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Abstract—This paper presents a data-centric and security-
focused data fabric designed for digital health applications.
With the increasing interest in digital health research, there
has been a surge in the volume of Internet of Things (IoT)
data derived from smartphones, wearables, and ambient sensors.
Managing this vast amount of data, encompassing diverse data
types and varying time scales, is crucial. Moreover, compliance
with regulatory and contractual obligations is essential. The
proposed data fabric comprises an architecture and a toolkit
that facilitate the integration of heterogeneous data sources,
across different environments, to provide a unified view of
the data in dashboards. Furthermore, the data fabric supports
the development of reusable and configurable data integration
components, which can be shared as open-source or inner-source
software. These components are used to generate data pipelines
that can be deployed and scheduled to run either in the cloud
or on-premises. Additionally, we present the implementation
of our data fabric in a home-based telemonitoring research
project involving older adults, conducted in collaboration with the
University of California, San Diego (UCSD). The study showcases
the streamlined integration of data collected from various IoT
sensors and mobile applications to create a unified view of older
adults’ health for further analysis and research.

Index Terms—Digital Health, IoT Devices, Data Fabric, Edge
Computing, Elyra AI Toolkit, Grafana, Cloud Computing

I. INTRODUCTION

The healthcare industry is experiencing great changes driven
by the rise of digital health technologies and the increasing
adoption of Internet of Things (IoT) devices. However, despite
the potential for this combination of technologies to revolu-
tionize healthcare by improving patient outcomes, there are
still several key challenges related to data collection, orga-
nization, and accessibility, in addition to meeting regulatory
compliance and contractual obligations.

To address these challenges, various groups have suggested
a data fabric architecture-based approach for data life cycle
management in healthcare scenarios. For example, Macias et
al. developed a smart healthcare digital twin-based data fabric
architecture that monitors the spread of COVID-19 virus in
a nursing home [1]. Ahouandjinou et al. proposed a hybrid
architecture for a visual patient monitoring system in the
Intensive Care Unit (ICU) to improve intensive health care
[2]. Other frameworks are intelligent such as the data pipeline
model which incorporates machine learning to automatically
monitor, detect, mitigate, and alarm issues that arise at dif-
ferent stages of the data pipeline [3]. However, while these
proposed data fabric implementations are effective, they lack
flexibility for users to choose between on-premises or cloud
data integration. They also do not support the option to use
different workflows engines, such as Kubeflow to manage
machine learning (ML) and Machine Learning Operations
(MLOps) pipelines, or Apache Airflow to manage complex
data engineering pipelines at scale. Additionally, the data
integration code cannot be easily reused, in a no-code / low-
code approach, making the user training and usage of the data
fabric tools and software for new projects more difficult.

In this paper, we present a data fabric solution that provides
an end-to-end method to integrate heterogeneous data from
EHRs, mobile applications, IoT sensors and wearable devices.
We also showcase an example of the data fabric implementa-
tion in an older adult research study conducted in collaboration
with UCSD with the purpose to deepen our understanding
of the cognitive, social, and mobility impacts of clinical and
subclinical sleep disturbance such as sleep apnea.
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II. DATA FABRIC FOR DIGITAL HEALTH

The data fabric for digital health provides a collection of
tools and software that moves data through several stages:
data collection, data storage, data integration, and data access
with tight data governance. The architectural layers of the data
fabric along with their corresponding components are shown
in Figure 1. The data fabric can be deployed in different
environments while sharing the same data access layer for
insights in a self-service manner.

Fig. 1. Data Fabric Architecture. The data fabric makes use of available
managed common services in the cloud or on-premises infrastructure, or
common services deployed in an OpenShift® container platform.

Data collection is orchestrated using the clinical task content
manager (CTCM) service which provides data governance
and supports real-time data upload via RESTful application
programming interfaces (APIs) and batch data upload via a
user interface (UI), command line interface (CLI) or software
development kit (SDK). The CTCM validates input data
against a set of configurable system-defined Critical Input
Data Elements (CIDE) from the CTCM’s common data model.
CTCM also mandates Critical Output Data Elements (CODE)
for the pipelines’ data output, which includes a metadata file
for data discovery purposes. These elements do not contain
sensitive information, PHI/PII, and are used for analytics and
reporting purposes via dashboards. The CODE comply with
a digital health vocabulary used across the environment and
enforced across services. The vocabulary is built using a
crowdsourcing approach as new data elements are introduced
in clinical study pipelines.

The data storage uses an IBM cloud object storage (COS),
a s3-based object storage bucket that is integrated with IBM
Aspera® to provide high speed data transfer. The datastore
decouples the metadata from the data, by linking relational
database records with IBM COS objects. The metadata ele-
ments are stored in a PostgreSQL relational database, while
the data, unstructured or structured, such as audio, video, or
sensor text data are stored in their native format in an IBM
COS bucket.

The data integration layer uses the Elyra AI Toolkit to
facilitate the creation and deployment of data pipelines, for
data integration and analytics, that can run locally or at scale
using Kubeflow or Apache Airflow. Kubeflow and Apache

Airflow enable the execution, management, and monitoring
of pipelines or workflows at scale using a container platform
that can run in the cloud or on-premises. Elyra pipeline nodes
can invoke internal or external services via APIs or SDKs such
as IBM Cloud Watson speech to text service or a Ray cluster
used for at scale parallel processing. Elyra AI Toolkit enables
the re-usability or modification of pipeline nodes, written
in Python or R programming language, thereby facilitating
the development of new data pipelines and leveraging the
advanced analytics and medical knowledge from previous
digital health use cases in a no-code / low-code approach.
Elyra pipelines can be executed via a GUI in JupyterLab or
CLI. Elyra AI Toolkit is integrated with Git, for full pipeline
and pipeline nodes version control.

The data access layer uses Grafana to facilitate the delivery
and analysis of data insights, via dashboards, across the
environments using the data fabric. Grafana dashboards are
configured to visualize data based on CTCM’s configurable
system-defined CODE. Each environment, using the data
fabric, defines an outbound IBM COS bucket from where
Grafana can read the data. A hybrid cloud approach can be
implemented where the data fabric is deployed in a cloud
or on-premises infrastructure that is close to where the data
is collected, stored and integrated at the edge, as depicted
in Figure 2. Additionally, Keycloak, an Identity Provider
(IdP) that offers user Identity and Access Management (IAM)
capabilities at scale, is integrated with Grafana.

Fig. 2. Depiction of cloud and on-premises data fabric with distributed and
composable components.

In the state of the art, IBM Cloud Pak® for Data (CP4D)
provides a scalable enterprise grade data fabric architecture
and offers IBM products with emphasis in data access and
hybrid cloud. In the other hand, the digital health data fabric
emphasizes security, trust and governance. It can minimize
the complexity of the components needed to deploy and to
manage for security and privacy controls, with flexibility to
run in-place in a localhost or in standalone containers. This
flexibility enables the data fabric tools to be deployed in run
time environments managed by third party vendors or internal
privacy and security teams within an organization to facilitate
self-service data sharing for remote health monitoring. Table 1
lists the building blocks and functionality by the digital health
data fabric implementation, and the IBM data fabric [4]. Data
collection, which is critical for our IoT data driven digital



TABLE I
A FUNCTIONALITY COMPARISON BETWEEN IBM DATA FABRIC AND THE

DATA FABRIC DESCRIBED IN THIS WORK

health solution, is not likely to be added to CP4D. However,
we acknowledge the need for, and plan to add, data catalog and
data lineage support to our fabric. A catalog of data products
along with mechanisms to facilitate access will provide the
groundwork for data virtualization.

III. IMPLEMENTATION OF DATA FABRIC IN OLDER ADULT
HOME-BASED TELEMONITORING STUDY

An implementation of the data fabric discussed in this paper
is a home-based telemonitoring study conducted in collab-
oration with UCSD and the IBM Digital Health team. The
sensors used in this home-based telemonitoring study can be
classified as ambient sensors or scripted tasks that require the
participant’s involvement [5] (Figure 3a). Data ingestion was
done either through a batch or real-time mode of operation,
depending on the data source (Figure 3b). The data was
stored in staging and production datastores, validated by CIDE
(Figure 3c). Finally, the data were extracted, validated against
CODE (Figure 3d), and visualized in a Grafana dashboard
(Figure 3e).

IV. CONCLUSIONS

In conclusion, we have presented a data fabric architecture
with supporting tools that addresses many of the challenges
that arise in the adoption of digital health technologies and IoT
devices for research and clinical purposes. We demonstrated
the effectiveness of our data fabric solution in an older adult
home-based telemonitoring research study.
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