
Population-Variance and Explorative Power of Harmony Search: An

Analysis

Arpan Mukhopadhyay
1
, Anwit Roy

1
, Sourav Das

1
, Swagatam Das

1
, and Ajith Abraham

2

1
Department of Electronics and Telecommunication Engineering, Jadavpur University,

Kolkata, India.
2Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org.

Abstract

This paper presents a simple mathematical

analysis of some features of the Harmony Search

algorithm (HS). HS is a recently developed

derivative-free optimization algorithm, which draws

inspiration from the musical process of searching for

a perfect state of harmony. This work analyses the

evolution of the population-variance over successive

generations in HS and thereby draws some

important conclusions regarding the explorative

power of HS. Experimental results have been

provided to validate the theoretical treatment. A

simple modification of the classical HS has been

proposed in the light of the mathematical analysis

undertaken here.

1. Introduction

In the paradigm of artificial intelligence (AI),

evolutionary algorithms (EA) are randomized search

and optimization techniques that mimic the processes

of Darwinian evolution and natural genetics [1]. In

recent past the computational cost having been

reduced almost dramatically, researchers, all over the

world, are coming up with new EAs on a regular

basis in order to meet the demands of the complex,

real-world optimization problems. In 2001, Geem et

al. proposed Harmony Search (HS) [2], a derivative-

free, meta-heuristic algorithm, mimicking the

improvisation process of music players. Since its

inception, HS has found several applications in a

wide variety of practical optimization problems like

pipe-network design [3], structural optimization [4],

vehicle routing problem [5], combined heat and

power economic dispatch problem [6], and Dam

Scheduling [7].

A significant amount of research has already been

undertaken on the application of HS for solving

difficult practical optimization problems as well as to

improve the performance of HS by tuning its

parameters and/or blending it with other powerful

optimization techniques like PSO (Particle Swarm

Optimization) [8-11]. However, there has been little

or no research work to explain the search-mechanism

of HS analytically within a statistical-mathematical

framework. This paper tries to make a humble

contribution in this context. It attempts to analyze the

evolution of the population-variance of HS and its

influence on the explorative power of the algorithm.

The efficiency of most EAs depends on how they

balance between the explorative and exploitative

tendencies in the course of search. Exploitation

means the ability of an algorithm to use the

information already collected and thus to orient the

search towards the goal while exploration is the

process that allows introduction of new information

into the population. This paper finds an analytical

expression for the population-variance of HS

following the works of Beyer [12] and Zaharie [13],

who did conceptually similar analysis for

Evolutionary Strategy (ES) [14, 15] and Differential

Evolution (DE) [16, 17] respectively. It also draws a

few important conclusions, regarding the explorative

power of HS by observing the change of expected

population-variance over generations with and

without selection.

Based on the analysis presented here, a simple

modification of classical HS has been proposed. In

the modified HS, the control parameter known as

distance bandwidth (bw) has been made equal to the

standard deviation of the current population. Limited

experimental results (owing to the economy of space)

on popular benchmarks have been presented to

validate the analysis undertaken here.

2. Classical Harmony Search Algorithm

Harmony search is a new meta-heuristic

optimization algorithm which imitates the music

improvisation process applied by musicians. Each

musician improvises the pitches of his/her instrument

to obtain a better state of harmony. The goal of the

process is to reach a perfect state of harmony. The

different steps of the HS algorithm are described

below:

Step 1:

The 1
st
 step is to specify the problem and initialize

the parameter values. The optimization problem is

defined as minimize (or maximize) f (x) such

that iUiiL xxx ≤≤≤≤≤≤≤≤ , where f (x) is the objective

function, x is a solution vector consisting of N

decision variables (ix) and iL x and iU x are the

lower and upper bounds of each decision variable,

respectively. The parameters of the HS algorithm i.e.

the harmony memory size (HMS), or the number of

solution vectors in the harmony memory; harmony

memory considering rate (HMCR); pitch adjusting

rate (PAR); distance bandwidth parameter (bw);

and the number of improvisations (NI) or stopping

criterion are also specified in this step.

Step 2:

The 2nd step is to initialize the Harmony Memory.

The initial harmony memory is generated from a

uniform distribution in the ranges [iUiL x, x],

where Ni ≤≤≤≤≤≤≤≤1 . This is done as follows:

()iLiUiL
j

i xxrxx −×+= ,

where HMS1,2,3...., j ==== and),(10U~ r

Step 3:

The third step is known as the ‘improvisation’

step. Generating a new harmony is called

‘improvisation’. The New Harmony vector

),...,,(
//////

Nx,x,xxx 4321====x is generated using

the following rules: memory consideration, pitch

adjustment, and random selection. The procedure

works as follows:

Pseudo-code of improvisation in HS

 for each [[[[]]]]Ni ,1∈∈∈∈ do

if (((()))) HMCRU ≤≤≤≤10, then/*memory

consideration*/

 begin

j

ii xx ====
/ , where (((())))HMSUj ,,,~ …21 .

 if () PARU ≤1,0 then /*Pitch Adjustment*/

 begin

 bwrxx ii ×+=
// , where ()1,0~ Ur and bw is the

 arbitrary distance bandwidth parameter.

 else /* random selection */

()iLiUiL
j

i xxrxx −⋅+=

 endif

 done

Step 4:

In this step the harmony memory is updated. The

generated harmony vector

),...,,(
//////

Nx,x,xxx 4321====x replaces the worst

harmony in the HM (harmony memory), only if its fitness

(measured in terms of the objective function) is better than

the worst harmony.

Step 5:

The stopping criterion (generally the number of

iterations) is checked. If it is satisfied, computation is

terminated. Otherwise, Steps 3 and 4 are repeated.

3. Computation of the Expected

Population-Variance

The explorative power of an EA expresses its

capability to explore the search-space. Expected

population variance is the measure of the explorative

power of the algorithm. In the original Harmony

Search algorithm, we do not have to deal with any

population of vectors in step 3 (New Harmony

Improvisation). Instead, a single harmony vector is

created in this step. But to study the explorative

power of this newly-conceptualized algorithm, we

will have to consider a population of vectors in its

variation step (step 3) i.e. the step that is responsible

for exploring new variations in the search space.

After the selection step (step 4) of the Harmony

Search algorithm, population variance may increase

or decrease. To avoid any premature convergence or

stagnation in the successive generations and to ensure

that most of the regions in the search space have been

explored, the variance operation must adjust the

population variance such that it has a reasonable

value from one generation to another. Thus if the

selection step decreases the population variance, the

variance operators must increase it necessarily.

Thus in step 3 i.e. the New Harmony

Improvisation Process we consider a population of

new harmonies instead of a single harmony. This is

done for the sake of analysis of evolution of

population variance. This new population is referred

as },,,{
HMS

Y
2

Y
1

Y …====Y , where each vector
iY is generated following the rules described in step

3.

Since in Harmony Search algorithm the

perturbations are made independently for each

component, we can say that it will not be a loss of

generality if we conduct our analysis to one-

component vectors i.e. scalars. To do this we will

consider an initial population of scalars

}x...,x,x{xx m321 ,,==== with elements (Rxl ∈∈∈∈), where

we have taken HMSm ==== , i.e. the harmony memory

size.

The variance of the population x is as follows:

() 2

1

22)(
1

xvar xxxx
m

m

l

l −=−= ∑
=

,

where x = Population mean and
2x = Quadratic

population mean.

If the elements of the population are affected by

some random elements, the)xvar(will be a random

variable and))xE(var(will be the measure of the

explorative power.

The main result of this paper is the following

theorem:

Theorem 1:

 Let },,,{ 21 Nxxxx …= be the current population,

},,,{ 21 NYYYY …= the intermediate population

obtained after harmony memory consideration and pitch

adjustment. If HMCR be the harmony memory

consideration probability, PAR the pitch-adjustment

probability,bw the arbitrary distance bandwidth and if we

consider the allowable range for the decision variables

(ix) to be },{ maxmin xx where

ax =max , ax −=min , then

()()
()

() ()

()

()]1
3

43

1

1

1var[
1

varE

2

2

_

2

HMCR
a

PARHMCR
bwPARHMCR

xbwPARHMCRHMCR

xHMCRHMCRxHMCR
m

m
Y

−⋅+








 ⋅
−⋅⋅⋅+

⋅⋅⋅−⋅+

⋅−⋅+⋅⋅
−

=

 (1)

Proof: Here {{{{ }}}}m321 ...x,x,xxx ==== is the current

population. So the population-mean is ∑∑∑∑
====

====

m

l

l

__

x
m

x

1

1
 and

quadratic population-mean is ∑∑∑∑
====

====

m

l

l

__

x
m

x

1

22 1
.

{{{{ }}}}m321 ...Y,Y,YYY ==== is the intermediate population

obtained after harmony memory and pitch adjustment.

Each element lY of the population Y is obtained as:

()

()







−

⋅+

−⋅

←

HMCR x

PARHMCR bw.randx

PARHMCR x

Y

yprobabilit with

yprobabilit with

yprobabilit with

new

r

r

l

1

1

, where r is a uniformly chosen random number

from the set {{{{ }}}}m,.....,,21 , newx is a new random value

in the allowable range {{{{ }}}}maxmin x ,x or {{{{ }}}}a ,a−−−− and

rand is a uniformly chosen random number between

0 and 1.

The index r being a uniformly distributed random

variable with values in {{{{ }}}}m,, …21 , the

probability (((())))
m

krPpk

1
============ , where k is a number

within the set.

Thus rx is a random variable and

()
__

111

1
)(E xx

m
xkrPxpx

m

k

k

m

k

kk

m

k

kr ==⋅==⋅= ∑∑∑
−==

 (2)

()
__

2

1

2

1

22

1

2 1
)(E xx

m
xkrPxpx

m

k

k

m

k

kk

m

k

kr ==⋅==⋅= ∑∑∑
−==

 (3)

We now compute ()lYE and ()2E lY .

Using the lemma 4.1 from [18], we get the

following expressions for ()lYE and ()2
E lY as

follows:

() () () ()

() ()new

rrl

xHMCR

randbwxPARHMCRxPARHMCRY

E1

EE1E

⋅−+

⋅+⋅⋅+⋅−⋅=

 (4)

() () () ()

() ()2

222

E1

EE1E

new

rrl

xHMCR

randbwxPARHMCRxPARHMCRY

⋅−+

⋅+⋅⋅+⋅−⋅=

 (5)

So now, we need to find out ()newxE and ()2E newx .

newx is taken from the search range in the following

way:

(((()))) [[[[]]]]minmaxminnew xx,randxx −−−−⋅⋅⋅⋅++++==== 10 ,

where ()1,0rand denotes the uniformly distributed

random number lying between 0 and 1. And, we

consider ax −=min , ax =max and () R,rand =10 . So

now,

 Raaxnew ⋅⋅+−= 2 and hence,

 RaRaaxnew ⋅⋅−⋅⋅+=
22222

44 (6)

The probability distribution function for the

random numbers is taken to be continuous uniform

probability density function which is graphically

shown in Figure 1.

Figure 1. Continuous Uniform Probability

Distribution

()xf = Continuous Uniform Probability

Distribution Function. In this case, 0=p , 1=q and

Rx = . So,

() ()Ra2axnew EE ⋅⋅+−= [from (5)].)E(R is

computed as follows:

2

1

2

R
dRRdRRRR

1

0

21

0

1

0

=











=⋅=⋅⋅= ∫∫)f()E((7)

Hence,

0aa2a.(1/2)aaR2axnew =+−=+−=⋅⋅+−=)E()E(

 (8)

Also)E()E()E(
22222

new R4aR4aax ⋅+⋅−=

[from (6)]

And
3

1

3

R
dRRf(R)dRR)E(R

1

0

1

0

3
2

1

0

22
=












=== ∫∫ (9)

Hence,
3

a

3

1
4a

2

1
4aax

2
2222

new =⋅+⋅−=)E((10)

So, from (4), we get,

2
E

bw
PARHMCRxHMCR)(Yl ⋅⋅+⋅= (11)

And from (5), we get,

__

22__
22

33
)1(E(

xbwPARHMCR

bw
PARHMCR

a
HMCRxHMCR)Yl

⋅⋅⋅+

⋅⋅+⋅−+⋅=

 (12)

We know,)E()E())E(var(
22

YYY −= . So we will

have to compute)E(
2

Y and)E(
2

Y separately.

The quadratic population-mean, ∑
=

=

m

k

kY
m

Y

1

22 1
.

 So,

∑
=

=

m

k

kY
m

Y

1

22)E(
1

)E(

∑
=



















⋅⋅⋅+

⋅⋅+⋅−+⋅
⋅=

m

k
xbwPARHMCR

bw
PARHMCR

a
HMCRxHMCR

m
1 _

22_
2

33
)1(1

 [By (12)]

_

22_
2

33
)1(

xbwPARHMCR

bw
PARHMCR

a
HMCRxHMCR

⋅⋅⋅+

⋅⋅+⋅−+⋅= (13)

Now we need to determine)E(
2

Y .

We know, the population-mean, ∑
=

=

m

k

kY
m

Y

1

1

So,

]
1

2
[

2

12
}

1

21
{

2

lY
m

k lk
kYkY

m

m

k
kY

m
Y ⋅∑

=
∑
≠

+=∑
=

=

Also,

]
1

2
E[

2

12}
1

21
E{)

2
E(lY

m

k lk
kYkY

m

m

k
kY

m
Y ∑

=
∑
≠

⋅+=∑
=

=

]E[
2

1
]

1

21
E[

1
lY

lk
kY

m

m

k
kY

mm
∑
≠

⋅+∑
=

=

)E()E(
2

1
]2E[

1
lY

lk
kY

m
Y

m
∑
≠

⋅⋅+⋅=

[As kY and lY are independent random variables

() () ()lklk YYYY EEE ⋅=⋅]

⇒)E(
2

Y
2

)][E()1(
2

1
)

2
E(

1
kYmm

m
Y

m
⋅−⋅⋅+⋅=

[Since)E()E(lk YY =]

⇒ 





 2

E Y
2)][E()1(

1
)2E(

1
kYm

m
Y

m
⋅−⋅+⋅= (14)

So, ()() 







−




=

22 EEvarE YYY

22
)][E(

)1(
)E()

1
1(kY

m

m
Y

m
⋅

−
+⋅−=

])}{E()[E(
)1(22

kYY
m

m
−⋅

−
=

From (13) and (14) we get,

()()
()

()
2

_

22_
2

2

33
)1(1

varE









⋅⋅+⋅⋅



















⋅⋅⋅+

⋅⋅+⋅−+⋅
⋅

−
=

bw
PARHMCRxHMCR

m

1-m
-

xbwPARHMCR

bw
PARHMCR

a
HMCRxHMCR

m

m
Y

Simplifying further we have,

()()
()

() ()

()

() 



























−⋅+








 ⋅
−⋅⋅⋅+

⋅⋅⋅−⋅+

⋅−⋅+⋅

⋅
−

=

HMCR
a

PARHMCR
bwPARHMCR

xbwPARHMCRHMCR

xHMCRHMCRxHMCR

m

m
Y

1
3

43

1

1

1var

1
varE

2

2

_

2

And the theorem is proved.

Lemma 1.1:

If HMCR is chosen to be very high (i.e. very near

to 1) and the distance bandwidth parameter (bw) is

chosen to be the standard deviation of the current

population (i.e. () ()xx varσ =), then population

variance (without selection) will grow almost

exponentially over generations.

Proof: The expected variance of the

intermediate Y population (obtained after

improvisation process) is given by Theorem 1 as

follows:

()()
()

() ()

()

() 



























−⋅+








 ⋅
−⋅⋅⋅+

⋅⋅⋅−⋅+

⋅−⋅+⋅

⋅
−

=

HMCR
a

PARHMCR
bwPARHMCR

xbwPARHMCRHMCR

xHMCRHMCRxHMCR

m

m
Y

1
3

43

1

1

1var

1
varE

2

2

_

2

 (15)

Now, if we make 1≈HMCR then terms

containing
__

x ,
2

x and a have very little contribution

to the overall expected population variance. Hence, if

we choose () ()xxbw varσ == (i.e. the standard

deviation of the current population) the expression

becomes:

()()
()

()
























 ⋅
−⋅⋅⋅+

⋅

⋅
−

≈

43

1

var
1

varE 2 PARHMCR
bwPARHMCR

xHMCR

m

m
Y

Neglecting the terms containing ()HMCR−1 , we may

have,

()()
()

()xPARHMCR
PARHMCR

HMCR

m

m
Y var

43

1
1

varE ⋅
























 ⋅
−⋅⋅+

⋅
−

=

 (16)

From (16) it is seen that if we do not include

selection in the algorithm, then the expected variance

of the g
th

 population (gX) becomes:

()() ()
()0var

43

1

.
1

varE XPARHMCR
PARHMCR

HMCR

m

m
X

g

g ⋅








































 ⋅
−⋅⋅+

⋅
−

=

 (17)

In (17) if we choose the values of the

parameters PARHMCR, in such a way that the term

within the second brackets becomes grater than unity,

then we can expect an exponential growth of

population variance. This growth of expected

population variance over generations gives the

algorithm a strong explorative power which is

essential for an EA.

Hence, (17) supports the assertion made in

Lemma 1.1.

5. Experimental Results and Observation

The aim of the experimental section is to validate

the formula obtained in Theorem 1 and to justify the

claim made in Lemma 1.1. This section also

provides a comparison between the HS algorithm and

another popular optimization algorithm known as

Differential Evolution (DE) on the basis of results

obtained for popular numeric benchmark functions.

To validate the formula obtained in Theorem 1,

the expected population variance plot and the

theoretical variance plot [obtained from (1)] over

generations are compared. The expected population

variance has been calculated by averaging the sample

variance for all components and for 100 independent

runs. In all the runs the values of the parameters are

chosen as follows: 5.0=PAR ,

() ()xxbw var== σ (i.e. the standard deviation of

the current population x). The different curves in the

plot are obtained for different values of the

parameter HMCR . Fig. 2(a) and Fig. 2(b) show the

expected variance plot and the theoretical variance

plot respectively.

Figure 2(a). Evolution of the expected population

variance after Improvisation process [Empirical

results]

Figure 2(b). Evolution of the expected population

variance after Improvisation process [Theoretical

results]

To justify the claim made in Lemma 1.1 the

parameters HMCR , PAR are chosen in such a way

that the value of the expression:

Figure 3: Evolution of expected population variance

after choosing the parameter values in accordance

with Lemma 1.1

()















 ⋅
−⋅⋅+⋅

−

43

1
.

1 PARHMCR
PARHMCRHMCR

m

m

 becomes greater than unity. Here, the value of PAR

is kept constant at 0.5. The parameter HMCR is

changed to meet the above criterion. While doing so

it is to be considered that the value of HMCR should

be chosen very close to unity so that the dependence

of the population variance on the population mean

(
__

x) becomes negligible. The harmony memory

size mHMS = is chosen to be 300. Under these

circumstances the value of HMCR is conveniently

chosen at 0.99. The resultant evolution of population

variance is shown in Fig 3.

Fig. 3 shows an exponential growth of expected

population variance over generations. This supports

the assertion made in Lemma 1.1. For parameter

values given by

3005.099.0 ==== HMSm ,PAR ,HMCR the value

of the expression:

()















 ⋅
−⋅⋅+⋅

−

43

1
.

1 PARHMCR
PARHMCRHMCR

m

m

becomes 1.0901, which is greater than unity.

However, for Figure 2 the parameters are so chosen

that the value of this expression is less than unity. So,

instead of an exponential growth the population

variance is saturated after few generations [because

of the other additive terms in the original expression

(1)]. This exponential growth of population variance

(without selection) gives the algorithm a strong

explorative power, which is essential for an EA.

The efficiency of this algorithm in finding the

optimal solution for several different benchmark

functions is compared with that of another popular

optimization algorithm known as Differential

Evolution (DE) and two recently proposed variants

of the classical HS, namely the Improved HS (IHS)

[8] and the Global-best Harmony Search (GHS) [9].

Table 1 shows the comparison of the final accuracy

achieved by the two algorithms over four standard

numerical benchmarks in 3 dimensions. The results

come as averages and standard deviations over 30

independent runs, where each run was continued to

2000 iterations.

Results in Table 1 show that HS, if modified as

suggested in this paper, can work almost as

efficiently as DE (we used the DE/rand/1/bin scheme

with NP = 30, F = 0.8, Cr = 0.9), which has already

emerged as a very powerful optimization technique

these days. The table also indicates the modified HS

can significantly beat GHS and HIS, which are two

state-of-the-art variants of HS. The result obtained in

Theorem 1 provides us the scope to further improve

the efficiency of the algorithm by tuning the

parameter values.

Table 1: Average and the standard deviation of the

best-of-run solution for 30 independent runs tested

on numerical benchmarks

6. Conclusions

This paper has presented a mathematical analysis

of the evolution of population-variance for the HS

meta-heuristic algorithm. The theoretical results

indicate that the population-variance of HS can be

made to vary exponentially by making the distance

bandwidth of HS equal to the standard deviation of

the current population. This intensifies the

explorative power of HS and the algorithm modified

in this way is able to beat the state-of-the-art variants

of HS over popular benchmark functions. Even the

performance of the algorithm was found to be

comparable to that of another very powerful

evolutionary algorithm known as Differential

Evolution (DE).

References

[1] T. Bäck, D. Fogel, and Z. Michalewicz, Handbook of

Evolutionary Computation, Oxford University Press,

1997

[2] Z.W. Geem, J.H. Kim, and G.V. Loganathan, A new

heuristic optimization algorithm: harmony search,

Simulation 76 (2)60–68, 2002.

[3] Z.W. Geem, J.H. Kim, and G.V. Loganathan,

Harmony search optimization: application to pipe

network design, Int. J. Model. Simul. 22, (2)125–133,

2002

[4] S.L. Kang, Z.W. Geem, A new structural optimization

method based on the harmony search algorithm,

Comput. Struct. 82 (9–10), 781–798, 2004.

[5] Z. W. Geem, K. S. Lee, and Y. Park, “Application of

Harmony Search to Vehicle Routing”, American

Journal of Applied Sciences, 2005.

[6] A. Vasebi, M. Fesanghary, S. M. T. Bathaeea,

“Combined heat and power economic dispatch by

Harmony Search Algorithm”, International Journal

of Electrical Power and Energy Systems, 2007.

[7] Z. W. Geem, “Optimal Scheduling of Multiple Dam

System using Harmony Search Algorithm”, Lecture

Notes in Computer Science, 2007.

 [8] M. Mahdavi, M. Fesanghary., and E. Damangir, “An

improved Harmony Search Algorithm for Solving

Optimization Problems”, Applied Mathematics and

Computation, 2007.

 [9] M.G. H. Omran, and M. Mahdavi, “Global-Best

Harmony Search”, Applied Mathematics and

Computation, In Press.

1. [10] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan ,

and Y. Alizadeh, “Hybridizing Harmony Search

Algorithm with Sequential Quadratic Programming

for Engineering Optimization Problems”, Computer

Methods in Applied Mechanics and Engineering,

2008.

2. [11] Z. W. Geem, “Improved Harmony Search from

Ensemble of Music Players”, Lecture Notes in

Artificial Intelligence, 2006.

3. [12] H. G. Beyer, “On the explorative power of ES/EP-like

algorithms”, Technical Reports, University of

Dortmund, 1998.

4. [13] D. Zaharie, “On the explorative power of Differential

Evolution”, 3rd International Workshop on Symbolic

and Numerical Algorithms on Scientific Computing,

SYNASC-2001, Timişoara, Romania, October 2 – 4,

2001.

[14] T. Bäck, and H. P. Schwefel, “Evolution Strategies I.

Variants and their Computational Implementation”,

Genetic Algorithm in Engineering and Computer

Science, 1995.

[15] H.-P. Schwefel, “Evolution and Optimum Seeking”:

New York: Wiley & Sons, 1995.

[16] R. Storn and K. V. Price, “Differential evolution - a

simple and efficient adaptive scheme for global

optimization over continuous spaces”, Technical

Report TR-95-012, ICSI,

http://http.icsi.berkeley.edu/~storn/litera.html, 1995.

[17] K. Price, R. Storn, and J. Lampinen, “Differential

Evolution - A Practical Approach to Global

Optimization”, Springer, Berlin, 2005.

[18] D.Zaharie, “Recombination Operators for

Evolutionary Algorithms”, Proc. of the 27th summer

school, Application of mathematics in engineering

and economics, Heron Press, Sophia, 2001.

Mean best value

(standard deviation)

Function Modified

HS

Differentia

l Evolution

GHS IHS

Rosenbrock

’s

function

1.26e-01

(9.93e-02)

2.00e-03

(3.02e-03)

3.85e-01

(5.83e-02)

2.72e-01

(6.72e-02)

Rastrigin’s

function

0.00e+00

(0.00e+00)

0.00e+00

(0.00e+00)

5.83e-012

(2.82e-

016)

7.82e-013

(4.73e-10)

Griewank’s

function

1.41e-01

(2.82e-07)

0.00e+00

(0.00e+00)

8.46e-01

(3.77e-02)

4.73e-01

(6.59e-03)

Ackley’s

function

8.88e-016

(0.00e+00)

9.51e-016

(1.05e-09)

7.35e-010

(4.77e-

012)

3.73e-011

(8.25e-013)

Schwefel’s

Problem

2.22

5.02e-164

(0.00e+00)

2.70e-159

(9.16e-160)

4.83e-100

(3.72e-

121)

6.72e-093

(8.24e-109)

