearables and mobile applications. Its flexible
architecture supports microservices that accept diverse data
types such as text, audio, and video, expanding the range of
digital health assessments and enabling holistic health evalua-
tions by capturing voice, facial, and motion bio-signals. These
microservices can be deployed to a clinical cohort specified
through the Clinical Task Manager (CTM). The CTM then
collects multi-modal, clinical data that can iteratively improve
the accuracy of AI predictive models, discover new disease
mechanisms, or identify novel biomarkers. This paper highlights
three microservices with different input data types, including a
text-based microservice for depression assessment, a video-based
microservice for sit-to-stand mobility assessment, and a wearable-
based microservice for functional mobility assessment. The CTM
is also discussed as a tool to help design and set up clinical
studies to unlock the full potential of the platform. Today, the
Health Guardian platform is being leveraged in collaboration
with research partners to optimize the development of AI
models by utilizing a multitude of input sources. This approach
streamlines research efforts, enhances efficiency, and facilitates
the development and validation of digital health applications.

Index Terms—Digital Health, Health Guardian Platform,
AI/ML Model Development, Microservices, Accelerated Discov-
ery

I. INTRODUCTION

Digital Health is a growing interdisciplinary field that has
seen a rise in popularity in recent years. The growth of
personalized, predictive, and preventative healthcare has been
fueled by the widespread use of mobile phones, Internet-of-
Things (IoT) devices, and wearable sensors, as well as the

Fig. 1. Envisioned information flow diagram to create a virtual replica of
a person, also known as a healthcare ”digital twin”. Creation of a ”digital
twin” uses Internet-of-Things (IoT) technologies to acquire biosignals that
are fed into AI-powered models to predict health insights for closed-loop
interventions and/or behavioral changes.

affordability of cloud computing services. By incorporating
new information technologies like edge computing, cloud
computing, and artificial intelligence (AI) into healthcare, tra-
ditional practices can be improved, and innovative approaches
can be created. For example, real-time monitoring of digital
biomarkers using wearable and ambient technologies offers
a comprehensive view of a person’s health and are building
blocks to creating a healthcare “digital twin”. The data from
these digital biosignals can be collected and aggregated, then
fed into AI and machine learning models. These models
can identify important health insights and early interventions,
which can then be shared with the patient and their healthcare
team (Figure 1). AI research has already made significant
progress in various healthcare domains, such as speech and
language analysis for the diagnosis and monitoring of neu-
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Fig. 2. Overview diagram of the Health Guardian Platform, highlighting the tools and services available in the data pipeline. This schematic is color-coded
to denote the primary users: clinical subjects and AI researchers (cyan), and the Cloud DevOps team (green). In yellow are specific areas where AI/ML-based
analytics have been developed and integrated into the Health Guardian Platform as a microservice. All components rest on top of a compliance services layer,
and are built on an OpenShift and multi-cloud infrastructure.

rodegenerative diseases [1], [2], image analysis for automated
detection of diabetic retinopathy [3], and assessments of gait
[4], mobility [5], and drawing for evaluating cognitive decline
in the elderly [6].

AI models that are trained with data from a multitude
of input sources often yield better prediction results and
performance. For example, evaluating cognitive decline by
combining analysis of drawing and speech can provide a
comprehensive understanding of both motor and linguistic
aspects of cognition [7]. In diabetes management, sensors that
can monitor the quality of sleep, activity levels, and appetite
can improve prediction of daily insulin needs [8]. Fragmented
remote patient monitoring systems make it difficult to gather
data from various sensors with different input data types (e.g.
audio, video, text, etc.). Integrating and coordinating data from
these sensors and facilitating an easy way to collect patient
data to train, validate, and oftentimes retrain, the models
require significant coordination and time. To address these
challenges, we introduce the Health Guardian (HG) platform,
a comprehensive end-to-end solution that enables multi-modal
assessments of an individual’s health, and ensures secure data

quality control at every stage of the data life cycle.

II. HEALTH GUARDIAN PLATFORM

The Health Guardian (HG) platform provides a flexible
framework for the rapid translation of AI research into mi-
croservices that can be used to collect and manage health-
related data from clinical cohorts. Analytics developed using
with AI and machine learning (ML) can be converted into
deployable microservices using standard HG worker and API-
gateway templates, as discussed in [9]. The HG platform also
allows users to create customized end-to-end data pipelines
that test out the analytics, where data obtained from various
microservices can be fed back into the AI predictive models
for iterative improvements. A detailed description of the
platform’s architecture and design is described in [9].

The data pipeline consists of five primary stages: data
source, data ingestion, data preparation, data access and data
analytics (Figure 2). First, data are collected from various
data sources such as mobile and IoT devices, wearables, or
electronic health records (EHRs). Then, the data are ingested
into the clinical task manager (CTM) and routed into appro-
priate datastores. The data are then prepared using various



TABLE I
SUMMARY OF MICROSERVICES SUPPORTED BY HEALTH GUARDIAN

Theme
Disease

Area
Microservice Description

Input File

(Format)
Output Ref

Timed Up
and Go (TUG)

Predict TUG score using data from daily
walking activities that are passively captured
by a smartwatch

Text (.json) TUG Score [10]

Sit-to-Stand

Analyze sit-to-stand either from a scripted
or unscripted activity using an imager (Red-
Green-Blue (RGB), depth, or millimeter
wave camera) to extract metrics of mobility
or motor symptoms and predict scores of
standard mobility tests.

Video (.mp4) Torso Phase,
No. of Hesitations

[11]

Bradykinesia Simple on-demand test to infer bradykinesia
score from wrist worn gyroscope Text (.json)

Bradykinesia Score,
Pronation-Supination

Score
[12]

Parkinson’s
Disease

Postural Instability
and

Gait Disorder
(PIGD)

Infers PIGD score using lumbar gyro-
scope/accelerometer from turns during a 1-
min walk test.

Text (.csv) PIGD Score [12]

Amyotrophic
Lateral

Sclerosis

PsychE
Acoustics

Voice analysis to measure and predict pro-
gression of ALS. Audio (.wav) ALS Score,

Voice Report [1]

PsychE
Alzheimer’s

Voice analysis to measure and predict like-
lihood of developing Alzheimer’s Disease. Audio (.wav) Likelihood Score of

Developing Alzheimer’s [13]

Neuro-
Degenerative

Disease

Alzheimer’s
Disease

Drawing
Analyze freehand drawing with a digitizing
tablet and pen to detect Alzheimer’s disease
and its prodromal stage (MCI)

Image,
Text (.zip)

Probability of cognitive
impairments, estimated
cognitive and clinical
measures including

neuro-pathological changes

[6], [14]

Mental
Health

Depression
PHQ-8

Depression
Questionnaire

Provide standard PHQ-8 questionnaire
through a mobile phone. Text (.json) PHQ-8 Score [15]

Suicidality Suicidality
Detection

Process the content of speech or input text
and analyze to detect signs of depression and
suicidality.

Text (.json)
Audio (.wav) Suicide Probability [16]

Wellness
and

Prevention

Mobility Effective
Mobility

A mobility measure that accounts for differ-
ent types of activity from walking to moving
arms and hands.

Text (.json) Effective Mobility Score [17]

Sleep Sleep Quality Provide standard Stanford Sleep Question-
naire through a mobile phone. Text (.json)

Sleep
Questionnaire

Score
[18]

Driving Driving Risk
Assessment

Extract speech features related to future risks
of driving accidents by analyzing conversa-
tional speech with an AI chatbot.

Text (.json)
Audio (.wav)

Speech feature scores
related to future

driving accident risks
[19]

strategies and steps, including de-identifying protected health
information/personally identifiable information (PHI/PII), im-
puting missing data [20], synchronizing timestamps of data
from different sensors, and aggregating data from multiple
input streams. The pre-processed data are then accessed by
the HG microservice workers to perform downstream analytics
via data application programming interfaces (APIs). The HG
platform currently supports over 70 capabilities in various fo-
cus areas, including neurodegenerative disease, mental health,
and wellness and prevention. Finally, the results from the
analytics can be viewed through various patient, clinician, or
researcher interfaces, such as mobile applications, dashboards
and reports.

The HG platform offers a versatile and reusable framework
that can support AI/ML-based analytics with various input data
types, including audio, text, video, and data from wearable
or IoT devices, and can process data using either CPUs
or GPUs. Table 1 showcases a subset of the microservices
available on the HG platform, categorized by theme and
disease areas. These microservices can be employed to manage
and maintain individual health. For instance, in the aging pop-
ulation, where frailty, fall risks, and functional and cognitive
decline are common, the HG platform can facilitate geriatric
assessments and interventions both in-clinic and at-home. By
selecting and deploying mobility and cognitive assessment
microservices, patients can be evaluated comprehensively in



Fig. 3. (a) Illustrates the digital health solution for the PHQ-8 depression assessment microservice. Briefly, the user is prompted to provide responses to eight
standard questions on the PHQ-8 questionnaire. (b) Depicts the Clinical Task Manager (CTM) and the Datastore which receives the input text-based responses
in a (.json) file format after it has been uploaded from the mobile application. (c) Shows the scoring scale for the PHQ-8 questionnaire.

different settings. Furthermore, the HG platform enables the
study of Parkinson’s disease patients over time through the
deployment of microservices such as Timed Up and Go
(TUG), sit-to-stand, bradykinesia, and the Postural Instability
and Gait Disorder (PIGD). Additional microservices, such as
the PHQ-8 depression questionnaire or suicidality prediction,
utilizing audio or text-based inputs, can be added to provide
a more comprehensive understanding of a subject’s mobility
and mental health status.

The following sections in this paper showcase three distinct
microservices deployed on the HG platform. These microser-
vices include a text-based microservice for depression as-
sessment, a video-based microservice for sit-to-stand mobility
assessment, and a wearable-based microservice for functional
mobility assessment. For each microservice, we provide the
clinical background, describe the digital health solution, and
outline briefly the analytics used. Each one of these mi-
croservices can be deployed as a stand-alone assessment or
combined with other microservices to obtain comprehensive
insights into an individual’s health. In the discussion section,
we delve into the application of the CTM in creating clinical
cohorts and facilitating the design and execution of clinical
studies involving one or more deployed microservices.

III. INTEGRATION OF TEXT-BASED MICROSERVICE FOR
DEPRESSION ASSESSMENT

A. Clinical Background

Depression is a prevalent mental health condition that
affects many individuals worldwide. In 2020, an estimated
21.0 million (8.4%) adults and 4.1 million (17.0%) adolescents
aged 12 to 17 in the United States alone, experienced at least
one major depressive episode [21]. This condition can impact a
person’s feelings, thoughts, and ability to perform daily activ-
ities, leading to persistent feelings of sadness, reduced interest
in hobbies, and hopelessness lasting more than two weeks. In
addition, depression can also cause physical symptoms such
as changes in appetite and sleep patterns, fatigue and difficulty
concentrating, thus affecting the individual’s capacity to work,
sleep, study, and eat.

Validated self-report measures such as the Patient Health
Questionnaire (PHQ-8) [15], the Beck Depression Inven-
tory (BDI) [22] and the Depression Anxiety Stress Scales-
21 (DASS-21) [23] are commonly used for screening and
assessing the severity of depression, guiding recommended
treatments, and monitoring symptoms and recovery. However,
traditional methods of administering these assessments are
limited by the need for in-person, pencil-and-paper admin-



istration at a clinic, which can reduce the frequency at which
individuals can be screened and monitored.

To address this issue, the IBM Digital Health team has
developed a digital, text-based microservice using PHQ-8
depression questionnaire as a framework. The PHQ-8 consists
of eight items that align with the diagnostic criteria for major
depression disorder in the Diagnostic and Statistical Manual
of Mental Disorders Fourth Edition (DSM-IV) [15], which
is widely used for depression diagnosis and assessment. This
digital microservice can increase access and the frequency at
which individuals with mental health disorders can be screened
and monitored.

B. Digital Health Solution

The PHQ-8 questionnaire is delivered to users via the Health
Guardian mobile application (Figure 3a.i). Users can select the
frequency of each depression symptom they have experienced
in the past two weeks, and upon submission, the dataset
is parsed into a text-based response in .json format (Figure
3a.ii), and uploaded to the clinical task manager (Figure 3b).
The analytic worker processes the structured data, extracts
the selected responses from each question (Figure 3c.i), and
calculates the total score (Figure 3c.ii). The results are sent
back to the mobile application via an API-gateway (Figure
3a.iii), where users can view and track their responses over
time. The results are stored as structured data in a datastore,
which can be connected to a clinician dashboard or other data
rendering interfaces. These tools would enable clinicians or
psychiatrists to observe changes in individuals’ symptoms and
treatment progression and make informed decisions regarding
intervention strategies.

C. Analytics and Validation

The PHQ-8 questionnaire consists of eight items that eval-
uate symptoms of depression, with each item scored from 0
points (indicating ”not at all” present) to 3 points (indicating
”nearly every day” present). The total score can range from
0 to 24, with scores categorized as follows: no significant
depressive symptoms (0 to 4), mild depressive symptoms (5
to 9), moderate (10 to 14), moderately severe (15 to 19), and
severe (20 to 24) [15].

Currently, the microservice provides a score for each com-
pleted PHQ-8 questionnaire (Figure 3a.iii), and stores the
data longitudinally with time. Leveraging AI/ML models, it
is possible to analyze the responses collected from multiple
PHQ-8 questionnaires to derive more valuable insights. By
considering longitudinal data, a deeper understanding of an
individual’s depressive symptoms and their progression can be
obtained, enabling personalized and effective interventions.

Clinically, a variant of the PHQ-8, called the PHQ-9 ques-
tionnaire is used. The PHQ-8 differs from the PHQ-9 in that
the PHQ-8 excludes the last question in the PHQ-9 which
asks about thoughts of death and self-harm [15]. The PHQ-8
has shown comparable ability to PHQ-9 in diagnosing and
assessing depression among various populations [24]–[26].
Since the question about suicidal ideation is concerning when

real-time psychiatric intervention or further suicidal evaluation
are not provided [25], PHQ-8 may be a better alternative for
depression screening when appropriate suicidal evaluation is
not provided in the study or research.

IV. INTEGRATION OF VIDEO-BASED MICROSERVICE FOR
SIT-TO-STAND MOBILITY ASSESSMENT

A. Clinical Background

Advancements in computer vision and deep learning have
enabled the development of video-based techniques for
contact-free and passive evaluation of Parkinson’s Disease
(PD) symptoms during daily activities. PD is the second
most common progressive neurodegenerative disease that af-
fects 2-3% of the population over 65 years of age [27].
Its hallmark characteristics are motor symptoms, such as
bradykinesia (BRADY), tremors, rigidity, posture instability
and gait disorders (PIGD), along with non-motor symptoms
such as olfactory dysfunction and sleep disorders. Although no
cure exists for PD, dopamine replacement therapy can mitigate
symptoms and improve patients’ quality of life.

Managing the various types of PD requires that neurologists
comprehend the severity of symptoms and extent of motor
fluctuations, which may require changes in medication timing
and dosage. In-person assessments at a clinic done once
or twice a year, follows protocols specified in the Unified
Parkinson’s Disease Rating Scale (UPDRS) and provide neu-
rologists with information on the severity of symptoms, motor
fluctuations, and medication efficacy.

In order to gain insights into changes in motor symptoms
between clinical assessments, clinicians have asked PD pa-
tients to provide daily self-assessments or use wearable sensors
to track mobility symptoms. However, recall bias limits the
usefulness of self-reports, and compliance adherence issues
can affect the deployment of wearable sensors. To address
these challenges, IBM’s Digital Health team has developed
a video-based method that takes a short 20-30 second video
containing sit-stand movements as input to predict the UPDRS
subscores, such as BRADY and PIGD [11].

B. Digital Health Solution

The sit-to-stand microservice is provided on the Health
Guardian mobile application. Using the mobile application,
the user is prompted to take a short video (~20-30 s) of
themselves cycling from a sitting to a standing position several
times (Figures 4a.i and 4a.ii). The user uploads the video in
.mp4 format from the mobile application to the clinical task
manager (CTM) where the raw data and metadata of the file
are stored in a database and cloud object storage (Figure 4b).
The video file is processed by the analytic worker for this
microservice to calculate the UPDRS scores, and generates
a torso motion graph depicting the sit-stand movements and
associated hesitations. The UPDRS scores and torso motion
graph are sent back to the mobile application via an API-
gateway (Figure 4a.iii).



Fig. 4. (a) Illustrates the digital health solution for the sit-to-stand assessment microservice. Briefly, the user is prompted to record a short video of themselves
cycling from a sitting to a standing position several times. (b) Depicts the Clinical Task Manager (CTM) and the datastore which are two backend services of
the Health Guardian platform. These services receive the input video data containing a short sequence of sit-stand movements in .mp4 file format after it has
been uploaded from the mobile application. (c) Describes the steps involved in the sit-to-stand microservice analytics that generate UPDRS score predictions
and torso movement graphs from an input video.

C. Analytics and Validation

The analytics for the sit-to-stand microservice involves
several steps and is described in detail in [11]. Briefly, a short
input video sequence (Figure 4c.i) is processed by a human
detector to extract the video frame-by-frame (Figure 4c.ii).
The resulting data are then passed to a 2D pose estimation
model that predicts the coordinate locations of human joints
in 2D image space (Figure 4c.iii). Next, a 3D pose model
utilizes the 2D pose information to predict joint locations
in 3D Cartesian space (Figure 4c.iv). Finally, the 3D pose
information is utilized in three different ensemble combi-
nations that incorporate Hierarchical Convolutional Network
(HCN) [28], Spatio-Temporal Graph Convolutional Network
(ST-GCN) [29] and/or Convolutional Networks (CNNs) such
as ResNet50 [30] (Figure 4c.v). The UPDRS score is predicted
from the model, and graphs such as real-time torso motion can

be generated from the processed data (Figure 4c.vi).
In two separate clinic visits, video clips of sit-stand motions

from 35 subjects were captured and used to validate the analyt-
ics of the sit-to-stand microservice. This evaluation was part of
a larger UPDRS assessment supervised by a neurologist, who
was also assigned to score each task. The study demonstrated
that it is possible to predict BRADY and PIGD scores from
a short sit-stand video clip, with F1-scores, a measure of a
model’s accuracy, from the AI models performing better than
the results from the two clinician video raters [11].

V. INTEGRATION OF WEARABLE-BASED MICROSERVICE
FOR FUNCTIONAL MOBILITY ASSESSMENT

A. Clinical Background

The Timed Up and Go Test (TUG) is a clinical assessment
tool used to evaluate balance and gait in everyday tasks such



as sitting, standing, walking and turning. It is commonly used
to examine functional mobility in older adults (aged 65+) who
may be frail and have a history of falls [31]. The test involves
standing up from a chair, walking 3 meters (10 feet), turning
around, walking back to the chair, and sitting down again.
The time taken to complete the test, measured in seconds, is
strongly correlated to the level of functional mobility.

Research has shown that older adults who took 13.5 seconds
or longer to perform the TUG were at higher risks of falling,
with a positive prediction rate of 90% [32]. Additionally, stud-
ies have identified cutoff scores of 11.5 seconds in Parkinson’s
disease patients [33], and 14 seconds for patients with strokes
[34] as indicating increased fall risks.

The TUG test can also be used to monitor disease pro-
gression and changes in the quality of life for patients with
mobility impairments as a result of specific diseases, as
demonstrated in studies of patients with Parkinson’s disease
[35] and patients recovering from hip and knee arthroplasty
[36]. Although TUG is a valuable clinical tool, its limitations
include the need for in-person assessment and the results are
only measured as a snapshot in time.

B. Digital Health Solution

To adapt the TUG test to a digital health platform, IBM Re-
search scientists have developed an automated TUG prediction
AI model that utilizes accelerometer data from a wrist-worn
watch. This model was transformed into a microservice using
the standard HG worker and API-gateway template [9].

To use this microservice, the subject first connects the HG
mobile application to a wearable watch (e.g. TicWatch or
Samsung Galaxy Watch series) that has the HG companion ap-
plication installed. Next, the user selects the TUG microservice
on the HG mobile application (Figure 5a.i), which prompts
the user to press the ”Start Sensor” button on the watch.
The user then walks for at least 30 seconds until the watch
buzzes to signal completion. The raw accelerometer signals
are encrypted and sent in .json format via Bluetooth to the
mobile application, which is then uploaded to the HG back-
end services for further processing (Figure 5b). The analytic
worker processes the accelerometer data and calculates the
TUG prediction score as well as the average TUG scores (if
multiple walks were recorded in a given day) (Figure 5c). The
results are then reported back to the mobile application via the
microservice’s API-gateway (Figure 5a.iv).

C. Analytics and Validation

The analysis framework for the TUG prediction model using
wrist-worn accelerators is described in detail in [10]. Briefly,
the raw accelerometer data from the wrist-worn accelerator
is pre-processed to identify walking episodes and to calculate
step duration using step detection (Figure 5c.i). From the step
durations and time difference between consecutive step dura-
tions, 20 statistical features are extracted for each identified
walking episode using a Random Forest model (Figure 5c.ii).
The predicted TUG score is derived from these statistical
features, with the 25th and 5th percentile of step duration

and the mean step duration having the greatest impact on the
predicted TUG score.

To validate this model, it was applied to three datasets
that contained wearable recordings of walks and TUG scores
from 303 subjects, including healthy individuals, those with
Parkinson’s disease, and those with mild cognitive impairment
or dementia. The two public datasets used were the Long-
term Movement Monitoring database (LTMM), which had
subjects wear an accelerometer on their lower back, and the
Gait in Parkinson’s Disease (GPD) database, which recorded
accelerometer data using in-sole gait sensors. The third dataset,
the Dementia Behavioral Study dataset (DBSD), was col-
lected by the University of Tsukuba and IBM Research and
used wrist-worn accelerometers to record data during in-lab
walking. The validation results demonstrated that the Random
Forest-based predictive model for TUG had good clinical
correlation, and achieved an accuracy of 1.7 +/- 1.7 seconds,
with 84.8% of the predictions falling within the minimal
detectable change across all three separate cohorts [10].

VI. DISCUSSION

In the previous sections, three distinct microservices de-
signed to assess depression, sit-to-stand mobility, and func-
tional mobility using text, video, and wearable data, respec-
tively were highlighted. While stand-alone microservices have
clinical utility, recent research suggests that assessing clinical
conditions with multitask conditions can lead to even better
accuracy and assessments [32]. For instance, a study on older
adults with balance issues found that while performing a
secondary task, such as a language task, resulted in more
swaying, suggesting that the effect of a secondary task on
postural control depended on the subject’s balance abilities,
the difficulty of the balance task, and the type of secondary
task being performed [37].

To support multi-modal microservice deployment on the
Health Guardian platform in clinical studies, we have de-
veloped a Django-based web portal called the Clinical Task
Manager (CTM) to manage study designs and patient cohorts.
The web portal offers an easy-to-use graphical user interface
for researchers and clinicians with limited programming back-
ground to leverage the full utility of the platform.

The CTM supports several key clinical study processes:
• Adding and managing subjects
• Defining cohorts and assigning subjects
• Defining tests and grouping them into test-sets
• Dynamically defining tasks by assigning test-sets to co-

hort based on rules
• Distributing tasks to edge devices for data collection
• Providing multi-tenancy support by organizing subjects

and tasks under separated study projects
The data model of the CTM is shown in Figure 6. To design

a clinical study, researchers will first have to identify a patient
population of interest, then use the CTM to filter and assign the
subjects who meet the study enrollment criteria into a cohort
(i.e. a subset of the subjects). Next, the researchers will need
to identify one or more microservices that the subjects in the



Fig. 5. (a) Illustrates the digital health solution for the Timed Up and Go (TUG) assessment microservice. Briefly, the user wears the Health Guardian
companion watch and is prompted to press ”start sensor” on the watch. The user will then stand up and walk for 30 seconds, then sit back down. The raw
accelerometer signal from the watch is sent to the mobile application via Bluetooth. (b) Depicts the Clinical Task Manager (CTM) and the Datastore which
receives the raw accelerometer signal in a .json file format after the file has been uploaded from the mobile application. (c) Describes the steps involved in
the TUG wearable analytics and the TUG score prediction model.

cohort will be asked to perform (i.e. PHQ-8, sit-to-stand, TUG,
etc.). All the questions for each microservice is stored as a
‘test-set’ in the CTM. A study ‘task’ is formed when one or
more test-sets is mapped to a cohort. Once a task is created, the
CTM will distribute the task to all edge devices of subjects in
the assigned cohort with the HG mobile application installed.
Subjects will be reminded to perform the tasks at the required
time (e.g. within a certain time period after a subject wakes up
if the task is to collect information about the subject’s sleep
quality).

There are several unique features of this data model. One

feature is that tasks can be assigned using rule-based dy-
namics. For example, if the goal of the clinical study is to
explore the relationship between depression and mobility, the
researcher can set up a rule where each day, a PHQ-8 task is
sent to a cohort, and the responses can be filtered to create a
sub-cohort with individuals whose score fall below a certain
value. A subsequent task like sit-to-stand or TUG can be
assigned and sent to this new sub-cohort.

Another feature is that this data model will generate a data-
point for each test completed by a subject. This datapoint can
store a value, a string, or a data file along with the associated



Fig. 6. Data model of the Clinical Task Manager (CTM). A ’study’ includes
a set of subjects, defined as a ’cohort’, that are assigned a ’task’ when a ’test-
set’ is mapped to the cohort. Subjects in the cohort will receive the ’task’ on
their Health Guardian mobile application. Upon successful completion of the
task, the data are uploaded from each subject’s phone to a backend datastore
to be processed by the task’s analytic worker. Results from the worker are
stored in the datastore.

metadata like timestamps and user account information. These
datapoints are grouped into datasets based on the test and test-
set relationship. If one or more analytic pipelines are specified
already, the system will automatically publish the datasets
to the Orbit service’s job queue for processing by the HG
back-end components such as the analytic worker and API-
gateways. A more detailed description of the Orbit service, and
setting up the analytic worker and API-gateways is provided in
[9]. After the analytics is completed, the analytic result will be
stored into a database for researchers and clinicians to access
and review.

The CTM is a critical component of the HG platform that
facilitates an end-to-end solution for clinical study design in
the digital health domain. By utilizing the CTM, researchers
can effortlessly design clinical studies with one or more de-
ployed microservices, and facilitate distributed data collection
and processing. The CTM eliminates the common challenges
typically associated with establishing and maintaining a data
pipeline, enabling researchers to concentrate on data analysis
and insight generation. New AI/ML models can be developed
to conduct analytics and examine associations between health
factors derived from data obtained and stored longitudinally
from one or more microservices. The CTM streamlines the re-
search process, empowering researchers to focus on extracting
valuable insights from the data.

VII. CONCLUSIONS

In conclusion, we presented an overview of the Health
Guardian platform, a comprehensive solution for collecting

multi-modal data to gain insights into individual health. The
HG platform simplifies cloud infrastructure and research com-
ponents, providing standard worker and API-gateway tem-
plates to translate AI and ML-based predictive models into mi-
croservices. With 70+ capabilities, researchers and clinicians
can design their clinical studies using various combinations
of microservices such as the PHQ-8, sit-to-stand, and TUG
described in this paper. The Clinical Task Manager’s user-
friendly graphical user interface allows for easy set up of
clinical cohorts, and to select one or more microservices
to assign to a specific cohort. The HG platform is flexible,
scalable and supports the entire data life cycle, enabling
accelerated development of AI research and clinical validation.
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