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Abstract— Learning the structure of a Bayesian network (BN)
from a data set is NP-hard. In this paper, we discuss a novel
heuristic based on Estimation of Distribution Algorithms (EDA),
a new paradigm for Evolutionary Computation that is used as a
search engine in the BN structure learning problem. The purpose
of this work is to study the parameter setting of the EDA and
to fix a "good" set of parameters. For this purpose, the EDA-
based procedure is applied on several benchmarks to recover the
original structure from data. The quality of the learned structure
is assessed using several performance indexes.

Bayesian networks, evolutionary computation, EDA, ma-
chine learning.

I. I NTRODUCTION

Bayesian networks are probabilistic graphical models that
offer a coherent and intuitive representation of uncertain do-
main knowledge [1]. Formally, BN are directed acyclic graphs
(DAG) modeling probabilistic dependencies among variables
[2]. The graphical part of BN reflects the structure of a prob-
lem while local interactions among neighboring variables are
quantified by conditional probability distributions. Learning
a Bayesian network from data requires both identifying the
model structureG and identifying the corresponding set of
model parameter values. Given a fixed structure, however, it
is straightforward to estimate the parameter values. As a result,
research on the problem of learning Bayesian networks from
data is focused on methods to identifying one or more “good”
DAG structures from data. All independence constraints that
hold in the joint distribution represented by any Bayesian
network with structureG can be identified from the structure
itself under certain conditions known as "faithfulness" (i.e., the
d-separations in the DAG identify all and only the conditional
independencies in the underlying distributionP ). However, the
problem of learning the most probablea posteriori Bayesian
network (BN) from data is worst-case NP-hard [3].

There are two types of BN structure learning methods.
Constraint-based (CB) methods search a database for condi-
tional independence relations and constructs graphical struc-
tures called "patterns" which represent a class of statistically
indistinguishable directed DAGs. Search-and-score methods
perform a search in the space of legal structures. Compared

to CB methods, they have the advantage of being able to
flexibly incorporate users’ background knowledge and dealing
with incomplete records in the database (e.g., EM technique).
Very recently [4], a new powerful paradigm was proposed
for Evolutionary Computation : Estimation of Distribution
Algorithms (EDA) were proposed as new population-based
stochastic search procedures. They use an explicit probability
distribution, i.e., the algorithm directly handles this distribution
which is used for the sampling of the search space. These
EDA algorithms replace the crossover and mutation operators
by learning the probability distribution of the best individuals
of each generation and its posterior simulation. In this paper,
we discuss in detail the EDA-based algorithm to search in
the space of legal BN structures. We then carefully evaluate
the strengths and limitations of the method on synthetic data
generated from the well known Asia [5], Asia8 [6] and
ALARM [7] benchmarks. The method was implemented in
Matlab using parts of BNT Toolbox [8] and BNTSLP Toolbox
[9].

II. BACKGROUND

For the paper to be accessible to those outside the domain,
we recall first the principle of Bayesian network. A Bayesian
network (BN) is a tuple< G, P >, whereG =< V, E > is
a directed acyclic graph (DAG) with nodes representing the
random variablesV andP a joint probability distribution on
V. In addition,G and P must satisfy the Markov condition:
every variable,X ∈ V, is independent of any subset of
its non-descendant variables (NDX ) conditioned on the set
of its parentsPaGi . We denote the conditional independence
of the variableX and Y given Z, in some distributionP
with IndP (X;Y |Z), dependence asDepP (X;Y |Z). Using
these notations, the Markov condition entails for each vari-
able Xi ∈ V : IndP (Xi;NDX |PaGi ). The independence
constraints implied by the Markov condition necessarily hold
in the joint distribution represented by any Bayesian network
with structureG. They can be identified by the d-separation
criterion of Pearl (1988) [2]. From the Markov condition, it is
easy to prove [1] that the joint probability distributionP on
the variables onV can be factored as follows :



P (V) = P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PaGi ) (1)

III. L EARNING THE STRUCTURE OF ABN

CB methods try to recover all the conditional independences
in the data. But the number of statistical tests required is
exponential with the number of variables. Therefore, most
proposals are based on greedy search techniques. The second
class of methods use a scoring function to evaluate the
quality of network compared to the data. Next, these methods
search for the best structure with metaheuristics among all
the possible structures. But they are slow to converge. There
are many different scores in the literature. The majority of
them are sums of a likelihood term and a complexity term
penalizing complex structures, as described in thePenalized
Maximum Likelihoodformula :

n∑
i=1

qi∑
j=1

ri∑
k=1

Nij log
Nijk

Nij
− f(N)

n∑
i=1

qi(ri − 1) (2)

Indeed, a network representing the data as well as possible
would be a directed graph completely connected [10], which
would not be acyclic, and the model would be too complex
to be used in practice. In practice, for the efficiency of the
methods, the score is decomposable, i.e., may be computed
locally for each variable. The BIC score [11] used in this
work is decomposable.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS

Metaheuristics are combinatorial optimization algorithms
which use a set of heuristics (a simple empirical rule to
improve a solution) to solve a given problem. Among these
methods, we note the evolutionary metaheuristics which base
their draft on concepts inspired by evolutionary biology.
The concept of evolution is present in many bio-inspired
metaheuristics, e.g., genetic algorithms (GAs) [12] and more
recently, estimation of distribution algorithms (EDA) [13].

Algorithm 1 EDA overview
function EDA(data:training_base,Fit:fitness_function)

D0 ← initialize distribution
l← 1
repeat . main loop

Pl ← sampleM individuals fromDl

Fit(Pl,data)
Cl ← selectN individuals fromPl (N <= M)
Dl+1 ← estimate next distribution fromCl

l← l + 1
until ¬ stopping
return best solution found

end function

We will now explicit a toy-problem of machine-learning as
an example to illustrate the principles of EDA, called one-
max. The principle of this simple problem is to fill ones into

a vector. It is very easy to solve but it make it possible us to
gauge the efficiency of EDA.

TABLE I

FIRST STEP

i x1 x2 x3 f(x)

1 0 1 0 1

2 0 1 0 1

3 1 0 1 2

4 1 0 1 2

5 0 1 1 2

6 1 0 0 1

p0(x) 0.5 0.5 0.5

p1(x) 0.7 0.3 1

We start first with a vector of univariate marginal Bernoulli
variables, representing the initial distribution of the individuals
within the initial population. This 3-vector must make it
possible a uniform generation of the initial population, because
our knowledge is null at beginning (a priori). Then, from this
one, we sample six solutions and we fit them (as see in table
I). Next, we keep the three best solutions and re-evaluate the
distribution from them. Finally, we reiterate this step until the
ED vector is full of ones (table II is the next step).

TABLE II

SECOND STEP

i x1 x2 x3 f(x)

1 1 1 1 3

2 1 1 1 3

3 1 0 1 2

4 1 0 1 2

5 1 0 1 2

6 0 0 1 1

p1(x) 0.7 0.3 1

p2(x) 1 0.7 1

In this example, only two or three generations are needed
to converge towards the best solution, which proves that
the algorithm has effectively extracted the knowledge. Even
though the overview of the algorithm is the same, it has several
variants including UMDA and PBIL which we will study.
The variant which we have seen in the example is UMDA
(Univariate Marginal Distribution Algorithm) [13]. The other
variant, PBIL (Population Based Incremental Learning) [14]
differs when we re-estimate the distribution : it uses both the
selected population and the previous distribution in a Hebbian-
inspired rule :

pl+1(x) = (1− α)pl(x) + α
1
N

N∑
k=1

xl
k:M (α ∈ [0, 1]) (3)

In such a way, we are sure that the updating is not too
stochastic, whereas with UMDA the noise due to the process’
stochasticity might be learned.



V. A PPLICATION TO BNSL

In this section, UMDA and PBIL are applied to the BNSL
problem (Bayesian Network Structure Learning) to extend our
previsous work with genetic algorithms [15]. The limitations
of GA on BNSL have been described by Larrañaga [16]. The
algorithm applied to BNSL is similar to the one described in
[17], except that a probability value is associated to an edge
in the Bayesian network. The solutions can be represented
in different ways : [17] suggest a vector representation of the
DAG : [a1,2, a1,3, a1,4, ..., ai,(i−1), ai,(i+1), ..., an,(n−1)] where
ai,j equals1 if the DAG has an(i, j) edge. Another vector rep-
resentation[a1,2], a1,3, ..., a2,3, a2, 4, ..., a(n−1),n] allows us to
take into account an order on the variables. Our algorithms was
tested in a general case, withouta priori knowledge, therefore,
without any order imposed on the variables.

TABLE III

ADJACENCY MATRIX

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Our representation, more efficient, is the complete connexity
matrix of the DAG. In this way, there is not needed to converse
an array in a corresponding matrix. That is, the diagonal must
be null. The four elements to define for the implementation of
the algorithm are :

• the sampling function according to a given distribution,
• the function that estimates the underlying distribution of

a population,
• the function selecting the best individuals,
• the evaluation function (fitness).

Since we use the connexity matrix to represent a solution,
we must make sure that the individuals generated by the
distribution have no cycle. Every generation, we remove all
cycles by randomly choosing edges which belong to the cycles.
In addition to the type of algorithm, we have determined four
other parameters :

• population size,
• selection size, i.e. the number of individuals needed for

the estimation of the distribution,
• selection type,
• and the parameter which determines whether or not we

use the previous population for the selection step.

The uniform stochastic selection comes from the work on
the AG and allows a multiple selection of the best individuals,
and occasionally a few bad ones, in a way proportional to the
rank of the individual in the population. Its principle is similar
to the roulette : the reproduction expectancies are placed on
a virtual roulette (or rope), such that the occupied zone is
proportional to the expectancy. The roulette is turned a first
time, which selects a first individual, then it is incremented
by regular steps until it makes a full turn. At each step
match a newly selected individual. The value of the increment

therefore depends on the number of individuals wanted after
the selection (sum of expectancies / size of selection). The
expectancy function used here is one of the most popular :

1
sqrt(rank) whererank equals1 for the best individual,i for
the i-th best, etc.

VI. EXPERIMENTS

In this section, we apply the method on small complete
synthetic data sets generated from given DAGs. So as to
measure the quality of the results according to the EDA
parameterization, we have followed an experiment plan of
“factorial design” type. This plan consists in executing the
set of every possible combination of algorithmic parameters
and then to measure the quality of the results. There are
therefore seven parameters which we will change. The two
first correspond to the entry type which we will present to
the algorithm, which is the network used to generate the data,
as well as the size of the learning database. The other five
correspond to the proper parameterization of the algorithm :

• ALGO : type of algorithm : UMDA or PBIL (withα =
0.25, 0.50 or 0.75),

• SPOP : population size : 10 or 25 times the number of
nodes in the network,

• TSEL : selection type : elitist or stochastic uniform,
• SSEL : selection size : 10 or 30% of the population,
• USEO : use of the previous population or not.

We notice that each simulation is performed 5 times in order
to estimate the standard deviation of the studied criteria (the
algorithm is highly stochastic). Finally, the following stoping
criteria are used :

• 80 generations maximum,
• stop if there was no improvement in the last 15 genera-

tions,
• stop when the convergence rate (defined below) reached

100%,
• stop after 5 minutes (to reduce the maximum time spent

for these 2880 simulations).

The testing station has a 2.4 GHz Pentium III processor
with 512 Mb of RAM using Matlab.

A. Benchmarks

We will use three classical benchmarks : ASIA networks [5]
(8 variables), ASIA8 (8 independent copies of ASIA therefore
64 variables) [5] and ALARM [7] (37 non-binary variables).
Asia8 is obtained by tiling eight copies of the smaller Asia
network as discussed in [6]. The tiling is performed in a way
that maintains the structural and probabilistic properties of the
original network in the tiled network.

The size of the learning databases was varied following 3
key values : 500 cases where the classical algorithms always
show learning difficulties considering the under-representation
of the dependencies, 5000 cases which represents a comfort-
able size for a good learning and a base of 1000 cases for an
intermediate size (under which the results are not conclusive).
Data was generated within probabilistic logic sampling method



Fig. 1. The Chest-clinic network.A stands for ’visit to Asia’,T ’tuberculo-
sis’, O ’tuberculosis OR cancer’,S ’smoking’, B ’bronchitis’, D ’dyspnea’,
X ’X-ray’ and L ’lung cancer’.

[18]. Eight criteria are selected to gauge the quality of the
reconstructed structure :

• editing distance : the number of edges which must be
added, removed or reversed to find the network which
generated the data,

• the number of extra edges,
• the number of missing edges,
• the number of badly-oriented edges (note that the editing

distance is the sum of the three values following it),
• the number of correct edges,
• the number of iterations at the end of the execution,
• the BIC (BayesianInformation Criterion) score of the

solution (which is also used as the fitness function),
• the convergence rate of the algorithm defined hereafter.

Let us recall that the distribution is represented by a square
probability matrix with zero diagonal (to avoid loops). Each
probability is initialized at 0.5. We thereby defineconv, the
convergence function of a probability thus :

conv : [0, 1] → [0, 1]
p 7→ conv(p) = (2× (1/2 − p))2 (4)

By generalizing this function to the set of the probability
matrix (Mx), we obtain :

conv : Mx → [0, 1]

M 7→ conv(M) =
∑

(i,j) conv(Mi,j)−N

N×(N−1)
(5)

WhereN is the size of the graph. Notice that this measure
is similarly to a variance computation around 0.5 (instead of
the mean). When the convergence rate equals 1, it means that
each probability of the matrix equals 0 or 1 and therefore that
all the individuals generated are identical (unless they have
cycles, which will be eliminated in a stochastic process).

B. Analysis of the results

1) general idea:To analyze the great amount of results, we
have compared for each couple (network, base) the 8 criteria
for different configurations. For example, we discuss the use

of conservation of the population by comparing results with
USEO=true and USEO=false.

Fig. 2. Example : grouped bars

2) separation: Separation is the step which consists in
isolating a set of parameters and to compare the results for
the set of combinations of these parameters. For example,
knowing that there are 4 different algorithms and 2 selection
types, the separation for these two parameters will consist
in comparing 8 types of results (because there are 8 couples
of possible parameters) on each couple (network, base). For
reader-friendly reasons the data output will be drawn as
grouped bars : each group represents a criterion and each of
these bars a sample of the set of parameters (8 bars in the
example). See figure VI-B.2 for an example of separation on
TSEL only.

3) normalization, mean computation, standard deviation:
In order to compare on a same figure the 8 criteria, they are
normalized in the following way : for each couple (network,
base), and for each criterion, we determine the best and
the worst values (if we want to maximize (e.g. BIC, conv)
or minimize (e.g. ED) the criterion). Then, each value is
normalized : 1 for the best, 0 for the worst. Even though we
lose numerical information in this transformation, we keep the
proportions and it is now possible to compare a set of values
on different scales. Each simulation is performed 5 times, the
height of the bar is proportional to the mean of these 5 results.
Moreover, on top of each bar a second bar corresponding to the
standard deviation is added. This representation enables us to
easily read and compare several combinations of parameters.
You can consult in the annex the set of possible figures.

VII. RESULTS

We have first noticed that the type of uniform stochastic
selection always gave worse results, whatever the network and
the size of the learning base. That’s the reason why is prefered
using the elitist selection. The next step of analysis consisted in
selecting the ‘elitist’ selection type, i.e. to only be interested in



the simulations where the selection was defined as such, then
to compare the results again for other parameters. According
to this selection, it’s now possible to fix the size of selection
: the 10% selection always gives better results than the 30%
one. We therefore proceeded the same way as above.

Fig. 3. separation for {SPOP;TSEL;SSEL;USEO}

With the same method, we were not able to fix another
parameter which could be determined ; on the other hand, we
notice that SPOP, the population size, gives better results on
the ASIA and ALARM networks with 500 and 1000 cases
when SPOP equals 25 times the number of nodes but that
for ALARM with 5000 cases and ASIA8 the results are better
with 10 times the number of nodes. Indeed, this coincides with
the case where the algorithms stopped because of maximum
allocated time. It is therefore justified to think that 10 gives
better results and converges faster, then that 25 gives better
results later (slower but better convergence). This correlates
with our intuition : the bigger the population, the greater
the exploration, but on the other hand, the execution time is
bigger too. So, we set SPOP to 25. The USEO parameter does
not seem to intervene on the algorithm when we analyze the
BIC score obtained and the reconstruction measures (editing
distance, well-placed edges, etc.). As previously, though, we
can deduce a rule by observing the number of iterations and
the convergence rate. We notice that on the slow benchmarks
(e.g. ASIA8), the first algorithm had the time for 10 to 15%
less iterations and has a lower convergence rate than the second
algorithm. We deduce that the first algorithm is slow and that
it obtains roughly equivalent results with less iteration than the
second. Since time is not a barrier in our study, we will set
USEO to ‘true’ and will always use the previous population
for the selection (see figure VII).

We still have to determine the algorithm, but the results
are not useful : it is impossible to determine a rule. On
the other hand, for the slow benchmarks the best to worse
algorithms are UMDA, PBIL75, PBIL50 and PBIL25. For the
fast benchmarks, it is the opposite. To better analyze these

Fig. 4. separation for ALGO when others parameters are fixed

results, a second series of tests, with more allocated time, has
been realized, taking the previously fixed parameters as base.
After this, we can fix the last parameter : ALGO. PBIL variant
with α = 0.25 seems to give better results as other variants,
as we can see figure VII.

Now, we can explicit the best set of “good” parameters for
EDA applied on BNSL :

• TSEL : elitist rather than stochastic uniform,
• SSEL : 10 percent of the population size rather than 30,
• SPOP : 10 times numbers of nodes rather than 25,
• UESO : true,
• ALGO : PBIL25.

The EDA’s approaches are shown to perform well as we
can see in [17] : the algorithms converge in a few number of
generation than GA (not described here). The ASIA network
is recovered except the weak linkA→ T . The best algorithm
was applied on ALARM with 10000 cases in the database. We
notice that 32 edges were correctly found on 46, and 9 were
reversed. Finally, a total of 41 oriented edges were correctly
found in the skeleton, which is a promising result given that
the order was supposed unknown.

VIII. C ONCLUSION

In this paper, we proposed an experimental analysis of
the behavior of an estimation of distribution algorithm on
Bayesian network structure learning problem according to
the parameter setting. This study was carried out by an
experimental "factorial design" in order to select the best
configuration for this particular problem. Comparisons with
other scoring and constraint-based methods are currently been
undertaken and will be persented shortly.
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