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F-69622 Villeurbanne, France

zkebaili@bat710.univ-lyon1.fr

Alexandre Aussem

Université de Lyon
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Abstract

In this paper, we propose a new constraint-based method

for bayesian network structure learning based on correlated

itemset mining techniques. The aim of this method is to

identify and to represent conjunctions of boolean factors im-

plied in probabilistic dependence relationships, that may be

ignored by constraint and scoring-based learning propos-

als when the pairwise dependencies are weak (e.g., noisy-

XOR). The method is also able to identify some specific

(almost) deterministic relationships in the data that cause

the violation of the faithfulness assumption on which are

based most constraint-based methods. The algorithm oper-

ates in two steps: (1) extraction of minimal supported and

correlated itemsets, and (2), construction of the structure

by extracting the most significant association rules in these

itemsets. The method is illustrated on a simple but realistic

benchmark plaguing the standard scoring and constraint-

based algorithms.

1 Introduction

Bayesian Networks (BNs) are a graphical representa-

tion for probability distributions. Formally, BN are directed

acyclic graphs (DAG) modelling probabilistic dependencies

among variables. The DAG reflects the structure of a prob-

lem (usually a graph of causal dependencies in the mod-

elled domain), while local interactions among neighboring

variables are quantified by conditional probability distribu-

tions. Learning a Bayesian network from data requires both

identifying the model structure G and identifying the cor-

responding set of model parameter values. Given a fixed

structure, however, it is straightforward to estimate the pa-

rameter values. As a result, research on the problem of

learning Bayesian networks from data is focused on meth-

ods for identifying ”good” DAG structures from data.

Constraint-based (CB) methods search a database for

conditional independence relations and constructs graphi-

cal structures called ”patterns” which represent a class of

statistically indistinguishable DAGs. This method contrasts

to scoring methods, which typically reduce to a search-and-

score procedure on the space of DAGs but get easily stuck

in local minima. Constraint-based approaches are relatively

quick, deterministic, and have a well defined stopping cri-

terion; however, they rely on an arbitrary significance level

to test for independence, and they can be unstable in the

sense that an error early on in the search can have a cas-

cading effect that causes many errors to be present in the

final graph [?]. Almost all CB methods assume faithful-

ness : when the distribution P is faithful to a DAG G, the

d-separations in the DAG identify all and only the condi-

tional independencies in P . Unfortunately, they are un-

able to learn a correct DAG when P is unfaithful. This is

the case for instance for Z = X XOR Y because X and

Y are marginally independent of Z. Therefore, interest-

ing interactions may be ignored. In particular, the relation

{X = x, Y = y} ⇒ {Z = z}, is ignored whenever the de-

pendency between two variables, (X, Z) and (Y, Z), is too

weak to be detected by standard statistical tests. To over-

come this problem, it is necessary to handle variable sets

of unspecified size and estimate their probabilistic associa-

tion degree according to a statistic measure. This comes at

the expense of increased complexity, We therefore discuss

a new CB algorithm based on a clever level-wise algorithm

that have been originally proposed to mine a collection of

subsets from an item space of random variables. The chi-

squared statistic is used as a measure of significance for the

itemsets. This leads to a measure that is upward closed in

the lattice of subsets of the item space, enabling us to re-

duce the mining problem to the search for a border between

correlated and uncorrelated itemsets in the lattice. The so-

called χ2-support algorithm is used to extract the border and

use the minimal correlated and supported itemsets. A selec-



tion of these itemsets will serve in the construction of the

DAG structure. The method was implemented in Matlab

with the BNT and the BNT SLP Toolbox [1]. The effective-

ness of the method is illustrated on a benchmark plaguing

standard CB and scoring methods.

2 Background

For the paper to be accessible to those outside the do-

main, we recall briefly the principles of Bayesian networks

(BN). We denote a variable by an upper case (e.g., A,B)

and its value in lower case (e.g., a, b). We denote variable

sets with bold-face capitalized tokens (e.g., A, B) and corre-

sponding sets of values by bold-face lower case tokens (e.g.,

a, b). A Bayesian network (BN) is a tuple < G, P >, where

G =< V, E > is a directed acyclic graph (DAG) with nodes

representing the random variables V and P a joint probabil-

ity distribution on V. In addition, G and P must satisfy the

Markov condition: every variable, X ∈ V is independent of

any subset of its non-descendant variables conditioned on

the set of its parents. Pearl (1988) provides a graphical con-

dition called d-separation that can be used to identify any

independence constraint implied by a DAG model. We use

IndG(X,Y |Z) to denote the assertion that DAG G imposes

the constraint (via d-separation) that for all values z of the

set Z, X is independent of Y given Z=z. For a probability

distribution P , we use Indp(X, Y |Z) to denote the asser-

tion that for all values z of the set Z, X is independent of Y

given Z=z in P . We use DsepG(X;Y |Z) to denote the as-

sertion that DAG G imposes the constraint, via d-separation,

that for all values z of the set Z, X is independent of Y
given Z = z. We say that P is faithful with respect to G if

IndP (Xi; NDX |Pa
G
i ) implies DsepG(X; Y |Z). In other

words, when P is faithful to a DAG G, the d-separations in

the DAG identify all and only the conditional independen-

cies in P .

2.1 Association measure

CB methods rely on a probabilistic association mea-

sure between X and Y conditionally on Z denoted by

Assoc(X; Y |Z). The correctness of CB algorithms is usu-

ally proved under the assumption that IndP (X; Y |Z) iff

Assoc(X; Y |Z) < α where α is the critical value used in

the test. Assoc(X;Y |Z) can implemented with a number

of statistical or information theoretic measures of associ-

ation (conditional mutual information, χ2 etc.). The only

requirement for Assoc(X; Y |Z) is to return a value lower

than our critical value α when IndP (X;Y |Z). In this work,

the Chi2 serves as a conditional independence test as well

as a measure for itemset association. For example, the Chi2

value of the subset {A,B, C} is given by,

χ2
ABC =

a∑

i=1

b∑

j=1

c∑

k=1

(nijk − n′
ijk)2

n′
ijk

(1)

where n′
ijk = ni..n.j.n..k/n2 and nijk is the number of

times simultaneously A = ai, B = bj and C = ck in

the sample, that is, the value of the cell (i, j, k) in the con-

tingency table. The statistic is compared against a critical

value to decide upon of the acceptance or rejection of the

null hypothesis of conditional independence. The distribu-

tion of χ2
ABC is approximatively that of chi-squared with

ν = (a−1)(b−1)(c−1) degrees of freedom. In this study,

all the variables are boolean, so ν = 1.

3 Minimal correlated itemsets

One of the most well-studied problems in data mining

is mining for association rules in market basket data. As-

sociation rules, whose significance is measured via support

and confidence, are indented to identify rule of the type ”A

customer purchasing item A often also purchases item B”.

However, they have been very few applications of associa-

tion rule mining algorithms to the problem of learning the

BN structure. This paper is concerned with bridging the

gap between level-wise mining techniques and BN learn-

ing methods. We believe the identification of correlated

patterns should aid the structure discovery process and be

incorporated in the graphical structure. With this view in

mind, we studied an algorithm proposed by Brin, Motwani

and Silvertsein [2]. Motivated by the goal of generaliz-

ing beyond market baskets and the association rules used

with them, they developed the notion of mining rules that

identify correlations (generalizing associations). They con-

sidered both the absence and presence of items as a basis

for generating rules and proposed measuring significance

of associations via the chisquared test for correlation from

classical statistics. This leads to a measure that is upward

closed in the itemset lattice. This property reduces the min-

ing problem to the search for a border between correlated

and uncorrelated itemsets in the lattice. [2] proposed an ef-

ficient algorithm that exploit a pruning stratgies. In the fol-

lowing section we describe this algorithm for convenience.

4 The χ
2-support algorithm

The support is different from that used in the support-

confidence framework, because unlike in the support-

confidence framework we mine for negative dependence. In

other words, the support-confidence framework only look at

the top-left cell in chi-squared contingency table. This defi-

nition is extended as follows : A set of items S has support s
at the p% level if at least p% of the cells in the contingency



Algorithm 1 χ2-support

Require: χ2
dep

(1): cutoff value at the 1 − α significance level

s: Threshold for the minimum support

p: Support fraction (p > 0.25)
Ensure: SIG: set of minimal correlated itemsets

1: i=1;

2: CAND1 ← {set of pairs}
3: SIG ← ∅
4: while CANDi 6= ∅ do

5: NOTSIGi ← ∅
6: for all itemset ∈ CANDi do

7: if more p%of the contingency cells of itemsethave a support > s

then

8: if χ2(itemset) ≥ χ2
dep

(1) then

9: SIG ← SIG ∪ itemset

10: else

11: NOTSIGi ← NOTSIGi ∪ itemset

12: end if

13: end if

14: end for

15: CANDi+1 = GenerCandidates(NOTSIGi)
//GenerCandidats : generate a set of variables of size i+1 starting

from sets of size i

16: i ← i + 1
17: end while

18: return SIG

table for S have value s. The support is down-ward closed.

Combining the chisquared correlation rule with pruning via

support, we obtain the χ2-support algorithm. We say that

a variable set is significant if it is supported and minimally

correlated. The key observation is that a variable set at level

i + 1 can be significant only if all its subsets at level i have

a support and none of its subsets at level i are correlated.

Thus, for level i + 1, all we need is a list of the supported

but uncorrelated itemsets from level i. This list is held in

NOTSIG. The list SIG, which holds the supported and

correlated variable sets, is the output set of interest. CAND
is a list which builds variable set candidates for level i + 1
from the NOTSIG list at level .

5 The proposed method

This article presents a new CB learning method for BN

structure learning based on the χ2-support algorithm [2] to

identify the significantly correlated patterns a searching for

relevant association rules in these patterns.

5.1 Correlated sets filtering

As mentioned above, finding correlated patterns amounts

to finding a border in the itemset lattice using the χ2support

algorithm. In the worst case, when the border lies in the

middle of the lattice, it is exponential in the number of

variables and all the supported and minimally correlated

sets on the border do not always provide useful information

for the graph construction. Some of them are redundant or

not interesting due to correlation transitivity. We therefore

introduce a filtering technique aiming at reducing the

number of correlated itemsets that have to be considered

in the construction of the BN structure. Let G(V, E) be

a graph. Before defining the correlated equivalent, we

introduce a symmetrical binary relation SUB defined on

V×V in E, such as X, Y ⊂ V; SUB(X, Y) is verified if and

only if : ∀x ∈ X, ∃y ∈ Y such as (u, v) ∈ E and vice-versa.

Correlated equivalent sets: Let Z and W be two sup-

ported and minimally correlated sets. Define U = Z ∩ W,

Z′ = Z\U and W′ = W\U. Then if SUB(Z′, W′), W and

Z are called a correlated equivalent to.

The idea behind this definition is to skip from analysis

an itemset that is closely connected to another itemset

that has been treated earlier in Phase II of Algorithm

2. For illustration purposes, consider an example. Let :

G = (V, E) a graph with vertices V = {A, B, C, D, K, M}

and edges E = {(A, B), (A, C), (B, C), (K, B), (C, M), (D, A)}.

Sig3 = {ABC, BCD, BDM, KMD} the correlated set of

size 3 ordered in the χ2 descending order. For the cor-

related BCD, ABC is a correlated equivalent, because

SUB(A,D) is verified since (A, D) ∈ E. For BDM , ABC
is a correlated equivalent because SUB(DM, AC), since

{(D, A), (C, M)} ⊂ E. For KDM , ABC is a equivalent

[SUB(KDM, ABC) = {(K, B), (D, A), (M, C)} ⊂ E].

The algorithm proceeds with the remaining itemsets

and search for significant association rules. Let X =
X1, · · · , Xn be a correlated, a significant association rule

(AR) on X, is a rule with only one consequent, defined on

the modality of all the variables of X, that is relevant for the

selected measure quality of the association rules. If such a

rule exists, all pairs of variables are connected in the graph.

5.2 A level­wise approach

After the extraction of the minimal correlated sets by the

χ2support algorithm, we use them to learn the bayesian net-

work skeleton, i.e., the graph of the faithful DAG pattern

without regard to the direction of the edges, before they

orient the edges. The method operates in three phases.

The first phase exploits the correlated minimal of size 2

by adding one by one the edges to the initial empty graph,

whenever the two variables cannot be dseparated. The sec-

ond phase exploits the correlated sets of size larger than 2.

The minimal correlated sets (SIG) are processed in the as-

cending order of their size (Sigi then Sigi+1, · · ·). For a

correlated sets of the same size (Sigi), the correlated vari-

ables are treated in the descending order of χ2. A first se-

lection of correlated sets is carried out as discussed above.

If at least one significant association rule is found in the cur-



Algorithm 2 Graph Construction

Require: .

D: data set

Ind-T : χ2 test

α : risk of the test

SIG : {Sig2, · · · , Sign} minimal correlated variable sets

Ensure: . G(V,E): Non oriented structure

1: E = ∅ , E′ = ∅, V = ∅

Phase I:Processing of correlated variable pairs Sig2

2: for all (X, Y ) ∈ Sig2 do

3: if ∀Z ∈ V : ¬Ind − T (X, Y |Z, D, α) then

4: V ← V ∪ {X, Y }
5: E′ = E′ ∪ (X, Y )
6: end if

7: end for

Phase II:Processing of correlated of size > 2

8: for all Sigi do

9: for all X ∈ Sigi do

10: if 6 ∃IsCorrEquiv(X, Sigi, G) and RA sig(X) then

11: V ← V ∪ X

12: E = E ∪ Edges(X)
13: end if

14: end for

15: end for

16: E = E′ ∪ E

Phase III:Eliminate the unnecessary edges

17: for all edg(E1, E2) ∈ E′ do

18: if ∃Z ⊂ V such as Ind − T (E1, E2|Z, D, α) then

19: E = E \ edg

20: end if

21: end for

22: function Edges(X) : return the set of edges connecting the variables

of X between them.

23: function IsCorrEquiv(X, Sigi, G) return 1 if X should be skipped

according to our filtering definition, 0 if not

24: function RA sig(X) return 1 if there is at least a significant associ-

ation rule on X , 0 if not

rent itemset, a complete subgraph connecting all the nodes

in the subset is added to the current graph.

6 Experiments

When pairwise correlations are weak and the number of

data is small, the dependence test may reject the dependence

hypothesis even if these pair of variables are part of a more

complex interaction involving other variables. In fact, the

question of weak dependencies and complex interactions

implies addressing the problem of unfaithfulness. This is

known to be a difficult topic. CB algorithms are unable

to learn the DAG with XOR or (almost-unfaithful) noisy-

XOR type of approximate deterministic relations [?, ?]. In

the same spirit, we designed a toy problem that is faithful to

the underlying distribution but that exhibits weak dependen-

cies and interactions involving several variables (see Figure

1). The boldface edges mean that the variables influence

jointly on another. D and Y influence Z jointly but the

marginal dependencies are weak (i.e. , χ2(DZ) < χdep

and χ2(DY ) < χdep). Given the probability tables in fig-

ure 1, the covariance between A and C may be expressed as

cov(A,C) = cov(B,C) = a(1−a)[α(1−2a)+λa−γ(1−
a)]. In our experiments, we select the following parameters

: a = 0.1, α = 1/80, λ = 0.8, γ = 0.1, δ = 0.05 in or-

der to reduce the probabilistic dependency between A and

C and between B and C. Consider the following example:

if A is ”alcohol”, B and ”smoke” and C ”lung disease”, we

may very well suppose that each factor has marginally little

influence on C (with probability 0.1) but A and B are con-

junctly responsible for the disease (with probability 0.8).

Figure 1. Our toy network

The lift is chosen as the measure of quality for

association rule. To illustrate our method, the pro-

posed BN structure learning algorithm was applied to

data samples generated from the network of the figure

1. The lift threshold is fixed to 2.0 and the support

threshold is equal to 0.01. The goal is to find the

structure of the initial graph from data samples gener-

ated from this model. 7000 examples were sampled.

The χ2 support yields the following minimal correlated

sets: Sig2 = {DY (261.67), BD(203.53), BY (18.20)}. Sig3 =

{ABC(597.26), CY Z(335.13), CDZ(57.73), ACD(20.14)}. The

marked edges connecting the pairs of variable in Sig2 are

added to the graph. The edge BY is not added to the

graph because {D} is shown to d − separate B and Y
(χ2(B, Y |D) = 2.53). Figure 2 represents the graph ob-

tained after of the first stage. All the CB methods end up

with the graph at stage 1 because all pairwise associations

are too weak to be detected by statistical means.

The second stage operates on higher levels in the lat-

tice. In {ABC}, significant rules exist : {B = 1, C = 1 →

A = 1(lift = 8.66). A = 1, C = 1 → B = 1(lift = 8.71).

A = 1, B = 1 → C = 1(lift = 8.53)}. Therefore, the edges

connecting the three variables are added to the graph. In



Figure 2. Skele-

ton obtained after

phase 1. All

learning methods

based assuming

faithfulness stop

here.

Figure 3. Skeleton ob-

tained after phase 2.

Figure 4. Fi-

nal skeleton with

the χ2support

method.

the same way for CY Z, there are no correlated equivalent

and significant rules are discovered, the edges connecting

the triplet CZY are added to the graph. For the two last

correlated of the level three, correlated equivalents are iden-

tified. These last sets are simply ignored from analysis. For

comparison purposes, we illustrate the performance on this

method against PMMS and BNPC, two powerful CB algo-

rithms and greedy scoring approach (GS) in Table 1. The

number of extra and missing edges is shown. As observed,

the χ2support method reconstructs this the structure without

any missing edge.

Unlike most CB and scoring BN structure learning meth-

ods, the proposed algorithm has noot missed any edge in

true graph. This performance comes at the expense of some

more extra edges as shown in Table 1. The number of addi-

tional edges is clearly proportional to the significant corre-

lated sets discovered by the algorithm. This might be clearly

prohibitive when the cardinality of the minimally correlated

itemsets is large. In practice it was not the case for our

sets of parameters. The border of correlated ietmsets lies at

low levels. But it is still an open question how to represent

graphically a correlated set such that none of its subset is

correlated. This is left for further analysis.

Size 5000

Algo PMMS BNPC GS χ2-support

Edges f+ f- f+ f- f+ f- f+ f-

Max 2 4 2 4 1 4 3 0

Min 0 2 0 2 0 4 2 0

Aver. 0.5 3.3 0.6 3.4 0.1 4 2.2 0

Size 10000

Algo PMMS BNPC GS χ2-support

Edges f+ f- f+ f- f+ f- f+ f-

Max 1 4 2 4 1 4 2 0

Min 0 2 0 2 0 2 1 0

Aver. 0.3 3 0.4 3.1 0.1 3.8 2 0

Size 15000

Algo PMMS BNPC GS χ2-support

Edge f+ f- f+ f- f+ f- f+ f-

Max 2 4 1 4 0 4 2 0

Min 0 2 0 2 0 0 0 0

Avr 0.5 3.1 0.5 3 0 4 2 0

Table 1. Skeleton reconstructed performance on samples of size

5000, 10000 and 15000 with different methods. false positives are

extra edges and false negatives are missing edges. The simulations

were repeated 10 times.

7 Conclusion and discussion

In this paper, we proposed a new method for learning

structure of baysien networks based on correlated itemset

mining techniques. The key idea in this method is to iden-

tify and to represent conjunctions of factors implied in de-

pendence relations when the pairwise dependencies are too

weak. Therefore, the method is able to handle some unfaith-

ful distributions at the price of higher temporal complexity

due to a search in the lattice of all variable subsets. De-

spite promising results obtained on a simple toy problem,

many difficulties remain in this work: the way correlated

sets should be represented in the graph, the increasing num-

ber of extra edges as more correlated itemsets are selected,

the unreliability of the chi2 measure for large sets of vari-

ables. These problems is left for future work.
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