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Abstract—Digitized histopathology glass slides, known as
Whole Slide Images (WSIs), are often several gigapixels large and
contain sensitive metadata information, which makes distributed
processing unfeasible. Moreover, artifacts in WSIs may result in
unreliable predictions when directly applied by Deep Learning
(DL) algorithms. Therefore, preprocessing WSIs is beneficial, e.g.,
eliminating privacy-sensitive information, splitting a gigapixel
medical image into tiles, and removing the diagnostically irrel-
evant areas. This work proposes a cloud service to parallelize
the preprocessing pipeline for large medical images. The data
and model parallelization will not only boost the end-to-end
processing efficiency for histological tasks but also secure the
reconstruction of WSI by randomly distributing tiles across pro-
cessing nodes. Furthermore, the initial steps of the pipeline will be
integrated into the Jupyter-based Virtual Research Environment
(VRE) to enable image owners to configure and automate the
execution process based on resource allocation.

Index Terms—Computational Pathology, Cloud Computing,
Privacy-preserving, Image Preprocessing, Virtual Research En-
vironment, Infrastructure Planning

I. INTRODUCTION

Deep Learning (DL) approaches have advanced and inno-
vated automatic diagnostics, such as quantifying the presence
of cancerous cells in digitized histopathology glass slides,
called Whole Slide Images (WSIs). However, running these
diagnostic services over a large scale requires a significant
infrastructure capacity for storing and processing images us-
ing complex DL models, e.g., cloud computing and High-
Performance computing (HPC), are often needed. The owners
of the medical images, e.g., hospitals, often do not have such
an infrastructure and have to rely on collaborators with remote
infrastructure resources.

Establishing a DL-based pipeline for medical images on
a remote infrastructure is challenging; for instance, 1) WSIs
often contain privacy-sensitive information in their metadata
and cannot be directly sent out to the public cloud from
the hospitals; 2) WSIs are often very large and require high
network bandwidth to upload; and 3) WSIs are split into
tiles to process [1], [2] and require specialized hardware, e.g.,
GPUs, to run complex DL models. Furthermore, it is often
complicated to deploy an end-to-end pipeline and create an
efficient re-configurable workflow [3] on remote infrastructure.

In this paper, we will tackle these challenges by proposing a
cloud-based service that will be integrated into a collaborative

Fig. 1. An overview of the preprocessing pipeline for detecting artifacts in
whole slide images.

virtual research environment based on the works [4], [5], and
we will present a use case of a medical image preprocess-
ing application from digital pathology domain to testify our
methodology.

II. CASE STUDY

Digital pathology overcomes the hurdles of traditional
histopathology by facilitating the diagnostic process using a
WSI [1]. The preparation of histological glass slides may result
in the appearance of artifacts on the obtained WSI due to
improper handling of the tissue specimen during the tissue pro-
cessing stages. These histological artifacts are diagnostically
irrelevant and are usually ignored by pathologists in the diag-
nosis process [2], [6]. Therefore, it is vital to detect and remove
them before applying diagnostic or prognostic algorithms.
Some frequently appearing artifacts are damaged tissue, folded
tissue, blur, air bubbles, and diagnostically irrelevant blood [2],
[6]. Computational pathology (CPATH) researchers may run
DL-based artifact preprocessing algorithms over thousands
of WSIs before applying diagnostic algorithms, requiring
powerful computational resources to process WSIs efficiently.
Fig. 1 presents an overview of such artifact preprocessing
pipeline, which is an ensemble of five DL models for blood,
blur, damaged tissue, folded tissue, and air bubbles detection
tasks from WSI in a binary fashion.

Traditionally, the artifact preprocessing pipeline runs over a
single machine, bringing the disadvantages of a single security
breach or system failure. Besides, handling gigapixel WSIs
is time-consuming and resource-intensive, which raises the
demand for parallel distributed computing. Nevertheless, WSIs
processed on private clouds in research environments are de-
identified or pseudonymized under various regulations. This
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Fig. 2. The methodology proposed in this work. Step ❶ - preparation of data and workflow; step ❷ - resource allocation; step ❸ - deployment and execution;
step ❹ - load balance; and step ❺ - aggregating distributed data in a summary view to visualize the final results.

raises concerns about the embedded privacy-sensitive metadata
while making distributed processing over public clouds.

III. METHODOLOGY

We introduce a methodology to cope with the highlighted
challenges, as shown in Fig. 2. It consists of five main
steps: preparation of data and workflow, resource allocation,
deployment and execution, load balance, and data aggregation.

A. Data and workflow preparation

Step ❶ aims to introduce parallelism and encryption avail-
able for the next steps. To guarantee privacy-preserving re-
quirements, we remove the metadata from WSI before split-
ting the gigapixel image into many image tiles to introduce
data parallelism. Meanwhile, containerizing the computational
tasks as several reusable fine-grained services can improve
scalability and security since they are isolated from each other
and from the host system. Besides, we apply a matrix Ax to
record the distribution of the tiles over a grid which can be
encoded to hide its coordinates and divided into sub-matrices
Ae,1, Ae,2, ..., Ae,K . Each sub-matrix is considered as an index
of distributed dataset De,k for each service-based task.

B. Resource allocation

Based on the prepared data and service-based tasks, step ❷
is to map available resources (e.g., clusters at universities
and commercial clouds) to various tasks in a manner that
optimizes their utilization and satisfies requirements [7]. Re-
lated methods, such as IC-PCP [8] and machine learning-based
approach [9], can be improved for workflow scheduling. For
bi-objective optimization, such as reducing execution time and
cost, there are trade-offs with time performance and monetary
cost over the cloud. On this basis, this paper looks into
workflow scheduling problems under the influence of privacy
requirements and the split data sets, so the research problem
is more challenging.

C. Deployment and execution

After a deployment plan is created at step ❷, the datasets
and service-based tasks will be assigned to planned infrastruc-
tures equipped with computation, communication, and storage
resources. The system should ensure that data storage and
task execution remain in place and continue to be effective
even among changes (such as downtime, errors, or attackers)
to the system or emerging threats, according to step ❸. Due
to distributed processing, it reduces the burden of a single
machine and avoids a single security breach.

D. Load Balance

Considering that computing nodes may unpredictably slow
down or fail during their execution, step ❹ aims to improve
the performance, reliability, and load balance of task-based
applications [10]. This approach asymptotically achieves near-
ideal load balancing and computation cost in the presence of
slow nodes (stragglers), which could also be complementary
to workflow scheduling.

E. Data aggregation

Step ❺ takes the predicted distributed output, bo,k for each
encoded tile, from step ❸ for every service task, to reconstruct
the encoded distributions as Ad,k. Privacy preservation can be
guaranteed by the random-value perturbation technique [11].
This approach has solid theoretical foundations and is easier
to apply for the reconstruction of the encrypted data than
others (e.g., differential privacy and secure multiparty com-
putation [12]) especially considering a data matrix manipu-
lation. Then by tracing back coordinates, we can create a
segmentation mask for detected artifacts. It presents the results
of the DL-based artifacts detection in a summary view, incl.
visualization, evaluation, and metrics.

IV. SYSTEM MODEL

We sketch out a privacy-preserving distributed processing
pipeline for the medical application, shown in Fig. 3. It is
composed of three main steps - viz Splitting, Computation, and



Aggregation. Both Splitting (See in step ❶) and Aggregation
(See in step ❺) will be executed on a Trusted Server. Such
distributed data processing application can be defined as a
tuple:

A = (M, ε,D,R, I, req) (1)

where M denotes a set of lightweight interconnected mi-
croservices. A source microservice msrc processing the data
stream produced by the source dataset D. A sink microservice
msnk representing its final results R. ε indicates a set of data
streams du,i flowing from an upstream microservice mu to a
downstream microservice mi ∈ M. I denotes a set of cloud
infrastructure and req is a set of user requirements.

Fig. 3. An overview of the privacy-preserving preprocessing pipeline for
whole slide image in a distributed processing manner.

Along with these lines, the research problem has turned
the emphasis of studying on privacy-preserving service or-
chestration – Or more precisely, how to customize a virtual
infrastructure and schedule the workflow execution under
privacy-preserving constraints while reducing its time and
monetary cost?
Privacy requirements: Reconstruction of a WSI from dis-
tributed resource nodes can lead to finding similar medical
images using content-based image retrieval and extrapolating
possible patient information from other sources. Therefore,
using this distributed scheme, their privacy will be preserved
during the process.

Bi-objective optimization: Reducing the execution time of the
application over the cloud can be crucial for many stakeholders
as it can lead to significant cost savings and improve overall
processing time for WSI. We aim to reduce the monetary
cost f1 and minimize the application’s maximum comple-
tion time (i.e., makespan) f2. Let us denote ET (msrc) and
ET (msnk) as the execution time of splitting and aggregation
services over the trusted server. mdet for the artifact detection
microservices, which will be deployed to the cloud where
ET (mdet(Ae,k,De,k), Ik) denotes its total execution time.
Then, the bi-objective optimization problem can be formulated
as follows:

min f1 =

K∑
k=1

ET (mdet(Ae,k,De,k), Ik)× pk × xk (2)

min f2 = ET (msrc(D)) +makespan(mdet) + ET (msnk(R))
(3)

Here K and pk represent the number of the split data sets
and the unit price of cloud infrastructure Ik, subject to,

makespan(mdet) = max{ET (mdet(Ae,k,De,k), Ik)× xk}
ET (mdet(Ae,k,De,k), Ik) > 0

where xk =

{
1, if mdet is mapping to Ik,

0, otherwise.

V. DISCUSSION AND FUTURE WORK

This work-in-progress paper presents the methodology for
privacy-preserving task-based parallel applications for dis-
tributed cloud environments. Our method enables domain-
specific users to handle gigapixel medical images efficiently,
maintaining privacy among distributed nodes. In future work,
we will develop prototypes and demonstrate the benefits of our
pipeline using datasets from different hospitals and integrating
the method with a Jupyter-based virtual research environment.
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