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Abstract—Following the recent advancements in radar tech-
nologies, research on automatic target recognition using Inverse
Synthetic Aperture Radar (ISAR) has correspondingly seen
more attention and activity. ISAR automatic target recognition
researchers aim to fully automate recognition and classification of
military vehicles, but because radar images often do not present
a clear image of what they detect, it is considered a challenging
process to do this. Here we present a novel approach to fully
automate a system with Convolutional Neural Networks (CNNs)
that results in better target recognition and requires less training
time. Specifically, we developed a simulator to generate images
with complex values to train our CNN. The simulator is capable
of accurately replicating real ISAR configurations and thus can
be used to determine the optimal number of radars needed to
detect and classify targets. Testing with seven distinct targets,
we achieve higher recognition accuracy while reducing the time
constraints that the training and testing processes traditionally
entail.

I. INTRODUCTION

Along with the improvement of radar technologies, as well
as high demands in target identification in radar application,
the Synthetic Aperture Radar (SAR) and ISAR automatic
target recognition are powerful techniques to generate high-
resolution images two-dimensional images virtually in any
type of weather conditions and lighting.
Thanks to SAR/ISAR techniques we are able to obtain a clear
image of any target and classify it properly, but doing so takes
considerable time to analyze manually; thus automatic target
recognition aims to automate this process and let computer
analyze the radar-generated pictures in order to process all the
data in real time as fast and efficiently possible. The Moving
and Stationary Target Acquisition and Recognition (MSTAR)
program is a state-of-the-art model-based vision approach to
SAR automatic target recognition [9]; the MSTAR program
has been used by many researchers to create and validate their
algorithms, in this paper we created an internal simulation
software called ”RadarPixel”, which we used to generate all
the necessary data to test our approach. Using the MSTAR
dataset of a real Slicy we created a three-dimensional virtual
model based on the specifications made by Wong [4], and

successfully validated our simulator comparing visually the
resulting images from our simulator versus the MSTAR
dataset.
In this paper we present a novel approach to process and
classify military aircraft in real time, which will effectively
eliminate the necessity of human operator sift through all the
generated images of the radar; our approach will consist in a
multiple array of radars strategically place in an area that will
help maximize the area of cover for target recognition giving
almost a full 360 degrees of coverage around any one target,
thus resulting in higher accuracies and faster classification,
even when the weather conditions are not favorable (i.e. noise
in the image).
Normally the ISAR methods include only one radar sending
and receiving the electromagnetic waves bouncing off of a
target (see Figure 2.a) this approach is called Mono-static
radar, but our approach includes an array of strategically
placed radars, where one send signals to the target and the
rest receive the signal, in Figure 2.b we have mocked-up
a possible scenario of this approach. We call our approach
Multiple Mono-static radar. The arrangement of this paper is
as follows: In Section II we will explore a few related works
in the SAR automatic target recognition research field and
look at their accomplishments and contributions to the field, in
Section III we will explain the simulator used to get the SAR
images for this experiments and how it was validated, as well
as the necessary parameters to replicate our data generation.
During Section IV we will dive into the architecture for our
CNN and the resulting dataset generated from the simulator,
in Section V we will see the experimental results of our tests
and in Section VI and VII is for conclusions and discussion.

II. RELATED WORKS

As an active research topic and it’s extensively applications
to broader problems, the SAR/ISAR automatic target recogni-
tion techniques usage have been applied in the fields regarding
surveillance, homeland security, and military tasks (e.g., [10]-
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Fig. 1. Aircraft models used during the simulations

[13]). Novak et al. [13] used a simple mean square error
classifier (MSE) to accomplish accuracies of 66.2% and 77.4%
with 20 and 10 target classes respectively on the MSTAR
dataset. Bhanu et al. [10], presents a variety of paper in the
field of automatic target detection and recognition; the authors
made specific groups to categorize the different techniques
used in the automatic target detection and recognition, the first
group uses multiresolution processing for clutter modeling,
target detection, and recognition, the second group relates to
physics-based processing for target detection, recognition, and
change detection, the next one use geometrical approaches to
target detection and recognition, and the last group ismodel-
based processing of image sequences for target motion detec-
tion, recognition, tracking and change detection for wide area
surveillance. Martone, Innocenti and Ranney [11], proposed
a system to detect and track moving personnel inside wood
and cinderblock structures, using an automatic target detection
algorithm, a constant false alarm rate approach, and k-means
clustering they were able to achieve their goal. Past work in
SAR automatic target recognition involved the use of SVM
such as Gorovyi and Sharapov [6], where an SVM achieved
an accuracy of 90.7% on the MSTAR data set. Wagner [7]
extended their SVMs with convolutional layers improving
performance and achieving an accuracy of 99.5% for forced
classification on the MSTAR data set. Zhong and Ettinger[8]
use conventional CNNs to reach accuracies that range from
99.0% to 99.5% on the MSTAR data set; this suggests that
convolutions work well on SAR in order to improve the
performance of SAR target recognition on the MSTAR data
set compared to conventional SVMs.

Although Wanger [7] and Zhong and Ettinger [8] both use

CNNs to train and test their databases we utilize an unusual
approach that leads a better performance and faster training
times since our CNN uses the complex values generated
by the simulation itself to train the network. We utilize a
multi-radar approach to increase the accuracy of the training
and testing processes, thus resulting in higher accuracies than
the other papers working on SAR/ISAR automatic target
recognition. The only flaw with our approach would be that
it is a very time-consuming job to generate the data since
we need to gather an enormous amount of data to get more
accurate results from the network.

Fig. 2. a) Mono-static radar, b) Multiple Mono-static radar

III. SIMULATION

A. RadarPixel

RadarPixel [27] is a simulation software developed by us
able to efficiently generate realistic, high-resolution SAR and
ISAR images of any 3D model in a Standard Tessellation
Language (STL) format. The program is currently available
in Windows’ platforms, RadarPixel’s layout is showcased in



Figures 3.a, where we can observe most of the simulator’s
available functions, and how the STL model looks once it is
inside the simulation.

In order to run a simulation in any given aircraft we have
to input the angle of elevation in which the SAR happened
to receive the information from a passing aircraft, also we
need the distance from the radar’s position to the aircraft, so
using basic trigonometric operations to get the height of the
plane using the elevation angle and a fixed distance from the
radar to the target we get the distance from the ground to the
target (height), the final distance of the aircraft is calculated
using the root of the sum of the squares of the distance and
height, then we calculate the velocity of the target using the
final distance times achieved at the end of the simulation;
after the simulation has completed its motion compensation
calculations we can observe a sample image in Figure 3.b
and Figures 7 and 8 for the Slicy.

The simulation also includes a preset for the amount of
noise in the environment; signal noise is an internal source
of random variations in the signal, which is generated by
all electronic components. Reflected signals decline rapidly
as distance increases, so noise introduces a radar range
limitation; this noise is generated in the simulator using
the Gaussian noise function available in MATLAB. Noise
typically appears as random variations superimposed on the
desired echo signal received by the radar receiver. The lower
the power of the desired signal, the more difficult it is to
discern it from the noise. The stealth aircraft rely on this noise
to hide from any radar signals since the stealth material that
they carry impedes the radar waves from bouncing correctly
off of the aircraft’s body.

B. Validation

”The Slicy target is a precisely designed and machined engi-
neering test target... to allow Image Understanding developers
the ability to validate the functionality of their algorithm with
a simple know target” [4]; basically the Slicy is built test
the SAR capabilities, since it has every possible scattering
primitive that could be encountered in an object. In Figure 5
we can observe the different scattering techniques that can be
a applied to every section of the Slicy, for example, single
bounce (flat-plate), double bounce (dihedral), triple bounce
(trihedral), edge diffraction (cylinder and top hat), cavity
(hollow cylinder) and shadowing (obstructions between parts
on the target).

The parameters used for the validation of the simulation
were directly inspired from [4] where they tested a real
SAR with a Slicy made out of concrete and it was 2.445
meters wide, 2.75 meters long, and 0.765 meters tall (only
for the rectangular box) + 0.915 meters extra from the
tallest cylinder. We obtained from the simulator 2 degrees of
elevation (15 and 30) and 8 degrees of rotation (0, 45, 90,
135, 180, 225, 270, 315). Our Slicy model [26] (Figure 4)
contained 6400 total faces and we can observe in Figure 7
and 8 our results nearly match the real world test of every

Fig. 3. a) RadarPixel plane model, b) RadarPixel simulated SAR image

Fig. 4. Slicy model.



Fig. 5. Scattering primitives available in the Slicy target.

angle, although if we introduced more total faces the images
will begin to be even more similar. Thus we can conclude
that our simulator is accurately creating SAR images, that
match real-world scenarios.

IV. METHODS

A. Convolutional Neural Network

To test our hypothesis that using Multi Mono-static for
automatic target recognition will increase the accuracy for
image classification, we constructed a CNN. A CNN is a type
of deep net that helps analyze image data, based on a feed-
forward artificial neural network [1]. For data generation, we
used the same degrees of elevation as the Slicy model, but
we generated 360 images per elevation in order to get a full
360 view of the aircraft model. Afterwards, we modified the
level of noise we allowed the simulator to generate. Noise
in electronic components is caused by different factors such
as weather and lighting. The architecture of the network is
inspired by the basic MNIST but we used a 54x54 image size
with complex number matrix instead of pixels from an image,
this gives the network a lot more information about the image.
Our first layer of convolution will compute 128 features for
each 5x5 patch and depending on the number of radars in
the simulation is the number of channels that the input layer
will have. The max pooling layer will reduce the matrix size
to 27x27, then the second convolutional layer will get 256
features every 5x5 patch from the 27x27 input. Finally, a last
max pooling layer will return a 14x14 matrix and we can add
a fully connected layer with 1024 neurons to allow processing
on the entire matrix. During the dropout layer, we define a
probability that the output of a neuron is kept (On during
training and off during testing). At last, a resulting in output
a number between 0 and 7 where each number is defined by
a specific aircraft, the order of the aircraft can be seen in the
Tables 1-5. See Figure 6 to observe the flow of our networks
architecture [27].

Fig. 6. Convolutional Neural Network Architecture.

B. Multiple Mono-static Radar

Mono-static Radar images are generated using a single
radar that sends a signal and receives the bounced signals from
the desired target (see Figure 2.a); a Multiple Mono-static
radar is that which comprises multiple radar-generated images
of the mono-static radar, using this method we increased
our detection accuracy significantly since the network was
getting a complete view of the aircraft (see Figure 2.b).The
parameters used to fulfill the requirements for the multiple
Mono-Static sets of images were given by the number of
radars that we chose to test, for example, for a 4 radar
setting we get the degrees of rotation for 0, 89, 179, 269 then
increasing the numbers by one giving us a total of 90 sets for
a given degree of elevation so having 2 degrees of elevation
we get a total of 180 sets of images to work on that given
number of multiple Mono-Static radars.

C. SARS

The datasets created for testing our simulation comes from
the aircraft fighter jet 3D models selected from US aircraft:
F15 and F16, Chinese Aircraft: J11 and J15, and Russian



Fig. 7. Comparison between theMSTAR data from the real Slicy and the RadarPixel’s simulated images at 15-degrees of elevation angle.
g



Fig. 8. Comparison between theMSTAR data from the real Slicy and the RadarPixel’s simulated images at 15-degrees of elevation angle.



aircraft MIG29 and MIG35. The data is composed of a
combination of elevation and rotation angles (the aircraft
can be seen in Figure 1), and a distance is given as a
parameter to the radar simulator that represents the position
of elevation of the radar simulator from where it will be
pointing towards the target. The velocity and other parameters
are then computed by the simulator software. The result is a
vector-image transformed out of the radar simulator output
features and their class label. The SAR simulator output is
based on the scattering primitives and a number of reflections
returned by the target model. The intensity of the output
image features is dependent on a number of reflections of
the model. Meshes and scattering primitive geometric shapes
form a very important aspect of retrieving reliable data from
each target simulated. The simulators range of generated
noise in the image is from 201 dB, which is considered as
no noise, and 0 dB, mainly noise in the image. We generated
images for 201 dB, 200 dB, 150 dB, 100 dB, and 50 dB
with Gaussian noise signal to noise ratio; for each noise
level, we generated 5040 images for each aircraft we had
available, thus giving a grand total of 25,200 images. After
testing all the generated data with our network we observed
that 201 dB was basically generating the same imaging as
with 200 dB thus 201 dB was discarded from results, and
we observed 50 dB had too much noise that it would not be
possible to run it successfully through a network, therefore
50 dB was not considered; after discarding all the useless
images we are left with 15, 120 images for training and testing.

Fig. 9. Accuracy for 7 aircraft models at 200, 150, and 100 noise levels.

V. EXPERIMENTAL RESULTS

With the usage of a 10-fold cross-validation to train and
test the neural network, we can verify (as shown in Figure
9) the results of the most significant tests we ran through our
CNN. We observed that the number of radars does not affect
directly to the accuracy of the models when the noise level is
200 dB or 150 dB. That indicates that in an environment with
low or normal noise levels, the CNN will classify the aircraft
with nearly a hundred percent accuracy. but when the radars
are receiving noise. Similarly, in Table 1 we can observe
that the accuracy per class when using only a Mono-static

approach will be kept high when no noise is introduced in
the radar, but it will significantly be decreased if we dont
use multi Mono-static approach, and Tables 2-5 show the
accuracy for every aircraft we tested separated by the number
of radars used at each instance.

TABLE I
ACCURACY PER CLASS FOR MONO-STATIC

Model 200 dB 150 dB 100 dB
F15 99.16±1.13 98.59±0.74 56.38±4.27
F16 98.88±1.53 98.04±1.1 62.63±11.12
J11 95.83±1.86 91.70±2.82 42.91±5.17
J15 97.08±2.40 90.42±2.0 50.83±7.4

MIG29 98.33±1.76 96.40±1.03 56.11±6.24
MIG35 98.61±4.16 96.95±1.55 55.97±6.18
EF2000 99.16±2.15 98.02±1.02 76.80±4.98

TABLE II
ACCURACY PER CLASS WITH 2 RADARS

Model 200 dB 150 dB 100 dB
F15 99.44±1.10 100±0.0 78.05±7.26
F16 100±0.0 99.72±0.93 79.16±8.18
J11 95.55±3.99 96.94±2.15 64.72±6.14
J15 92.77±5.13 95.83±3.09 66.38±5.88

MIG29 98.33±2.56 99.16±1.44 77.50±7.98
MIG35 99.16±1.35 99.16±1.49 75.55±6.83
EF2000 99.72±0.85 100±0.0 91.94±4.25

TABLE III
ACCURACY PER CLASS WITH 3 RADARS

Model 200 dB 150 dB 100 dB
F15 100 ±0.0 100 ±0.0 98.33±2.02
F16 99.16±1.78 100 ±0.0 95.83±3.82
J11 99.66±3.04 98.75±2.99 91.25±6.82
J15 97.08±4.16 97.08±4.95 90.83±6.35

MIG29 100 ±0.0 99.58±1.22 98.75±2.14
MIG35 99.16±1.84 98.75±3.16 96.66±3.53
EF2000 99.58±1.05 100 ±0.0 97.91±2.58

TABLE IV
ACCURACY PER CLASS WITH 4 RADARS

Model 200 dB 150 dB 100 dB
F15 100 ±0.0 100 ±0.0 97.77±2.37
F16 100 ±0.0 100 ±0.0 95.55±5.47
J11 96.11±6.51 98.33±2.59 92.77±6.78
J15 98.33±3.0 98.33±4.27 82.77±12.66

MIG29 100 ±0.0 100 ±0.0 94.44±5.26
MIG35 100 ±0.0 98.33 ±3.06 91.66±6.52
EF2000 100±0.0 100 ±0.0 97.22±2.7

VI. CONCLUSION

In this paper we presented a new simulation software with
a novel approach to classify military aircraft using multiple
Mono-static radars to generate an array of pictures around the
target at any given moment and feeding the array as a matrix
to our CNN, we can observe from the results and Tables 1-5



TABLE V
ACCURACY PER CLASS WITH 5 RADARS

Model 200 dB 150 dB 100 dB
F15 100 ±0.0 100 ±0.0 99.30±1.58
F16 100 ±0.0 100 ±0.0 100±0.0
J11 97.18±6.41 98.58±2.04 95.80±5.72
J15 97.16±4.83 95.83±6.24 92.19±6.37

MIG29 99.30±1.86 99.30±2.11 99.29±2.26
MIG35 100 ±0.0 97.90±5.27 97.91±4.99
EF2000 99.30±2.43 100 ±0.0 100±0.0

that the best number of radars to have in such array has to
be greater than 4 since it will give results that are nearly as
accurate as radars in the best climatic and lit conditions.

VII. DISCUSSION

The original scope of this paper included military stealth
aircraft like F35, J20, T50, etc., but due to the little trustworthy
information for the stealth coating and material these aircraft
use to absorb the electromagnetic waves from the SAR/ISAR,
we could not include those results in this paper, as well as
noise below 50 dB which will cause the images to be too
randomized leading to inaccurate training within the size of
the current number of images in our dataset.
Although the results of this paper proved that having more
radars will increase the accuracy considerably we are aware
that SAR/ISAR equipment is expensive and having several of
them could be nearly impossible, so in future work for these
study we will utilize a Bi-static method that should lead to the
same conclusion as our current one, but with Bi-static only one
sender/receiver is necessary for the array and the rest will be
only receiving the bounced electromagnetic waves from the
target.
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