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Abstract—The emergence of COVID-19 offered a unique
opportunity to study chronic pain patients as they responded
to sudden changes in social environments, increased community
stress, and reduced access to care. We report findings from n=70
Spinal Cord Stimulation (SCS) patients before and during initial
pandemic stages resulting from advances in home monitoring
and artificial intelligence that produced novel insights despite
pandemic-related disruptions. From a multi-dimensional array
of frequently monitored signals—including mobility, sleep, voice,
and psychological assessments—we found that while the overall
patient cohort appeared unaffected by the pandemic onset,
patients had significantly different individual experiences. Three
distinct patient responses (sub-cohorts) were revealed, those
with: worsened pain, reduced activities, or improved quality-of-
life. Remarkably, none of the specific measures by themselves
were significantly affected; instead, it was their synergy that
exposed the effects elicited by the pandemic onset. Partial
correlations illustrating linked dimensions by sub-cohort during
the pandemic and those associations were different for each
sub-cohort before COVID-19, suggesting that daily at-home tele-
monitoring of chronic conditions may reveal novel patient types.
This work highlights the opportunities afforded by applying
modern analytic techniques to more holistic and longitudinal
patient outcomes, which might aid clinicians in making more
informed treatment decisions in the future.

Index Terms—chronic pain, remote sensing, COVID-19

I. INTRODUCTION

The limitations of traditional patient care have been starkly
exposed by the COVID-19 pandemic. There have been sig-
nificant disruptions to patient care, treatment paradigms, and
on-going clinical studies [1]. Patients with chronic pain have
been particularly vulnerable, as the pandemic interrupted many
of their daily routines, pain management plans, and analgesic
therapies (including postponed medical office visits, canceled
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therapy sessions, delayed or limited analgesic treatments, and
cessation of elective intervention procedures) [2], as well as
halted social or extracurricular activities which often serve
as vital coping mechanisms for individuals [3]. Many pain
patients were also more at risk of becoming seriously ill
due to underlying concurrent health issues and concomitant
medications which may affect respiratory and/or immune
responses [3]. All of these disturbances may contribute to
increased pain intensity, worsening disability, and deteriorating
mood in a population which already has significant mental and
physical health co-morbidities.

Because chronic pain is such a complex, multidimensional
experience that significantly impacts individuals’ mental and
physical well-being, there is a need to capture more aspects
of patients’ unique experience with additional metrics beyond
the previous gold standard of pain intensity. Moreover, the
sporadic access to clinicians and the reluctance of patients
to visit healthcare centers during the pandemic shows how in-
person interventions were constrained to major events, pushing
to the forefront the need and opportunity for more remote
interventions. Ecological momentary assessments (EMAs) are
one such tool that allows measurement of various aspects of an
experience repeatedly in real-time in different environments.
Coupled with a digital health ecosystem that not only col-
lects self-reported EMAs, but also sensor-based EMAs and
implanted medical device data, it is possible to obtain a rich,
multi-dimensional, highly frequent, and minimally intrusive
representation of patients as they go about their daily lives.
They can help us not only evaluate patients when they cannot
come to laboratory or clinical visits, but also obtain a more
holistic and multi-faceted picture of a patient’s experience
outside of the physical boundaries of a doctor’s office or
research lab. To this point, we have already witnessed a large
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effort to make such methods more mainstream during COVID-
19 for a gamut of clinical and non-clinical use cases [4]–[7].

On-going clinical research of spinal cord stimulation (SCS)
patients using a digital health ecosystem presented a unique
opportunity to evaluate the extent to which the pandemic
impacted on-going chronic pain experiences and quality-of-life
(QoL). In particular, we hypothesized that under the additional
economic, social, and healthcare-access stressors provoked
by the COVID pandemic: (1) a significant diversity in pain
patients’ responses would be exposed, (2) these responses
would not be restricted to or explained by canonical assess-
ments based on reported pain intensity scores, and (3) in-home
continuous evaluation of multiple self-reported and sensor-
based assessment streams would reveal strong associations
(and concomitant dissociations) that may eventually inform
the existence of a multi-modal chronic pain state indicator. To
test these hypotheses, we analyzed self-reported ratings, phys-
iological measurements from a smart watch and sleep sensor,
and speech recordings collected before and during COVID
from patients engaged in these studies for the treatment of
chronic low back and/or leg pain with SCS.

II. METHODS

A. Study Data Collection

We collected data through multiple ongoing longitudinal,
observational, and prospective clinical studies (NAVITAS and
ENVISION Studies, Clinicaltrials.gov ID: NCT03240588) in-
volving up to 1700 chronic low back and/or leg pain patients
who are or were candidates for SCS treatment (Boston Scien-
tific, Valencia, CA). Subjects were enrolled at multiple sites
in the United States if they were planning to receive or had
already received an SCS trial or implant system. Additionally,
subjects may have been previously enrolled in the RELIEF
study (Clinicaltrials.gov ID: NCT01719055). This analysis
focuses on those subjects enrolled in the ENVISION study
who met the analysis criteria, however the dataset may have
included patients from any of the studies above if the subject
was enrolled in more than one study concomitantly.

The ENVISION study collects a variety of self-reported,
psychological, physiological, and other measures both in-
clinic via cross-sectional visits and longitudinally at-home,
via a custom digital health ecosystem, for up to 12 – 24
months. Outcome measures include pain, standardized ques-
tionnaire scores, mood/emotion, voice, sleep quality/quantity,
cardiac function, wrist worn actigraphy, medication use, spinal
fluoroscopic imaging, SCS parameters/usage, functional fit-
ness, treatment satisfaction, and quality-of-life reports. At-
home data were collected using a custom-built digital health
ecosystem (Boston Scientific, Valencia, CA) connected to
wearable accelerometers (Galaxy Watch S2, Samsung USA,
Menlo Park, CA with custom watch application, Boston
Scientific, Valencia, CA), ambient sleep sensors (Emfit QS,
EMFIT, San Marcos, TX), and the SCS system (Spectra
WaveWriterTM/Precision SpectraTM, Boston Scientific, Va-
lencia, CA).

B. Data Periods

This analysis compares a subset of collected EMA [8] data
from eligible ENVISION subjects early in the COVID-19
pandemic (when the uncertainty and changes were expected
to be the most significant) to the same assessments from
the same patients prior to the pandemic. Since this clinical
cohort is exclusively in the USA, we used the dates of the
COVID-19 national emergency to define pandemic period and
pre-pandemic (baseline) period that are used for the majority
of comparisons. Specifically, the US government publicly
declared a national emergency 13 March 2020 1; however,
the national emergency technically began on 1 March 2020
and news coverage was actively reporting on the pandemic
before this dates. Therefore, we used data collected during
the 6 weeks between 6 March 2020 (half-way point) and 17
April 2020 for the Pandemic Period. We then defined a 5-
week Gap Period (1st February 2020 - 5 March 2020) to
account for growing awareness in the patient cohort to the
emerging pandemic. The 6 week-period prior to this gap was
used as the Baseline Period (20 December 2019 – 31st January
2020) for comparing the patients to the Pandemic Period. The
Baseline period was chosen to maximize patient sample size
while still accounting for other time effects (e.g., being close
in time to the Pandemic Period and having the same analysis
window length of 6-weeks duration). Patients were given a
set of targeted questions (COVID Questions) during the final
week of the study-defined Pandemic Period (10 April 2020 -
17 April 2020).

C. Datasets and Analyses

To be eligible for analysis, patients had to be actively
enrolled in the ENVISION study through the Baseline and
Pandemic Periods, have responded to at-home study ques-
tions during the Baseline Period and the COVID Questions,
and have the same treatment status during the Baseline and
Pandemic periods (i.e., if they were pre-implant during the
Baseline Period, they were pre-implant during the Pandemic
Period). The EMAs evaluated here included a subset of in-
clinic questionnaires, self-reported ratings, physiological mea-
surements, and voice recordings.

In-clinic questionnaires were collected at baseline, 1-month,
3-months, and 12 months post enrollment, with an optional
extension to 24 months. Here, we analyze Beck Depression
Inventory (BDI-II), Fear Avoidance Beliefs Questionnaire
(FABQ), Oswestry Disability Index Version 2.1a (ODI v2.1a),
and Pain Catastrophizing Scale (PCS) from either the most
recent visit attended within the Baseline Period or the most
recent in-clinic visit prior to Baseline (enrollment, 1-month
enrollment, or 3-months, whichever was closest to the start
of the Baseline period). Patients were asked to provide self-
reported ratings at home on their phones using the digital
ecosystem at least once or up to twice a day. This analysis

1https://www.whitehouse.gov/briefing-room/presidential-
actions/2022/02/18/notice-on-the-continuation-of-the-national-emergency-
concerning-the-coronavirus-disease-2019-covid-19-pandemic-2/)



focuses on pain intensity (0.0 – 10.0 numeral rating slider),
mood (1 – 5 stars), sleep quality (1 – 5 stars) and duration
(hours), medication intake (“I didn’t use any”, “less than
usual”, “same as usual”, “more than usual” for opioids; non-
opioid prescription medications with indications for pain, over-
the-counter medications, and prescribed sleep medications
were reported separately), and activities of daily living (list
of 13 activities that can be summarized as self-care, exer-
cising, commuting, and socializing). Physiological features
extracted from the watch, worn daily, included step counts,
activity intensity, and effective mobility [9] (an engineered
metric derived from the smartwatch sensors that quantifies
both intensity and duration of activity). Overall sleep score,
duration to sleep onset (the transition time from wakefulness
into the first stages of sleep), toss and turn counts, number
of awakenings, and lowest heart rate information achieved
during sleep (precalculated by EMFIT, San Marcos, TX) [10]–
[12] were also analyzed for all patients who chose to use
the optional ambient sleep sensor. Finally, voice recordings
were collected using the digital ecosystem to administer
speech prompts approximately once a week (with an option
to submit more often if they wanted). Extracted acoustic
and content (psycholinguistic) features used were those that
have been previously found in the literature to be associated
either with pain [13], such as pitch variation or the second
formant (frequency response of the acoustic resonance of the
human vocal tract), or with emotional state [14], such as
association with emotional concepts or overall sentiment [15].
To analyze the syntactic and semantic content of patients’
speech, voice recordings were first sent to a transcription
service (TranscribeMe, Oakland, CA, www.transcribeme.com)
for manual transcription. Transcribed files were then fed
into a number of programs, including a slot grammar parser
[16] to extract and normalize syntax-related content features
and a cloud-based service that uses deep learning to extract
metadata from text such as entities, keywords, categories,
sentiment, emotion, relations, and syntax natural language
understanding tools (Watson Natural Language Understand-
ing, IBM, Armonk, NY, https://www.ibm.com/cloud/watson-
natural-language-understanding) [17] to quantify sentiment
and emotion-related content features. Analysis of variance
(Kruskal Wallis and two-way ANOVA) and chi-squared tests
were used to test for differences in patient demographics.
The Wilcoxon signed rank test was used to compare EMAs
between time periods for the analysis population.

Subgroups were identified based on changes in their self-
reported ratings between periods (Baseline-Pandemic) using a
k-means clustering approach. The optimal number of clusters
was determined based on the data resolution, sample size,
interpretation potential, and stability as established with a Sil-
houette analysis, which estimates cluster separability function
S by comparing intra- and inter-cluster average distances. To
identify the optimal number of clusters, we computed the drop-
in separability as a function of increasing number of clusters,
∆S(n) = S(n)−S(n−1), and chose to select the cluster size
such that adding one more cluster would result in the largest

separability drop defined as n⋆ = {n : max(∆S(n+1))} over
1,000 repetitions). Multidimensional Scaling (MDS) was used
to preserve the similarity of the high-dimensional EMA data
while projecting it into a new space with lower dimensions.
Metric stress (normalized sum of squares) of the cosine dis-
tances was used to optimize the MDS. Partial correlations were
used to test for statistically significant differences in the sub-
cohorts’ EMAs between Baseline and Pandemic periods. For
embedding the different periods’ partial correlations, we used
Procrustes similarity between the matrices, which assumes
that translation, rotation, and scaling preserves the identity
of matrices. To estimate an index of robustness, we created
replicas of the partial correlation for each period by repeatedly
subsampling the cohorts independently. Mann Whitney and
Wilcoxon signed rank tests were used to test for differences in
physiological measurements obtained from the objective sen-
sors. Differences between cohorts in in-clinic questionnaires
and COVID Survey responses were determined using one-
way ANOVAs and Kruskal-Wallis tests. Extracted acoustic
and content (psycholinguistic) features from voice data were
evaluated using Kolmogorov-Smirnov tests, Wilcoxon signed
rank tests, and interquartile range.

III. RESULTS

A. Study and Analysis Population

We evaluated 159 patients enrolled in ENVISION for in-
clusion in this analysis (Figure 1). Seventy of these subjects
met the analysis criteria: 61.4% female, 60 ± 9.4 years mean
age, 15.1 ± 10.7 years mean duration of chronic pain, and
171.8 ± 58.7 days mean ENVISION study follow-up duration
(Figure 4). All 70 subjects were candidates for SCS treatment
of chronic pain in the low back (98.6%), unilateral leg (41.4%),
and/or bilateral leg (42.9%), and 94.3% (n=66/70) received
SCS treatment before the Pre-Baseline period.
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Figure 1:  Patient population. CONSORT diagram outlining entire cohort, from enrollment to analyses.  

 
 

Fig. 1. Patient population. CONSORT diagram outlining entire cohort, from
enrollment to analyses.

B. Self-reported ratings across the entire patient population
were unchanged during the Pandemic Period

With the exception of commuting and socializing, which
were impacted at-large by COVID, no distinctions in
self-reported ratings between periods were detected at a
population-level (Figure 2b), Wilcoxon tests non-significant)



in the at-home data. We reasoned that patients likely diverged
in how they coped physically and mentally during COVID, and
that these individual differences may be diluted or obstructed
by focusing on the entire cohort or on specific EMAs as
opposed to their interactions. This was confirmed by analyzing
the covariance of ratings across time, where we repeated
subsampled 50 embeddings of the ratings in each period and
randomly selected 40 subjects in each iteration to compute a
representation of each of the 4 periods, resulting in 50 different
embeddings for each of the 4 periods. The embeddings were
stable for each period, and moreover, the first factor/dimension
clearly separated the COVID period ratings from those in
Baseline and Gap. This demonstrated that the patients’ ex-
periences during COVID were markedly and robustly distinct
with respect to their previous reports and experiences.
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Figure 2: Defining periods and identifying unique subgroups. (a) Daily self-reported ecological momentary 
assessments (EMAs) and weekly voice recordings, that have been collected via the a smart phone app throughout the 
study, were compared between the Baseline period and Pandemic period. Data was collected from each subject 
beginning at study enrollment, beginning with the initial patient in July 2019. Additionally, objective measurements from 
patient smart phones and sleep sensors (orange line) were made and a battery of standardized questionnaires was 
collected at enrollment and at any subsequent visits (stars and black line) prior to the COVID-19 pandemic. The 
Pandemic period is defined as the 6-week window beginning 6 March 2020 and ending 17 April 2020, during which a 
set of 5 questions was also administered via the app for 1 week (COVID-Questions, red dots). To minimize potential 
effects of the pandemic which may have been present in Gap period while maximizing the sample size of patients used, 
we chose to define a Baseline-Period of equal length between 20 December 2019 and 31 January 2020. Unless 
otherwise noted in the manuscript, data was analyzed within these 2 periods. Additionally, since patient visits were 
suspended during the Pandemic period and many scheduled visits had already taken place prior to the Baseline period, 
we defined a Pre-Baseline Period to capture in-clinic questionnaire data, enrollment information, and additional voice 
responses. The period between the Baseline period and Pandemic period is referred to as Gap period. (b) Box-and-
whisker plots show averaged ratings of 12 EMAs across the entire Baseline period (blue) and Pandemic period (red) 
for n=70 patients; Wilcoxon tests revealed no differences between periods at a cohort-level, with the exception of 
commute and socializing which nevertheless are represented by wide overlapping distributions. Green dots and boxes 
show boundaries of periods. 
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Fig. 2. Defining periods and comparing EMAs. (a) Daily electronic self-
reported ecological momentary assessments (EMAs), semi-continuous wrist-
worn and sleep sensor signals, and weekly voice recordings (orange line), were
compared between the Baseline period (20 December 2019 to 31 January
2020) and Pandemic period (6 March 2020 to 17 April 2020). Data were
collected from each subject beginning at study enrollment, beginning with
the initial patient in July 2019. A battery of standardized questionnaires was
collected at enrollment and at any subsequent visits (stars and black line) prior
to the COVID-19 pandemic; a set of 5 questions was also administered via the
digital health ecosystem app for 1 week (COVID-Questions, red dots). A Pre-
Baseline Period captured in-clinic questionnaire data, enrollment information,
and additional voice responses which had taken place prior to the pandemic.
The Gap period between Baseline and COVID was defined as a buffer for
COVID-19 spread and pandemic awareness. Periods indicated with green dots
and boxes. (b) Box-and-whisker plots show averaged ratings of 12 EMAs
across the entire Baseline period (blue) and Pandemic period (red) for n=70
patients; Wilcoxon tests revealed no differences between periods at a cohort-
level, with the exception of commuting and socializing, which were lower
during COVID.

C. Clustering reveals linked factors in 3 sub-cohorts: Activi-
ties of Daily Living Susceptible, Pain Susceptible, and Quality
of Life (QoL) Resilient

Using changes in self-ratings between periods (Baseline-
Pandemic), 3 clusters were determined (Figure 3): Cluster
(sub-cohort) 1 was defined primarily by worsened activity lev-
els during COVID, including reduced exercising, commuting,
and socializing (ADL Susceptible, n = 34); Cluster 2 was
defined by improved QoL measures including better mood,
improved sleep, and reduced medication intake (QoL Resilient,

n = 20); and Cluster 3 was defined primarily by worsening
pain intensity during COVID (Pain Susceptible, n = 16).
Associated differences in EMA changes between clusters can
be found in Figure 3a, showing that clustering separates groups
with several simultaneous statistically significant differences.
Importantly, the groups did not differ in their demographics
including potential confounding factors such as duration of
pain or pain locations (Figure 4). In Figure 3b, we show
the result of applying Multidimensional Scaling (MDS) to the
rating changes, along with the cluster identity of the samples
as computed by k-means. It can be seen how the projected
samples are located such that both left-right and down-up
directions correspond to worse-to-better pain and QoL. This
two-dimensional mapping separates the three sub-cohorts very
well, suggesting that the correlated EMA changes (12 dimen-
sions) induced by the Baseline-to-Pandemic transition can be
represented by a reduced number of independent dimensions.

In contrast to the univariate analysis, we found statistically
significant differences in the sub-cohorts when looking at
partial correlations (pCorr) for 12 EMAs between Baseline and
Pandemic periods: pain, mood, sleep quality, sleep hours, opi-
oid medications, non-opioid prescription medications indicated
for pain, over-the-counter medications, sleep medications, ba-
sic self-care (including lying down, sitting, standing, bathing,
dressing, eating and cooking), exercise (including exercising,
housework, and yard-work); commute (includes all forms of
traveling), and socializing. Figure 5 shows the linked factors
(R-value color-coded, p < 0.075) estimated for the 3 sub-
cohorts in the two periods. The absence of a link between two
EMAs in pCorr means that the corresponding ratings do not
have any meaningful association after possible confounds are
removed (i.e., they are conditionally independent) and as such
do not directly influence each other. Note that in the Baseline
period, pain intensity appears to be conditionally independent
from all other ratings for the 3 sub-cohorts, an effect that
changes during COVID, which shows different associations
for pain in each group. In other words, our hypothesis that
the stress introduced by COVID would impact perceived pain
intensity is supported by the Pandemic period correlations with
stronger dependencies on pain from the other linked factors.
Another striking feature is that the 3 sub-cohorts show a
strong association between sleep quality and mood during the
Pandemic period, something only seen in the ADL-Susceptible
sub-cohort during Baseline.

D. Subcohorts differ in their physiological data collected from
sensors

The analysis of sensor-based mobility (Figure 6), available
for subsets of those 70 subjects who met the analysis criteria,
shows a differential pattern across the groups. During the
Baseline and COVID periods, QoL-Resilient patients (n=15)
had higher “running” step counts per day (likely reflective of
more intense activity instead of actual running) than the other
two groups (Figure 6a), while Pain-Susceptible (n=8) patients
had the lowest (QoL vs PainS Mann Whitney, p < 0.003 and
p < 0.03); in contrast, during COVID the three groups have al-



most identical counts, consistent with the mobility restrictions
imposed by the pandemic. When using the accelerometer-
based features, although the overall effective mobility was
increased for all groups in the COVID period, the result is
not statistically significant (Figure 6b, Wilcoxon p = 0.37).
However, we observed that there is a significant difference in
the Baseline period between QoL-Resilient (n=16) and ADL
Susceptible (n=17) sub-cohorts (Mann Whitney, p < 0.05,
higher for QoL-Resilient patients). On the other hand, a subset
of sleep sensor measurements, averaged across each period,
in ADL-Susceptible (n=18) patients was affected the most
between periods. We found that sleep onset latency (Fig-
ure 6c) significantly increased during COVID(Mann Whitney
p < 0.05). In contrast, and the number of toss and turns
(Figure 6d) was consistently higher in the QoL group (n=10)
with respect to the PainS group (n=8) across periods (Mann
Whitney p < 0.05 in both).

E. Subcohorts do not differ in their responses to in-clinic
questionnaires prior to the pandemic

To identify possible a priori clinical markers of response, we
examined scores on questionnaires collected in clinic during
or before the Baseline period (Pre-Baseline) and responses to
the COVID-Questions. There were no statistically significant
differences across the 3 sub-cohorts in depression scores (BDI-
II), pain catastrophizing tendencies (PCS), fear-avoidance be-
havior (FABQ), or overall disability (ODI) collected during
or before the Baseline period (see supplemental material for
statistics), suggesting the differences seen in EMA charac-
teristics were not due to underlying personality differences
or undiagnosed co-morbid mood conditions. Likewise, there
were no differences seen across the 3 groups’ acute mental
health scores reported during COVID-period or in the number
of significant problems reported during COVID-period (in
supplement), implying that all clusters were equally (albeit
differently) stressed and concerned by the pandemic.

F. Subcohorts differ in their emotional reactions during the
COVID-period and in their language qualities over time

While we did not find any evidence of underlying differ-
ences in emotional characteristics in our clusters based on in-
clinic scores or mental health self-reports, we did find differ-
ences in psycholinguistic and acoustic properties of patients’
voice recordings during the study. Voice recordings were
completed by 48/70 subjects during the COVID-Questions
week, Baseline period, and Pandemic period. We show distinct
differences between the sub-cohorts in the psycholinguistic
content and acoustic speech properties of their speech. Re-
garding acute responses to COVID Questions, QoL-Resilient
patients showed significantly less use of fear-related words
than the other cohorts, a finding that aligns with their EMA
attributions (Figure 7a, Kolmogorov-Smirnov test, p < 0.01).
When looking at changes in speech across time, one of
the most prominent acoustic features that differentiated both
periods was variation in the frequency response of the acoustic
resonance of the human vocal tract (i.e., formants, Figure

7b). We found that the interquartile range (IQR) of formant
2 (F2) values increased in the COVID-period for all patients
(Wilcoxon, p < 0.02), an effect which was most pronounced
in the ADL-Susceptible sub-cohort (Wilcoxon, p < 0.005).
Differences in content-based features between periods were
also informative. For example, the normalized count of sleep-
related words was higher in the COVID-period for the ADL-
Susceptible sub-cohort (Wilcoxon, p < 0.004)). On the
other hand, pain-related words were used less frequently in
COVID-period for the QoL-Resilient sub-cohort (Wilcoxon,
p < 0.004).

Further details on the analysis can be found in the
Supplement.

IV. CONCLUSIONS

Following our initial hypotheses, we demonstrate multiple
aspects of chronic pain patients’ everyday experiences were
significantly altered by the COVID-19 pandemic, in ways that
were not observed in the overall population, not related to
pain intensity alone and not immediately clinically obvious.
Instead, we show the emergence of 3 unique sub-cohorts of
patients, some of whom were vulnerable to increased pain in-
tensity during COVID (Pain-Susceptible), some to worsening
activities of daily living (ADL-Susceptible), and others whose
experiences largely improved during the pandemic, including
better mood, better sleep, and less medication utilization (QoL-
Resilient). We did not know a priori which cluster a patient
would be assigned to during the COVID-period; however,
because we saw differences and changes pre-COVID as a
function of sub-cohort, it may be possible for future work to
predict how patients may respond to other stressors that they
routinely experience. This work also highlights the utility of
longitudinal multi-modal cross-environment digital analytics -
in the future, these approaches could help ensure clinicians are
well-informed when making clinical decisions across a broad
range of domains and patient symptoms.

The patient groups were characterized by subtle but im-
portant differences in the interactions between their EMAs,
how active they were prior to COVID, their sleep during
COVID, and how they talked about their experiences during
and prior to COVID, all of which suggest underlying differ-
ences in emotional and behavioral responses to stress (e.g.,
different coping mechanisms [18], [19] or different feelings
of control versus helplessness [20], [21]). Importantly, the
reported levels of pain intensity, while essential, by themselves
would not have revealed the rich effect of the pandemic
stress on the patients’ lives. The inclusion of multiple aspects
of the pain experience – mood, sleep, medication use, and
various activities – ultimately allowed for the dissociation
of three unique patient responses, which together may have
implications for differential, patient-centric remote therapy
solutions or study engagement plans. That is not to say that
all the features collected were necessary, nor that the more
aspects of the chronic pain experience measured, the better
the outcome (more data does not always mean better results).
Instead, our results imply artificial intelligence techniques with

https://www.dropbox.com/s/i0du0cqhyee09h9/supplement_covid_ICDH.pdf?dl=0


multiple data collection mechanisms can provide deeper and
important insights into patient experiences. We show here
that the relevant representational dimensionality of the chronic
pain experience is not arbitrarily complex or large: as best
exemplified by the MDS map, a limited number of properly
defined factors may suffice to account for what could be
considered a multi-modal chronic pain ”index” representing
the current state of the patient. This integrative representation
would provide clinicians with a radically new approach to
understanding chronic pain patients and perhaps enable them
to proactively intervene in ways they may not have previously.
Moreover, the introduction of digital technology allowed for
the inclusion and assessment of novel, more naturalistic, and
richer data streams not typically available via traditional re-
search studies or patient care delivery. For example, mobility is
a largely passive measure of utmost clinical importance which,
outside of functional fitness assessments done at a visit, has
otherwise only been estimated retrospectively and inaccurately
[22]. Likewise, the limitation of yes/no or scale-based self-
reported assessments can be enriched by allowing for more
naturalistic language expression, bringing them closer to how
in-clinic assessments are conducted (e.g., conversationally).

In particular, the sub-cohort we identified as Pain-
Susceptible can additionally be characterized by having sig-
nificantly less mobility during the Baseline period, and sig-
nificantly higher preoccupation with fear-related topics during
the COVID-period, both of which may offer additional oppor-
tunities for prevention (e.g., to incentivize or enable patients
to improve mobility from the start) and intervention (e.g., to
recommend concomitant psychological treatments to be used
in conjunction with SCS to help reduce or reframe co-morbid
anxious thoughts or limit fear-based actions/inactions). We
found a reduced amount of sleep hours and worse sleep quality
for the ADL Susceptible sub-cohort in comparison with the
other two groups, in line with the hypothesis that this sub-
cohort required more time to fall asleep during COVID as
measured by the under-the-mattress sleep sensor. We similarly
observed alignment between self-reported activity and objec-
tive measures of activity – for example, our measure of ef-
fective mobility was always higher for the QoL Resilient sub-
cohort than for ADL Susceptible group who struggled with
various activities during COVID. These findings might have
clinical implications for prescribing sleep-related medication
or recommending other sleep or mobility-based interventions,
personalized based on patients’ subcohort membership.

In the case of acoustic features, an increase in variability
(IQR) of F2 during the COVID period with respect to the
Baseline period may indicate that patients expressed more
negative emotions or had a more negative tone when answering
the prompts [23], [24]. This pattern was most noticeable for
the ADL Susceptible sub-cohort when comparing the Base-
line period versus Pandemic period. Likewise, our extracted
content features were also congruent with our sub-cohorts,
with QoL Resilient patients showing the lowest amount of
sadness-related words during COVID compared to the other
two groups. Our findings also suggest that there is a pos-

itive correlation between how frequently certain topics are
mentioned and the effects of those topics on a patient’s life.
For example, sleep-related words were used more frequently
during the COVID period for the ADL Susceptible group,
suggesting that sleep was affected for these patients (a finding
that self-reported EMAs confirmed). Similarly, the use of pain-
related words was reduced during COVID for the QoL resilient
sub-cohort, which may indicate that pain intensity was not
the main concern for these patients, also in line with their
EMA ratings. This may be related to normal human negativity
bias, the idea that negative events or problems loom larger in
our memories and attention than positive moments [25]–[28]
and/or to the availability heuristic, where things that happen
more frequently are more easily remembered or provoked [29]
- as such, patients are more likely to talk about the things that
bother them or that they are experiencing more often.

Modern medicine is already being transformed by early
applications of artificial intelligence and other analytic tech-
niques (e.g., machine learning, deep learning). The fields of ra-
diology, cardiology, pathology, oncology, ophthalmology, and
endocrinology are among those currently utilizing algorithms
and systems to assist clinicians in detecting, diagnosing, and
treating disease [30]–[33]. Interventional pain management
clinicians are also uniquely poised to take advantage of these
approaches for patients with chronic pain due not only to the
chronic and subjective nature of pain but also the diverse types
and large amounts of data needed to understand a patient
more holistically. We have demonstrated that AI can detect
relationships and changes in chronic pain patients’ experiences
that were not clinically obvious prior to analysis and which
may have been difficult for patients to notice or explain
themselves. AI allows for simplification of complex data and
holds the promise to enable proactive intervention and aid
physician decision making in real-time to improve outcomes
beyond just pain intensity for patients with chronic pain. And
while AI is expected to bring further innovation to medical
care as its applications are developed and refined, it seems
much more likely to help physicians than replace them [34]–
[36].

Our study has a number of limitations worth noting. One of
them is the non-specificity of the questions administered. As
the clinical study we investigated was launched well before the
pandemic began, the data collected – including self-reported
ratings, questions asked during COVID, and voice prompts -
were not designed to specifically measure unexpected stress,
barriers to on-going treatment, or attitudes about the pandemic.
As such, more work could be done to design and administer
questions purposefully targeted to capture patient COVID-19
responses. We were also limited by our sample size, which
again was largely driven by the fact that the pandemic was
unexpected and many patients did not have sufficient data
prior to the COVID period due to when they enrolled in
the ENVISION study, which meant we could not reliably
compare their pandemic data to an unaffected “control” time
point; future analyses with a larger number of patients would
be warranted and useful to test the robustness of the cluster



assignments. Similarly, while we attempted to maximize the
generalizability to all chronic pain patients by controlling for
SCS status in the analysis, further study is needed given the
very small amount of subjects without SCS in the study, and
understanding the effects of starting, stopping, or maintaining
SCS treatment including the choice of dates over which to ana-
lyze the data. The periods under consideration included months
in the fall and winter seasons, and therefore potential seasonal
effects may limit a strong causal interpretation between the
observed differential responses and the pandemic stress (e.g.,
with respect to mobility and mood/emotional measures).

While continuous digital health tracking and quantification
is obviously applicable for “normal”, everyday occurrences,
COVID-19 highlights its importance even more so, particularly
in the realm of chronic pain monitoring and SCS treatment.
In fact, some research suggests that we could see an increase
in chronic pain ”after” the pandemic resulting from viral-
associated corporeal damage, worsening pre-existing pain due
to lack of treatment or aggravated physical and mental issues,
and/or newly triggered pain due to exacerbated risk factors
(e.g., economic stress, depression, inactivity, poor sleep, etc)
[37]. Moreover, it is also likely that co-morbid physical and
mental health concerns [38], as well as social concerns [39],
[40], will increase acutely or chronically as a consequence of
the pandemic in a variety of patient cohorts (including chronic
pain SCS patients).

Understanding chronic pain patients more holistically be-
yond traditional in-clinic pain score assessments alone is
critical. Our findings have shown we can provide physicians
with deep insight into their patients that may not have been
previously possible by using advanced analytic techniques
(e.g., machine learning) on dense, multi-dimensional data
collected using minimally intrusive digital technologies. This
research, and other work like it, has the potential to arm
clinicians with meaningful insights outside of COVID-19 that
can improve healthcare efficiency, therapy efficacy, and patient
care delivery. Future direction of our on-going investigations
will evaluate predicting comprehensive outcomes and stratifi-
cation in patients with chronic pain for deep personalization
of SCS and other therapies for clinical intervention [41].

** PHYSICIAN AUTHOR GROUP

The NAVITAS and ENVISION Studies Physician Author
Group includes Richard Rauck (The Center for Clinical Re-
search), Eric Loudermilk (PCPMG Clinical Research Unit),
Julio Paez (South Lake Pain Institute), Louis Bojrab (Forest
Health Medical Center), John Noles (River Cities Interven-
tional Pain), Todd Turley (Hope Research Institute), Mohab
Ibrahim (Banner University Medical Center), Amol Patward-
han (Banner University Medical Center), James Scowcroft
(KC Pain Centers), Rene Przkora (University of Florida),
Nathan Miller (Coastal Pain and Spinal Diagnostics), and
Gassan Chaiban (Ochsner Clinic Foundation).

 18 

 
 
 

Figure 3. Clustering results of the multivariate analysis. K-means clustering produced 3 distinct sub-cohorts from 
70 patients: 34 ADL Susceptible (blue); 20 QoL Resilient (yellow); 16 Pain Susceptible (red). Density plots (a) for 
changes in each of the self-reported variables between periods (Baseline, Pandemic). X-axis values above 0 indicate 
improvement during COVID period; below zero is worsening during COVID.  * indicates if the curve is different than at 
least one curve (KS test, p-value < 0.05), ** indicates if the curve is different than the two other curves (KS test, p-value 
< 0.05). (b) Reduced dimensionality representation of changes in self-reports, identified by cluster identity. Arrows 
indicate the subjects with the best or worst changes between Baseline period and Pandemic period across various 
aspects of the patients’ experiences – pain, QoL, and activity. Abbreviations: Sleep-Q (sleep quality); Sleep-Hrs (sleep 
hours); Rx (non-opioid prescription medications for pain indication); OTC (over-the-counter medications); Sleep-Ms 
(sleep medications); B-SelfCare (basic activities and self-care activities, including lying down, sitting, standing, bathing, 
dressing, eating, & cooking); Exercise (includes exercise, housework, and yard-work); Commute (includes all forms of 
traveling) 

 

 

 

 
 

Fig. 3. Clustering results of the multivariate analysis. K-means clustering
produced 3 distinct sub-cohorts from 70 patients: 34 ADL Susceptible (blue);
20 QoL Resilient (yellow); 16 Pain Susceptible (red). Density plots (a) for
changes in each of the self-reported variables between periods (Baseline,
Pandemic). X-axis values above 0 indicate improvement during COVID
period; below zero is worsening during COVID. * indicates if the curve is
different than at least one curve (KS test, p-value < 0.05), ** indicates if
the curve is different than the two other curves (KS test, p-value < 0.05). (b)
Reduced dimensionality representation of changes in self-reports, identified by
cluster identity. Arrows indicate the subjects with the best or worst changes
between Baseline period and Pandemic period across various aspects of the
patients’ experiences – pain, QoL, and activity. Abbreviations: Sleep-Q (sleep
quality); Sleep-Hrs (sleep hours); Rx (non-opioid prescription medications for
pain indication); OTC (over-the-counter medications); Sleep-Ms (sleep med-
ications); Basic/Self-care (basic activities and self-care activities, including
lying down, sitting, standing, bathing, dressing, eating, & cooking); Exercise
(includes exercise, housework, and yard-work); Commute (includes all forms
of traveling).
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Table 1:  Summary of key demographic and enrollment clinical variables. Left side provides summary for 
analysis cohort and right side is same data, divided by K-means cluster assignment.  *indicates that these variables 
are non-exclusive (patients may fall into more than one category). There were no significant differences between 
cluster subcohorts in any of these measures (see Table S1). Abbreviations: OTC – Over the Counter; CompAlt 
(complementary and alternative therapy); CBT – Cognitive Behavioral Therapy. 

 
 

Fig. 4. Summary of key demographic and enrollment clinical variables.
Left side provides summary for analysis cohort and right side is same data,
divided by K-means cluster assignment as in Figure 3. *indicates that these
variables are non-exclusive (patients may fall into more than one category).
There were no significant differences between cluster subcohorts in any of
these measures (see supplementary material for statistics). Abbreviations: OTC
– Over the Counter; CompAlt (complementary and alternative therapy); CBT
– Cognitive Behavioral Therapy.
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Figure 4: Partial correlations for self-reported variables. Spider plots show conditional relationships (partial 
correlations) between self-report ratings across the 3 sub-cohorts (X-axis) for both pre-COVID and COVID periods 
(Y-axis); differences between plots can be visually appreciated. Nodes in plots indicate each of the 12 self-reported 
ratings (or combination of ratings). Sample sizes are identical to those in Figure 2.  Lines indicate partial correlations 
between self-report variables (correlations after accounting for all other relationships between variables); line color is 
the direction of correlation (positive = red; negative = blue) and line thickness/saturation indicates strength of 
correlation (larger r-values = thicker, darker lines; smaller r-values = thinner, lighter lines). Only the strongest 
(significant or trending) correlations are shown; if no line is present, variables were conditionally independent, or 
correlations were not statistically strong (thresholded at p = 0.075). Abbreviations: Sleep-Q (sleep quality); Sleep-Hrs 
(sleep hours); Rx (non-opioid prescription medications for pain indication); OTC (over-the-counter medications); 
Sleep-Ms (sleep medications); B-SelfCare (basic activities and self-care activities, including lying down, sitting, 
standing, bathing, dressing, eating, & cooking); Exercise (includes exercise, housework, and yard-work); Commute 
(includes all forms of traveling) 

 

Fig. 5. Partial correlations for self-reported variables. Spider plots
show conditional relationships (partial correlations) between self-report ratings
across the 3 sub-cohorts (X-axis) for both pre-COVID and COVID periods
(Y-axis); differences between plots can be visually appreciated. Nodes in plots
indicate each of the 12 self-reported ratings (or combination of ratings).
Sample sizes are identical to those in Figure 2. Lines indicate partial
correlations between self-report variables (correlations after accounting for all
other relationships between variables); line color is the direction of correlation
(positive = red; negative = blue) and line thickness/saturation indicates strength
of correlation (larger r-values = thicker, darker lines; smaller r-values =
thinner, lighter lines). Only the strongest (significant or trending) correlations
are shown; if no line is present, variables were conditionally independent,
or correlations were not statistically strong (thresholded at p = 0.075).
Abbreviations: Sleep-Q (sleep quality); Sleep-Hrs (sleep hours); Rx (non-
opioid prescription medications for pain indication); OTC (over-the-counter
medications); Sleep-Ms (sleep medications); B-SelfCare (basic activities and
self-care activities, including lying down, sitting, standing, bathing, dressing,
eating, & cooking); Exercise (includes exercise, housework, and yard-work);
Commute (includes all forms of traveling).
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each sub-cohort (N = 18, 10 and 8 for ADL Susceptible, QoL Resilient and Pain Susceptible sub-cohorts, respectively).  
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Fig. 6. Boxplots of features from sensor-based measurements. We collected
objective (non-self-reported) features from patients, including step counts and
effective mobility from a smart watch and a variety of measures from an under-
the-mattress sleep sensor. Horizontal bars indicate significant differences using
Mann-Whitney (green) and Wilcoxon paired test (black). * and ** at the
top of the bars indicates p<0.05 and p<0.01, respectively. (a) Smart watch
running step-counts compared between groups for both Baseline period and
Pandemic period; step counts were totaled per day and averaged across each
period (N = 16, 15 and 8 for ADL Susceptible, QoL Resilient and Pain
Susceptible sub-cohorts, respectively). (b) Effective mobility scores derived
from the watch accelerometer were averaged across each period and compared
between sub-cohorts during the Baseline period or Pandemic period (N =
17, 16 and 8 for ADL Susceptible, QoL Resilient and Pain Susceptible sub-
cohorts, respectively). (c) Duration sleep onset in seconds and (d) Toss and
turns counts obtained from sleep sensors were averaged across each period and
compared between each sub-cohort (N = 18, 10 and 8 for ADL Susceptible,
QoL Resilient and Pain Susceptible sub-cohorts, respectively).
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Figure 6. Boxplots of features from voice analysis. Horizontal bars indicate significant differences using Kruskal 
Wallis test (red), Mann-Whitney (green) and Wilcoxon paired test (black). * and ** at the top of the bars indicates 
p<0.05 and p<0.01, respectively (a). NLP features captured from voice responses to a prompt administered during a 
one-week time frame in the COVID-Period show differences between the 3 sub-cohorts in emotional responses to the 
pandemic (N = 23, 15, and 10 patients answered this voice question for ADL Susceptible, QoL Resilient and Pain 
Susceptible sub-cohorts). (b) Variation of formant 2 (acoustic feature) were captured from voice responses, were 
averaged for both the Baseline period and Pandemic period and were compared between sub-cohorts (N = 21, 9, 
and 7) for ADL Susceptible, QoL Resilient and Pain Susceptible sub-cohorts). 
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Fig. 7. Boxplots of features from voice analysis. Horizontal bars indicate
significant differences using Kruskal Wallis test (red), Mann-Whitney (green)
and Wilcoxon paired test (black). * and ** at the top of the bars indicates
p<0.05 and p<0.01, respectively (a). NLP features captured from voice
responses to a prompt administered during a one-week time frame in the
COVID-Period show differences between the 3 sub-cohorts in emotional
responses to the pandemic (N = 23, 15, and 10 patients answered this
voice question for ADL Susceptible, QoL Resilient and Pain Susceptible sub-
cohorts). (b) Variation of formant 2 (acoustic feature) were captured from
voice responses, were averaged for both the Baseline period and Pandemic
period and were compared between sub-cohorts (N = 21, 9, and 7) for ADL
Susceptible, QoL Resilient and Pain Susceptible sub-cohorts).
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