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Abstract

The problem of PU Learning, i.e., learning classifiers
with positive and unlabelled examples (but not negative ex-
amples), is very important in information retrieval and data
mining. We address this problem through a novel approach:
reducing it to the problem of learning classifiers for some
meaningful multivariate performance measures. In partic-
ular, we show how a powerful machine learning algorithm,
Support Vector Machine, can be adapted to solve this prob-
lem. The effectiveness and efficiency of the proposed ap-
proach have been confirmed by our experiments on three
real-world datasets.

1 Introduction

Standard machine learning techniques for building a bi-
nary classifier require a set of positive examples x with label
+1 and a set of negative examples x with label −1. How-
ever, in practice it is often very difficult to get labelled nega-
tive examples. This is because people usually only keep the
data that are of interest to them (i.e., positive examples), and
it is unnatural to require people to label uninteresting data
(i.e. negative examples). In such situations, what available
in addition to positive examples is just a set of unlabelled
examples. Can we still train classifiers effectively and ef-
ficiently without any negative examples? This problem is
called PU Learning [9].

Definition 1. PU Learning. Given an incomplete set of
positive examples P = {x1, . . . ,xl} that we are interested
in, and a set of unlabelled examples U = {xl+1, . . . ,xl+u}
which contains both positive examples and negative exam-
ples, we would like to use P and U to train a classifier that
can accurately classify positive and negative examples in U
or in a separate test set.

The problem of PU Learning occurs frequently in infor-
mation retrieval and data mining applications [9]. For ex-

ample, a researcher may have saved in her computer some
journal articles on a specialised subtopic in bioinformatics
(P ), and she wants to find more materials on that subtopic
from the PubMed Central digital library (U ). For another
example, a user searched the Web using a search engine
and clicked on some returned links that he was interested
in, then the search engine could improve its ranking of the
search results by building a classifier based on the clicked
links (P ) and the other links (U ).

We address this problem through a novel approach: re-
ducing it to the problem of learning classifiers for some
meaningful multivariate performance measures.

One of the most powerful machine learning techniques
for classification is Support Vector Machine (SVM) [13]
which has solid theoretical basis and broad practical suc-
cess. For example, SVM in its simplest form, linear SVM,
consistently provides state-of-the-art performance for text
categorization tasks [16]. In this paper, we focus on adapt-
ing SVM algorithms for PU Learning, though our reduction
approach to PU Learning is general.

The rest of this paper is organised as follows. We first
propose our reduction approach to PU Learning (in Section
2), then present experimental evaluation (in Section 3), later
discuss related work (in Section 4), and finally make con-
clusions (in Section 5).

2 Approach

2.1 Learning from P and N

In the ideal situation, we have in addition to P a set of
negative examples N rather than a set of unlabelled exam-
ples ( ∀xi ∈ P : yi = +1 and ∀xi ∈ N : yi = −1), so we
can use both P and N to train a standard SVM classifier.

OP 1. SVM2C

min
w,ξi≥0

1
2
wTw +

C

n

n∑
i=1

ξi



s.t. ∀ni=1 : yiwTxi ≥ 1− ξi

SVM2C attempts to find a hyperplane h(x) = wTx that
can separate positive examples and negative examples with
a large margin 2

||w|| as well as small empirical hinge loss∑n
i=1 ξi.
However, as explained earlier, a negative set N is often

not available therefore SVM2C is not applicable.

2.2 Learning from P Only

When we do not have negative examples, one possibility
is to ignore U and use P only to train the so-called ‘one-
class’ SVM classifier [13].

OP 2. SVM1c

min
w,ξi≥0

1
2
wTw +

C

l

l∑
i=1

ξi

s.t. ∀li=1 : wTxi ≥ 1− ξi

Note that our SVM1c formulation here is different with
the original one-class SVM [13] which relies on a parame-
ter ν (as in ν-SVM [13]) but not C. The parameter ν has
more intuitive sense than C: it directly controls the amount
of margin errors and the number of support vectors. Never-
theless, the classification function of the original one-class
SVM optimised for a given ν would be same as that of
SVM1c with a certain value of C. Current training methods
for ν-SVMs (including the original one-class SVM) take at
least quadratic time, whereas with our SVM1c formulation
we can achieve linear-time training [20].

Intuitively, SVM1c is inferior for PU Learning because
it ignores useful information that is present in the set of un-
labelled examples U .

2.3 Learning from P and U

If we take the positive examples in U as noise, then we
can consider U as a very noisy set of negative training ex-
amples. There are totally n = l + u examples. Denote
the observed label of an example x by y ∈ {−1,+1}, i.e.,
∀xi ∈ P : yi = 1 and ∀xi ∈ U : yi = −1. Denote the
actual label of an example x by z ∈ {−1,+1} indicating
its true relevancy. We know that ∀xi ∈ P : zi = yi = 1,
but we have no idea about the hidden value of zi for any
xi ∈ U .

Assume that the examples in P are randomly sampled
from the class of positive examples with a certain probabil-
ity µ. The value of µ = Pr[y = 1|z = 1] is an unknown
constant. In other words, an actual positive example has
probability µ to be observed in P and probability 1 − µ to

be left in U ; while all actual irrelevant documents are put in
U . We have the following relationships:

Pr[y = +1] = Pr[z = +1]µ;
Pr[y = −1] = Pr[z = −1] + Pr[z = +1](1− µ).

Using P and U straightforwardly to train the standard
SVM2C would not work. Let’s call the classification per-
formance calculated over observed (noisy) labels yi ob-
served performance, and the classification performance cal-
culated over actual labels zi actual performance. SVM2C

minimises the observed error rate, but low observed error
rate does not necessarily lead to low actual error rate [1].
For example, when there are 100 documents inU relevant to
the given query P that consists of 10 documents, the actual
optimal classifier h1 would generate 100 observed errors,
in contrast, the classifier h2 which classifies all examples
to be negative would generate 10 observed errors, conse-
quently h2 is favoured by SVM2C over the actual optimal
classifier h1.

Our key insight is that we are able to train classifiers in
the PU Learning setting, if we substitute some other multi-
variate performance measures for error rate.

Joachims has proposed a SVM formulation that directly
minimises the loss function ∆ corresponding to a multivari-
ate performance measure [5].

OP 3. SVMperf

min
w,ξ≥0

1
2
wTw + Cξ

s.t. ∀ȳ′ ∈ {+1,−1}n \ ȳ :

1
2n

wT
n∑
i=1

(yi − yi′)xi ≥
1

2n
∆(ȳ′, ȳ)− ξ

Note that our SVMperf formulation here has a slight dif-
ference with its original version [5]: a constant factor 1

2n is
introduced to the constraints in order to better capture how
C scales with training set size [6].

Balanced Accuracy
The balanced accuracy of a classifier is the arithmetic

average of sensitivity and specificity [14]. It is also known
as the Area Under the ROC Curve (AUC) for just one run
[14].

The actual balanced accuracy is

B =
Pr[h(x) = 1|z = 1] + Pr[h(x) = −1|z = −1]

2
.

The observed balanced accuracy is

B̂ =
Pr[h(x) = 1|y = 1] + Pr[h(x) = −1|y = −1]

2
.



Theorem 1. B̂ − 1
2 ∝ B −

1
2 .

Proof. It can be shown with some simple calculation that
[1]

(2B̂ − 1) Pr[y = 1] Pr[y = −1]
= (2B − 1) Pr[z = 1] Pr[z = −1]µ

Therefore, we have

B̂ − 1
2

= (B − 1
2

)µ
Pr[z = 1] Pr[z = −1]
Pr[y = 1] Pr[y = −1]

∝ B − 1
2

This theorem implies that we can optimise the actual bal-
anced accuracy B by optimising the observed balanced ac-
curacy B̂.

Since 0 ≤ B̂ ≤ 1, we define the corresponding multi-
variate loss function as

∆ba(h̄(x̄), ȳ) = 1− B̂.

Let SVMperf
ba denote the SVMperf with the loss function

∆ba.
We are able to train SVMperf

ba efficiently by transform-
ing it to a specific case of SVMstruct — the structural SVM
formulation which was first proposed for training SVMs to
predict structural outputs [6]. For this purpose we have
extended the original SVMstruct [6] to assign different
weights λi to errors on different training examples xi.

OP 4. SVMstruct
ba

min
w,ξ≥0

1
2
wTw + Cξ

s.t. ∀η̄ ∈ {0, 1}n \ 0̄ :

1
n
wT

n∑
i=1

ηiyixi ≥
1
n

n∑
i=1

ηiλi − ξ

λi = 1/(4l) if yi > 0 and λi = 1/(4u) if yi < 0

Theorem 2. SVMperf
ba is equivalent to SVMstruct

ba .

Proof. SVMperf
ba and SVMstruct

ba have the same objective
function to optimise, so we only need to show that they have
an equivalent set of constraints.

For each ȳ′ ∈ {+1,−1}n \ ȳ, there is a unique corre-
sponding η̄ ∈ {0, 1}n \ 0̄ through the following one-to-one
map:

ηi =
{

0 if yi′ = yi
1 if yi′ 6= yi

.

So (yi − yi
′)/2 = ηiyi, and the left-hand-expression of

each inequality constraint in SVMperf
ba is same as that in

SVMstruct
ba . Now let’s look at the right-hand-expression of

each inequality constraint. Noticing c =
∑
yi>0 ηi and d =∑

yi<0 ηi, we can re-write
∑n
i=1 ηiλi as∑

yi>0

ηiλi +
∑
yi<0

ηiλi =
1
4l

∑
yi>0

ηi +
1

4u

∑
yi<0

ηi

=
1
2

∆ba(h̄(x̄), ȳ)

we see that the right-hand-expression of each inequality
constraint in SVMperf

ba also turns out to be same as that in
SVMstruct

ba . Hence both optimisation problems would lead
to the same solution w∗.

Theorem 3. SVMperf
ba (SVMstruct

ba ) can be trained in lin-
ear time w.r.t. the size of P ∪ U , i.e., l + u.

Proof. It has been shown that SVMstruct can be correctly
trained by the cutting-plane algorithm inO(sn) time where
s is the average number of non-zero features and n is the
number of training examples [5]. The same algorithm can
be adapted for the training of SVMstruct

ba with little modifi-
cation. In our case, there are n = |P ∪ U | = l + u training
examples.

Precision-Recall Product
In information retrieval applications, performance is

more often evaluated in terms of precision and recall [12]
rather than accuracy.

The actual precision and recall are

p = Pr[z = 1|h(x) = 1] and r = Pr[h(x) = 1|z = 1]

respectively.
The observed precision and recall are

p̂ = Pr[y = 1|h(x) = 1] and r̂ = Pr[h(x) = 1|y = 1]

respectively.
Generally speaking, we want both precision and recall

to be high in a retrieval situation. The F1 score, which ad-
dresses precision and recall equally, is probably the most
popular multivariate performance measure in IR [12]. It is
defined as the harmonic average of precision and recall,

F1 =
2

1
p + 1

r

=
2pr
p+ r

.

Unfortunately in PU Learning, high observed F1 does not
guarantee high actual F1.

We turn to optimise an alternative multivariate perfor-
mance measure — pr, the product of precision and recall.
Similar to the F1 score, pr is high when both precision and
recall are high, but low when either of them is low. In fact
pr correlates with F1 closely. It is easy to see that pr is a
lower-bound of F1 and

√
pr is an upper-bound of F1.



Theorem 4. pr ≤ F1 ≤
√
pr.

Proof. F1 ≥ pr because 0 ≤ p + r ≤ 2. F1 ≤
√
pr

because the harmonic average can never be greater than the
geometric average.

The relationship between the observed precision/recall
and the actual precision/recall is given by the following two
lemmas.

Lemma 1. r̂ = r.

Proof. This comes directly from the assumption that the ex-
amples in P is randomly sampled from the class of actual
positive examples.

r̂ = Pr[h(x) = 1|y = 1]

=
Pr[h(x) = 1, y = 1]

Pr[y = 1]

=
Pr[h(x) = 1, z = 1]µ

Pr[z = 1]µ
= Pr[h(x) = 1|z = 1]
= r.

Lemma 2. p̂ ∝ p.

Proof.

p̂ = Pr[y = 1|h(x) = 1]

=
Pr[h(x) = 1|y = 1] Pr[y = 1]

Pr[h(x) = 1]

=
r̂Pr[z = 1]µ
Pr[h(x) = 1]

=
rPr[z = 1]µ
Pr[h(x) = 1]

=
Pr[z = 1, h(x) = 1]

Pr[h(x) = 1]
µ

= Pr[z = 1|h(x) = 1]µ
= pµ ∝ p.

Theorem 5. p̂r ∝ pr.

Proof. It is simply because p̂ ∝ p and r̂ = r.

This theorem implies that we can optimise the actual
precision-recall product pr by optimising the observed
precision-recall product p̂r.

Since 0 ≤ p̂r ≤ 1, we define the corresponding multi-
variate loss function as

∆pr(h̄(x̄), ȳ) = 1− p̂r.

Let SVMperf
pr denote the SVMperf with the loss function

∆pr.

Theorem 6. SVMperf
pr can be trained in polynomial time

w.r.t. the size of P ∪ U , i.e., l + u.

Proof. It has been shown that if the loss function ∆ can be
computed from the following contingency table, SVMperf

can be correctly trained by a sparse-approximation algo-
rithm [15] in O(n2t) time where n is the number of train-
ing examples and t is the number of different contingency
tables [5].

y = +1 y = −1
(x ∈ P ) (x ∈ U)

h(x) = +1 a b
h(x) = −1 c d

∆pr(h̄(x̄), ȳ) can be computed from the contingency table:

∆pr(h̄(x̄), ȳ) = 1− a2

(a+ b)(a+ c)
.

Given P and U , the values in such a contingency table must
satisfy the constraints a, b, c, d ≥ 0, a+c = l and b+d = u.
Although there are n! = (l + u)! different rankings, there
are only (l+1)(u+1) ∈ O(n2) different contingency tables
that are legitimate. Therefore SVMperf

pr can be trained in at
most O(n4) time.

3 Experiments

3.1 Code

We have implemented the proposed SVM learning algo-
rithms on the basis of Joachim’s SVMperf 1. Our source
code will be made available at the first author’s homepage.

3.2 Data

We conduct our experiments on the following three real-
world datasets which are pre-processed and publicly avail-
able2.

• The news20 dataset contains approximately 20,000
articles that were collected from 20 different news-
groups.

• The siam-competition2007 dataset contains 28,596
aviation safety reports that were used in the SIAM Text
Mining Competition 2007.

• The mediamill-exp1 dataset contains 43,907 camera-
shots from 85 hours of international news broadcast
video data that were used in the MediaMill Challenge
Problem for generic video indexing. Only the top 5
semantic concepts are used as categories in our exper-
iments.

1http://svmlight.joachims.org/svm perf.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/



3.3 Setting

We construct binary classification tasks based on the de-
fault train/test split for each dataset. Given a category, the
positive set P consists of the relevant examples before the
split point, the negative set N consists of the irrelevant ex-
amples before the split point, while the unlabelled set U
consists of all (relevant and irrelevant) examples after the
split point. When the negative set is available, we can use
both P andN to train SVM2c which provides the ideal clas-
sification performance or the upper-bound for PU Learning.
When the negative set is not available, we can use P only
to train SVM1c, or use both P and U to train our proposed
SVMperf

ba and SVMperf
pr .

3.4 Results

We evaluate the classification effectiveness of SVMs on
each dataset using the average accuracy, F1 score and Area
Under the ROC Curve (AUC), as shown in Table 1. We
see that SVMperf

ba and SVMperf
pr work very well in the PU

Learning setting on all the datasets: their classification per-
formances are much higher than that of SVMperf

1c , and are
as good as that of SVMperf

2c which makes of negative exam-
ples. This implies that our proposed classifiers SVMperf

ba

and SVMperf
pr can be trained effectively no negative exam-

ples at all.
We run our experiments on a PC with Pentium 4 (3GHz)

processor and 2GB memory, and report the average training
time (in CPU seconds) of SVMs for PU Learning in Table
2. We see that SVMperf

ba and SVMperf
pr both can be trained

efficiently. Moreover, SVMperf
ba runs an order of magni-

tude faster than SVMperf
pr : the linear time complexity of

SVMperf
ba makes it more scalable than SVMperf

pr .

Table 2. The efficiency (training time) of SVMs
for PU Learning.

dataset SVMperf
ba SVMperf

pr

news20 0.8905 7.1325
siam-competition2007 1.0409 43.0641
mediamill-exp1 3.6140 731.3120

4 Related Work

The problem of PU Learning has attracted much atten-
tion from information retrieval and data mining researchers
in recent years [3, 2, 7, 11, 10, 8, 4, 18, 17, 19, 20]. Please
refer to Liu’s new book on Web data mining [9] for a com-
prehensive survey of this field.

Generally speaking, most existing approaches to PU
Learning follow a two-step heuristic: (1) constructing a
small reliable negative set N̂ by extracting some examples
fromU which look very unlike positive examples; (2) build-
ing a classifier based on P and N̂ iteratively. Our reduction
approach to PU Learning is fundamentally different with
them.

The work most related to ours is probably the Biased-
SVM method which has shown excellent classification per-
formance in comparison to other state-of-the-art PU Learn-
ing methods [10]. It also attempts to optimise a multivariate
performance measure (proportional to pr), but through an
indirect trail-and-error way: it tries a large number (typi-
cally hundreds) of SVMs each with a different cost param-
eter and then pick one from them according to the classifi-
cation performance on a held-out validation set. So theoret-
ically the classification performance of Biased-SVM could
not be better than SVMperf

pr . Our reduction approach to PU
Learning has several advantages over Biased-SVM:

• it should be more effective because it directly opti-
mises meaningful multivariate performance measures;

• it is hundreds of times more efficient because it only
needs to train one classifier;

• a held-out validation set is no longer a prerequisite.

5 Conclusions

In this paper, we have proposed to solve the problem of
PU Learning by reducing it to the problem of learning clas-
sifiers for some meaningful multivariate performance mea-
sures (namely balanced accuracy and precision-recall prod-
uct). Specifically we have presented two variants of stan-
dard SVM, SVMperf

pr and SVMperf
pr , which can be used for

effective and efficient PU Learning.
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