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Abstract 
 

This paper presents a simple mathematical 

analysis of some features of the Harmony Search 

algorithm (HS). HS is a recently developed 

derivative-free optimization algorithm, which draws 

inspiration from the musical process of searching for 

a perfect state of harmony. This work analyses the 

evolution of the population-variance over successive 

generations in HS and thereby draws some 

important conclusions regarding the explorative 

power of HS. Experimental results have been 

provided to validate the theoretical treatment. A 

simple modification of the classical HS has been 

proposed in the light of the mathematical analysis 

undertaken here.  

 

1. Introduction 
 

In the paradigm of artificial intelligence (AI), 

evolutionary algorithms (EA) are randomized search 

and optimization techniques that mimic the processes 

of Darwinian evolution and natural genetics [1]. In 

recent past the computational cost having been 

reduced almost dramatically, researchers, all over the 

world, are coming up with new EAs on a regular 

basis in order to meet the demands of the complex, 

real-world optimization problems. In 2001, Geem et 

al. proposed Harmony Search (HS) [2], a derivative-

free, meta-heuristic algorithm, mimicking the 

improvisation process of music players. Since its 

inception, HS has found several applications in a 

wide variety of practical optimization problems like 

pipe-network design [3], structural optimization [4], 

vehicle routing problem [5], combined heat and 

power economic dispatch problem [6], and Dam 

Scheduling [7]. 

A significant amount of research has already been 

undertaken on the application of HS for solving 

difficult practical optimization problems as well as to 

improve the performance of HS by tuning its 

parameters and/or blending it with other powerful 

optimization techniques like PSO (Particle Swarm 

Optimization) [8-11]. However, there has been little 

or no research work to explain the search-mechanism 

of HS analytically within a statistical-mathematical 

framework. This paper tries to make a humble 

contribution in this context. It attempts to analyze the 

evolution of the population-variance of HS and its 

influence on the explorative power of the algorithm. 

The efficiency of most EAs depends on how they 

balance between the explorative and exploitative 

tendencies in the course of search. Exploitation 

means the ability of an algorithm to use the 

information already collected and thus to orient the 

search towards the goal while exploration is the 

process that allows introduction of new information 

into the population. This paper finds an analytical 

expression for the population-variance of HS 

following the works of Beyer [12] and Zaharie [13], 

who did conceptually similar analysis for 

Evolutionary Strategy (ES) [14, 15] and Differential 

Evolution (DE) [16, 17] respectively. It also draws a 

few important conclusions, regarding the explorative 

power of HS by observing the change of expected 

population-variance over generations with and 

without selection.  

Based on the analysis presented here, a simple 

modification of classical HS has been proposed. In 

the modified HS, the control parameter known as 

distance bandwidth (bw) has been made equal to the 

standard deviation of the current population. Limited 

experimental results (owing to the economy of space) 

on popular benchmarks have been presented to 

validate the analysis undertaken here.  

 

2. Classical Harmony Search Algorithm 
 

Harmony search is a new meta-heuristic 

optimization algorithm which imitates the music 

improvisation process applied by musicians. Each 

musician improvises the pitches of his/her instrument 

to obtain a better state of harmony. The goal of the 

process is to reach a perfect state of harmony. The 

different steps of the HS algorithm are described 

below: 

Step 1:   
 

The 1
st
 step is to specify the problem and initialize 

the parameter values. The optimization problem is 

defined as minimize (or maximize) f ( x ) such 

that iUiiL xxx ≤≤≤≤≤≤≤≤ , where f ( x ) is the objective 



function, x is a solution vector consisting of N 

decision variables ( ix ) and iL x and iU x  are the 

lower and upper bounds of each decision variable, 

respectively. The parameters of the HS algorithm i.e. 

the harmony memory size ( HMS ), or the number of 

solution vectors in the harmony memory; harmony 

memory considering rate ( HMCR ); pitch adjusting 

rate ( PAR ); distance bandwidth parameter ( bw ); 

and the number of improvisations ( NI ) or stopping 

criterion are also specified in this step. 

 

Step 2:   

 

The 2nd step is to initialize the Harmony Memory. 

The initial harmony memory is generated from a 

uniform distribution in the ranges [ iUiL x, x ], 

where Ni ≤≤≤≤≤≤≤≤1 . This is done as follows: 

( )iLiUiL
j

i xxrxx −×+=  , 

where HMS1,2,3...., j ====  and ),( 10U~ r  

 

Step 3:  

 

The third step is known as the ‘improvisation’ 

step. Generating a new harmony is called 

‘improvisation’. The New Harmony vector 

),...,,(
//////

Nx,x,xxx 4321====x is generated using 

the following rules: memory consideration, pitch 

adjustment, and random selection. The procedure 

works as follows: 

 

Pseudo-code of improvisation in HS 

 for each [[[[ ]]]]Ni ,1∈∈∈∈  do 

if (((( )))) HMCRU ≤≤≤≤10, then/*memory                             

consideration*/  

 begin 

    
j

ii xx ====
/ , where (((( ))))HMSUj ,,,~ …21 . 

     if ( ) PARU ≤1,0 then /*Pitch Adjustment*/ 

     begin 

    bwrxx ii ×+=
// , where ( )1,0~ Ur  and bw is the  

        arbitrary distance bandwidth parameter.               

 else /* random selection */ 

( )iLiUiL
j

i xxrxx −⋅+=  

 endif 

 done 

 

Step 4:  
 

In this step the harmony memory is updated. The 

generated harmony vector 

),...,,(
//////

Nx,x,xxx 4321====x  replaces the worst 

harmony in the HM (harmony memory), only if its fitness 

(measured in terms of the objective function) is better than 

the worst harmony. 

Step 5:   
 

The stopping criterion (generally the number of 

iterations) is checked. If it is satisfied, computation is 

terminated. Otherwise, Steps 3 and 4 are repeated. 

 

3. Computation of the Expected 

Population-Variance 
 

The explorative power of an EA expresses its 

capability to explore the search-space. Expected 

population variance is the measure of the explorative 

power of the algorithm. In the original Harmony 

Search algorithm, we do not have to deal with any 

population of vectors in step 3 (New Harmony 

Improvisation). Instead, a single harmony vector is 

created in this step. But to study the explorative 

power of this newly-conceptualized algorithm, we 

will have to consider a population of vectors in its 

variation step (step 3) i.e. the step that is responsible 

for exploring new variations in the search space. 

After the selection step (step 4) of the Harmony 

Search algorithm, population variance may increase 

or decrease. To avoid any premature convergence or 

stagnation in the successive generations and to ensure 

that most of the regions in the search space have been 

explored, the variance operation must adjust the 

population variance such that it has a reasonable 

value from one generation to another. Thus if the 

selection step decreases the population variance, the 

variance operators must increase it necessarily.  

Thus in step 3 i.e. the New Harmony 

Improvisation Process we consider a population of 

new harmonies instead of a single harmony. This is 

done for the sake of analysis of evolution of 

population variance. This new population is referred 

as },,,{
HMS

Y
2

Y
1

Y …====Y , where each vector 
iY  is generated following the rules described in step 

3. 

Since in Harmony Search algorithm the 

perturbations are made independently for each 

component, we can say that it will not be a loss of 

generality if we conduct our analysis to one-

component vectors i.e. scalars. To do this we will 

consider an initial population of scalars 

}x...,x,x{xx m321 ,,==== with elements ( Rxl ∈∈∈∈ ), where 

we have taken HMSm ==== , i.e. the harmony memory 

size. 

The variance of the population x is as follows: 

( ) 2

1

22)(
1

xvar xxxx
m

m

l

l −=−= ∑
=

, 



where x  = Population mean and 
2x  = Quadratic 

population mean. 

If the elements of the population are affected by 

some random elements, the )xvar( will be a random 

variable and ))xE(var( will be the measure of the 

explorative power. 

The main result of this paper is the following 

theorem: 

Theorem 1:  
 

 Let },,,{ 21 Nxxxx …=  be the current population, 

},,,{ 21 NYYYY …= the intermediate population 

obtained after harmony memory consideration and pitch 

adjustment. If HMCR  be the harmony memory 

consideration probability, PAR  the pitch-adjustment 

probability,bw the arbitrary distance bandwidth and if we 

consider the allowable range for the decision variables 

( ix ) to be },{ maxmin xx where 

ax =max , ax −=min , then  

 

( )( )
( )

( ) ( )

( )

( )]1
3
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1
                                   

1                                   
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Proof: Here {{{{ }}}}m321 ...x,x,xxx ==== is the current 

population. So the population-mean is ∑∑∑∑
====

====

m

l

l

__

x
m

x

1

1
 and 

quadratic population-mean is ∑∑∑∑
====

====

m

l

l

__

x
m

x

1

22 1
. 

{{{{ }}}}m321 ...Y,Y,YYY ====  is the intermediate population 

obtained after harmony memory and pitch adjustment. 

Each element lY  of the population Y  is obtained as: 

( )

( )







−

⋅+

−⋅

←

HMCR  x

PARHMCR   bw.randx

PARHMCR  x

Y

yprobabilit with

yprobabilit with

yprobabilit with

new

r

r

l

1

1

 

, where r is a uniformly chosen random number 

from the set {{{{ }}}}m,.....,,21 , newx  is a new random value 

in the allowable range {{{{ }}}}maxmin x ,x  or {{{{ }}}}a ,a−−−− and 

rand is a uniformly chosen random number between 

0 and 1. 

The index r being a uniformly distributed random 

variable with values in {{{{ }}}}m,, …21 , the 

probability (((( ))))
m

krPpk

1
============  , where k is a number 

within the set. 

Thus rx  is a random variable and 

( )
__

111

1
)(E xx

m
xkrPxpx

m

k

k

m

k

kk

m

k

kr ==⋅==⋅= ∑∑∑
−==

 

                                                                                              (2) 
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                                                                            (3) 

We now compute ( )lYE  and ( )2E lY . 

Using the lemma 4.1 from [18], we get the 

following expressions for ( )lYE  and ( )2
E lY  as 

follows: 

 

( ) ( ) ( ) ( )

( ) ( )new

rrl

xHMCR

randbwxPARHMCRxPARHMCRY

E1

EE1E

⋅−+

⋅+⋅⋅+⋅−⋅=

                                                                            (4)                                                                                    

 

( ) ( ) ( ) ( )

( ) ( )2

222

E1

EE1E

new

rrl

xHMCR

randbwxPARHMCRxPARHMCRY

⋅−+

⋅+⋅⋅+⋅−⋅=

                                                                            (5)                                        

 

So now, we need to find out ( )newxE and ( )2E newx . 

newx is taken from the search range in the following 

way:    

                                      

(((( )))) [[[[ ]]]]minmaxminnew xx,randxx −−−−⋅⋅⋅⋅++++==== 10 ,  

                                                                                          

where ( )1,0rand  denotes the uniformly distributed 

random number lying between 0 and 1. And, we 

consider ax −=min , ax =max and ( ) R,rand =10 . So 

now, 

 

    Raaxnew ⋅⋅+−= 2  and hence, 

    RaRaaxnew ⋅⋅−⋅⋅+=
22222

44                 (6) 

                                                               

The probability distribution function for the 

random numbers is taken to be continuous uniform 

probability density function which is graphically 

shown in Figure 1. 

 



 
Figure 1. Continuous Uniform Probability 

Distribution 

 

( )xf = Continuous Uniform Probability 

Distribution Function. In this case, 0=p , 1=q  and 

Rx = . So, 

 

( ) ( )Ra2axnew EE ⋅⋅+−=  [from (5)]. )E(R is 

computed as follows:                        

2

1

2

R
dRRdRRRR

1

0

21

0

1

0

=











=⋅=⋅⋅= ∫∫ )f()E(     (7) 

Hence, 

  

0aa2a.(1/2)aaR2axnew =+−=+−=⋅⋅+−= )E()E(

                                                                            (8) 

 

Also )E()E()E(
22222

new R4aR4aax ⋅+⋅−=  

[from (6)] 

And
3

1

3

R
dRRf(R)dRR)E(R

1

0

1

0

3
2

1

0

22
=












=== ∫∫    (9)  

Hence,
3

a

3

1
4a

2

1
4aax

2
2222

new =⋅+⋅−=)E(   (10) 

So, from (4), we get,           

2
E

bw
PARHMCRxHMCR)(Yl ⋅⋅+⋅=                     (11) 

And from (5), we get,       

            

__

22__
22

33
)1(E(

xbwPARHMCR

bw
PARHMCR

a
HMCRxHMCR)Yl

⋅⋅⋅+

⋅⋅+⋅−+⋅=               

                                                                       (12) 

 

We know, )E()E())E(var(
22

YYY −= . So we will 

have to compute )E(
2

Y and )E(
2

Y separately. 

The quadratic population-mean, ∑
=

=

m

k

kY
m

Y

1

22 1
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 So,   
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                                                                   [By (12)] 
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2

33
)1(
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Now we need to determine )E(
2

Y . 

We know, the population-mean, ∑
=

=

m

k

kY
m

Y

1

1
 

So,                         
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[As kY  and lY  are independent random variables  

( ) ( ) ( )lklk YYYY EEE ⋅=⋅  ] 
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Y
2

)][E()1(
2
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1
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From (13) and (14) we get,     
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Simplifying further we have, 
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And the theorem is proved. 

 

Lemma 1.1:  

 

If HMCR  is chosen to be very high (i.e. very near 

to 1) and the distance bandwidth parameter ( bw ) is 

chosen to be the standard deviation of the current 

population (i.e. ( ) ( )xx varσ = ), then population 

variance (without selection) will grow almost 

exponentially over generations. 

 

Proof: The expected variance of the 

intermediate Y  population (obtained after 

improvisation process) is given by Theorem 1 as 

follows: 

( )( )
( )

( ) ( )

( )

( ) 
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                                                                          (15) 

Now, if we make 1≈HMCR  then terms 

containing
__

x , 
2

x  and a have very little contribution 

to the overall expected population variance. Hence, if 

we choose ( ) ( )xxbw varσ ==  (i.e. the standard 

deviation of the current population) the expression 

becomes: 

( )( )
( )

( )
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Neglecting the terms containing ( )HMCR−1 , we may 

have,     
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From (16) it is seen that if we do not include 

selection in the algorithm, then the expected variance 

of the g
th

 population ( gX ) becomes: 
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                                                                          (17) 

In (17) if we choose the values of the 

parameters PARHMCR, in such a way that the term 

within the second brackets becomes grater than unity, 

then we can expect an exponential growth of 

population variance. This growth of expected 

population variance over generations gives the 

algorithm a strong explorative power which is 

essential for an EA. 

Hence, (17) supports the assertion made in 

Lemma 1.1.  

 

5. Experimental Results and Observation 
 

The aim of the experimental section is to validate 

the formula obtained in Theorem 1 and to justify the 

claim made in Lemma 1.1. This section also 

provides a comparison between the HS algorithm and 

another popular optimization algorithm known as 

Differential Evolution (DE) on the basis of results 

obtained for popular numeric benchmark functions. 

To validate the formula obtained in Theorem 1, 

the expected population variance plot and the 

theoretical variance plot [obtained from (1)] over 

generations are compared. The expected population 

variance has been calculated by averaging the sample 

variance for all components and for 100 independent 

runs. In all the runs the values of the parameters are 

chosen as follows: 5.0=PAR , 

( ) ( )xxbw var== σ (i.e. the standard deviation of 

the current population x ). The different curves in the 

plot are obtained for different values of the 

parameter HMCR . Fig. 2(a) and Fig. 2(b) show the 

expected variance plot and the theoretical variance 

plot respectively. 



 
Figure 2(a). Evolution of the expected population 

variance after Improvisation process [Empirical 

results] 

 
Figure 2(b). Evolution of the expected population 

variance after Improvisation process [Theoretical 

results] 
 

To justify the claim made in Lemma 1.1 the 

parameters HMCR , PAR  are chosen in such a way 

that the value of the expression:  

 
Figure 3: Evolution of expected population variance 

after choosing the parameter values in accordance 

with Lemma 1.1 

 

( )








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
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43
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1 PARHMCR
PARHMCRHMCR

m

m

 becomes greater than unity. Here, the value of PAR  

is kept constant at 0.5. The parameter HMCR is 

changed to meet the above criterion. While doing so 

it is to be considered that the value of HMCR  should 

be chosen very close to unity so that the dependence 

of the population variance on the population mean 

(
__

x ) becomes negligible. The harmony memory 

size mHMS = is chosen to be 300. Under these 

circumstances the value of HMCR  is conveniently 

chosen at 0.99. The resultant evolution of population 

variance is shown in Fig 3. 

 

Fig. 3 shows an exponential growth of expected 

population variance over generations. This supports 

the assertion made in Lemma 1.1. For parameter 

values given by 

3005.099.0 ==== HMSm ,PAR ,HMCR the value 

of the expression: 

( )















 ⋅
−⋅⋅+⋅

−

43

1
.

1 PARHMCR
PARHMCRHMCR

m

m

becomes 1.0901, which is greater than unity. 

However, for Figure 2 the parameters are so chosen 

that the value of this expression is less than unity. So, 

instead of an exponential growth the population 

variance is saturated after few generations [because 

of the other additive terms in the original expression 

(1)]. This exponential growth of population variance 

(without selection) gives the algorithm a strong 

explorative power, which is essential for an EA. 

The efficiency of this algorithm in finding the 

optimal solution for several different benchmark 

functions is compared with that of another popular 

optimization algorithm known as Differential 

Evolution (DE) and two recently proposed variants 

of the classical HS, namely the Improved HS (IHS) 

[8] and the Global-best Harmony Search (GHS) [9]. 

Table 1 shows the comparison of the final accuracy 

achieved by the two algorithms over four standard 

numerical benchmarks in 3 dimensions. The results 

come as averages and standard deviations over 30 

independent runs, where each run was continued to 

2000 iterations.  

Results in Table 1 show that HS, if modified as 

suggested in this paper, can work almost as 

efficiently as DE (we used the DE/rand/1/bin scheme 

with NP = 30, F = 0.8, Cr = 0.9), which has already 

emerged as a very powerful optimization technique 

these days. The table also indicates the modified HS 

can significantly beat GHS and HIS, which are two 

state-of-the-art variants of HS. The result obtained in 

Theorem 1 provides us the scope to further improve 

the efficiency of the algorithm by tuning the 

parameter values. 



 

 

Table 1: Average and the standard deviation of the 

best-of-run solution for 30 independent runs tested 

on numerical benchmarks 

 
 

 

6. Conclusions 
 

This paper has presented a mathematical analysis 

of the evolution of population-variance for the HS 

meta-heuristic algorithm. The theoretical results 

indicate that the population-variance of HS can be 

made to vary exponentially by making the distance 

bandwidth of HS equal to the standard deviation of 

the current population. This intensifies the 

explorative power of HS and the algorithm modified 

in this way is able to beat the state-of-the-art variants 

of HS over popular benchmark functions. Even the 

performance of the algorithm was found to be 

comparable to that of another very powerful 

evolutionary algorithm known as Differential 

Evolution (DE). 
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Mean best value 

(standard deviation) 

 

 

Function Modified 

HS 

Differentia

l Evolution 

GHS IHS 

Rosenbrock

’s 

function 

1.26e-01 

(9.93e-02) 

2.00e-03 

(3.02e-03) 

3.85e-01 

(5.83e-02) 

2.72e-01 

(6.72e-02) 

Rastrigin’s 

function 

0.00e+00 

(0.00e+00) 

0.00e+00 

(0.00e+00) 

5.83e-012 

(2.82e-

016) 

7.82e-013 

(4.73e-10) 

Griewank’s 

function 

1.41e-01 

(2.82e-07) 

0.00e+00 

(0.00e+00) 

8.46e-01 

(3.77e-02) 

4.73e-01 

(6.59e-03) 

Ackley’s 

function 

8.88e-016 

(0.00e+00) 

9.51e-016 

(1.05e-09) 

7.35e-010 

(4.77e-

012) 

3.73e-011 

(8.25e-013) 

Schwefel’s 

Problem 

2.22 

5.02e-164 

(0.00e+00) 

2.70e-159 

(9.16e-160) 

4.83e-100 

(3.72e-

121) 

6.72e-093 

(8.24e-109) 


